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Abstract—All-Optical Label Swapping (AOLS) forms a key
technology towards the implementation of All-Optical Packet
Switching nodes (AOPS) for the future optical Internet. The
capital expenditures of the deployment of AOLS increases with
the size of the label spaces (i.e. the number of used labels), since a
special optical device is needed for each recognized label on every
node. Label space sizes are affected by the way in which demands
are routed. For instance, while shortest-path routing leads to
the usage of fewer labels but high link utilization, minimum
interference routing leads to the opposite.

This paper studies All-Optical Label Stacking (AOLStack),
which is an extension of the AOLS architecture. AOLStack
aims at reducing label spaces while easing the compromise
with link utilization. In this paper, an Integer Lineal Program
is proposed with the objective of analyzing the softening of
the aforementioned trade-off due to AOLStack. Furthermore,
a heuristic aiming at finding good solutions in polynomial-time
is proposed as well. Simulation results show that AOLStack
either a) reduces the label spaces with a low increase in the link
utilization or, similarly, b) uses better the residual bandwidth to
decrease the number of labels even more.

Index Terms—All-Optical Label Switching, All-Optical Packet
Switching, All-Optical Label Swapping, All-Optical Label Stack-
ing, label stacking, label merging, GMPLS, MPLS, label space
reduction.

I. INTRODUCTION

The current economic expansion drives telecommunication
networks that are at the heart of our information-based so-
ciety to grow steadily and become more and more flexible.
Nowadays these networks are mostly based on optical fiber for
information transmission. Wavelength Division Multiplexing
(WDM) offers enormous bandwidth through parallel high bit-
rate wavelength-channels onto the same fiber link. Information
is sent over one of these wavelength-channels and reaches its
destination following successive fiber links on its itinerary.
The term lightpath is used to denote this fully optical route
followed by the traffic. Although lightpaths offer big capacities
(wavelength granularity), they remain relatively static and do
not offer always the flexibility that is asked for by network
operators (i.e. different types of traffic resulting from a wide
range of protocols and services) [1]. On the other hand, packet

switching networks are best suitable considering these aspects
since they provide finer bandwidth granularity [2].

The first packet switched networks employing fiber links
needed to entirely bring optical packets back to the elec-
tronic domain at every hop to achieve routing. Despite the
flexibility (and backwards compatibility) of this approach,
the enormous number of packet “handlings” makes it badly
scalable, demanding costly Optical Electronic Optical (OEO)
conversions at high-speed. More recent technologies, namely
Optical Packet Switched (OPS) networks, overcome these
problems partially by keeping the packet’s payload optically
during the whole itinerary. Only the packet’s header is brought
back to the electronic domain for analysis. But, even if OEO
conversions can be performed at high speed, there is still the
gap between fast fiber transmission speeds and slow router
decision-making-speeds (due to table look-up procedures that
are time consuming) [1].

Therefore, research has started focussing nowadays on All-
Optical Packet Switching (AOPS) nodes that intend to route
packets at wavelength-speed without converting them to the
electronic domain. Providing the AOPS functionality avoids
electronics in the data-forwarding plane (at the core nodes),
making the usage of electronics in the control plane solely.

Future networks are believed to be user-centric and allow
on-demand and user-defined broadband provisioning [3]. This
implies a shift in the broadband bandwidth demand from
leased wavelengths over lightpaths to wavelength routed bursts
and packets. In addition to the aforementioned technological
advantages, this fact motivates the research community to dig
into a robust, flexible and fast AOPS architecture.

Even though packet switching granularity is needed, a
connection-oriented control plane is desirable in order to
provide service guarantees. The most promising control plane
technology for the future optical Internet is the Generalized
MultiProtocol Label Switching (GMPLS) [4]. Considering an
underlying packet switch technology, GMPLS tags packets
with labels. In this way, packets belonging to the same demand
can be identified and forwarded accordingly, creating a Label
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Switched Path (LSP).
In order to achieve all-optical packet switching, GMPLS

forwarding functionality must be implemented in optical hard-
ware, viz. burned-in-chip [5]. An implementation of GMPLS
forwarding functionalities using optical hardware is known as
All-Optical Label Swapping (AOLS). However, AOLS designs
do not scale well [6]. This is because each label the node
recognizes needs an individual hardware [7]. Solutions to this
are: a) the reduction of the number of labels needed to route all
packets in the network or, b) architectures and mechanisms that
share the label recognition hardware among different labels.
This paper concerns solution a) by considering the principles
of label merging and label stacking of GMPLS. To the best
of our knowledge, this is the first time that both label merging
and label stacking are applied to AOLS networks.

The total number of labels used in a network depends on
the routes taken by the demands. On the one hand, shortest-
path algorithms would aim at short routes, but also to a high
link utilization. On the other hand, minimum interference
algorithms would aim at low link utilization, but longer
routes [8]. In the context of AOPS, long routes lead to the
usage of more labels (increasing capital expenditures) and high
link utilization leads to not only call-blockings but also to
packets loss. This trade-off between the number of used labels
(or label space) and the Maximum Link Utilization (MLU) can
be eased by using GMPLS label merging and/or label stacking.
This paper concerns the analysis of this softness in the trade-
off considering stacks of two labels at most.

In order to perform our analysis, an Integer Lineal Program
(ILP) is proposed, which finds the optimal label assignation
(considering stacking) given a set of demands and a limit on
the MLU. Furthermore, an heuristic tackling the same problem
is proposed as well. Considering the label space reduction
problem in GMPLS networks, our paper contributes with the
novel MERLIN group concept; aiming at simplifying the way
in which label reduction through label merging is perceived.

The remaining of this paper is organized as follows. In §II,
the AOLS architecture is summarized including an extension
to implement All-Optical Label Stacking (AOLStack). In §III,
the state of the art in label space reduction in GMPLS is
summarized. Furthermore, the routing trade-offs are briefly
shown. In §IV and §V, we propose an ILP and an heuristic,
respectively, to tackle the problem. Simulation results and
conclusions are described in the last two sections of this paper,
viz. §VI and §VII respectively.

II. ALL-OPTICAL LABEL SWITCHING

We initially describe the Lasagne implementation of
AOLS [7]. At the end of this section, we describe the enhance-
ment that allows Lasagne perform label stacking, AOLStack.

A. The All-Optical Label Swapping Block

We must take into account that the wavelengths entering
an AOPS node must be first demultiplexed and for each
wavelength an AOLS-block is required.

The basic all-optical functionalities of AOLS are: a) label
identification, b) label insertion and, c) packet routing based
on the header’s label. The original AOLS-block proposed by
the Lasagne project [6], [7] can be seen in Fig. 1.

Each AOLS-block comprehends the true forwarding func-
tionality of incoming packets. Entering the AOLS-module, the
packet payload (40 Gbit/s) is separated from its label [9].
The extracted label is fed to a bank of All-Optical Logical
XOR Gates (AOLXG) [7], or simply correlators, where the
comparison between the incoming label and a set of local
labels is performed. These local labels are generated using a
network of optical delay lines (ODLs). An ODL is comprised
of a set of interconnected Fibre Delay Lines (FDL), couplers
and splitters which generate a bit sequence out of one pulse.
Thus, comparing the incoming label to the local labels implies
that for each possible incoming label a separate ODL and
a correlator need to be installed in the AOLS-block. After
comparison, a high intensity pulse will appear at the output
of the correlator with the matching label. This pulse feeds a
control-block that drives a wavelength converter, setting the
packets to the appropriate wavelength.

Meanwhile a new label is generated in the New Label
Generation (NLG) sub-block using the appropriate ODL. The
new label is inserted in front of the payload and both the
payload and the new label are now converted to the wavelength
defined by the AOFF [7]. The packet is then sent through
an Arrayed Waveguide Grating (AWG): thus the wavelength
on which the packet leaves the AOLS-block determines the
outgoing port on which the packet leaves the node. Because
of lack of space, we address the reader to [7] for more details.

In [7], a slight modification of the architecture allowing
label stripping is proposed as well. With label stripping, the
ingress node codes a stack of labels in the header and, at every
hop the top label is stripped off (extracted, but not replaced).
With label stripping, the overall number of recognized labels
equals the number of links in the network, but the depth of
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Fig. 1: AOLS implementation according to the Lasagne project
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the stack equals the maximum length of the paths, increasing
the overhead in the traffic [6].

B. Enhancements for All-Optical Label Stacking

Allowing all-optical label stacking imposes two challenges:
a) considering only the top label of the header and, b)
push and/or pop the top label (including the AOLS swapping
ability). In previous work, the authors proposed AOLStack,
which enhances AOLS by:

• Allocating always space in the header for two labels (or
the maximum needed by the stack), even though just one
label is coded at some hops,

• Setting the payload/label separation circuit timer of
AOLS to extract just one label, the first detected in the
stream, and,

• Modifying the NLG sub-block as seen in Fig. 2.

0101

0101

0101Optical Signal

PXC

Optical Label

ODLFDL

Fig. 2: Enhancement of the New Label Generation block for
AOLStack.

When a new label needs to be pushed on the stack, the NLG
sub-block works as follows. Initially, the matching pulse is
split in two. One of the pulses is delayed using an FDL. As a
consequence, both pulses are switched by the PXC at different
times. After being switched, each one generates a different
label by passing through its corresponding ODL. The delayed
pulse becomes the bottom label (“swapping” the incoming
one) and the other pulse becomes the top label.

The behavior of the NLG sub-block is the same as in AOLS
when a label needs to be swapped. In this way, the delayed
pulse is discarded. Similarly, popping the stack implies dis-
carding both pulses, or simply the incoming matching pulse.

In this work we consider the distribution of labels in a per
fiber basis, decreasing the chances of packet contentions [6].

The term label and optical correlator are going to be used
interchangeably, since to process one label we need a fixed
number of optical correlators1.

III. THE LABEL SPACE REDUCTION PROBLEM

In this section we review the state of the art of the label
space reduction problem in GMPLS. At the end of this section,

1Indeed, we need W correlators per label in a per fiber basis, where W
is the number of wavelengths per fiber. In this sense, “reducing the label
spaces” actually means “reducing the number of installed correlators in an
AOLS-block”.

we contribute with a new concept (the MERLIN groups) which
is a stepping stone towards the formulation of our ILP model
for AOLS.

We employ the term segment to denote a sequence of two or
more consecutive links denoting a route in a network between
two nodes. In addition, the term path is used to mean a
segment in the network from an ingress node to an egress
node routing a given demand.

A. The STACKING PROBLEM

By stacking a new label on a set of packets belonging to
different paths, downstream nodes need to consider just the top
label (the same for all paths) to route the traffic. In this sense,
we say that: a) there is a label space reduction since one label
is used to forward a set of paths and, b) a tunnel is set up to
forward the packets from all paths. Clearly, the pushed label
needs to be popped before any of the paths diverges [11].

When a tunnel φ is used to forward the packets of a path α,
we say that the tunnel φ covers path α (at a given link). The
norm of a path (or tunnel), i.e. |x|, is the number of traversed
nodes along its route. The intersection of two paths (or two
tunnels, or a path and a tunnel), i.e. x∩ y, is the segment that
both have in common.

Finding the minimum number of needed labels (or correla-
tors) to route a set of paths is not an easy task. For example,
Fig. 3 shows two different solutions for the same problem. In
this example, the first solution (Fig. 3(a)) builds a tunnel that
makes nodes in the network use a total of 15 labels, while the
second solution (Fig. 3(b)) makes them use just 14 labels.

The STACKING PROBLEM becomes harder if we consider
that: a) one path can be covered by only one tunnel in a
link and, b) there could be more than one tunnel capable of
covering a path on a given link.

B. Where are the Tunnels?

Even though solving the STACKING PROBLEM is hard, in
previous work, we demonstrated a lemma that aids us in its
solution [11]:

Lemma 1 (Stacking Problem Space): Given a set of paths
in the network, a set of tunnels containing the optimal solution

3 2 2 3 2 3+ + + + + = 15
Labels

LSP A

LSP B

LSP C
LSP D

N1 N2 N3 N4 N5 N6

(a) Suboptimal solution.

3 1 1 2 4 3+ + + + = 14
Labels

+

LSP A

LSP B

LSP C
LSP D

N1 N2 N3 N4 N5 N6

(b) Optimal solution.

Fig. 3: Stacking problem example.
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to the label space reduction problem can be computed in
polynomial time, as follows:

• Let P = {α0, α1, . . . , α|P |} be the set of given paths.
For every different pair of paths, α and β, the segments
resulting from intersecting α with β conform the primary
tunnels.

• Let T ′ = {φ′
0, φ

′
1, . . . , φ

′
|T ′|} be the set of primary tun-

nels. For every different pair of primary tunnels, φ′ and
θ′, the segments resulting from the difference between
them conform the secondary tunnels.

• The set of tunnels to be considered for the problem
solution space are both, the primary tunnels and the
secondary tunnels.

The lemma above allows us to reduce our search space in
the optimization problem to only the computed set, and not
all the possible paths in the network.

In [12], the Longest Segment First algorithm (LSF) and the
Most Congested Space First algorithm (MCSF) are described.
While the LSF creates tunnels as long as possible, the MCSF
creates them as wide as possible.

C. Label Merging

As commented in [4], two Label Switched Paths (LSPs) in
MPLS can be merged at certain Label Switched Router (LSR)
if, and only if, they follow exactly the same route downstream
that LSR. When two LSPs are merged, the same label is
assigned to the segment they have in common. Therefore, one
label is allocated for both (or many more) LSPs, decreasing
the overall number of labels that are needed.

The contributions on label merging are more extensive than
in label stacking. We briefly highlight two of them. Saito et
al. proposed an ILP formulation in [13] that aims at reducing
the number of labels using label merging, but not stacking.
Similarly, Applegate and Thorup in [14] gave a bound on the
label space under especial assumptions.

We claimed in previous work that: given a set of paths,
determining how these paths can be merged in order to obtain
the minimum number of labels is a deterministic process, as
inferred from [4]:

1) Let i be a node and Pi a set of paths (input parameters)
2) Let n(i) be the set of neighboring nodes of i
3) For every node j ∈ n(i),

a) Let Pi/j be the set of paths that are forwarded
through j to i

b) All the paths in Pi/j use the same incoming label
at i (hence the same outgoing label at j).

c) Call recursively with parameters j and Pi/j

The procedure is initially called with parameters e and Pe,
where Pe represents the set of paths that have as egress e.

Considering a particular link in the network, there are
disjoint groups of paths that can be merged together. We call
this group a MERgeable LINk group of paths, or MERLIN
group for short. A link can have more than one MERLIN group
because: a) the paths traversing the link have different egress,
b) even though the set of paths have the egress in common,

they do not follow the same route (diverging) downstream the
link. The concept applies as well to tunnels. Note that the
number of used labels (if label merging is considered solely)
is equal to the number of MERLIN groups needed to route
the traffic, by definition.

D. Label Space Size vs. MLU: An Example

In this subsection we present an example showing how the
MLU affects the label space, and how this repercussion is
eased when label merging and stacking are considered.

Let us consider the physical fiber topology of Fig. 4(a) with
14 nodes, in which nodes N1 and N2 are ingress and nodes
N6 and N7 are egress. Let us assume that we need to route
one unit of traffic from both ingresses to both egresses. More
precisely, we denote by A the connection needed from N1 to
N7; B the connection from N1 to N6; C the connection from
N2 to N7 and; D the connection from N2 to N6. The solutions
shown in this subsection do not contemplate the possibility of
splitting the demanded bandwidth across several paths.

N14N13N12N11

N2

N1 N7

N6

N10 N9 N8

N3 N4 N5

(a) Fiber Topology.

D

C

B

A

D

C

B

A

N7

N8

N6

N5N4N3

N2

N1

N9N10

N11 N12 N13 N14

(b) 22 labels and MLU of 2 units of traffic along 3 links.

Fig. 4: Routing and Traffic Engineering.

A classical Traffic Engineering (TE) routing algorithm could
aim at routing traffic such that the MLU is minimized while
bounding the delay2. A typical TE solution for this example
can be seen in Fig. 4(b). The solution has the minimum delay
(or hop count) and the minimum MLU. In this case, the
number of used labels equals the hop count, i.e. 22, and the
MLU does not exceed two units of traffic along three links
(N11-N12, N12-N13 and N13-N14).

Considering the label merging feature, a different routing
solution leads to the usage of fewer labels. For instance,

2For simplification, we assume that hop count is equal to the delay
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in Fig. 5(a) connection A is using a different route, so its
labels can be merged with connection C from node N11 to
N7. Similarly, connection B is merged with connection D.
Even though the number of labels is reduced in this case down
to 16, the MLU has been increased up to four units of traffic
along the same three links.

Label stacking, together with label merging, gives much
more options to play with. In Fig. 5(b) another solution is
given to the problem reducing the label space to its minimum.
In this case, 12 labels are needed while the maximum link
utilization is preserved to four units of traffic along the same
segment.

In case the MLU is limited to (or links capacities are fixed
to) two units of traffic, the solutions in Fig. 5(a) and Fig. 5(b)
are not feasible. However, the solution in Fig. 4(b) can use 19
labels if one tunnel is created, as seen in Fig. 5(c). In addition,
in Fig. 5(d), a different routing solution that reduces the label
space down to 16 can be seen as well. While the solution
in Fig. 5(c) preserves the TE routing (achieving the best link
utilization and delay), the solution in Fig. 5(d) increases the
number of links reaching the MLU to eight but reduces even
more the label space.

Discussion Summary. Considering label merging and
stacking, the more labels we save, the more link congestion is
achieved (because of traffic aggregation).

IV. MODELING ROUTING & LABEL SPACE REDUCTION

The ILP model proposed is path-based. Therefore, all fea-
sible paths in the network are initially generated using an
exponential algorithm. Considering the computed paths, all
the feasible tunnels are computed as mentioned in Lemma 1.

The following is a list of all the indexes used in the model.

• i, j ∈ N represent optical nodes in the network.
• α ∈ P represents a generated path in the network.
• φ ∈ T represents a tunnel in the network.
• m,n represents a MERLIN group identifier.

The parameters used in the model are the following.

• Sα
j is set to 1 if node j is the source of path α.

• Dα
j is set to 1 if node j is the destination of path α.

• C(i,j) is set to the total bandwidth demand between nodes
i and j.

• κ is set to the minimum of the desired MLU and the link
capacity.

In addition, two parameters can be seen as functions in the
model.

• fm(i, j) Given a path MERLIN group m and a link (i, j),
the function evaluates to the set of paths belonging to the
group.

• fn(i, j) Given a tunnel MERLIN group n and a link
(i, j), the function evaluates to the set of tunnels belong-
ing to the group.

The variables used in the model are the following.

• x̄α is set to 1 when path α is used to route any demand.
• xα is set to the bandwidth allocated on path α.
• yφ,α is set to 1 when path α is covered by φ.

• zm
(i,j) is set to 1 when the path MERLIN group m uses

a label on link (i, j).
• ẑn

(i,j) is set to 1 when the tunnel MERLIN group n uses
a label on link (i, j).

The objective function is minimizing the overall number
of used labels (or MERLIN groups) in the network (for both
paths and tunnels):

min
∑
(i,j)

(∑
m

zm
(i,j) +

∑
n

ẑn
(i,j)

)
(1)

Subject to:
ROUTING CONSTRAINTS

∑
α:Sα

i
=Dα

j
=1

xα ≥ C(i,j), ∀i, j (2)

∑
α|∃m,α∈fm(i,j)

xα ≤ κ, ∀i, j (3)

xα − κ · x̄α ≤ 0, ∀α (4)

(2) assures that all traffic is routed. (3) limits the capacity
that can be used in every link to κ. (4) sets a path as requiring
labels if it is been used by some demand.

TUNNELING CONSTRAINT

x̄α −
∑

(i,j)∈φ∩α

yφ,α ≥ 0,∀i, j, α (5)

(5) relates the variable x̄α with yφ,α. It states that at most
one tunnel can be used for a path at every link.

MERGING CONSTRAINTS

K · ẑn
(i,j) −

∑
φ∈f̂n(i,j),(i,j)∈α∩φ

yφ,α ≥ 0,

∀i, j, n ∈ N(i,j) (6)

K · zm
(i,j) −

∑
α∈fm(i,j)


x̄α −

∑
(i,j)∈α∩φ,Dφ

j
=0

yφ,α


 ≥ 0,

∀i, j,m ∈M(i,j) (7)

The constant K is set to the minimum number such that
K >

∑
m |fm(i, j)|, ∀i, j.

In (6), the variable ẑn
(i,j) pays (i.e. is set to 1) for the use

of one label for all the active tunnels φ intersecting any active
path α. (7) works similarly, but it concerns with paths merging.
It differs from (6) in that the term

∑
φ yφ,α is added in order

to avoid paying for those paths that have been covered.
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Fig. 5: Link Utilization vs. Label Space Size.

V. SOLVING THE ROUTING AND LABEL SPACE

REDUCTION PROBLEM USING HEURISTICS

The problem is solved in two-steps by two separate algo-
rithms proposed in this section. The first algorithm routes a
traffic demand matrix aiming at setting up paths such that
they share the maximum number of links. Once all demands
(if possible) are routed, the second algorithm creates a set of
tunnels reducing the label space.

A. The Path-Interfering Routing Algorithm (PIRA)

As routing solution, we propose a modification of the
Constraint Shortest-Path algorithm (CSPF). The modification
consists in how the weight of links is computed. Traditionally,
the weight of a physical link is set to its (propagation) delay
or proportional to its available bandwidth. In this paper, we
propose a new dynamic weight that aims at favoring links
using more labels. Our intention is that, after many iterations
of the routing algorithm, there are going to be segments in the
network that are highly loaded with paths. These segments
will later cause a high label space reduction when tunnels are
placed to cover them.

Given a network G∗(V,E∗) and a set of paths P , we extend
G∗ to a directed multigraph G(V,E) as follows.

Every node and link in G∗ are also considered in G. We
name these links: physical links. The bandwidth of a physical
link in G is set to the available bandwidth of its corresponding
link in G∗. In addition, its weight is fixed to one.

Given a pair of non-adjacent nodes i, j ∈ V and the set of
paths P , it is worth noting that:

• There could be several paths that are forwarded through
the same segment from i to j.

• Considering the set of paths P , there could be more than
one segment that forwards information between i and j.

Regardless of which paths they belong to, we denote s
(k)
i→j

the k-th different segment from i to j considering P . We create
one different link from i to j in G for every s

(k)
i→j . We name

these links: induced links. The bandwidth of an induced link
in G is set to the minimal available bandwidth of the links
in G∗ conforming its corresponding segment. In addition, its
weight is set to

|s(k)
i→j | − 1

|P (s(k)
i→j)|+ 1

, where

|s(k)
i→j | is the length of the segment and |P (s(k)

i→j)| is the
number of paths in P that traverse the segment. The idea
behind the weight is that a new path “pays”, at every hop, only
for the share of the label that it uses. One (1) is subtracted
from the numerator because the last hop of s

(k)
i→j never incurs

in labels reduction [11]. One (1) is added to the denominator
in order to consider the new path as well.

When CSPF takes an induced link to route a demand, the
link should be interpreted instead as the set of physical links
in G∗ representing it. If a cycle is created in the physical links,
it is broken. It is worth noting that, even though the number
of links contemplated increases, the complexity of the CSPF-
procedure should not be worse than that run with a full mesh
graph.
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B. The Most-Profitable Tunnel First Algorithm (MPTF)

We consider that path routes were already computed. Taking
into account these path routes, we compute the set of tunnels
to consider as described by Lemma 1.

It is worth noting that the number of labels that φ can reduce
by covering α is |α ∩ φ| − 1, however φ needs |φ| − 1 labels
despite the number of paths it covers. This gives us an idea
of the profit gained by setting up a tunnel. More concretely,
in this paper, the profit of a tunnel is the number of labels
that it reduces by covering all the non-covered segments of
the paths.

Note that our metric (i.e. the profit) considers the “savings”
due both covered length and covered broadness, gathering in
one metric the best of both LSF and MCSF.

At each iteration, a tunnel - name it φ - with the best profit
is always selected. Once a tunnel is selected, all the non-
covered segments of paths that φ can cover - name them P (φ)
- are marked as covered. These covered segments will not be
considered in further iterations. The profit of all remaining
tunnels must be updated. The algorithm iterates until no tunnel
remains.

At the beginning of the algorithm, since all paths are
completely uncovered, the profit of a tunnel φ is set to:

Π(φ)← 1− |φ|+
∑

α∈P (φ)

(|α ∩ φ| − 1)

Before the next iteration takes place, the profit of all the
others tunnels θ overlapping with φ is updated accordingly to:

Π(θ)← Π(θ) + |φ ∩ θ| · δφ,θ −
∑

α∈P (φ)

(|α ∩ θ| − 1), where

δφ,θ is set to one (1) if tunnels φ and θ end at the same
node, zero (0) otherwise.

Neither φ nor any other tunnel φ′ ⊂ φ are considered any
more in further iterations. The complexity of the algorithm
is bounded by O(t · log t), where t is the number of feasible
tunnels.

VI. SIMULATION EXPERIMENTS

In this section, we present a set of simulations that shows
the discussed trade-off in this paper.

A. Heuristic Performance

The European network consisting of 37 nodes is used in
our simulation experiments, see Fig. 6. The link capacity is
varied from 100 units to 3000 units of traffic, creating different
simulation scenarios limiting the MLU. We use the term link
capacity and MLU to denote the same throughout our analysis.

The first 30% of the nodes with lowest connectivity degree
are selected as edge (ingress/egress) routers. For each pair of
edge routers, a number of X, Y and Z demands of 1, 3 and
12 units of traffic is randomly generated. X, Y and Z follow
an uniform distribution with parameters [0-20], [0-12] and [0-
4] respectively. As a result, we generate an average of 200
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Fig. 6: European network with 37 nodes.

demands with average demanded bandwidth of 6864 units of
traffic.

In this subsection we tested several combinations of routing
heuristics with label space reduction heuristics. Namely, we
considered as routing heuristics: CSPF and PIRA (proposed
in this paper). As for label space reduction heuristics, we
considered: MultiPoint-to-Point [13], [14] (MP2P, i.e. label
merging without stacking), LSF, MCSF and, MPTF (proposed
in this paper).

In total, eight routing-tunneling solutions are contemplated.
In Fig. 7(a), simulation results show that the best label space
reduction is achieved by PIRA-MPTF when the MLU limit
is high, and CSPF-MPTF when the MLU is low. In general,
PIRA obtains better reductions when used with high MLUs
and with any stacking heuristic (i.e. LSF, MCSF and MPTF).
In the same way, MPTF obtains the best reduction regardless
of the routing heuristic.

The use of the stack reduces the label space four times
(CSPF-MP2P vs. CSPF-MPTF) in average when the capacity
of the links is just enough to route traffic (around 1000 units
of traffic), and almost six times if the capacity is doubled
(CSPF-MP2P vs. PIRA-MPTF).

It is worth noticing that the number of labels increases at
the beginning, when the MLU limit is low. This behavior is
explained by the fact that the routing heuristics (either CSPF
or PIRA) employ more, and longer, paths to accommodate the
traffic in these scenarios, in order to avoid the violation of the
MLU limit. In case of PIRA, this behavior is stronger and
particulary emphasized (see peaks in figure) when the MLU
limit is set to 800 and 1400 units of traffic.

As expected, PIRA creates more link bottlenecks than CSPF
in order to provide more tunneling possibilities, see Fig. 7(b).
Therefore, the usage of PIRA is advisable when the minimum
spare capacity of the links doubles the MLU. In our simula-
tions, we noticed that the usage of PIRA in this circumstances
profits with a 30% in the label space reduction.

We proceed to focus now in the particular routing solutions
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Fig. 7: Heuristics Overall Performance.

when the capacity of the links is high. While the MLU
utilization of CSPF is 934 units of traffic, PIRA’s is 2236; this
is 2.5 times more. However, we notice that this case occurs
in few links. In Fig. 8 we show the number of links in PIRA
whose used capacity is above (or below) a given percentage
of the MLU of CSPF (934 units of traffic). For instance, there
are 6 links in PIRA that are using between 50% and 75% more
capacity than the minimum MLU considering CSPF routing.
It turns out that while 25 links (out of 114) requires a higher
capacity, 74 are not used by PIRA (16 of them are not used by
CSPF either). This suggests the idea of either: a) rewiring the
network (instead of increasing the existing links capacities) or,
b) employing the unused links to create lightpaths providing
the extended capacity to overused links. These ideas will be
studied in further contributions.

We compare now the best solution without stacking (CSPF-
MP2P) with the best solution using the stack (PIRA-MPTF).
The maximum number of labels that CSPF-MP2P uses is 20.
This makes all AOLS-blocks to be sized for coding labels of
five bits long. By using stacking (PIRA-MPTF), the maximum
number of labels becomes 11, making the AOLS-blocks to be
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sized for coding labels of only four bits long. In Fig. 9 we
show the number of links that are using a number of labels
within a given range. It shows that 11 links are causing the five
bits long labels without stacking. However, using the stack,
only four links are forbidding us from using three bits long
labels. Even though we did not optimize the maximum number
of labels per link, it is not difficult to see that rerouting the
traffic in the three links of PIRA-MPTF would be easier than
rerouting the traffic of the 11 links in CSPF-MP2P in order to
reduce one bit the label encoding size.

Considering the header in [7], we compute the overhead due
the coding of the extra label. In the case of no label stacking,
the five bits long label yields to a 17 bits header. In the case
of label stacking, the four bits long labels yield to a header of
23 bits. Assuming a classical packet distribution (as in [6]),
the average overhead caused in the traffic of the network is
just 0.18% more due stacking.

It is worth noting that if label stripping using CSPF is
considered, packet header must code eight labels (minimum
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distance in CSPF paths) in the header and the network must be
able to handle 102 labels (the number of used links by CSPF).
If PIRA is considered, packet header must code 17 labels,
and the network must be able to handle 40 labels. However,
the traffic overhead is 2.02% and 4.5% more, respectively.
Therefore, label stacking offers a better trade-off.

B. How Far From Optimum?

Each one of the two heuristics presented in this paper affect
the overall optimality of the solutions. Therefore, we compare
our results with the optimal in two steps:

1) Minimize Labels considering CSPF/PIRA Routes: We
route the traffic using CSPF and PIRA and then we relax the
proposed ILP so it computes the best label space reduction
using CSPF/PIRA paths. We consider the network scenario in
which the MLU limit is the highest. By solving the relaxed
ILP using the CSPF routes, the minimum number of used
labels considering stacking is 180. Considering PIRA, the
minimum number of used labels decreases down to 109. In
this way, we can claim that: a) PIRA-routing leads to paths
aiming at better label space reduction in general and, b) MPTF
performs 21.11% far from its optimal value considering PIRA.
Henceforth, we only consider PIRA-MPTF.

2) Minimize Labels with Variable Routes: We solve the
complete ILP model proposed in §IV with a smaller network
shown in Fig. 10. Edge nodes and demands are generated
following the same parameters of the European network. The
MLU is set to the double of the minimum needed by CSPF.
We found that PIRA-MPTF label space size is 26.7% more
than the optimal. A similar test to the previous one exposes
that 68% of the error is caused by the selection of the routes.
The reason is the tendency of PIRA for using more paths than
the optimal. This behavior is mainly explained by the link
congestions caused by PIRA and by the usage of long routes.

VII. CONCLUSION

We considered AOLStack as an enhancement of AOLS that
allows us to perform label stacking completely optically. The
benefits of using AOLStack are the employment of either fewer
labels when the MLU is fixed or, which is the same, a smaller
MLU using the same number of labels.

We proposed an ILP and a two-steps heuristic. We per-
formed our simulations based on the two-steps heuristic and
later corroborated its results with the ILP.

In brief, simulation experiments showed that the label space
can be reduced six times using the stack, if the MLU limit (or
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N7

N8

N9

Fig. 10: Network simulated for ILP

link capacity) is increased at least twice. If the MLU is kept
to the minimum needed, the use of the stack yields to a four
times label space reduction. As a consequence, the usage of
the stack reduces in one bit the length of the labels needed;
reducing the AOLS-block not only in number, but in size as
well. However, considering a typical packet size distribution, a
new label in the packet header incurs 0.18% of traffic overhead
in the network, which is much more less than that caused by
label stripping.

We also observed that the creation of lightpaths may reduce
the congestion in some links. This is going to be tackled in
future research.
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