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A B S T R A C T   

Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) has been recognized as an effective tool for 
Breast Cancer (BC) diagnosis. Automatic BC analysis from DCE-MRI depends on features extracted particularly 
from lesions, hence, lesions need to be accurately segmented as a prior step. Due to the time and experience 
required to manually segment lesions in 4D DCE-MRI, automating this task is expected to reduce the workload, 
reduce observer variability and improve diagnostic accuracy. 

In this paper we propose an automated method for breast lesion segmentation from DCE-MRI based on a U-Net 
framework. The contributions of this work are the proposal of a modified U-Net architecture and the analysis of 
the input DCE information. In that sense, we propose the use of an ensemble method combining three U-Net 
models, each using a different input combination, outperforming all individual methods and other existing 
approaches. 

For evaluation, we use a subset of 46 cases from the TCGA-BRCA dataset, a challenging and publicly available 
dataset not reported to date for this task. Due to the incomplete annotations provided, we complement them with 
the help of a radiologist in order to include secondary lesions that were not originally segmented. The proposed 
ensemble method obtains a mean Dice Similarity Coefficient (DSC) of 0.680 (0.802 for main lesions) which 
outperforms state-of-the art methods using the same dataset, demonstrating the effectiveness of our method 
considering the complexity of the dataset.   

1. Introduction 

Breast cancer (BC) begins with an uncontrolled change and division 
of cells in the breast, forming a mass (lesion) that can either grow and 
spread to other parts of the body (as the case of a malignant lesion), or 
just grow without spreading (as the case of a benign lesion). It is most 
easy to treat BC when the lesion is small, however, no symptoms nor
mally appear at that stage. Hence, screening is very crucial for the early 
detection [28]. 

According to the World Health Organization, BC is impacting 2.1 
million women each year and causing the greatest number of cancer 
deaths among women. In the US, according to the estimates of the 
American Cancer Society (ACS) for the year 2020, BC cases were ex
pected to form 30% of all diagnosed cancer cases and 15% of all cancer 
deaths were expected to be caused by BC [27]. These statistics indicate 
that the spread of BC is indeed one of the main health challenges in the 
world. Despite that, statistics in the US have shown an increase in the 

five-year survival rate from 75% to 91% between 1975 and 2015, as well 
as a continuous decrease in death rate. This is mostly due to the early 
detection of BC and the expanding access to high-quality prevention and 
treatment services [27]. 

Imaging modalities have been playing a vital role in all phases of BC 
management, starting from screening and early detection to diagnosis 
and treatment follow-up. In addition, due to the fact that cancer is a 
complex disease with varied pathology, improvements of existing 
techniques and new imaging modalities have been continually intro
duced in order to improve the detection efficiency and hence BC out
comes and survival [28]. However, each of these modalities has different 
clinical advantages and disadvantages. The choice of the modalities and 
techniques is also affected by the patient’s stage, age and the density of 
the breast tissue. Currently, the main clinical breast imaging modalities 
used for BC detection and diagnosis are: Mammography, Ultrasound, 
and Magnetic Resonance Imaging (MRI). Although other breast diag
nostic methods exist, such as: tomosynthesis, elastography, 
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photoacoustics, and optical imaging, they have different degrees of 
adoption due to technological and clinical limitations, hence they are 
not as widely used as the main ones mentioned earlier. 

Mammography is currently the gold standard method for BC 
screening and early detection. However, its sensitivity (true positive 
rate) declines from 75% to 50% in middle aged patients who have 
increased breast density. On the other hand, ultrasound imaging is used 
as an adjunct tool to mammography to detect the location and nature of 
the suspicious lesion, which improves the diagnostic yield for women 
with dense breasts and those at higher risk of BC, but at the expense of 
being operator dependent and having an increased false positive rate 
[28]. MRI is widely used for both the early detection and diagnosis of 
BC. It has higher sensitivity than mammography and ultrasound, 
specially for particular patient groups, such as higher risk women and 
women with dense breasts. Moreover, it allows the simultaneous eval
uation of both breasts and has no side effects as there is no radiation 
involved [28]. 

Dynamic contrast enhanced MRI (DCE-MRI) has been adopted due to 
its effectiveness for the diagnosis of BC as it visualizes both physiological 
tissue characteristics and anatomical structures. However, it is less 
specific (has more false positives) compared to mammography [33]. In 
DCE-MRI the changes of T1 in tissues are measured in order to observe 
and quantify the contrast enhancement over time after the administra
tion of a contrast agent (Gadolinium). The change of contrast 
enhancement depends on several factors, such as: regional blood flow, 
size and number of blood vessels, and their permeability, which are 
strongly related to cancer tissues. 

Nevertheless, DCE-MRI analysis is time consuming and requires 
experienced radiologists to evaluate and interpret the large amount of 
4D information for each patient. Therefore, many methods have been 
developed to automatically extract features and interpret those images. 
Proposed features include lesion morphology, texture, and enhancement 
kinetics and have been proven by recent studies to be useful for the 
identification of genomic composition of BC lesions and for patient 
outcomes prediction [1,20,33]. However, the extraction of these fea
tures requires the lesions to be accurately segmented first. Therefore, the 
accurate segmentation of breast lesions in DCE-MRI is a critically sig
nificant task for automated BC analysis, diagnosis and treatment 
follow-up [33]. 

The most straightforward way to achieve this task is to manually 
annotate lesion regions by radiologists, but this is also time-consuming 
and error-prone. Therefore, automating this challenging task will help 
radiologists to reduce the high manual workload and obtain more ac
curate lesion segmentation. 

In this work we propose an automated segmentation method for 
breast lesions in DCE-MRI. This method is based on our previous work in 
which a ROI guided, 3D patch based U-Net framework was proposed 
[19]. In this paper we improve the method by using a modified U-Net 
architecture that incorporates residual basic blocks. Additionally, we 
investigate the use of different inputs and propose an ensemble method 
combining three different models each of them utilizes a different 
combination of inputs. Furthermore, we complement (and make pub
licly available) the provided annotations with the help of an experienced 
radiologist in order to address the problem of having incomplete an
notations for cases with multiple lesions. Finally, a comparison with a 
state-of-the-art approach on the same task has been made and results 
show that a better performance is achieved using the proposed method. 

The remainder of this paper is structured as follows: in section 2 
related works from the state-of-the-art are outlined. In section 3 we 
describe the dataset used and the modifications made in order to com
plement the annotations. In section 4 our proposed method is presented. 
In section 5 the obtained results are analysed and discussed. Finally, in 
section 6 we present our conclusions and future work. 

2. State of the art 

Automating the task of breast lesion segmentation in DCE-MRI is a 
challenging problem and an active area of research. Existing methods for 
lesion segmentation in general fall into two categories (or combinations 
of them): 1) Semi-automatic methods, and 2) Learning-based methods. 

One of the challenges to automate the task of breast lesion segmen
tation is the difficulty of identifying them from confounding organs or 
vessels. In this sense, semi-automatic methods seem to avoid these 
problems at the expense of the need of user intervention as radiologists 
need to define lesion regions first (bounding boxes) to make the auto
matic segmentation task easier [2,29,35]. In fact, there are only a few 
studies focusing on breast lesion segmentation in DCE-MRI, and in most 
of them semi-automatic methods were used. 

On the other hand, learning-based methods perform automatic lesion 
segmentation using supervised learning algorithms and they have ach
ieved remarkable performance in many medical applications. Those 
methods can be further classified into two types: 1) Traditional Machine 
Learning (ML) methods, and 2) Deep Learning (DL) methods. 

2.1. Traditional Machine Learning (ML) methods 

In traditional ML methods, feature extraction and model training are 
considered as two separate tasks. This implies that a human intervention 
is needed in order to choose and hand-engineer the features that are 
required to train the model. In addition, there is a need to manually 
choose the model (classifier) to be trained. The algorithm (features and 
classifier) can be adjusted multiple times until the required results are 
obtained, at the expense of being less robust and generalisable to unseen 
data. 

Several traditional ML methods have been proposed for breast lesion 
segmentation but only few of them are focusing on DCE-MRI. Many 
studies have been conducted in order to identify the definitive set of 
features and segmentation model for DCE-MRI and in most of these 
studies similar approaches have been utilized. For instance, kinetic 
features have been proven in many studies as the most effective way to 
perform lesion segmentation by means of ML. Kinetic features are 
defined as characteristics modelling the shape of the Time Intensity 
Curve (TIC) and apart from segmentation, further analysis of TIC is 
commonly used to provide several parameters useful for lesion diag
nosis. TIC is obtained either for each voxel or for regions of interest, and 
it shows the absorption and the release of the contrast agent over time 
according to the vascularisation characteristics of the tissue [21]. 
Washout and plateau patterns (along with rapid up-slope in the early 
phase) in TIC are more likely to be associated with malignancy, whereas 
a persistent pattern is usually linked with benign lesions [8]. Fig. 1 il
lustrates the difference between TIC of normal tissues and lesions. 

Examples of works utilizing kinetic features include the work pro
posed in Ref. [16], in which authors present an automated localization 
method for breast lesions in DCE-MRI, by first extracting blob and 
relative enhancement voxel features for locating initial lesion candidates 
and then computing a malignancy score for each lesion candidate using 
region based morphological and kinetic features in order to reduce false 
positives. In this study, authors investigated the use of different classi
fiers in the second stage, where the random forests classifier out
performed LDA, kNN, gentleboost and SVM. 

Another automatic approach for DCE-MRI breast lesion segmenta
tion was proposed in Ref. [18]. In this approach a high dimensional 
dataset was first built by collecting the TIC of every pixel in the ROI. 
Then a nonlinear dimensionality reduction technique (Laplacian 
Eigenmaps) was employed to map the TIC data from the higher 
dimensional space to 3 -dimensional space. In other words, the DCE 
series of one image slice was represented by a 3D image which was then 
represented as an RGB feature image. Finally, k-means clustering tech
nique was performed for lesion segmentation. 

In [7] a fuzzy c-means (FCM) clustering-based method was proposed 
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for the 3D segmentation of breast lesions in DCE-MRI after performing 
lesion enhancement within the selected ROI. Lesion enhancement was 
performed by dividing the intensity value at each voxel in the 
post-contrast series by the intensity value at the corresponding 
pre-contrast voxel. 

In [30] authors proposed an automated method for both lesion 
segmentation and classification. The proposed method incorporated a 
random forest (RF) classifier combined with mpPET/DCE-MRI intensi
ty-based features for lesion segmentation, whereas shape, kinetic and 
spatio-temporal texture features were utilized for lesion classification. 

Despite the good performance reported by traditional ML methods, 
there are still many limitations that need to be tackled. For instance, 
most of these works perform 2D segmentation and fail to obtain a good 
performance for 3D segmentation. Furthermore, almost all of these 
works segment a breast lesion from the minimum bounding box of the 
lesion as regions of interest (ROIs), which impose the need for experi
enced human intervention and, hence, there is still a need for a fully 
automatic method. On the other hand, if larger ROI is used with such 
methods, the accuracy will be significantly reduced since the large ROI 
will include many other surrounding enhanced tissues and the proposed 
traditional ML algorithms work well only when the ROI is small enough. 
Also, if larger ROI is used there is an increase in computational demands. 
Therefore, DL methods are expected to address such limitations. 

2.2. Deep Learning (DL) based methods 

Recently, there are more studies focusing on DL methods for breast 
lesion segmentation and diagnosis, and such methods have surpassed 
most traditional ML methods. In contrast to traditional ML methods, DL 
methods combine both feature extraction and model training into a 
single cohesive learning framework so that the segmentation task is 
performed in an end-to-end manner. Emerging Deep CNN (DCNN) 
models are capable of extracting salient features directly from the data, 
which means that manual feature design and its associated challenges 
are now obviated. In addition, with incorporating a combination of 
imaging and non-imaging digital data (such as patient-level informa
tion, and tumor-level information), DCCN models are now able to 
identify not only known correlations but also novel imaging biomarkers 
that have huge potential to enhance clinical performance. All that has 
become possible because of the breakthroughs in computer processing, 
data storage, and algorithm design in recent years [23,33]. 

When utilizing DL methods for segmentation tasks, voxel-wise (or 
pixel-wise) classification models are trained, in which cubic patches 
centered at a particular voxel can be first extracted, then a patch-wise 
binary classifier learns to classify voxels into either lesion or non 
lesion voxels [33]. In general, since the task of lesion segmentation can 
be considered as a semantic segmentation in which the input image has 
to be divided into Regions of Interest (ROIs), each referring to a lesion, 
any CNN segmentation model could be potentially used [21]. 

One of the first works to address semantic segmentation with CNN 

was SegNet [3]. SegNet is a deep convolutional encoder-decoder ar
chitecture, followed by a pixel-wise classifier. The role of the encoder 
network is to learn a compact representation of the input data, while the 
role of the decoder network is to map the encoded features to a seg
mentation mask. Similarly, the U-Net developed for biomedical image 
segmentation exploits an encoder-decoder architecture, enhanced by 
the presence of skipping connections between the two sides with the aim 
of exploiting encoding information to improve the decoding stage and to 
reduce the gradient vanishing problem [24]. This model has been widely 
used in the literature and several modifications have been proposed. 
Both SegNet and U-Net architectures provide the potential to produce 
accurate models even with relatively small datasets. 

There are several DL based methods that have been recently pro
posed for breast image analysis, based on mammography, MRI, ultra
sound, and whole-slide histology images. However, there are not so 
many works focusing on DCE-MRI. Moreover, the problems of both class 
imbalance and confounding regions (which are very common in breast 
lesion segmentation from DCE-MRI) are rarely taken into account [33]. 

Existing literature include the work in Ref. [6] where temporal and 
3D features were extracted using three stacked parallel ConvLSTM 
networks over a 4-layer U-Net [26]. In Ref. [34], authors proposed a 
U-Net based method to segment breast lesions in DCE-MRI scans in both 
2D and 3D settings, using a binary cross-entropy loss function. Obtained 
dice coefficients and false positives indicated a slightly better perfor
mance of the 3D network over the 2D one. Limitations of this study 
include using only second post-contrast scans and using lesion bounding 
boxes instead of the full-sized scans. 

In [15] both SegNet and U-Net were used with a binary cross entropy 
loss function. Results showed better performance of U-Net over SegNet, 
which can be explained by the fact that SegNet is more adapted to multi 
classification tasks as in autonomous cars applications. Due to the lack of 
data, 2D slices were used instead of 3D volumes, which could be 
regarded as a limitation. Moreover, the ground truth labels were pro
vided by only one radiologist without accounting for inter-reader 
variability. 

A U-Net based architecture was also used in Ref. [21], which 
incorporated the well-known Three Time Points approach (3 TP) for the 
inputs. In the 3 TP approach (proposed by Ref. [13]), three well defined 
temporal acquisitions were proved to improve breast MRI lesion analysis 
(t0 = pre-contrast, t1 = 2 min after contrast agent injection, t2 = 6 min 
after contrast agent injection). In Ref. [21], the network was fed with 
images obtained at the three specific time points to take into account the 
fundamental characteristic of DCE-MRI. Segmentation was performed 
on slices, where the three temporal acquisitions of the same slice were 
used as channels within the image. Slices were extracted along the 
projection with the higher resolution (the coronal projection) and to 
obtain a reliable and fair evaluation, the slices from the same subject 
were always separated across the cross-validation folds. Additionally, 
the dice loss function was used. 

Finally, authors in Ref. [33] proposed a mask-guided hierarchical 

Fig. 1. Illustration of the difference between Time Intensity Curves (TIC) of normal tissue (in green) and a malignant lesion (in red). (a) Pre-contrast volume. (b) 
Second post-contrast volume. (c) Different types of TIC from DCE-MRI including the ones for normal tissue (in green) and a malignant lesion (in red). 
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learning (MHL) U-Net framework in which the two issues of confound
ing organs and class imbalance were addressed. In order to eliminate 
confounding organs, 3D breast masks were first generated using a U-Net 
model. Then a coarse-to-fine segmentation was performed using a 
two-stage U-Net model. The first stage aims to generate over-segmented 
lesion-like regions using the post-contrast volumes and the difference 
volumes (between post and pre-contrast), and breast masks as inputs to 
the first U-Net. The second stage aims to refine the segmentations 
generated by the first stage using a second U-Net. Moreover, a 
Dice-Sensitivity-like loss function was proposed and used in the first 
stage U-Net in order to handle the class-imbalance problem, and in the 
second stage a Dice-like loss function and a reinforcement sampling 
strategy were used. 

3. Materials 

3.1. Data 

For this study a subset of 46 cases from the TCGA-BRCA collection 
has been used, this subset has the Tissue Source Site code: BH. The 
TCGA-BRCA collection was collected by the TCGA Breast Phenotype 
Research Group and made available in The Cancer Imaging Archive 
(TCIA) [5,11]. All cases are diagnosed with BC by performing 
image-guided core needle biopsy, in other words, all cases have at least 
one lesion. 

Volumes were acquired at the University of Pittsburgh Medical 
Center (1999–2004) prior to any treatment using a standard double 
breast coil on a 1.5T GE whole body MRI system (GE Medical Systems, 
Milwaukee, Wisconsin, USA). The imaging protocols included one pre 
and four to six post-contrast volumes obtained using a T1-weighted 3D 
spoiled gradient echo sequence with a gadolinium-based contrast agent 
(Omniscan; Nycomed-Amersham, Princeton, NJ). Typical in-plane res
olution was 0.53–0.86 mm, and typical spacing between slices was 2–3 
mm. The subset data used in this study has a coronal-sagittal size of 
512x512 and the number of axial slices ranged between 85 and 112. 

Each breast MRI examination was independently reviewed by three 
expert board-certified breast radiologists blinded to outcome data, each 
primary breast lesion was then segmented in 3D and subsequently 
validated. It is important to mention that most of the cases had multiple 
lesions according to the reviewer radiologists, however the Ground 

Truth (GT) segments only the primary lesion since the purpose of the 
TCGA/TCIA study was to map the radiomics (phenotypes) of the pri
mary lesion to the corresponding clinical, histopathology, and genomic 
data. 

Overall, this dataset is complex and challenging. Fig. 2 shows 
example cases of the subset data used in this study with lesions of 
various sizes, shapes, locations and intensity enhancements, in addition 
to multiple lesions (as in Fig. 2-(f)). 

3.2. Data preparation 

Each patient DCE-MRI series was provided as a DICOM file that 
combines all pre and post-contrast volumes as different channels. For 
easier use, pre and post-contrast volumes within the series were sepa
rated and saved as Nifti files using SimpleITK library. Later, the differ
ence images between pre and post-contrast volumes were obtained and 
qualitatively analysed, and no significant differences (mis-alignment) 
due to patient movement could be found. Therefore, no registration was 
performed on the pre and post-contrast volumes. 

As mentioned earlier, only the primary lesion in each case is 
segmented in the Ground Truth (GT). GT annotations were provided as 
lesion bounding boxes in the form of binary files, where each file con
tains the coordinates of the lesion bounding box with respect to the full 
volume in addition to the binary values (0 or 1) of the bounding box 
voxels. We use these binary files to generate GT annotations of full 
volume sizes. 

3.2.1. Complementing the annotations 
According to the radiologists’ reports provided with the dataset, 

many cases presented multiple lesions. However, only one lesion per 
case was segmented (primary lesion) since the data was not particularly 
made for the lesion segmentation task. Having incomplete GT annota
tions indeed affects the results and causes lower dice values as explained 
in our previous work [19]. Hence, we complement the annotations of the 
cases labelled by at least one radiologist (out of three) as multifocal or 
multicentric lesions with the help of an experienced radiologist in order 
to include all the other lesions that were not initially segmented (sec
ondary lesions). 

In total, the GT of 11 cases (out of 30 multifocal/multicentric cases) 
were complemented. GT complementing was done without any 

Fig. 2. Example cases of the used subset data with lesions of different sizes, shapes, locations, intensity enhancements and multiple lesions. Cases in (a) to (f) are: 
A0B5, A0DE, A0B6, A0H6, A0DZ and A0B1, respectively. 
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additional information from pathological and radiological reports, and 
only using MRI-DCE volumes and knowing that they were cases of 
multiple lesions. This helped to avoid bias of the annotations towards 
information not contained in the images. The complemented annota
tions were made available on: (https://github.com/ICEBERG-VICOROB 
/Breast-DCE-MRI-Completed-Annotations-). 

Fig. 3 shows example cases with multiple lesions for which the GT 
has been complemented. 

4. Methods 

In this paper we propose an automated method for segmenting breast 
lesions in DCE-MRI using DL, that is an extension to a preliminary 
version of this work [19]. Our method is an ensemble of three models, 
each of them is based on the same 3D patch based modified U-Net, 
following the workflow shown in Fig. 4 but using a different combina
tion of input volumes. The proposed method takes into account the 
problems of confounding organs and class imbalance by performing a 
balanced patch sampling technique restricted by an automatically 
generated breast ROI to ensure that the two classes are equally distrib
uted in the training set and to avoid having patches from confounding 
organs. Fig. 4 shows an overview of the proposed method. 

Moreover, we compare the proposed method with an existing 
approach proposed in a recent study where two hierarchical segmen
tation models are used. The obtained results are presented and discussed 

in Section 5. 

4.1. Pre-processing and patch sampling 

Several pre-processing steps are performed on input volumes prior to 
feeding them to the network, as proposed in our earlier work [19]. These 
steps are outlined in the following:  

a) Breast ROI masks generation.  
b) Zero padding with padding width equal to half of the patch size.  
c) Zero-mean unit-variance intensity normalization.  
d) Balanced patch extraction. 

In the following subsections we discuss in detail some of these steps. 

4.1.1. Breast ROI masks generation 
DCE-MRI includes confounding backgrounds such as: vessel struc

tures and internal organs. Such regions mimic the lesions in terms of 
contrast agent permeability (i.e. high changes in intensity across the 
time), which makes the task of breast lesion segmentation more chal
lenging and might increase FPs detection. Therefore, utilizing a region of 
interest (ROI) which includes the breast area only is an important step 
that has been exploited in many works in the literature. The most 
straightforward way is to use a breast mask as a ROI (as used in 
Ref. [33]) which can remove most of the confounding organs. 

Fig. 3. GT before and after complementing for example cases with multiple lesions. Cases in (a) to (d) are: A0B1, A0AZ, A0DG and A0HA, respectively.  
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Several methods have been proposed to generate breast masks such 
as thresholding, morphology, region growing, active contours, wavelet 
filtering and Atlas, or a combination of these methods [22,25,31]. 
However, breast segmentation is out of the scope of this work. Thus we 
implemented a simple method to generate ROI masks instead of breast 
masks, discarding as much of the confounding internal region as possible 
(such as heart and lung areas). The proposed method relies on a simple 
landmark detection method, in which we detect the skin-air boundary 
between the two breasts and then exclude the non-breast part of the 
volume that lies beyond the detected landmark. This method has been 
further explained in detail in our previous work [19]. 

4.1.2. Balanced patch extraction 
In a uniform patch sampling strategy, patches are extracted from all 

parts of an image uniformly. However, in the context of lesions seg
mentation, uniform patch sampling results in a very common issue of 
class imbalance. This is due to lesions being in general very small 
compared to the rest of the volume size, hence the number of voxels in 
the lesion region (positive class) is much smaller than that in the 
background (negative class) and the number of patches extracted from 
the lesion class will be very small, which eventually leads to a poor 
performance of the network and misclassification of lesion voxels. 
Several studies on lesion segmentation of different organs have 
addressed this issue [4,9,32]. 

In [17] authors proposed a method to address the class imbalance 
issue in which the extracted patches always contain lesion voxels and 
were randomly shifted so that the center of the patch does not neces
sarily be a lesion voxel. Another method proposed in Ref. [12], which 
utilized a balanced sampling strategy such that for each image there are 
an equal number of patches representing both classes. Additionally, a 

ROI restricted technique was proposed in which negative patch extrac
tion was restricted to be from a ROI and not background regions. 

In our work we utilize a method similar to what is proposed in 
Ref. [12], such that for each image there are an equal number of patches 
representing the lesion (positive) minority class, and the background 
(negative) class. First, the number of positive patches was set to be 2000 
per case. Then, the GT was used to obtain coordinates of only positive 
voxels, which were set as initial patch centers. To ensure having 2000 
patches, those obtained coordinates were either replicated or truncated. 
Later, patch centers were shifted randomly, with shifts set to be less than 
half of the patch size. Finally, positive patches were extracted using the 
obtained shifted coordinates of patch centers. Second, the same number 
(2000) of negative patches were similarly extracted. Furthermore, the 
patch extraction was restricted to be within the previously generated 
breast ROI, to avoid the region of confounding organs. 

4.2. Segmentation algorithm 

The segmentation algorithm is based on an ensemble of three U-Net 
models, with a similar architecture but different input information from 
the DCE-MRI patches. Individual results of each model are then com
bined into a single segmentation by a simple union operation of the 
segmentations, as illustrated in Fig. 4-(a). The first model’s input is 
based on the Three Time Point acquisitions (3 TP) proposed in Ref. [21] 
which, as mentioned earlier, includes the pre-contrast, second 
post-contrast (2 min) and last post-contrast (6 min). The second model’s 
input consists of the full series provided (i.e. one pre-contrast and four 
post-contrast volumes). Finally, for the third model’s input we propose 
to include the pre-contrast and last post-contrast volumes, with an 
additional volume computed from the standard deviation (stdev) of the 

Fig. 4. Illustration of the proposed framework. (a) Ensemble of three models. (b) Proposed 3D patch based modified U-Net method used for each of the three models 
in (a). 
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intensity signals of the whole DCE-MRI volume series, with the aim to 
better represent the time-intensity variation. In other words, stdev was 
obtained voxel wise across the time dimension. 

Regarding each individual U-Net model, we propose to use a modi
fied 3D U-Net architecture. U-Net is an encoder-decoder architecture 
originally designed for biomedical electron microscopy (EM) images 
multi-class pixel-wise semantic segmentation [10,24]. In the proposed 
U-Net architecture we make some alterations to the basic U-Net archi
tecture; we use four levels (blocks) in each of the encoding and decoding 
paths and replace the U-Net convolutional blocks with residual basic 
blocks. This architecture is illustrated in Fig. 5. 

First, data were taken from different temporal volumes and used as 
different channels of the input, which was then fed into the network. As 
illustrated in Fig. 5, every step in the contracting path consists of a re
sidual basic block followed by a (2 × 2 × 2) max-pooling with stride = 2 
for down-sampling. Then the contracting path is followed by a latent 
space consisting of a residual basic block with Rectified Linear Unit 
(ReLU) activation and an instance normalization. Similarly, every step 
in the expanding path consists of a (2 × 2 × 2) up-convolution with 
stride = 2 followed by concatenation with the feature map from the 
corresponding level of the contracting path and then followed by a re
sidual basic block. Finally, there is a (1 × 1 × 1) output convolution 
layer with two output channels followed by a softmax layer which 
returns probabilities for each class. 

In our proposed algorithm we use the binary cross-entropy loss 
function, AdaDelta optimizer, and a threshold of 0.5 for generating the 
output segmentation. We extract 4000 balanced patches per case with a 
size of (32,32,32) and a sampling step of (16,16,16). This configuration 
is based on results from our previous work in which we investigate 
different parameters [19]. We use this configuration for all experiments 
explained in section 5 except for 1 and 3 where we use a single model 
(with pre-contrast, last post-contrast and stdev as inputs) for a simpler 
method comparison. 

5. Results and discussion 

In this section we report the different experiments performed and the 
obtained results along with the subsequent discussion. We first investi
gate the impact of volume resampling from original to isotropic voxel 
sizes. Then we investigate the impact of different combinations of input 
volumes as well as the proposed ensemble of three models, each utilizing 
a different combination of inputs. Additionally, we compare the per
formance of our proposed architecture with another two different U-Net 
based architectures: (1) The basic U-Net used in our earlier work [19], 
and (2) The two hierarchical basic U-Nets proposed in Ref. [33]. 

Finally, as the annotations were complemented (as explained in 
section 3.2.1) we compare the performance when using both the original 
(incomplete) annotations and the complemented ones. 

All experiments are performed using 5 fold cross-validation across 
the provided 46 cases, with 20 epochs per fold. In each fold, 9 cases are 
used for testing (10 cases in the last fold) and the remaining cases are 
shuffled and divided into 80% for training and 20% for evaluation. By 
doing so, we obtain lesion segmentation results for each of the 46 cases. 

As an evaluation criteria, we use the Dice Similarity Coefficient 
(DSC) since it is one of the most used metrics in the state of the art of 
medical image segmentation based on neural networks. Additionally, 
we use Hausdorff Distance (HD) and the False Positive Rate (FPR) to 
provide a comparison of how well the contours were segmented and the 
false positives detected among the different methods investigated. 

We compute the global DSC measure (simply referred to as DSC) for 
all segmented regions compared to the lesion ground truths, which in
dicates the overall segmentation accuracy. However, as MRI volumes 
may include secondary lesions (as in the original dataset) and other 
enhanced regions not regarded as a malignant lesion (vessel enhance
ments and other non-malignant findings such as axillary lymphade
nopathy), the algorithm may segment those additional regions as 
lesions, which results in increasing the number of false positives de
tections, hence obtaining a lower global DSC. While this global DSC 
value is an important metric, we also propose to compute the DSC for the 
main lesion of the MRI, as an indication of the quality of the segmen
tation given an individual lesion. We will refer to this as the lesion DSC 
or DSCL. Similarly, a lesion HD is also provided for the main lesion, 
referred to as HDL in addition to the global HD (referred to as HD). 

5.1. Implementation details 

The proposed architecture and all other experimented architectures 
were implemented in Python 3.7.4 using Pytorch 1.4.0 machine learning 
framework. 

All python scripts were executed on Ubuntu on a physical server 
hosted in our university equipped with 256 GB RAM, and Nvidia 
GeForce RTX 2080 GPU with 11 GB of memory. 

5.2. Experiment 1: Volume resampling 

Since the original volumes have larger axial voxel size than the 
coronal-sagittal one, we investigate whether using isotropic volumes 
could improve the performance. In order to generate isotropic volumes, 
the original volumes were resampled having the voxel size across the 
three dimensions set to a specific target voxel size. Volumes with two 

Fig. 5. The proposed U-Net with residual basic blocks architecture.  
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different target isotropic sizes were generated, in the first one (denoted 
by Isotropic 1) the target voxel size was set to be equal to the original 
coronal-sagittal voxel size; in other words the axial voxel size was 
decreased to match the original coronal-sagittal voxel size. In the second 
one (denoted by Isotropic 2) the target voxel size was set to be in be
tween the original axial and the original coronal-sagittal voxel sizes; in 
other words the coronal-sagittal voxel size was increased and the axial 
voxel size was decreased. 

Table 1 reports the obtained results, which indicate that using 
isotropic volumes did not improve the performance. 

5.3. Experiment 2: input Volumes 

As mentioned earlier in Section 2, one of the limitations in most of 
the existing works is that only one temporal acquisition among the time 
series is being used. Therefore, it is interesting to use several time ac
quisitions since the 3D + time data of DCE-MRI involves important in
formation about the Time Intensity Curve (TIC) for each voxel, which if 
utilized, might improve the performance of lesion segmentation task 
using DCE-MRI. 

In this subsection we evaluate the performance utilizing different 
input combinations comparing individual performance of these methods 
(input combinations) with the proposed ensemble method. Two 
ensemble models are obtained, in the first we perform a majority voting 
of the three models and in the second we perform the union of the three 
output segmentations provided by the three methods. Table 2 reports 
the obtained results. 

As Table 2 indicates, the proposed method of using an ensemble of 
three models (each model utilizing a different input combination) out
performs the individual models. Although similar results of the global 
DSC were obtained for some individual models (3,4 and 5) and ensemble 
methods (Majority voting), the ensemble model based on the union of 
the three methods provides the best segmentation of main lesions indi
cated by the better values of DSCL and HDL, with DSCL being differences 
significative. This can be qualitatively observed in Fig. 6. 

The three methods used to generate an ensemble are the ones that 
yield the best performance among the five individual experimented 
methods (i.e. methods (3), (4) and (5)). The better performance of these 
three methods compared to methods (1) and (2) shows that incorpo
rating information from more temporal volumes has the potential to 
improve the segmentation task from DCE-MRI. 

Results show a better performance of the proposed method 
(ensemble by taking the union) in detecting very small lesions that are 
very difficult to segment with most other individual methods, an 
example case is shown in Fig. 6-(b). The better performance of the 
ensemble method is explained by the fact that it is using redundant in
formation from multiple segmentations, hence minimising missing 
lesion voxels (FN) and increasing segmentation quality (higher DSC 
especially for main lesions), however at the expense of slightly higher 
FPR. 

5.4. Experiment 3: U-Net architecture 

In this subsection we compare results obtained using the U-Net ar
chitecture with residual blocks (described in Section 4.2) with another 
two U-Net based architectures. The first is a basic U-Net (used in our 
previous work [19]) with four levels (in order to have a fair comparison 

with our proposed architecture) along with a cross-entropy loss func
tion. The second one is the two hierarchical basic U-Nets approach 
proposed in Ref. [33], in which we use dice-sensitivity-like loss in the 
first stage and dice-like loss in the second stage, as proposed by authors 
in Ref. [33]. In both stages the basic U-Net with four levels is used. 
Moreover, in the three experimented architectures we use the 
pre-contrast, last post-contrast and stdev volumes as inputs. Finally, the 
obtained results are reported in Table 3, where it should be noted that 
for a fair comparison of model’s architectures, a single model U-Net with 
residual blocks is reported (not the ensemble results). 

As observed from Table 3, the proposed U-Net architecture using a 
single model outperforms the other architectures achieving a mean dice 
of 0.649 (and 0.719 if to consider only main lesions). 

The better performance of the proposed network is attributed to the 
presence of residual blocks. Residual blocks make it possible to train 
deeper networks and avoid overfitting due to the skip connections that 
allow the output of some earlier layers to be fed directly to deeper layers. 

Fig. 7 shows some qualitative improvements in segmentation results 
using the proposed network compared to the other two. 

5.5. Experiment 4: Detection evaluation and complemented GT 

One of the main concerns in clinical settings regarding breast cancer 
is the detection performance. Since the proposed method performs both 
segmentation and detection in 3D, we investigate in this subsection how 
well it performs in detecting breast lesions. 

Moreover, we investigate both segmentation and detection perfor
mance after complementing the GT. As mentioned earlier in section 
3.2.1, obtained dices for cases with multiple lesions were affected by the 
incomplete GT issue since our network does not only segment the pri
mary lesions. It is believed that a better and more fair evaluation (both 
for segmentation and detection) can be made with complete GT anno
tations. Therefore, the annotations of 11 cases with multiple lesions 
were complemented by an experienced radiologist. The proposed 
framework was then trained again using the same 46 cases but with only 
11 annotations being replaced with the complemented ones. We would 
like to emphasize that complementing the GT does not mean just 

Table 1 
DSC values (mean ± stdev) and p values for original (non-isotropic) volumes VS. 
isotropic volumes. DSC is the global dice and DSCL is the main lesion dice.  

Voxel Size DSC DSCL 

Original (non-isotropic) 0.649± 0.258 0.719 ± 0.250 
Isotropic 1 0.580 ± 0.274 (p = .008) 0.693 ± 0.267 (p = .200) 
Isotropic 2 0.579 ± 0.260 (p = .003) 0.633 ± 0.277 (p<.001)   

Table 2 
DSC (mean ± stdev), p, HD and FPR for different input combinations. DSC and 
HD are the global dice and Hausdorff distance whereas DSCL and HDL are the 
dice and Hausdorff distance of the main lesions.  

Inputs DSC DSCL HD HDL FPR 

(1) Pre, last 
post 

0.591 ±
0.279 (p 
= .001) 

0.652 ±
0.283 
(p<.001)  

253.061 
(p =
.081) 

23.481 
(p =
.141) 

1.25E-04 
(p = .001) 

(2) Pre, last 
post, 
subtraction 
(post-pre) 

0.587 ±
0.260 
(p<.001)  

0.649 ±
0.248 
(p<.001)  

250.651 
(p =
.036) 

16.291 
(p =
.099) 

1.42E-04 
(p = .010) 

(3) 3 TP (pre, 
2nd post, 
last post) 

0.654 ±
0.262 (p 
= .403) 

0.716 ±
0.241 
(p<.001)  

219.712 
(p<.001)  

11.996 
(p =
.453) 

1.07E-04 
(p<.001)  

(4) Full series 
(pre, all 
posts) 

0.664 ±
0.234 (p 
= .572) 

0.730 ±
0.222 (p 
= .005) 

227.654 
(p<.001)  

11.879 
(p =
.135) 

1.14E-04 
(p<.001)  

(5) Pre, last 
post, stdev 
of the full 
series 

0.649 ±
0.258 (p 
= .220) 

0.719 ±
0.250 (p 
= .004) 

226.873 
(p<.001)  

13.098 
(p =
.315) 

1.24E-04 
(p<.001)  

Ensemble 
(Majority 
voting) of 
(3), (4) and 
(5) 

0.679 ±
0.258 (p 
= .835) 

0.728 ±
0.243 (p 
= .002) 

135.415 
(p<.001)  

11.561 
(p =
.593) 

1.00E-04 
(p<.001)  

Ensemble 
(Union) of 
(3), (4) and 
(5) 

0.674 ±
0.224 

0.790 ± 
0.172 

278.548 11.256 1.73E-04  
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refining the boundaries of the original GT lesions, but also segmenting 
new lesions that were not originally segmented in the original GT. 

Segmentation and detection results before and after GT comple
mentation are reported in Tables 4 and 5 respectively. In Table 4 we 
compare segmentation performance before and after GT complementa
tion in terms of DSC, HD and FPR. 

As expected, results improve, although only marginally, compared to 
the original GT both in terms of DSC and HD. Having only slight 
improvement after this step could be explained by the fact that only a 
small number of cases were complemented (11 cases), and the small size 
of most of the additional lesions (surrounding the main lesion) that were 
added after the GT complementation process. 

In Table 5 we report the detection performance in terms of the 
number of correctly detected lesions and FP lesions based on Intersec
tion (I), where two thresholds of I were used (0.20 and 0.50). In 

addition, the detected FP connected components were filtered to exclude 
those with size of 10 voxels or smaller. This is due to the majority of FP 
connected components consisting of only one voxel (or very few voxels). 
This size (10 voxels) was chosen to be smaller than the smallest lesion in 
the GT annotations. Finally we compare these detection related metrics 
before and after GT complementation. 

Based on results from Table 5, the proposed method had a high 
detection rate for main lesions (i.e. before GT complementing). On the 
other hand, detection rate was decreased after GT complementation 
which is expected because of the complexity of the dataset and the le
sions that were added. In addition, the detection rate after GT comple
mentation was mainly affected by two cases (A0B1 and A0B5), which 
had complicated multiple lesions with many small lesions. Fig. 8 shows 
the original and complemented GT for case A0B1 in 3D, and the pre
dicted segmentation with the network trained on both original and 
complemented GT. 

This case has 46 lesions in the complemented GT, with 29 of them 
being detected by our method. Despite the missed lesions, dice value was 
largely improved, which is explained by the fact that the model seg
ments the major lesions and misses those which were very small. For 
completeness, we investigate detection performance after excluding this 
case (results are reported in Table 5). 

Although the number of FP is relatively high for a lesion detection 
algorithm in clinical practice (but less than 10 FP/volume) it is impor
tant to emphasize that the aim of the algorithm is to provide a fully 
automatic lesion segmentation framework to further characterise lesions 
and, as shown by the results, the overall segmentation even in complex 
cases such as in Fig. 8 can be considered as accurate. 

Finally, even though this GT complementation process mildly 
impacted the segmentation results, we believe it has helped to better 
evaluate our method by adding lesions detected by our model but were 

Fig. 6. Comparison of obtained segmentation using different methods (input combinations), where GT is represented in red and output segmentation in white. 
Methods are: (1) Full series (pre, all posts). (2) An ensemble of three methods (3 TP, full series, stdev along with pre and last post). Cases from (a) to (c) are A0DZ, 
A0HA, and A0E0, respectively. 2D slices shown on the top row are taken from the second post-contrast volumes of each case. 

Table 3 
DSC (mean ± stdev), p values, HD and FPR for different U-Net architectures. DSC 
and HD are the global dice and Hausdorff distance whereas DSCL and HDL are the 
dice and Hausdorff distance of the main lesions.  

Network DSC DSCL HD HDL FPR 

Single Model 
Basic U-Net 

0.551 ±
0.286 (p 
= .001) 

0.590 ±
0.302 
(p<.001)  

123.939 
(p<.001)  

16.369 
(p =
.001) 

1.21E- 
04 (p =
.910) 

Single Model 
Two 
hierarchical 
U-Nets 

0.615 ±
0.266 (p 
= .277) 

0.669 ±
0.275 (p =
.137) 

212.123 
(pp =
.320) 

15.885 
(p =
.034) 

1.29E- 
04 (p =
.729) 

Single Model U- 
Net with 
residual 
blocks 

0.649 ± 
0.258 

0.719 ± 
0.250 

226.873 13.097 1.24E- 
04  
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considered as FP due to their absence in the original GT. Moreover, the 
lesions that were added after GT complementing include very compli
cated types of lesions, which provides a more reliable dataset for the DL 
model to learn from and enhances its ability to learn from realistic cases. 
This highlights the importance of the quality of the annotations for such 
supervised learning methods. Therefore, we believe that this step is 
important for the completeness of the dataset for future use and repro
ducibility of the results. 

5.6. Experiment 5: Comparison with non-learning methods 

In this subsection we compare the performance of our proposed DL 
method with a non-learning method, that is Fuzzy C-Means [7]. We 

implement a standard FCM method with 5 clusters, fuzziness degree = 2, 
maximum number of iterations = 500 and convergence threshold of 
1E-3. Tables 6 and 7 reports the obtained results (both segmentation and 
detection) with the FCM method. 

Results show that using Fuzzy C-Means directly on the whole DCE 
MRI volume, in the same conditions as in the proposed approach, ob
tains very unreliable segmentation results with DSC values being around 

Fig. 7. Example cases of improved segmentation achieved using our proposed architecture compared to another two architectures, where GT is represented in red 
and output segmentation in white. Architectures are: (1) Basic U-Net. (2) Two hierarchical U-Nets. (3) Proposed architecture (single U-Net with residual blocks). 
Cases from (a) to (c) are: A0DE, A0C0, A0BQ, respectively. 2D slices shown on the leftmost are taken from the second post-contrast volumes of each case. 

Table 4 
DSC (mean ± stdev), p values, HD and FPR for the proposed ensemble method 
using data before and after complementing. DSC and HD are the global dice and 
Hausdorff distance whereas DSCL and HDL are the dice and Hausdorff distance of 
main lesions.  

Data DSC DSCL HD HDL FPR 

Before 
complementing 

0.674 ±
0.224 

0.790 ±
0.172 

278.548 11.256 1.73E- 
04 

After 
complementing 

0.680 ± 
0.221 

0.802 ± 
0.156 

275.013 11.042 1.71E- 
04  

Table 5 
Detection performance of the proposed ensemble method using data before and 
after complementing, in terms of number of correctly detected lesions, number 
of FP lesions and mean Intersection (I). Filtering FP lesions means excluding 
small connected components of size 10 voxels or smaller.  

Data Detected 
Lesions (I 
>= 0.2) 

Detected 
Lesions (I 
>= 0.5) 

FP lesions 
(before 
filtering) 

FP lesions 
(after 
filtering) 

Mean 
I 

Before 
complementing 

97.8% 
(45/46 
lesions) 

89.1% 
(41/46 
lesions) 

1736 382 0.811 

After 
complementing 
(all 46 cases) 

78.8% 
(89/113 
lesions) 

69% (78/ 
113 
lesions) 

1834 426 0.761 

After 
complementing 
(excluding case 
A0B1) 

89.6% 
(60/67 
lesions) 

82.1% 
(55/67 
lesions) 

1809 424 0.785  
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0.1. This is explained by the fact that although it may correctly detect 
the main lesion, it also segments other mass-like regions which are not 
related to the lesion (i.e. breast boundaries, vessels, non-lesion struc
tures). This is further corroborated by the DSCL measure (DSC of the 
main lesion), which improves significantly (0.549) compared to the 
global DSC, but is still lower compared to our proposal (0.802). Simi
larly, for the other measures (HD, HDL and FPR) the same trend is 
observed. Those results indicate that Fuzzy C-Means could not be 
applied on the whole volume and may require the manual selection of 
the region of interest containing the lesion, which is a clear limitation of 

the method. Even under these circumstances (i.e. for the DSCL metric) 
the proposed method still outperforms Fuzzy C-Means. 

Regarding lesion detectability, values of correctly detected lesions 
are the same with both methods (97.8%) before GT complementing 
using a threshold of 0.2, with a better detection performance of the 
proposed algorithm (89.1% vs. 82.6%) when a higher threshold of 
Intersection (0.50) is used, which indicates better segmentation of the 
detected lesions with the proposed method. More importantly, the 
number of FP lesion detections increases significantly per volume (more 
than 25-fold) with the FCM method, which might explain why FCM 
detects more lesions after GT complementation, but with the proposed 
algorithm still achieving a better detection when using a higher 
threshold. 

Finally, apart from the provided qualitative comparison, another 
aspect to be compared is that FCM is not a fully automatic method as the 
case of the proposed method. Besides the need for manual selection of 
lesion ROI for the FCM method to obtain reliable results, there is also a 
need for parameter tuning and post processing. 

5.7. Discussion and limitations 

The proposed method outperforms current state of the art in terms of 
DSC and HD measures on a particularly challenging but clinically real
istic public dataset. In addition to the proposed algorithm, the analysis, 
metrics and description of the results and dataset serve as an interesting 
baseline framework for algorithm evaluation in the task of breast MRI 
lesion segmentation. 

Besides segmentation, and since the proposed method actually per
forms both detection and segmentation at once, results show that in 
most cases lesions were detected successfully and their segmentation 
usually corresponds to the GT lesion area, hence, missing lesions was not 
a common issue. Furthermore, detected FPs were mostly corresponding 
to vascular structures or lymph nodes, which are both areas enhanced 
due to the contrast agent. 

Comparing our results to other existing approaches (mentioned in 
Section 2.2), we show accurate segmentation results using a 3D seg
mentation approach with full-sized 4D data compared to most of the 
existing works in which either 2D slice based segmentation is performed, 
only a single temporal acquisition is used, or have the need to manually 
provide a region of interest within the lesion. Table 8 shows a 

Fig. 8. Case (A0B1) with complicated multiple lesions. Shown 3D segmentations are: original and complemented GT, and the predicted segmentation with the 
network trained on both original and complemented GT. 

Table 6 
DSC (mean ± stdev), p values, HD and FPR for the FCM method using data 
before and after complementing. DSC and HD are the global dice and Hausdorff 
distance whereas DSCL and HDL are the dice and Hausdorff distance of main 
lesions.  

Data DSC DSCL HD HDL FPR 

Before 
complementing 

0.102 ±
0.092 

0.560 ± 
0.340 

365.340 21.439 3.57E- 
03 

After 
complementing 

0.112 ± 
0.105 

0.549 1 ±
0.33 

360.923 21.164 3.55E- 
03  

Table 7 
Detection performance of the FCM method using data before and after com
plementing, in terms of number of correctly detected lesions, number of FP le
sions and mean Intersection (I). Filtering FP lesions means excluding small 
connected components of size 10 voxels or smaller.  

Data Detected 
Lesions (I 
>= 0.2) 

Detected 
Lesions (I 
>= 0.5) 

FP lesions 
(before 
filtering) 

FP lesions 
(after 
filtering) 

Mean 
I 

Before 
complementing 

97.8% 
(45/46 
lesions) 

82.6% 
(38/46 
lesions) 

113 234 12 520 0.730 

After 
complementing 
(all 46 cases) 

96.5% 
(109/113 
lesions) 

78.8% 
(89/113 
lesions) 

113 425 12 711 0.687 

After 
complementing 
(excluding case 
A0B1) 

94% (63/ 
67 
lesions) 

70.1% 
(47/67 
lesions) 

112 195 12 547 0.675  
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comparison between the results obtained by our method and results 
obtained in other works. 

As shown in Table 8, dice values reported in the existing literature 
were not particularly high (ranging between 0.60 and 0.80), reflecting 
the complexity of this task. One exemption could be the work of Zhang 
et al., 2019b [34] where high dice values were obtained, which are 
likely to be explained by the fact that lesion bounding boxes are used as 
input. Our results of 0.68 were very close to the results obtained in other 
works, despite the complexity of the dataset with multiple lesions and 
the fact that ours is a fully automatic proposal using 3D data. It is 
important to mention that a direct comparison of our method with the 
existing approaches can not be established as all methods have been 
using different datasets and input information (3D/2D, whole images or 
ROIs). In that sense, as we are using a publicly available dataset, the 
results presented in this work allows reproducibility and comparability 
of future developed methods in order to mitigate the variability of re
sults in the current state of the art. 

As for the limitations of our study, the dataset we used had a small 
number of cases. Having a larger dataset is believed to improve the 
performance. Additionally, all cases in our dataset contained at least one 
lesion which might cause issues when dealing with normal MRIs (i.e. 
healthy cases). Although MRI studies are usually acquired for high risk 
women or in cases of suspicious findings (with a higher incidence than 
screening population), our work assumes that at least a lesion is present 
in the scan, which may not always be the case. Another limitation 
related to our dataset is that we did not test with scans acquired from 
different scanners. All scans used in this study were acquired with the 
same scanner. Future work will investigate the use of different scanners 
and how this affects the segmentation accuracy. 

In addition, even though the breast ROI obtained and used in our 
work could eliminate most of the confounding organs region in most 
cases, there were few cases where the ROI could also include 

surrounding confounding organs. This is due to the fact that some le
sions are located on the body-breast boundary and the ROI is defined in a 
conservative way to avoid missing any breast lesions, at the expense of 
including some small surrounding areas such as heart and lungs. This 
could be considered as a limitation to this work, future work will focus 
on incorporating breast masks instead of breast ROIs. 

Another observation is that our network also segments axillary 
lymphadenopathy (which appears in several cases among our dataset), 
even though it is not strictly a malignant lesion, it is often a sign asso
ciated with breast cancer. Axillary lymphadenopathy is defined as 
changes in the size and consistency of lymph nodes in the armpit (axilla) 
and it is a symptom associated with a range of diseases and conditions 
from mild infections to breast cancer, including also the COVID-19 
vaccination as shown in recent studies [14]. Fig. 9 shows an example 
case diagnosed with uni-centric lesion and an axillary lymphadenopa
thy. As shown in Fig. 9, the lesion is segmented well by our algorithm, 
however the dice is affected due to segmenting the axillary lymphade
nopathy which has a bigger size than the lesion. 

6. Conclusions and future work 

In this study an automated breast lesion segmentation method has 
been proposed for DCE-MRI. Our proposed method is an ensemble of 
models based on a 3D patch based modified U-Net framework. In this 
modified U-Net we have introduced residual basic blocks instead of 
basic U-Net blocks. Additionally, we have utilized a ROI restricted 
balanced patch extraction in order to address both the class imbalance 
and confounding organs problems. Differently from most existing works 
on this topic, full automatic 3D segmentation is performed instead of 2D. 
Therefore, our method performs both segmentation and detection at the 
same time. 

Additionally we have utilized not only one temporal acquisition (as 

Table 8 
Comparison of our proposed method and other existing methods.   

Architecture 2D/ 
3D 

Number of cases 
(public/private) 

Inputs Loss function Evaluation criteria 
and score 

Scanner 

Zhang et al., 
2019b [34] 

U-Net 2D 1246 slices 
(private) 

2nd post-contrast (lesion 
bounding boxes) 

Cross-entropy DSC = 0.91 –  

U-Net 3D 158 cases (private) 2nd post-contrast (lesion 
bounding boxes) 

Cross-entropy DSC = 0.92  

El Adoui et al., 
2019 [15] 

U-Net 2D 5452 slices 
(private) 

Post-contrast Cross-entropy IoU = 0.761 4 1.5T Siemens  

SegNet 2D 5452 slices 
(private) 

Post-contrast Cross-entropy IoU = 0.688 8  

Piantadosi 
et al., 2019 
[21] 

U-Net 2D 35 case 
(256x128x80) 
(private) 

Pre-contrast, 2 min post- 
contrast, and 6 min post- 
contrast 

Dice DSC = 0.612 4 1.5T Siemens 

Zhang et al., 
2019a [33] 

Two hierarchical U- 
Nets 

3D 272 cases (private) Pre-contrast, post-contrast, 
and subtraction (breast mask 
guided) 

First stage: Dice- 
sensitivity-like Second 
stage: Dice-like 

DSC = 0.72 1.5T GE and 
3.0T Siemens 

Our proposed 
work 

Ensemble of 3 U-Nets 
with ResNet basic 
blocks 

3D 46 cases (public) Ensemble (Union) of 3 models, 
each with different inputs (ROI 
mask guided) 

Cross- entropy DSC = 0.680 (0.802 
for primary lesions 
only) 

1.5T GE  

Fig. 9. Example case (A18H) with axillary lymphadenopathy. (a) pre-contrast. (b) second post-contrast. (c) Obtained segmentation (in white) and GT (in red).  
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in most existing works) but different temporal scans instead. Different 
combinations of inputs have been investigated and a combined model of 
the best three combinations have been proposed. 

Experiments have been performed on 46 cases and different metrics 
have been used to evaluate the obtained segmentation. We have ob
tained a mean dice of 0.680 (0.802 for main lesions only) which is 
promising considering the various issues encountered with the incom
plete GT and the complex dataset that included very small, irregular, 
low enhanced lesions as well as lesions located on the body-breast 
boundary and confounding background. 

Further improvements could be achieved by incorporating a larger 
dataset with a complete annotation for those cases with multiple lesions. 
Moreover, using a breast mask instead of a simple ROI could also 
potentially alleviate the issue of confounding regions as it will help 
exclude confounding regions of the internal organs without excluding 
lesions located on the body-breast boundary. 

Finally, the deployment of deeper architectures and the deployment 
of an alternative way to represent the 4D data in one volume as a 
reduced representation that better captures the TIC of each voxel could 
also improve the results by reducing computational demands. 
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