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Abstract Even though the logratio methodology provides a range of both generic,
mostly exploratory, and purpose-built coordinate representations of compositional
data, simple pairwise logratios are preferred by many for multivariate analysis in the
geochemical practice, principally because of their simpler interpretation. However,
the logratio coordinate systems that incorporate them are predominantly oblique, re-
sulting in both conceptual and practical problems. We propose a new approach, called
backwards pivot coordinates, where each pairwise logratio is linked to one orthog-
onal coordinate system, and these systems are then used together to produce a con-
cise output. In this work, principal component analysis (PCA) and regression with
compositional explanatory variables are used as primary methods to demonstrate the
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methodological and interpretative advantages of the proposal. In the applied part of
this study, sediment compositions from the Jizera River, Czech Republic, were anal-
ysed using these techniques through backwards pivot coordinates. This allowed to
discuss grain size control of the element composition of sediments and clearly distin-
guish anthropogenically contaminated and uncontaminated strata in sediment depth
profiles.

Keywords Pivot coordinates · Additive logratio coordinates · Principal component
analysis · Linear regression with compositional covariates · Pairwise logratios

1 Introduction

Compositional data analysis plays a central role in the geosciences as most exper-
imental data generated by chemical analysis consist of multivariate observations of
relative nature, typically measured in units such as percentages, mg/kg (ppm) or mg/l.
Although in practice they can adopt the form of closed vectors of constant sum (for
example 100 if expressed as percentages) or not, they are essentially scale invari-
ant objects (Pawlowsky-Glahn et al. 2015 Filzmoser and Hron 2019). That is, the
most basic relevant information is contained in the pairwise logratios between the
components or parts of the composition. This implies that the sample space of such
data differs from the standard Euclidean real space for which most popular statistical
methods are designed (for example principal component analysis and regression anal-
ysis as widely used in experimental studies). The sample space of compositional data
is in fact formed by equivalence classes of proportional positive vectors. This means
that vectors within one class are interchangeable and any representative (closed to
any arbitrary sum of components) can be chosen according to the preferences in the
context of application. Importantly though, the results from any relevant statistical
analysis of compositional data should be equivalent regardless of the chosen repre-
sentation and, amongst others, this property is guaranteed when the analysis is based
on (log)ratios. Since the seminal book by Aitchison (1986), the theory for composi-
tional data analysis has been further developed and completed, and the current state
of the art is presented in several recent monographs (van den Boogaart and Tolosana-
Delgado 2013 Pawlowsky-Glahn et al. 2015 Filzmoser et al. 2018 Greenacre 2018a).

The theoretical background of compositional data analysis is connected to an
algebraic-geometrical structure that has become to be called the Aitchison geome-
try (Billheimer et al. 2001 Pawlowsky-Glahn and Egozcue 2001). This reflects the
dimensionality of compositions (D− 1 for a D-part composition) as well as their
scale invariance property, and provides a solid framework for further developments
of the methodology. In fact, there is no other geometrical structure known to reflect
the scale invariance of compositions. One major development has been the introduc-
tion of coordinates with respect to an orthonormal basis of the Aitchison geome-
try, providing an isometric mapping between this and the Euclidean geometry of the
real space while respecting the dimensionality of compositions. They were originally
called isometric logratio (ilr) coordinates (Egozcue et al. 2003), although the nam-
ing orthonormal logratio (olr) coordinates has been recently advocated as an alterna-
tive (Martı́n-Fernández 2019) aiming to reflect better their distinctive feature, since
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other logratio representations like the centred logratio (clr) transformation (Aitchi-
son 1983) also define an isometric mapping (although it fails to represent the ac-
tual dimensionality of the data). As with any mathematical tool, an important aspect
to be respected in practice is easiness of interpretability. For this purpose, Egozcue
and Pawlowsky-Glahn (2005) proposed the use of balance coordinates as a specific
olr coordinate representation that is interpretable in terms of normalised balances or
contrasts between groups of compositional parts. Although these are designed to re-
flect some natural processes for example in geochemistry, and their usefulness has
been demonstrated in diverse studies (Pawlowsky-Glahn and Buccianti 2011 Buc-
cianti 2013 Pawlowsky-Glahn et al. 2015), there are still some drawbacks mostly
related to the following points:

– For the construction of balances through a sequential binary partition (SBP), as
devised in Egozcue and Pawlowsky-Glahn (2005) and commonly used in appli-
cations, a well elaborated idea about a meaningful (non-overlapping) grouping of
the parts is required. This is not always the case, particularly in studies with a
relatively large number of compositional parts.

– Even if balances can be successfully constructed, the resulting olr coordinates
usually include some which do not have a straightforward interpretation (if any
at all) in the context of the particular application. In such cases their practical
usability is questionable and turn out to be less appealing for geochemists.

– The details of the connection (grain-size control) with the individual components
is easily lost through the grouping process resulting from the construction of bal-
ances, however this link is frequently also of scientific interest in geochemical,
sedimentological or pedological research and practice.

The class of pivot logratio coordinates was proposed aiming to address the third point
(Fišerová and Hron 2011 Hron et al. 2017 Filzmoser et al. 2018). They are specific
balances where all the relative information about a compositional part (within the
given composition) is contained in one of the coordinates, commonly the first one,
which consists of a normalised balance between such part and the remaining ones
summarised by their geometric mean. As such, the first pivot coordinate can be ex-
pressed as the (scaled) sum of all unique pairwise logratios involving the given part,
and this can be done for each individual part of the composition sequentially by sim-
ply applying an orthogonal rotation of the coordinate system. Pivot coordinates could
thus be seen as a bridge between the inappropriate statistical analysis of the original
compositional parts in any fixed representation and the world of logratios. However,
aggregating all logratios into a single coordinate mixes all pathways governing phys-
ical and chemical processes behind the observed data, particularly as the number
of parts increases. This led to the proposal of a weighted counterpart to pivot co-
ordinates (Hron et al. 2017). Still, the idea of aggregating logratios through pivot
coordinates might not be welcome in areas of geochemistry where it is customary to
use a component as reference to “normalise” the others with respect to it by means
of the logratios. After taking logs, this results in D−1 logratio coordinates for a D-
part composition which are not orthonormal but oblique with respect to the Aitchison
geometry. This operation formally corresponds to additive logratio (alr) coordinates
(Aitchison 1982). As with pivot coordinates, or centred logratio coefficients, alr coor-
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dinates cannot be simply identified with the individual original components, as they
are in fact logratios, but the link with these is more clearly stated.

Having simple pairwise logratios as a coordinate representation of compositions
instead of what might be perceived as involved mathematical constructs sounds ap-
pealing. A possibility to obtain logratio coordinates composed by pairwise logratios
while respecting the dimensionality of compositions results from a variable selection
procedure (Greenacre 2018a;b), which picks out logratios with the aim to explain as
much of the total data variability as possible, and then potentially representing leading
processes in the data. Pairwise logratios can also be helpful for compositions where
there is an implicit ordering of parts, constructing them from adjacent parts (cate-
gories) as discussed in Vencálek et al. (2020). However, these logratio coordinates do
not meet the orthonormality criterion either.

The simplicity of pairwise logratios and their interpretation in comparison to
more sophisticated counterparts has recently led to discussions regarding the extent
to which orthonormality of coordinates is really a fundamental property in practice,
or even whether this requirement should be suppressed in favour of the simple in-
terpretation of pairwise logratio alternatives (Greenacre 2018a; 2019). Technically,
using alr coordinates or any other oblique coordinate system does not result in prob-
lems for methods whose results are invariant to affine transformations, see for ex-
ample Filzmoser and Hron (2008) and Filzmoser et al. (2012). However, this is not
the case for rotation invariant methods like principal component analysis. Using such
class of coordinates also affects the interpretation of regression coefficients in re-
gression with compositional explanatory variables (Coenders and Pawlowsky-Glahn
2020). Moreover, oblique coordinates violate the basic property known as subcom-
positional dominance (Egozcue 2009). That is, it might happen that the (Euclidean)
distance between compositions expressed in such coordinates is lower than the dis-
tance between subcompositions obtained from them. This prevents from considering
them as a subcompositionally coherent alternative, or even simply as a geometrically
meaningful approach, although subcompositional incoherence can be minimised by
a proper choice of (oblique) coordinate system (Greenacre 2018b).

The above does not imply that pairwise logratios should be necessarily avoided
for meaningful statistical processing of compositional data. The goal of this paper
is to show that interpretation in terms of pairwise logratios can be retained with-
out sacrificing orthonormality and without resorting to approximations (Greenacre
2018b). Once a set of interpretable pairwise logratios is determined, a collection of
orthonormal coordinate systems containing these pairwise logratios as one of the co-
ordinates is built. Accordingly, the pairwise logratios are used for statistical analysis
underpinned by the respective orthonormal coordinate systems. Because the idea of
compiling results from several olr coordinate systems is borrowed from the concept
of pivot coordinates, just in a kind of “reverse order”, we will refer to this strategy
as backwards pivot coordinates throughout this paper. The idea is introduced in the
next section, and then developed in the context of two particular statistical techniques
commonly used in geochemical studies: principal component analysis and regression
analysis with compositional covariates. The methodological part is complemented
with some simple motivating examples, followed by a detailed discussion of limita-
tions. The proposed approach is demonstrated in Section 4 using sediment composi-
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tions from the Jizera River, Czech Republic. The final Section 5 then concludes with
some general advice and remarks.

2 Pairwise logratios as orthonormal coordinates

Historically, the first approach to express compositional data in real space were addi-
tive logratio (alr) coordinates (Aitchison 1982), which are defined for a D-part com-
position x = (x1, . . . ,xD) and any chosen ratioing part xD (up to any permutation of
components) as

alr(x) =
(

ln
x1

xD
, . . . , ln

xD−1

xD

)
. (1)

These coordinates are well aligned with geochemical practice, as frequently there
exists a justified normalising element to which the others are compared through the
logratio. A number of geochemical studies have been performed using these coor-
dinates, including bivariate plotting (Thomas and Aitchison 2005; 2006). However,
from a geometrical perspective, their general use is not recommended as they violate
the subcompositional dominance principle (Pawlowsky-Glahn et al. 2015). For exam-
ple, consider two samples described by the 4-part compositions x1 =(0.2,0.1,0.6,0.1)
and x2 = (0.3,0.4,0.1,0.2). Using the fourth component as ratioing part, the ordinary
Euclidean distance between the respective alr-coordinate vectors is 2.6. However,
when measured using alr coordinates of the subcompositions resulting from dropping
the forth component (the third component is then used as ratioing part here), the Eu-
clidean distance between samples has a greater value of 3.86 and that basic principle
is not fulfilled. Moreover, distances on alr coordinates change with the permutation
of the components, it means they depend on the ratioing part used. This behaviour
has unacceptable consequences for any statistical method based on distances, such as
the widely-used cluster analysis methods.

Recall that the relative information about a component is contained in all logratios
including that specific part of the composition. From this perspective, alr coordinates
could be considered as a borderline (weighted) case where only one of them is consid-
ered. All the relative information about the components is carried in clr coefficients
(Aitchison 1983), defined as

clr(x) =

ln
x1

D
√

∏
D
i=1 xi

, . . . , ln
xD

D
√

∏
D
i=1 xi

 . (2)

Note that each clr coefficient aggregates all logratios with a given component, for
example for the first one we obtain

ln
x1

D
√

∏
D
i=1 xi

=
1
D

(
ln

x1

x2
+ . . .+ ln

x1

xD

)
. (3)

Unlike with alr coordinates, this implies that none of the parts of the composition
plays any prominent role in relation to the others. Accordingly, when there is an inter-
est in establishing a link between original components and their logratio representa-
tion, potential subjectivity related to the choice of the ratioing part is suppressed here.
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The idea of aggregating all relative information about a given component (within a
specified composition) led to the introduction of the concept of pivot coordinates (pc)
mentioned in Section 1, where the component placed at the first position in x (which
can be any by rotation) appears only in the first pivot coordinate. In general, this leads
to D pivot coordinate systems

pc(l)(x)i =

√
D− i

D− i+1
ln

x(l)i

D−i
√

∏
D
j=i+1 x(l)j

, i = 1, . . . ,D−1, (4)

where x(l) =(x(l)1 ,x(l)2 , . . . ,x(l)l ,x(l)l+1, . . . ,x
(l)
D ) stands for such a permutation of the parts

(x1, . . . ,xD) in which the l-th compositional part, l ∈ {1, . . . ,D}, takes the first posi-
tion, x(l) = (xl ,x1, . . . ,xl−1,xl+1, . . . ,xD). Note that pivot coordinates and clr coeffi-
cients are linked, since the collection of first pivot coordinates is nothing else than
scaled clr coefficients:

pc(l)(x)1 =

√
D

D−1
clr(x)l . (5)

The question we put forward here is whether a similar link could be established
also with alr coordinates (or any pairwise logratios in general), which would mean
to single out the corresponding pairwise logratios from a set of orthonormal coor-
dinate systems. And, related to this, whether that link can be derived from existing
coordinate systems within the pivot coordinates family.

This leads to the idea of considering each pairwise logratio as the first coordinate
of an olr coordinate system and complement it with other coordinates through an
appropriate SBP procedure. One such choice produces (up to permutation of parts)
olr coordinates as in Egozcue et al. (2003), that are formulated in this context as

bpc(l)(x)i =

√
i

i+1
ln

i
√

∏
i
j=1 x(l)j

x(l)i+1

, i = 1, . . . ,D−1. (6)

The sign matrix associated to the SBP is

x(l)1 x(l)2 x(l)3 x(l)4 x(l)5 ... x(l)D
bpc(l)(x)1 1 −1 0 0 0 ... 0
bpc(l)(x)2 1 1 −1 0 0 ... 0
bpc(l)(x)3 1 1 1 −1 0 ... 0
bpc(l)(x)4 1 1 1 1 −1 ... 0
... ... 0
bpc(l)(x)D−1 1 1 1 1 1 ... −1

where the element (i, j) of the matrix is 1 if the j-th part is in the numerator in the
i-th step of the partition, or−1 if it is in the denominator, or it is 0 if it is not involved
in that step.
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It must be noted that the ratioing part is placed at the second position in x(l), so
that the pairwise logratio of interest is

bpc(l)(x)1 =
1√
2

ln
x(l)1

x(l)2

=
1√
2

ln
xl

xD
,

and the resulting coordinate systems bpc(1)(x), . . . ,bpc(D−1)(x) with the specific in-
terpretation of the first coordinate could be considered as a counterpart to alr coor-
dinates (1) using the ratioing part xD. Here the superscript l obviously varies only
between 1 and D− 1 for a given ratioing part, but ratioing parts of interest for the
practitioner could be selected and up to D(D− 1) coordinate systems could be built
to represent any possible pairwise logratio. The construction of coordinates using (6)
as a reversed run of pivot coordinates (4) motivated the name backwards pivot coor-
dinates (bpc). This way we establish a direct relationship between the first backwards
pivot coordinate and the respective alr coordinate, namely

bpc(l)(x)1 =
1√
2

alr(x)l .

Here alr(x)l stands for the lth alr coordinate and in both cases we use the same ratio-
ing element. Note that backwards pivot coordinates can be used also to represent pair-
wise logratios resulting from the variable selection procedure described in Greenacre
(2018b), adjacent logratio coordinates (Vencálek et al. 2020), or any other set of pair-
wise logratios which are meaningful for the practitioner, as many as D(D−1).

For instance, with a three-part composition, of components A, B and C, three pair-
wise logratios are possible, leading to at most three coordinate systems, in which the
first coordinate is the backwards pivot. The backward pivots in the first two systems
correspond to the alr coordinates with B as ratioing part:

√
1
2

ln
(

A
B

)
,

√
2
3

ln

(√
A ·B
C

)

√
1
2

ln
(

C
B

)
,

√
2
3

ln

(√
C ·B
A

)

√
1
2

ln
(

A
C

)
,

√
2
3

ln

(√
A ·C
B

)

Importantly, as most multivariate statistical methods rely on orthogonal coordi-
nates, pairwise logratios that are determined through olr coordinates using (6) are
more appropriate than those which originate from oblique coordinate systems con-
taining the pairwise logratios such as alr coordinates. This is further elaborated in the
next section.
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3 Consequences for statistical processing

For multivariate statistical methods which focus on analysing samples rather than
variables and rely on affine equivariant estimators of location and scale, it is possible
to use any of the logratio coordinate systems introduced in the previous section. The
results in terms of decisions from statistical hypothesis testing, allocation of objects
to specific classes, etc. are always the same. This is for instance the case for outlier de-
tection procedures based on the Mahalanobis distance (Filzmoser and Hron 2008) and
linear, quadratic or Fisher discriminant analysis (Filzmoser et al. 2012). Nevertheless,
the isometric nature of the coordinates matters for distance-based methods like clus-
tering (Palarea-Albaladejo et al. 2012 Filzmoser et al. 2018) or multidimensional
scaling. This is also relevant for regression analysis with compositional response
(Egozcue et al. 2012). Here an oblique coordinate representation does not allow to
decompose a multivariate regression into univariate regressions as ordinarily without
violating the respective decomposition of the residual sum of squares. This would
consequently affect statistics based on this decomposition, like the coefficient of de-
termination R2. Similarly, partial correlations between two orthonormal (orthogonal)
coordinates (Erb 2020), for example non-overlapping pairwise log-ratios, would de-
pend on the choice of the other coordinates if they do not complement those two to
form an olr coordinate system.

When the logratio coordinates are actually meant to be interpreted as part of the
data analysis, then a proper choice is even more important. The problem here is not
only the fact that angles, norms and distances are not preserved with oblique coordi-
nate systems (Pawlowsky-Glahn et al. 2015). A lack of orthonormality prevents from
using any method that is invariant to orthogonal rotations, like the popular principal
component analysis. Additionally, the covariance structure becomes biased when us-
ing oblique coordinates, as these do not preserve the total variance of the data set
(Greenacre 2018b).

In the following sections we focus on two particular methods that are commonly
used in geochemistry, and likewise popular across many other fields: principal com-
ponent analysis and regression with compositional covariates. We choose these meth-
ods to illustrate how using backwards pivot coordinates as introduced in this work
provides a more relevant (interpretable) picture of the underlying processes in the
data as contained in pairwise logratios, while respecting the structure of the Aitchi-
son geometry and the basic properties of compositional data analysis. Of course these
ideas can be extended to other multivariate methods facing an analogous challenge,
for example to partial least squares regression (Kalivodová et al. 2015) in a high-
dimensional context.

3.1 Principal component analysis

Principal component analysis (PCA) is a well-known dimension reduction method
which is also popular in compositional data analysis (Aitchison 1983 Filzmoser et al.
2009). In practical geochemical studies, PCA is sensitive to outliers and its results
are very influenced by how the input compositional data are preprocessed (Reid and
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Spencer 2009). PCA is commonly used along with the compositional biplot as a
two-dimensional graphical representation of the information in the data through the
resulting loadings (arrows in the biplot referring to the variables) and scores (points
in the biplot referring to the samples) (Aitchison and Greenacre 2002). The arrows
in the compositional biplot may represent the relative importance of the parts within
the given composition (through their D clr coefficients) or trade-offs between pairs
of parts from a selection of pairwise log-ratios (Greenacre 2018a;b). Focusing on the
second option, the PCA method is invariant only to orthogonal rotations, and changes
in oblique coordinate systems (like alr or adjacent coordinates) lead to mutually dif-
ferent PCA scores and hence to mutually different loadings of the pairwise log-ratios.
These undesirable effects are however avoided using olr coordinates. Although it is
possible to minimise those differences by an appropriate selection of pairwise logra-
tios (Greenacre 2018b), there is no guarantee that the differences will be negligible
enough so that an acceptable result is obtained regardless of the chosen oblique coor-
dinates.

Instead of using clr coefficients for the construction of compositional biplots as
ordinarily done, Kynčlová et al. (2016) introduced the so-called composed composi-
tional biplot, where the PCA scores are computed from any pivot coordinate system
(4) and the set of PCA loadings results from putting together the first coordinates
from each of D pivot coordinate systems isolating in turn all relative information
about each component. Given the relationship (5) between olr coordinates and clr
coefficients, these loadings differ only by a scaling factor, thus the resulting com-
positional biplot is visually the same. The main difference, as the naming used for
this class of biplot indicates, is that the respective loadings are composed of D pivot
coordinate systems. Accordingly, as for the ordinary compositional biplot, it is fully
meaningful to interpret the length (approximating the standard deviation of the coor-
dinates) and direction of the arrows. However, when interpreting the links between
arrowheads, which indicate proportionality between components in the ordinary clr-
based biplot, or the angles between arrows, one should be aware that the loadings
come from different coordinate systems. Although for the composed compositional
biplot constructed using pivot coordinates (4) this has not practical implications, due
to its relation to the compositional biplot with a specific interpretation of the loadings
(Aitchison and Greenacre 2002), using the same strategy for any other olr coordinate
system could lead to biased conclusions. This is because the loadings depicted in
the biplot can correspond to coordinates (pairwise logratios) which are not necessary
orthogonal. Accordingly, considering relationships between such variables (through
the respective loadings) in terms of correlations should be avoided. The relevance of
the composed compositional biplot for the current study is in the idea of composing
loadings from first pivot coordinates, that can be extended to any coordinates from an
olr coordinate system.

We then propose an analogous strategy to develop biplots based on pairwise lo-
gratios, in contrast to biplots displaying loadings and scores of PCA performed in
alr coordinates (or any other oblique system). Note that in this case not just scores
but also loadings, corresponding to pairwise logratios obtained from backwards pivot
coordinates, would in general differ from those produced by an oblique coordinate
system. Similarly to the case of pivot coordinates, we can interpret direction and
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length of the respective arrows in the composed compositional biplot. Although we
cannot interpret angles between rays in terms of correlations for the same reason as
above, we can discuss the results in terms of proximity (if both rays point towards
the same direction), or anti-proximity (if they are orientated in opposite directions).
A remarkable advantage of such biplot is that the effect of pairwise logratios on the
multivariate data structure can be observed in a realistic manner with respect to the
Aitchison geometry. The interpretation of a specific pairwise logratio does not depend
on the choice of backwards pivot coordinate system (or any olr coordinate system in
general) containing such a logratio. The cost is the limitations of this biplot to inves-
tigate the relationships between variables through the loadings.

Another supporting argument for using bpc for PCA of pairwise logratios is the
form of the total variance of a random composition x (Pawlowsky-Glahn et al. 2015),

totvar(x) =
1
D

D

∑
i=1

D

∑
j=i+1

var
(

ln
(

xi

x j

))
, (7)

which can be alternatively expressed using bpc (but in general using any orthonormal
coordinates) as

totvar(x) =
D−1

∑
i=1

var
(

bpc(l)(x)i

)
for any l ∈ {1, . . . ,D}. However, by using alr coordinates, only part of the total vari-
ance is represented, and consequently the corresponding PCA cannot explain the to-
tal variance. On the contrary, PCA using bpc corresponds to PCA considering all
D(D−1)/2 pairwise logratios, as a consequence of the fact that the resulting scores
differ only by the scaling constant 1/

√
D (the sum of variances of pairwise logratios

in (7) multiplied by 1/D) and the loadings corresponding to the pairwise logratios
have the same direction. Note, however, that using all parwise logratios has its limi-
tations for methods requiring regular data sets. Because the dimensionality of D-part
compositions is just D− 1, the covariance matrix of all pairwise logratios is clearly
singular. This would inhibit, for example, estimation of parameters in regression anal-
ysis as introduced in the next section, but also computation of robust counterparts to
classical estimates in multivariate procedures (see below).

Finally note that, as real-world geochemical data often contain outlying observa-
tions, it might be desirable to use robust methods to estimate the parameters involved
in compositional PCA (Filzmoser et al. 2009). When computing robust principal
components based on a decomposition of the covariance matrix, it is thus neces-
sary to robustly estimate the covariance matrix (as well as the measure of location
or central position). In this case, when PCA is based on olr coordinates, the robust
covariance estimator needs to be orthogonal equivariant. A popular estimator which
is even affine equivariant is the minimum covariance determinant (MCD) estimator
(Maronna et al. 2006), which will also be considered below. Since the dimensionality
of the compositional data is only D− 1, it is unavoidable to only use the relevant
D−1 pairwise logratios as an input, because otherwise (for example when using all
pairs) the estimator would not be computable due to a singularity issue. Here, using
the bpc approach is thus inevitable and can be recommended on a general basis on
the grounds of its generalisability for any estimation method.
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3.2 Regression with compositional explanatory variables

A proper coordinate representation of the explanatory composition in a regression
model with real response variable (Tolosana-Delgado and van den Boogaart 2011) is
key to a meaningful interpretation of regression coefficients. As clearly demonstrated
in Coenders and Pawlowsky-Glahn (2020), when an oblique logratio coordinate sys-
tem is used, the interpretation of the regression coefficient does not correspond to
the coordinate to which the parameter is assigned, but its values are interpreted in
terms of the other coordinates, following the usual rule when interpreting a regression
model: “keeping all other regressors constant”. The inconsistency of the behaviour of
alr coordinates in contrast to olr coordinates is also discussed in McGregor et al.
(2020) in relation to the magnitude and sign of the regression coefficients in the con-
text of Cox regression with compositional covariates. In brief, pairwise logratios as
explanatory variables cannot be interpreted as intended. That is, as the effect of a pair-
wise trade-off between two parts or, in other words, as the effect of increasing just one
part at the expense of decreasing just the other. The regression coefficient of a pair-
wise logratio must be interpreted as how much the response variable is expected to
increase when that logratio coordinate increases while all the remaining logratio coor-
dinates in the equation are kept constant. Thus it depends on the manner in which the
remaining logratio coordinates are defined (Coenders and Pawlowsky-Glahn 2020).
These caveats can be easily illustrated numerically using a simple example.

We use one of the classical data sets provided by Aitchison (1986), called Cox-
ite, which is freely available in the R package ‘compositions’ (van den Boogaart and
Tolosana-Delgado 2013). Note that the data set is actually simulated and even the
mineral names are fictional. Thus, no meaningful interpretation can be performed
from a mineralogical point of view. The data set consists of mineral compositions
of 25 rock specimens of coxite type. We consider the subcomposition of three min-
erals formed by albite, blandite, and cornite to explain porosity through regression
analysis. Let us assume that the effect on porosity of the pairwise logratio between
albite and cornite is of especial interest to the researcher . With three components,
two linear regression models containing ln

( albite
cornite

)
are possible whose coefficients

(estimated by the least-squares method) are shown with standard errors within paren-
theses in the following:

porosity = −0.2427
(1.6855)

+ 16.2949
(1.0656)

ln
(

albite
cornite

)
− 6.7385

(1.0580)
ln
(

blandite
cornite

)
and

porosity = −0.2427
(1.6855)

+ 9.5564
(0.9033)

ln
(

albite
cornite

)
+ 6.7385

(1.0580)
ln
(

albite
blandite

)
.

The effect of increasing ln
( albite

cornite

)
in the first model must be interpreted assum-

ing that ln
( blandite

cornite

)
is kept constant. If the ratio blandite

cornite remains constant, increasing
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albite
cornite implies increasing albite

blandite by the same factor (Coenders and Pawlowsky-Glahn
2020). Thus, the regression coefficient of ln

( albite
cornite

)
refers to the effect of increasing

albite while decreasing blandite and cornite by the same factor. Conversely, in the
second model, the interpretation of the effect of increasing ln

( albite
cornite

)
must assume

that ln
( albite

blandite

)
is kept constant and, hence, as increasing albite and blandite by a

common factor at the expense of decreasing cornite. These interpretations however
do not correspond to what the practitioner commonly intends when using pairwise
logratios, which is to estimate the effect of increasing just one part at the expense
of decreasing just another one, in our case, according to the researcher’s interest, the
effect of increasing just albite at the expense of reducing just cornite. Note that not
only the interpretation changes, also the coefficient estimates and standard errors do
so.

The first model above corresponds to using alr coordinates with cornite as ratioing
part. Focusing on the alr case, we further illustrate the issues with oblique coordinates
in comparison with orthonormal coordinates. The following equation shows the esti-
mates from choosing albite as alr-ratioing part instead:

porosity = −0.2427
(1.6855)

−9.5564
(0.9033)

ln
(

cornite
albite

)
−6.7385
(1.0580)

ln
(

blandite
albite

)
.

Both the first and the third models constructed from alr coordinates include the
trade-off between cornite and albite, but simply expressed by the reciprocal logratios
ln
( albite

cornite

)
and ln

( cornite
albite

)
. Hence, it would be reasonably expected that the associated

regression coefficients were the same in magnitude but opposite in sign. However,
although the predictions of porosity from the models are the same, the coefficients in
fact differ (coefficient +16.2949 versus −9.5564), implying a different measure of
the influence of that trade-off on porosity and inconsistent interpretations. This issue
casts uncertainty on how to breakdown the variance of the response variable amongst
the different ratios on the explanatory side. In contrast, the following equation shows
estimates from a regression model in which the trade-off between albite and cornite
is constructed as a backwards pivot coordinate:

porosity = −0.2427
(1.6855)

+ 18.2796
(1.1798)

√
1
2

ln
(

albite
cornite

)

− 8.2530
(1.2958)

√
2
3

ln

(√
albite · cornite

blandite

)

When interpreting the effect of ln
( albite

cornite

)
as a backwards pivot coordinate, blan-

dite does not increase together with either albite nor cornite, but keeping the second
coordinate constant ensures that blandite remains proportional to the geometric mean
of the two components whose trade-off is of interest to the researcher. In other words,
the ratio albite

blandite increases by a given factor while the ratio cornite
blandite gets reduced by the

inverse factor. It is thus a matter of the trade-off between albite and cornite only.
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3.3 Regression on pairwise logratio analysis through backwards pivot coordinates

When a common interpretation of pairwise logratios, including alr coordinates, is of
interest for regression analysis, we propose to employ backwards pivot coordinates
(6) by following on the strategy by Hron et al. (2012). Accordingly, being Y a real
response variable, up to D(D−1) regression models of the form

Y = β0 +β
(l)
1 bpc(l)(x)1 + . . .+β

(l)
D−1bpc(l)(x)D−1 + ε (8)

can be considered, where only the regression coefficient corresponding to bpc(l)(x)1
is retained. The intercept term β0 is the same for all models in (8) as well as the overall
model statistics, it means the overall F-statistic used for model significance testing,
the coefficient of determination R2, etc. (Johnson and Wichern 2007). As already ar-
gued for PCA, it is often useful to consider robust estimators, because outliers could
have undesirable effects on the traditional least-squares estimates. Many robust re-
gression estimators have been proposed in the literature, and MM-regression (Maronna
et al. 2006) is nowadays a popular choice. This estimator has excellent robustness
properties, and also robust statistical inference in terms of hypothesis tests for the
regression coefficients is feasible.

Regression coefficient point and variability estimates, associated significance test
statistics, and so on, are commonly summarised in a table of results. A regression
coefficient β

(l)
1 can be interpreted in the usual manner: it informs about how much

the response variable is expected to vary when that explanatory variable, the scaled

pairwise logratio 1√
2

ln x(l)1

x(l)2

, varies while keeping the remaining coordinates constant.

This means increasing the ratio of x(l)1 to x(l)2 while keeping constant all possible
pairwise logratios among the parts x(l)3 to x(l)D , and also the ratio between x(l)1 x(l)2 and

∏
D
j=3 x(l)j (Coenders and Pawlowsky-Glahn 2020).

Unlike with ordinary pairwise logratios, or with any oblique logratio coordinates
in general, using backwards pivot coordinates as explanatory terms in regression anal-
ysis allows the interpretation of the first regression coefficient β

(l)
1 to correspond to

the pairwise trade-off between the two involved parts x(l)1 and x(l)2 only. Moreover, it
is not necessary to specify the remaining coordinates, as any other collection of coor-
dinates resulting from an orthogonal rotation of the basis (retaining bpc(l)(x)1 as the
first coordinate) would produce the same result for the term of interest β

(l)
1 . Never-

theless, similarly as with pivot coordinates in general, one should be aware when in-
terpreting pairwise logratio regression coefficients that each of them is coming from
a different coordinate system, although this has no direct practical implications for
analyzing the effect of a pairwise logratio on the response.

Finally, the interpretation of regression coefficients can be further simplified by
using orthogonal rather than orthonormal coordinates (Müller et al. 2018). These may
rely on an alternative base of the logarithm (like the binary logarithm) and suppress
the normalising constant in bpc(l)(x)1, while preserving all the desirable properties
of olr coordinates in the regression context. When using the binary logarithm without
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the normalising constant 1√
2

, the coefficient β
(l)
1 is interpreted as the effect of dou-

bling the ratio between x(l)1 and x(l)2 . It is important to note however that ignoring the
normalising constant would not be feasible in PCA.

4 Application to sediment compositions

In the following we demonstrate the usefulness of backwards pivot coordinates in
practice by an application to analyse sediment compositions from the Jizera River
(Czech Republic).

The catchment of the Jizera River is formed by crystalline rocks in headwa-
ters and sedimentary rocks (Matys Grygar et al. 2013) and occasional outcrops of
basalts in middle river reach (Faměra et al. 2018). A previous geochemistry study
(Matys Grygar et al. 2013) showed relatively simple grain-size control of sediment
composition; several lithogenic elements show similar grain-size control as risk el-
ements Cu, Pb, and Zn. This is a fact that justifies the use of the local enrichment
factors for quantification of sediment contamination (Bábek et al. 2015 Matys Gry-
gar and Popelka 2016). The sampling site in Horky nad Jizerou is a downstream city
of Mladá Boleslav, with traditional production of car batteries, motorcycles and cars
(Škoda), which generated weak to moderate contamination in the upper strata of the
floodplain sediments (Matys Grygar et al. 2013).

The Jizera River sediments were obtained from 4 drill cores by manual soil corer
(grove corer, 3 cm internal diameter, Eijkelkamp, The Netherlands). The sediments
were dried, powdered with a planetary micromill, and analysed by X-ray fluorescence
spectrometry (XRF) as in preceding studies (Álvarez-Vázquez et al. 2020). The cores
were situated in a meander scar, it means abandoned channel (MFJ1 and MFJ2), a for-
mer point bar (MFJ3), and a former floodplain outside the erosion bank (MFJ4), see
Fig. 1. The samples thus included all major sedimentary facies, it means active chan-
nel sediments (MFJ1 to MFJ3, deeper strata), abandoned channel sediments (middle
part of MFJ1 and MFJ2), point bar deposits (middle part of MFJ3), overbank fines
(upper part of MFJ3 and MFJ4), and levee deposits (uppermost part of MFJ4). The
complete information about granulometry is contained in particle size distributions
which were analysed recently, in the context of another case study on sediment geo-
chemistry (Matys Grygar et al. 2018). However, for the purpose of this study, we
resort to size of particles (in µm) at the 50th percentile in cumulative size distribution
function (D50), which characterises major grain size of sediment particles. This was
further log-transformed to honour its relative scale.

Elements Al and Si are preferred as ratioing parts in logratios because they are
major elements with strongest relation to major mineral constituents of studied sedi-
ments and they are immobile in pedogenesis. Concentrations of both these elements
are controlled by grain size. The Al concentration is frequently used as a proxy for
all sediment constituents finer than quartz sand and element correlating with majority
of other elements (except for, say Ca, Si, Zr). The Al and Si concentrations are indi-
rectly proportional as their grain-size control is usually opposite, however, logratios
to both Al and Si correct other element concentrations for variable organic matter
content. Most other elements than Al and Si, including other major elements, have
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more complicated grain-size controls (Ti, K) or are not immobile (Fe). Logratios to
other elements than Al and Si would bring further sources of variability and produce
geochemically more tricky patterns.

 

Fig. 1: Digital terrain model of the valley of the Jizera River around sampling sites
MFJ1 to MFJ4.

4.1 Regression analysis

In the first part of the analysis we investigate how the granulometry in terms of D50
can be explained by the lithogenic elements Al, Si, K, Ti, Rb, Zr by using pairwise
logratios. Content of all these elements is known to be mainly controlled by sedi-
ment grain size and not by post-depositional migration or anthropogenic impacts. In
the study area, as well as in other temperate regions of Central Europe, also K and
Rb behave as other lithogenic elements, being mostly present in primary minerals
inherited from parent rocks and not, for example, in soluble salts.

As we know from previous sections, these logratios can be considered, for exam-
ple, as elements of alr and bpc coordinate systems. The alr approach corresponds to
the usual way of treating pairwise logratios and the bpc approach benefits from the
properties of orthogonal coordinates. We used orthogonal rather than orthonormal
coordinates (Müller et al. 2018) for the regression modelling with bpc both as a sim-
plification and to enhance comparability with the alr case. This means we suppressed
the 1√

2
normalising constant in bpc(l)(x)1.
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Log-transforming D50 led, in addition to express it in the interval scale, to reduc-
tions in skewness and kurtosis from 3.85 and 16.73 to 1.71 and 2.95, respectively. Af-
ter log-transformation, some outliers were evident (maximum Cook’s distance equal
to 1.06). Given this, following van den Boogaart et al. (2020) we relied on MM robust
regression estimation using the lmrob function available in the robustbase R package
(Maechler et al. 2020).

As argued above, we consider pairwise logratios with Al and Si as ratioing parts
both in the bpc and alr approaches. For the alr case, the model was thus run twice,
while it had to be run 10 times for the bpc approach, and only the first coefficient
in each run is shown. All 12 model runs yield the same predictions and goodness
of fit indicators (Coenders and Pawlowsky-Glahn 2020). An adjusted R2 = 0.853
confirmed a good fit to the data. The results are summarised in Table 1.

The first significant bpc in the top panel of Table 1 is interpreted as follows.
According to the model, increasing the ratio of Al over the remaining parts (K, Ti,
Rb, Zr), while decreasing the ratio of Si over these parts by a common factor, leads to
a reduction in D50. This means that increasing the ratio between Al/Si (while keeping
constant both the mutual ratios among K, Ti, Rb, Zr and their ratios with respect to
the geometric mean of Al and Si) has the effect of reducing D50. This is tantamount
to saying that there is an effect of increasing Al at the expense of reducing Si on D50,
and this corresponds to the natural interpretation of the pairwise logratio between Al
and Si. In the same vein, increasing Ti at the expense of reducing Si, and increasing
Zr at the expense of reducing Si leads to a statistically significant decrease in D50.
The estimates for the ratio Si/Al are redundant with those obtained considering Al/Si,
as they are identical in all respects but sign.

These results have a natural geological interpretation. The Al/Si ratio is a widely
used proxy for sediment grain size, best performing in mixtures of fine particles of
clay minerals (Al and Si are their main element components) and coarser particles
of quartz (SiO2) sand (Bouchez et al. 2011 von Eynatten et al. 2016 Matys Grygar
and Popelka 2016 Matys Grygar et al. 2018; 2019 Álvarez-Vázquez et al. 2020). The
elements Ti and Zr show concentration maxima in the medium size fraction, fine silt
(Ti) and coarse silt/very fine sand (Zr) due to particle size of their carriers and hydro-
dynamic sorting before sediment deposition (von Eynatten et al. 2016 Matys Grygar
and Popelka 2016 Guo et al. 2018 Matys Grygar et al. 2019 Álvarez-Vázquez et al.
2020). Actually, the content of clay and silt fractions relative to fine sand are crucial
for D50 in the Jizera River floodplain deposits, which is consistent with the signifi-
cance of Al/Si, Ti/Si, and Zr/Si when using bpc-based regression.

This straightforward interpretation is not apparent in the bottom panels of Table 1,
where we have the corresponding results from the alr-based regression coefficients
referring to the same ln(Al/Si), ln(Ti/Si) and ln(Zr/Si) logratios. For example, the
p-value for ln(Al/Si) is p = 0.012 from bpc-based regression, which is in stark con-
trast to the p = 0.928 obtained using alr-based regression. Recall that, as stressed
in the previous section, the regression coefficients of alr coordinates do not strictly
correspond in terms of interpretation with the trade-off between the components rep-
resented in the numerator and denominator of the corresponding pairwise logratio.
The fact that the coefficient of the ln(Si/Al) ratio is not equal to that of ln(Al/Si)
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Table 1: Robust MM regression of ln(D50) on the sediment composition using bpc-
based models and alr-based models with Si and Al as the ratioing parts.

Estimate Std. Error t-value p-value
bpc:
ln(Al/Si) -1.279 0.494 -2.589 0.012 *
ln(K/Si) -2.575 1.732 -1.487 0.143
ln(Ti/Si) -1.944 0.755 -2.574 0.013 *
ln(Rb/Si) -0.353 1.308 -0.270 0.788
ln(Zr/Si) -1.150 0.545 -2.112 0.039 *
ln(Si/Al) 1.279 0.494 2.589 0.012 *
ln(K/Al) -1.296 2.047 -0.633 0.529
ln(Ti/Al) -0.665 1.065 -0.624 0.535
ln(Rb/Al) 0.926 1.065 0.869 0.389
ln(Zr/Al) 0.128 0.543 0.236 0.814
alr (with Si):
ln(Al/Si) -0.124 1.359 -0.091 0.928
ln(K/Si) -2.716 2.905 -0.935 0.354
ln(Ti/Si) -1.454 0.843 -1.724 0.091
ln(Rb/Si) 1.728 2.139 0.808 0.423
ln(Zr/Si) 0.133 0.520 0.255 0.800
alr (with Al):
ln(Si/Al) 2.433 1.031 2.361 0.022 *
ln(K/Al) -2.716 2.905 -0.935 0.354
ln(Ti/Al) -1.454 0.843 -1.724 0.091
ln(Rb/Al) 1.728 2.139 0.808 0.423
ln(Zr/Al) 0.133 0.520 0.255 0.800

with opposite sign constitutes a further illustration of the problems to interpret pair-
wise trade-offs between parts from alr coordinates or any oblique coordinates.

4.2 Principal component analysis

Here we resort to principal component analysis (PCA) where the set of lithogenic
elements is complemented by the above mentioned anthropogenic elements Cu, Pb
and Zn. In Fig. 2 it is easy to see that for different alr coordinate systems, with Al and
Si as denominator of logratios respectively, both the scores and loadings change dra-
matically. This raises doubts about the reliability of using either alr version for further
considerations. On the other hand, the scores are by construction the same for both
versions of the composed compositional biplot based on bpc for the respective alr-
like pairwise logratios. Green-brown colouring confirms good separation of samples
taken from bigger depth and closer to the surface. There are, logically, some dif-
ferences between loadings in both composed compositional biplots due to different
effects of logratios with Al and Si, respectively. Nevertheless, there is an interest-
ing role of the logratio between the reference elements Al and Si. While the arrows
have, as expected, opposite directions in the composed compositional biplots, they
are somewhat unrelated in their alr alternatives.

From the geochemical perspective, PCA in alr and bpc representations of Al,
Si, K, Ti, Rb, Zr, Cu, Zn, and Pb concentrations separates lithogenic elements (Al,
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Fig. 2: Biplots of principal component analysis using alr coordinates (left column)
and backwards pivot coordinates (right column) where Al (upper row) and Si (lower
row) are used as denominator of pairwise logratios. Numbers correspond to drill cores
and colour to depths (from brown – deeply drilled samples – to green ones, close to
the surface).

Si, K, Ti, Rb and Zr), mostly associated to PC2, and risk elements Cu, Zn and Pb,
mostly associated to PC1 (Fig. 2), evidencing a desirable separation of geochemi-
cal signals. The plots in Fig. 2 also display correctly the presence of risk-element
enriched sediments in the top strata of the depth profiles. The choice of Al or Si as
ratioing elements mostly impacted the sign of the loadings for Zr, resulting from dis-
tinct grain-size control of Al, Zr, and Si. Zirconium was most abundant (relatively to
other elements) in the medium fraction, Al in the finest fraction, and Si in the coars-
est fractions of the studied sediments. This is, however, clearly shown only in the
composed compositional (bpc) biplots (right column). The performance of PCA can
additionally be judged by unequivocal discrimination of uncontaminated and contam-
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inated sediments in their depth profiles. In contaminated floodplains, the top stratum
is typically enriched in the risk elements relative to the deeper strata (Matys Grygar
et al. 2013; 2014). Risk element concentrations of Cu, Pb, and Zn are controlled by
two major factors: grain size (lithology) and the anthropogenic contamination. Both
factors also act in the Jizera River floodplain (Fig. 3). The contamination is conven-
tionally characterised by enrichment factor (EF), an empirical way to correct the risk
element concentrations in sediments for lithological variations using concentration
(log-)ratios. The most common way to compute EF is the so called ”double normali-
sation” (Grosbois et al. 2012 Matys Grygar and Popelka 2016)

EF = (M/Mre f )/(M/Mre f )UCC,

where M is the risk element concentration, Mre f is the selected reference (lithogenic)
element concentration and UCC is the mean upper continental crust as a global
geochemical reference. Most authors use Al as Mre f (Grosbois et al. 2012 Chen
et al. 2014 Matys Grygar and Popelka 2016), however this is not always applica-
ble (Matys Grygar and Popelka 2016 Matys Grygar et al. 2018 Álvarez-Vázquez
et al. 2020). The EF works with concentration ratios, which correct for dilution by
components not-containing risk and reference elements. If M and Mre f have similar
grain-size control, their ratio partly corrects M also for the sediment grain size; and
EF is a relative measure because the actual element ratio is divided by the element
ratio expected for the natural background (for example UCC). The EF is thus dimen-
sionless and concentration scale invariant. In Fig. 3, the logarithm of EF was taken
which enabled to express the EF as a difference between the concentration logra-
tios computed for each sample and the UCC logratio. Accordingly, departures from
0 show global enrichment (ln(EF) > 0) or global depletion (ln(EF) < 0). Note that
only a single Mre f is included in the EF formula, although grain size cannot be fully
characterised by a single number as shown in the discussion about the regression
analysis for D50. Thus, it is clear that EF is only a coarse approximation.

Fig. 3 shows depth profiles of ln(EF) and PC1 scores in sediment core MFJ1.
A typical property of correctly calculated relative enrichment EF in depth profile is
to have stable values near 1 (ln(EF) near 0) for uncontaminated sediment strata, ir-
respective of lithology (Matys Grygar et al. 2013; 2014), and stable larger values in
the top strata. This is because contamination was homogenised in the Jizera River
floodplain by bioturbation and ploughing and the topmost sediments have received
persistent secondary contamination (Matys Grygar et al. 2013). The enrichment fac-
tor validity is preconditioned by several assumptions, for example applicability of
the global reference (UCC) and shape of background function for M versus Mre f
(Matys Grygar and Popelka 2016). Fig. 3 illustrates how sediment lithology causes
scatter in log-transformed Pb concentrations (thus capturing also their original scale)
both in the lowermost uncontaminated strata and in the middle of the contaminated
strata. Hereby, major features of the sediment lithology are expressed as D50 and
also D90 (90th percentile in cumulative grain size curve, thus it shows grain size in
the coarse end of the grain size curve). Lithological (grain size) effect is partly elimi-
nated in EF , and that is also well eliminated in the first principal component (PC1) of
the bpc representation. This produced satisfactory step-like changes from uncontam-
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Fig. 3: Sediment lithology compared to EF and PCA outputs.

inated to contaminated sediments, although here the whole multivariate information
was used as the input.

It is important to emphasise once again, that the bpc-based PCA scores were pro-
duced irrespective of the particular (and subjective) choice of Al, Si, or any other
denominator in the logratios in alr coordinates. Because grain size cannot be fully
characterised by a single element concentration or a single element concentration
ratio (D50 involved at least Al, Si, Ti, and Zr logratios in regression, see Table 1),
the results using backwards pivot coordinates should be more reliable also from this
perspective. On the contrary, Figures 2 and 3 show different PC1 scores depending
on whether either Al or Si is used as ratioing parts in alr-based PCA. This is also
relevant for the EF methodology, where the selection of Mre f is more critical than
it used to be recognised by the researchers employing EF. The EF values really de-
pends on Mre f (Álvarez-Vázquez et al. 2020), and a wrong choice of Mre f can distort
EF by introducing secondary grain-size effect (Matys Grygar and Popelka 2016).
Accordingly, the respective bpc loadings show reasonable directions with respect to
the multivariate structure of compositional data. This can be observed also in Fig. 2
(upper right), with loadings corresponding to log-ratios with Al in the denominator.
Here PC1, capturing the vast majority of the total variation, is dominated by the Pb
contamination logratio. The loadings of the two other contaminants (Zn and Cu) are
placed partially in the direction of PC2, overriding the effect of lithogenic element
logratios (except of Zr). In other words, from the bpc-based biplot, it follows that the
contaminant logratios tend to play a dominant role in the multivariate data structure.
From the perspective of separating contaminated and uncontaminated samples, the
corresponding alr-based biplot (upper left), where PC1 is influenced by all contam-
inant logratios, seems to produce more convincing results, see Fig. 3, although the
scores in the non-contaminated part are still fairly scattered. However, the price to
pay using alr coordinates is that the scores can quite heavily depend on the chosen
reference element. This can be seen when using scores of alr-based PCA based on Si
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as denominator, which result in the least convincing contamination indicator amongst
the alternatives discussed here.

5 Conclusions

In geological practice, simple pairwise logratios are a common data representation for
statistical analysis. Although advances in the logratio methodology over the past few
decades have brought some sophisticated alternatives, which might be useful in spe-
cific contexts, recent developments in the field suggest that the Occam’s Razor rule
should be considered. Although there is always an element of subjective judgement,
some formulations might sometimes add an unnecessary burden to interpretability
in empirical terms. The tools we use for multivariate statistical analysis, here based
on logratios, should be as simple as possible, but not simpler. The orthonormality
of logratio coordinates is from this perspective a necessary requirement for sound
statistical analysis in our view, at least for principal component analysis and regres-
sion analysis with compositional explanatory variables as demonstrated in this work.
The approach based on backwards pivot coordinates introduced here thus represents a
flexible and reliable alternative to using pairwise logratios derived from either oblique
coordinate systems or the generating system of all pairwise logratios (or any subset
of them).

There are still a number of multivariate statistical methods for which relaxing the
orthonormality assumption of coordinates does not matter, as discussed at the be-
ginning of Section 3. Nevertheless, using olr coordinates is a kind of guarantee that
things cannot go wrong inadvertently. This does not mean that using sets of pairwise
logratios, in the form of alr coordinates or any other representation, will necessarily
lead to flawed analysis and results, especially when a careful variable selection is
performed (Greenacre 2018b), but one definitely needs to be careful. Accordingly,
further research can be carried out with other multivariate statistical methods to show
when using conventional pairwise logratios or bpc matters, including, for instance,
the machine learning methods which have recently increased their usage in the com-
positional data community (Tolosana-Delgado et al. 2019) and mediation analysis
(Sohn and Li 2019).

A further, challenging point from the empirical perspective is the choice of the
reference element for geochemical normalisation in the risk-element enrichment fac-
tor method, which is popular in environmental geochemistry. That is, choosing the
ratioing element in alr (bpc) coordinates. More reference elements should be prefer-
ably used for an “unbiased” enrichment factor in order to reflect that even the median
sediment grain size depends substantially on more than one lithogenic element, as
demonstrated and rationalised in this work. To gain a first insight, one can still resort
to less focused alternatives, like (weighted) pivot coordinates (Filzmoser et al. 2018
Hron et al. 2017).

Finally, note that the general concept of pivot-like coordinates can be useful in
any context where some logratios, which are not necessarily orthogonal, have to be
analysed within one model, as they can always be assigned a pivotal role within
an olr coordinate system. After considering the limitations of this approach, which
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result primarily from the fact that each such logratio corresponds to a different olr
coordinate system, both theoretical and practical advantages show a strong potential
for pivot-like coordinates within the logratio methodology for compositional data
analysis.
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