
A scalable method to construct compact road networks from GPS

trajectories

Yuejun Guoa , Anton Barderaa , Marta Forta and Rodrigo I. Silveirab

a Graphics and Imaging Lab, Universitat de Girona, Campus Montilivi, Girona, Spain
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ABSTRACT
The automatic generation of road networks from GPS tracks is a challenging problem
that has been receiving considerable attention in the last years. Although dozens of
methods have been proposed, current techniques suffer from two main shortcomings:
the quality of the produced road networks is still far from those produced manually,
and the methods are slow, making them not scalable to large inputs. In this paper,
we present a fast four-step density-based approach to construct a road network from
a set of trajectories. A key aspect of our method is the use of an improved version
of the Slide method to adjust trajectories to build a more compact density surface.
The network has comparable or better quality than that of state-of-the-art methods
and is simpler (includes fewer nodes and edges). Furthermore, we also propose a
split-and-merge strategy that allows splitting the data domain into smaller regions
that can be processed independently, making the method scalable to large inputs.
The performance of our method is evaluated with extensive experiments on urban
and hiking data.
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1. Introduction

Nowadays, more and more devices (smartphones, smartwatches, bracelets, etc.) are
equipped with global navigation satellite systems (e.g., GPS) to track the position. The
increasing popularity of GPS tracking devices leads to a massive amount of trajectory
data generated every day. Constructing a route network from these data helps to
understand the mobility of users and can provide an up-to-date basis for navigation
and recommendation systems. Traditionally, producing a road network requires a large
number of images from satellite or aerial photos from providers and platforms, or
extensive field surveys, and intensive post-processing. This method is labor-expensive,
time-consuming, and faces technical challenges (Chen and Cheng 2008, Li et al. 2016,
Huang et al. 2018). Applying algorithms to generate road networks automatically is
an attractive alternative that has received a lot of attention in the last decade. The
automatic generation of road networks from GPS tracking data is also useful as a way
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to supplement existing maps with up-to-date information about road closures and
other recent changes in the road network.

The literature on methods to generate road networks from GPS tracks, a problem
known as road network construction, is extensive (see Section 1.1). However, most
of them are still very time-consuming and are unable to scale to large inputs. For
instance, existing methods handle all the input GPS data and analyze the whole
covered area at once, which becomes infeasible when massive amounts of data need to
be processed. Moreover, the quality of produced road networks is still far from that
produced manually. For example, there are two recurring issues with automatically-
generated road networks. The first is ignoring roads that are followed only by a few
trajectories (considered unimportant) (Cao and Krumm 2009, Wang et al. 2015), which
results in road networks that only partially cover the original data. The second is being
too sensitive to incorrect input data, which results in road networks with nonexistent
or erroneous roads.

Indeed, these problems are inherent to any sampling-based process, and there is
no easy solution. Ignoring infrequent paths makes sense when dealing with redundant
urban trajectories (i.e., data obtained from buses, cars, or trucks), considering that
such paths would probably be non-passable or forbidden. However, infrequent paths
may also be valuable when they represent valid movements that were not possible
before. Additionally, in outdoor activity trajectory data, such as hiking or cycling,
infrequent paths may indicate recently discovered or rarely-used routes, which may be
of particular interest. GPS tracks of people walking, hiking, running, mountaineering,
or trail running, are collected in several platforms such as Hiking Project (Project
2020), Komoot (Komoot 2020), AllTrail (AllTrail 2020), and Wikiloc (Wikiloc 2020).
Some of them are collecting data from all over the world. It leads to another important
aspect to take into account: the size of the geographical area makes it hard to obtain a
road network covering the entire domain at once. Hence, designing a split-and-merge
strategy to construct partial road networks for different areas, and lately merge them
into one global road network, would be of great importance.

This paper presents a method to construct an accurate global road network from
GPS data, from either vehicles or outdoor activities, that cover a large geographical
area. To that end, we present a fast and simple density-based four-step approach to
construct a road network. The three key points of our method are (i) Compacting
the density distribution that defines a binary mask from which to obtain a prelimi-
nary road network. This is achieved based on a slightly improved version of the Slide
method (Mach 2014b,a), which bundles trajectories following similar paths together.
(ii) Determining the importance of each edge on the preliminary road network based
on the input trajectory data, to detect and remove artifacts and to obtain a more ac-
curate result. The importance of the edges can also give insights into the relevance of
each route. (iii) Making the approach scalable, thanks to a split-and-merge strategy.
We split the original data into different (slightly overlapping) geographical regions,
then obtain an accurate road network for each region independently, and finally merge
the road networks into a single consistent global road network. Moreover, the whole
algorithm to obtain a road network is fast in terms of runtime, and several steps are
parallelizable to make it even faster. In terms of road network quality, our method
produces results that are comparable to or better than the state-of-the-art methods
at the global scale, and it outperforms most existing methods when the road networks
are analyzed locally.

The remainder of this paper is organized as follows. Section 1.1 provides an overview
of the existing algorithms. Section 1.2 details the contributions of this paper. Section 2
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introduces the Slide tool that is utilized in our algorithm. Section 3 presents the four-
step approach in detail. Section 4 describes the split-and-merge strategy. Section 5
describes the experiments and comparative analysis of different GPS datasets. Finally,
Section 6 gives the conclusions and future work.

1.1. Previous work

In the past two decades, the increasing availability of massive amounts of trajectory
data has sparked the proposal of dozens of road network construction algorithms. Note
that, the road network construction problem is also often referred as map construction
and map inference (Ahmed et al. 2015a,b, Liu et al. 2012).

The usual setting is one where the input is a set of trajectories of moving objects,
and the output is some form of a road network, often modeled as a graph embedded
in the Euclidean plane. Throughout the paper, we will refer to this graph as the route
graph.

Based on their algorithmic strategy, road network construction methods are classi-
fied into four main categories (even though some methods combine more than one strat-
egy), point clustering, intersection linking, incremental track insertion, and density-
based. As our approach is density-based, we present a general four-step pipeline for
density-based methods (Ahmed et al. 2015b). We refer to Ahmed et al. (2015a) for
more details on the other three categories. Note that in Mariescu-Istodor and Fränti
(2018), some density-based methods are referred to as visual methods.

First, a density surface is produced from the input trajectories. Typically, this is
done by overlaying a grid over the set of trajectories, computing a value for each grid
cell (e.g., the number or total length of trajectories going through it), and applying
some blurring functions to smooth out the surface (e.g., a Gaussian kernel) (Biagioni
and Eriksson 2012, Davies et al. 2006).

Second, a skeleton is computed from the density function. To that end, most meth-
ods apply some kind of skeletonization or thinning algorithm. Often, the density func-
tion is first transformed into a binary image, from where later polygons and road
centerlines are extracted, for example, see an example in (Davies et al. 2006). Alter-
natively, grayscale images can be used (Biagioni and Eriksson 2012).

The resulting skeleton is usually close to a road network but is still a raster repre-
sentation, and it contains incomplete or excessive information. The third step consists
of extracting a cleaner network representation out of the skeleton. This involves first
distinguishing between the edge and vertex pixels. Then, actual vertex coordinates
must be computed (e.g., by averaging out those of nearby vertex pixels), and, finally,
edges connecting vertices must be produced, often after applying some kind of line
simplification algorithm.

While the first steps outlined above result in a base network, its quality is usually
low. Thus, most methods include a fourth phase, the refining phase. This phase im-
proves the base network in terms of topology (e.g., removing spurious edges, adding
missing connections), geometry (e.g., improving vertex locations), and even adding
extra information to the network such as direction or even lane information (Biagioni
and Eriksson 2012).

Note that although density-based methods are based on points, and, thus, do not
treat the input trajectories as continuous objects, several algorithms do take into
account the continuity of trajectories in the refinement phase. Next, we review the
most relevant existing density-based road network construction methods.
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One of the first road network construction algorithms was that of Davies et al.
(2006). In the first step, it builds a histogram based on the total length of trajectory
edges that go through each cell, which is blurred using a Gaussian filter. A binary road
network is computed from the blurred histogram, by using a global threshold value.
Then polygon boundaries for the road areas are extracted from the binary image, using
a contour follower. In the third step, road centerlines are extracted, resulting in a base
network. The fourth step removes spurious short segments.

One of the simplest approaches within this strategy is that of Chen and Cheng
(2008). There, the density function is a binary image that captures all the cells where
at least one trajectory goes through. Then morphological operations (such as dilation
and closing) are used for smoothing, followed by a thinning algorithm that results in
the skeleton. The base road network is constructed from this skeleton by connecting
neighboring pixels. Redundant nodes are deleted by removing consecutive nodes that
are too close and with a similar heading.

The algorithm by Shi et al. (2009) also processes the grid with morphological oper-
ators to fill gaps and smooth the initial density surface. A thinning algorithm is used
to compute a skeleton. The road network construction is done through an algorithm
called combustion, which through several iterations classifies pixels as road or intersec-
tion and groups them into connected components. These components form the basis
of the vertices and edges of the base network.

The algorithm by Steiner and Leonhardt (2011) aims at low-frequency data (i.e.,
trajectories with large gaps between vertices). It uses a similar approach, but it uses
a watershed transform on the blurred density function to detect the ridges of the
surface, which will become edges of the base network. In a refinement phase, some of
the incorrectly identified edges are removed, and intersection positions are adjusted.

The algorithm by Biagioni and Eriksson (2012) starts similarly, building a density
surface based on how many trajectories pass through each cell. A thinning algorithm
produces a gray-scale skeleton. This skeleton is processed with the combustion algo-
rithm of Shi et al. (2009). Then each initially identified edge is simplified using the
Douglas-Peucker algorithm (Douglas and Peucker 1973). The final refinement phase is
rather involved, combining several steps of topological and geometric improvements.
One of the steps applies map matching to each trajectory to identify the parts of the
road network that represent it. With this information, edges with only one trajectory
mapped through it are discarded. A second map matching phase is used to further
remove spurious edges. For the geometric adjustments, a method based on k-means is
used to tune the vertex positions.

A hybrid method that starts with a density-based strategy is the one by Kuntzsch
et al. (2016). It starts following Davies et al. (2006). In a second step, a map matching
phase uses the original trajectories to identify missing parts and junctions on the
road network. A third step reconstructs the geometry of the missing parts, especially
junctions, using a parameterized junction model designed for road networks.

Finally, also deviating from the classical density-based methods, but still closely
related, there is the topological method by Wang et al. (2015). This algorithm applies
discrete Morse theory and topological simplification to produce a road network. The
initial density function is produced in the same way as previous methods, with a
Gaussian kernel. The skeleton is produced by using Morse theory to extract ridges.
The main advantage of their method is that it is adaptive, in the sense that it is based
on local density. However, at the same time, it uses a global persistence-based criterion
to filter out unimportant roads.
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1.2. Contributions

We present a novel road network construction approach that improves over state-of-
the-art methods in several aspects:

• It produces road networks of comparable and often better quality than state-
of-the-art methods, with a considerably smaller size (fewer nodes and vertices).
The key for this is using the Slide method to improve the initial density function,
producing one that is more compact and reliable.
• In its refinement phase, it combines information on the length and frequency of

the edges to filter those that are likely to be spurious, producing cleaner maps
than most previous methods. This also allows it to identify relevant paths with
only a few trajectories, which are missed by most existing methods.
• It is fast to generate networks. Besides, several parts of the method can run in

parallel.
• The split-and-merge strategy allows it to scale to large datasets, by splitting the

input into roughly disjoint geographical regions and building networks in each
region independently. We are not aware of previous road network construction
methods with this feature.

2. Preliminaries

In this section, we formally define what a trajectory is, and describe in detail the Slide
method and mention some ways to improve it in Section 2.1.

In this paper, a trajectory is defined as a sequence of two-dimensional points,
(p1, p2, . . . , pn), that describes the movement of an object. We note that GPS trajec-
tory data also contains a timestamp associated with each point. However, we ignore
the time information and only regard the path described by the object, which is de-
fined by the two-dimensional points. Hence, the points of a trajectory define a polyline,
that may self-intersect, whose vertices are the trajectory points.

Moreover, we use the term sub-trajectory or part of a trajectory t, to refer to the
trajectory t′ defined by a continuous sub-sequence of the points defining t. Hence a
sub-trajectory will be defined by two (or more) trajectory points.

2.1. The Slide method

Slide is a heuristic method that, given a set of trajectories defined by equidistant
points, iteratively refines and adjusts the trajectories to optimize their alignment to
the denser areas of the analyzed data. The method was proposed by Paul Mach from
Strava labs (Mach 2014b,a) as a tool to adjust OpenStreetMap map geometry to the
Strava global heatmap dataset. GPS trajectories are continuously collected to create
a heatmap that essentially represents the density distribution of data. The key idea of
Slide is to match and merge the input trajectories to the heatmap data, using tools
from mathematical optimization.

Slide makes the input trajectory fall (or slide) into the surface valleys (high-density
zones) by applying a force at each point. Since trajectories are usually not defined by
equidistant points, the input trajectories are resampled to have equal distance between
adjacent points and fulfill the Slide equidistance requirement. Such a trajectory defined
by n points, T = (p1, p2, . . . , pn), is iteratively adjusted by perturbing its interior
points pi (1 < i < n) adding a correction vector, cr(pi), to their current position. The
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correction vector is defined as a weighted sum of the surface (sV), distance (dV), angle
(aV) and momentum (mV) vector components (defined below) with different weights:

cr (pi) = ω1sV (pi) + ω2dV (pi) + ω3aV (pi) + ω4mV (pi) , (1)

where ω1, ω2, ω3 and ω4 are the weights of the corresponding components. According
to the public implementation of Slide (Mach 2014a), the weights can be generally set
to ω1 = 0.5, ω2 = 0.2, ω3 = 0.1 and ω4 = 0.7. The four vector components are defined
as follows.

• The surface component calculates the movement of pi with respect to the den-
sity surface. Intuitively, to make similar trajectories more compact, the point
should move towards the densest part. In Slide, the definition is sV(pi) =
gradientAt (pi) which means the surface gradient at pi. This correction vector
drags pi towards its closest valley. Bilinear interpolation (Smith 1981) is applied
to approximately estimate the gradient at pi. Figure 1 illustrates the effect of
this component. Here, pi will be pushed to p′i where the higher density is.

pi
ṕi

Figure 1. Effect of the surface component on a point pi. The density surface is shown with contour lines,

with darker areas indicating higher density.

• As required by Slide, initially, the trajectory should have equal distance between
adjacent points. The distance component tries to ensure that pi stays close to its
previous position by maintaining the equal distance between pi and its neighbors.
To achieve this, the vector is computed by

dV(pi) =

{
0 pi−1 = pi+1

m1 + m2, otherwise
(2)

where m1 = pi−1−center, m2 = pi+1−center, center = pi−1 +u
(

u·v
u·u
)
. Here,

the operation · denotes the scalar product, and u and v are defined for three
consecutive points pi−1, pi and pi+1 as u = pi+1 − pi−1 and v = pi − pi−1.
• The angle component maximizes the vertex angle and minimizes curvature. The

calculation is given by

aV(pi) =

{
0 |u− v| = 0 or δ = 0

δ u−v
|u−v| min {|v|, |u|} otherwise

(3)

where δ = 1− 3
√
u · v and | | is the Euclidean norm.

• The momentum component mV is the correction vector used for pi in the pre-
vious iteration (mV = 0 for the first iteration). Its goal is to speed-up the con-
vergence of the process.
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In each iteration, the Slide algorithm moves every interior point of a trajectory
according to the corresponding correction vector, while maintaining the endpoints in
their original positions. Thus, Slide prompts the interior part of the trajectory to
a denser part of the surface. Slide terminates when the improvement between two
consecutive iterations is smaller than a preset threshold (usually 5 · 10−4). The im-
provement is computed as the difference of the sum of the density values for all the
points according to the density surface.

For our purposes, Slide presents two main issues. Firstly, the geometrical meaning
of the formula defining the distance component is not consistent with the goal of this
component (see Section 3.3). In practice, it causes an excessive displacement of the
points. Secondly, Slide does not move the endpoints of the trajectories, which is a
problem that creates serious visual artifacts. We need the endpoints to move to a
denser part of the surface in the same way the interior points do. The impact of these
two important issues on the obtained results and how we fix them in our modified
version of Slide is explained in Section 3.3.

3. The four-step approach

In this section, we present our four-step approach to construct the road network from
the input data. This section starts by introducing the pre-processing step where some
basic errors in the input data are removed, then describes the four steps of our ap-
proach. In concrete, the four steps are (i) Building a density surface: GPS data are
driven into a grid to build a density surface; (ii) Compacting the density surface via
Slide: trajectories are adjusted according to the density surface and the Slide tool, then
a new and compact density surface is computed with the adjusted trajectories; (iii)
Constructing the initial road network: the route graph is constructed from the density
surface using a thinning algorithm followed by a polyline simplification method; (iv)
Refining the initial network with edge weights: edge weights are computed to filter out
wrong edges and to provide extra (visual) information on the popularity of the routes
and the edges. Figure 2 illustrates the whole process.

3.1. Pre-processing GPS data

GPS data always includes noise. The usual causes of error are the inherent GPS error,
which may range from 5 to 22 (m), and the sampling rate ranging from almost 3 to 30
(sec.) depending on the datasets (see (Duran et al. 2020) for further details). However,
most datasets also contain incorrect values originated, fundamentally, from weak signal
reception. This can be caused by the environment, a rapid change of position, signal
distortion, due to dense canopy, or other typical sources of GPS errors. To decrease the
impact of these incorrect points, we delete the points that define extremely long edges
that can be visually identified as erroneous. Isolated trajectory points that define such
edges are deleted from the dataset. Since we regard them as errors of signal absence,
we split the trajectory into two parts by removing the corresponding erroneous point.

Besides, to apply Slide, we resample the trajectories so that they have consecutive
points at equal distance. The resampling is done by using a linear chordal approxi-
mation interpolating the polygonal defined by the original trajectory (D’Errico 2020).
The new points are placed at distance κ from each other (see Table 1 for further
details).
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Build density surface

Figure 2. Block diagram representing our four-step road network construction algorithm.

3.2. Building density surface

To start with, we cover the area occupied by the given trajectories by a uniform
grid with square cells of side length τ . Then we count the number of trajectories
going through each cell to build the density surface. Furthermore, to reduce noise and
artifacts, we apply a Gaussian blur method (Gonzalez and Woods 2006) on this initial
density surface. After the Gaussian blur, a smoother density surface is obtained.

We note that since the mapping of each trajectory is independent of the others, we
map each trajectory into the grid in parallel to speed up the process.

3.3. Compacting density surface via Slide

To be able to gather similar parts of different trajectories into a single edge of a
graph, we apply an improved version of the Slide method described in Section 2 to
each trajectory in the dataset. After that, we recalculate a more compact density
surface using the adjusted trajectories.

As we mentioned in Section 2.1, in our experiments we found two limitations in
Slide. On the one hand, the distance component of Slide aims to keep the distance
between consecutive points equal, which helps to prevent points from deviating much
from their original positions. Following the notation in Section 2, let pi−1, pi and
pi+1 be three consecutive points of a trajectory, and u = pi+1 − pi−1, v = pi − pi−1.
Assuming that pi−1 6= pi+1 and using the notation in Figure 3 , we can rewrite the
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correction vector of Equation 2 as:

dV(pi) = u− 2u
(

u·v
u·u
)

= 2u(1
2 −

|u0|
|u| ).

(4)

pi

pi+1u

v

u0

d
0.5u

pi-1

Figure 3. Geometric definition of the distance component of Slide.

where u · v = |u||v| cos θ. From the geometric definition in Figure 3, it is clear that

u(1
2 −

|u0|
|u| ) is equal to vector d. To keep an equal distance to pi−1 and pi+1, pi should

move by d. However, according to Equation 4 of Slide, pi moves twice this amount. To
preserve consistency between the intention and the used formula, we propose to define
the correction vector of the distance component that pi moves only by d. Hence, we
divide by a factor 2 the original formula. We have experimentally tested this change,
and this new version gives better results. The same final effect could also be obtained
by using half of the standard weight, i.e., ω2/2. However, for the mentioned consistency,
we prefer to redefine dV(pi) as:

dV(pi) =

{
0, pi−1 = pi+1
1
2 (m1 + m2) otherwise

(5)

The second change to Slide involves endpoints. The original version of Slide, pre-
sented in Section 2, does not move the endpoints of the trajectories because the correc-
tion vector only acts on the interior points. Since the position of a point has a strong
influence on the distance and angle components of their neighboring points, the neigh-
bors of the trajectory endpoints will not move properly. In practice, the parts of the
trajectories near the endpoints present undesirable sharp changes. This aspect was
already mentioned as an issue by the author of Slide (Mach 2014b). Figure 4(a) shows
an example using a synthetic dataset provided by Piciarelli et al. (2008) showing the
undesired shapes of the adjusted trajectories nearby their endpoints. The dataset in-
cludes 50 trajectories that are similar to each other, so ideally Slide should produce
something that resembles a single trajectory. However, the end parts of the trajectories
do not move to the densest area because they are anchored to the endpoints.

To solve this problem, we modify the method to move the endpoints, in each itera-
tion, according to the movement of their neighbors. Let us consider p1, p2 and p3, the
first three points of a trajectory. The correction vector proposed by Slide is applied to
the interior points of the trajectory, p2 and p3. Let p′2 and p′3 be the resulting points.
Then, the endpoint p1 is projected onto the line defined by p′2p

′
3 (see Figure 5). This

orthogonal projection defines p′1. Similarly, the other endpoint pn is projected onto
the line segment defined by p′n−2 and p′n−1. Proceeding in this way the trajectories
correctly meet at the denser part of the density surface (see Figure 4(b)). In our ex-
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(a) Result by the original Slide. (b) Result by the improved Slide.

Figure 4. The original trajectories (dashed grey lines) and the adjusted ones (solid black lines) when using:
(a) the original Slide; (b) our improved version of Slide.

periments, we also tried to guarantee the points to be equidistant by placing p′1 on the
line defined by p′2 and p′3 so that p′2 would the midpoint of p′1 and p′3. However, the
results obtained were not as good as expected.

p

p1

p´original position
adjusted position

p2

p2́

p´
1

Figure 5. Determining the position of the moved endpoint.

Hence, we apply to each trajectory our improved version of Slide, which uses the
new definition for the distance component and adjusts the trajectories endpoints.
Finally, we recalculate the density surface with the adjusted trajectories following the
procedure explained in Section 3.2. As shown in Figure 2, the density distribution
becomes more compact. We use the new density function in the remaining phases.

We remark that since Slide works independently on each trajectory (in both the
original and improved versions), our method adjusts all the trajectories in parallel to
reduce computation time.

3.4. Constructing the initial road network

In this paper, we model the route network as an undirected graph. Each vertex has a
geographical coordinate, and each edge represents a line segment in the network that
connects its corresponding vertices. The density surface obtained based on Slide is first
transformed into a binary image through global thresholding (Gonzalez and Woods
2006). Next, a thinning algorithm is applied to extract a one-pixel-wide skeleton of
the binary image. Similarly to (Biagioni and Eriksson 2012) and (Shi et al. 2009), we
obtain the initial graph from the skeleton, then use the line simplification (Douglas-
Peucker) method by Douglas and Peucker (1973) to remove redundant vertices from
each edge and to produce the final simplified preliminary route graph, see Figure 2. To
speed up the computation, the simplification algorithm also runs in parallel on each
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edge.

3.5. Refining the road network with edge weights

In the refinement step, we compute the edge weights. The weight of an edge measures
its importance in the network, and it can help to filter unimportant edges, and in the
visualization of a route graph—to give insight into the more or less frequent edges of
the network. We define the weight of an edge as a pair of values based on two factors:
length and frequency. The length of an edge is the Euclidean distance between its two
vertices. The frequency of an edge is the number of trajectories passing through it. We
compute it by counting the number of trajectories mapped to this edge, as follows.

To compute the edge frequency, we match the trajectories adjusted by Slide to the
edges. When recomputing the density surface, we map the adjusted trajectories to
the grid, in which each cell corresponds to a pixel of the skeleton image. We take
advantage of this information to find the closest pixel of the skeleton image for each
trajectory point. Such a pixel corresponds to an edge that is initially associated with
the trajectory. Around the vertices with degree larger than two, wrong mappings
usually happen. Figure 6 shows an example mapping a trajectory from the Athens
small dataset. In Figure 6(b), the trajectory is initially matched to several edges.
Note that this mapping is incorrect, as the top-right edge should be excluded. This
occurs because some points of the trajectory near the intersection are close to this
edge. To solve this problem, we remove the edges where the trajectory occupies less
than half of the pixels defining the edge. This is done by extracting information from
the skeleton image. Hence, after removing these underused edges, the whole trajectory
is mapped to a set of edges that fit the trajectory more accurately, see Figure 6(c).
The distance between pixels is measured by the Euclidean distance. To speed up the
computation, we apply the Euclidean distance transform (Maurer et al. 2003) to the
skeleton image. For each pixel, the distance transform assigns the nearest nonzero
pixel.

(a) Example trajectory (b) First mapping (c) Final result

Figure 6. Example of how a trajectory (dashed) is mapped to a route graph (solid edges). (a) Original data.

(b) Route graph edges matched to the trajectory using 1-nearest neighbor. (c) Final result after removing
underused edges.

The advantage of this method is three-fold. First, the adjusted trajectories and the
skeleton image have been produced along with the road network construction, which
saves time from data preparation. Second, utilizing the adjusted trajectories instead
of the original ones makes the mapping more accurate. Third, the similarity between
trajectories and the graph is computed by the Euclidean distance between pixels,
which is simpler than measuring the distance between lines.

After obtaining the edge weights we refine the route graph by deleting the edges
with the frequency and length smaller than prefixed thresholds f and l, respectively.
This information is used for two purposes. First, although we have stated that we are
interested in infrequent paths, short and infrequent edges are usually artifacts due to
acquisition errors. Thus, their removal increases the final quality of the result, while
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the long infrequent paths, which are the ones we are interested in, are kept. Second,
the edge frequency information is used in the visualizing of the road network. Edges
are visualized in a blue gradation according to their frequency. Darker color relates
to higher frequency, and vice versa. In Figure 7, we can see the effects of this refining
step. Figure 7(a) shows the initial road network that contains black and red edges.
Meanwhile, the refined network painted in Figure 7(b) in a blue gradation according
to the frequency of the edge, only includes the original black edges. The initial red
edges are those deleted in this refining stage, and most of them are artifacts. This
refined road network has been obtained considering f = 2 and l = 30 meters.

(a) Initial road network (b) Final road network

Figure 7. Map of the Delta dataset before (a) and after (b) the refining stage.

3.6. Discussing parameters

Our approach includes several parameters. Table 1 gives an overview of the parameters
involved in our method, dividing them into two groups: fixed and variable settings.
The fixed settings are parameters whose values are the same in all the datasets tested.
In contrast, the variable settings have been adjusted for each considered dataset, and
we give guidelines on the setting.

Table 1. Overview of parameters
Parameter Symbol Value

Fixed setting

weights in Slide ω1,ω2,ω3,ω4 0.5,0.2,0.1,0.7
threshold of path score in Slide u 5 ∗ 10−4

standard deviation of Gaussian blur
for initial density distribution

σ1 5 pixels

distance for Douglas-Peucker d 2 meters
threshold of edge weight
(frequency and length)

f
l

smallest edge frequency
median length

Variable setting

resample distance κ

set via experiments
cell size τ
standard deviation of Gaussian blur
for re-computed density distribution

σ2

threshold to convert binary image ε

Briefly discussing the fixed setting parameters, we remark that we take the values
of the parameters of Slide from the original implementation. Concerning the distance
threshold in Douglas-Peucker, it is the same meter resolution in all the cases because
we are interested in obtaining route graphs with similar resolution. The threshold of
edge weight includes the edge frequency f and edge length l. We set f as the smallest
edge frequency and l as the median length of edges with frequency f . With higher
values of f and l, the route graph will be simpler because more edges will be deleted.
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Concerning the variable setting parameters, the values used in our experiments are
the result of an experimental tuning. Since our algorithm is fast, the parameters are
easy to tune experimentally taking into account the following considerations. Param-
eter κ specifies the distance between two consecutive points. As expected, a bigger κ
value results in a faster computation, but faces the problem of over-smoothing, losing
a lot of information. We set κ to be similar to the average distance between consecu-
tive points in data. Parameter τ determines the resolution of the road network, and
the smaller it is, the more details the network will record. For noisy data like urban
data, it has to be bigger, and for the less-noisy data like hiking data smaller. In our
tests, τ was limited to be 1, 2, or 3 meters. Concerning σ2, it specifies how much the
density surface should be smoothed. It is set between 2 to 5. To obtain good results,
the noisier the data, the bigger σ. Finally, ε is the threshold used to convert the density
surface to a binary image. Paths with density higher than ε are preserved, the others
are ignored. High values of ε may cause breaks in paths of the road network. In any
case, if the input data is similar to one of the datasets used in this paper in terms of
size and error, the same settings can be adopted.

4. The split-and-merge strategy

In this section, we describe the proposed split-and-merge strategy in detail. The goal
is to build the overall network by building smaller network pieces, which can be pro-
cessed in parallel1 and then merging them into a single consistent route graph. This
becomes essential to deal with massive amounts of trajectories that occur in a contin-
uous area. We remark that the challenge here is to guarantee that computing networks
of smaller regions independently and then merging them produces a consistent over-
all route graph. Not all road network construction methods are suitable for this. For
instance, incremental insertion methods (Ahmed and Wenk 2012, Cao and Krumm
2009, Niehofer et al. 2009, Quddus et al. 2007) produce route graphs that are very
sensitive to the order in which trajectories are added. Thus it is hard to guarantee
consistency between independently produced route graphs.

In this section, we will show that our method, with some adaptations, can be suc-
cessfully implemented in a split-and-merge manner. First, we divide the geographical
area into different regions with small overlapping areas. Then, we apply the four-step
approach to each region to generate the respective graphs. Finally, we merge the gener-
ated route graphs to produce a route graph for the entire area. The edges and vertices
in the overlapping areas are fixed to keep the continuity and consistency of the route
graph.

4.1. Splitting geographical area

The first step is to evenly split the geographical area into small regions. To keep the
consistency of the graph at the splitting boundaries, we enlarge the adjacent regions
by an overlapping zone. Figure 8 shows a simple example where the geographical
area is split into two regions (region 1 and region 2) by a vertical splitting line, the
midline. To have an overlapping zone, the splitting boundary of region 1 is placed at a

1Matlab, the programming language used in our implementation, easily parallelizes the directly parallelizable

loops with the parfor command. However, it cannot easily process the small regions in parallel, hence, the
regions are processed sequentially one after the other.
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certain distance to the right of the splitting line, and the splitting boundary of region
2 is located at the same distance to the left of the splitting line. The overlapping
zone is the area between two splitting boundaries. This zone has to be big enough
so that we have enough duplicated information to lately merge, appropriately, the
obtained graphs along the splitting line. Indeed, the width of the overlapping zone is
independent of the size of the two regions, so it only depends on the cell size of the
grid, τ , and the number of overlapping grid cells, i.e., pixels. In our experiments, we
obtained the best results when this zone had a width of 30 grid cells. Accordingly, the
splitting boundaries are obtained by translating the splitting line 15τ meters in the
respective direction. In the example, the original region is split by a single splitting
line. If more than one line is used, we should proceed similarly for each of them.

Region 1

Region 2

Splitting boundary of Region 1

Overlapping
zone

Midline

Splitting boundary of Region 2

Figure 8. Splitting an geographical area into two regions.

Then we split the trajectories according to the splitting boundaries. The splitting
boundary cuts the passing trajectories into sub-trajectories. The intersection points
of the trajectory and the splitting boundary, together with the trajectory endpoints,
become the sub-trajectories endpoints. These sub-trajectories maintain the shape of
the original trajectory, and each of them is entirely contained in a region.

Next, for each region, we apply the four-step algorithm defined in Section 3 to
obtain a road network. In each region, the defined sub-trajectories are considered as
independent trajectories. After obtaining the road network of each region, producing
the whole final network requires merging the individual networks. We explain the
merging of networks in the next section.

4.2. Fixing boundaries and merging road networks

In the merging step, we cut off the obtained route graphs along the splitting line
(midline in Figure 8, blue dashed line in Figure 9) and add new vertices on this
splitting line to join the edges that intersect the splitting line. Note that in the way we
split the original data, all the sub-trajectories contained in the overlapping zone have
been processed twice. However, these sub-trajectories are not adjusted in the same
way when dealing with each region. This is because Slide works differently on interior
points and endpoints. As a result, trajectories are not adjusted equally, and the re-
computed density distribution changes slightly. This directly influences the skeleton
image. Thus, simply cutting the graphs along the splitting line, adding vertices at the
end of the edges, and combining the graphs according to the new vertices is insufficient.
This does not ensure the connectivity and consistency of the global route graph in the
splitting line. Next, we explain how to fix the route graph along the splitting lines, a
process we call boundary fixing.
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To fix the boundaries, we use the route graphs in the overlapping zones. Using
Figure 8 as an example, we take the route graph of region 1 in the left 15τ -meter-
width area and the route graph of region 2 in the right 15τ -meter-width area of the
overlapping zone, then combine them as the initial route graph of the overlapping
zone. Figure 9 gives an example of fixing boundaries using the Athens small dataset.
The route graph in Figure 9(a) is generated by our algorithm without the split-and-
merge strategy. Figure 9(b) shows the initial route graph of the overlapping zone.
It can be seen that the edges from different regions in Figure 9(b) are not correctly
connected, although they are close. Thus, we compute the intersections between the
splitting line and the route graphs, then merge close-enough intersections to define
new vertices. If the intersections are at a Euclidean distance smaller than a threshold,
λdis, we create a new vertex located at their average position to represent these points.
Finally, the edges are updated accordingly by replacing the intersection points with
the corresponding new vertices. The fixed route graph in Figure 9(c) is almost the
same as that in Figure 9(a).

(a) No splitting (b) Before fixing (c) After fixing

Figure 9. The graph (solid gray lines) and the splitting line (dashed gray line) in the binary image of the
overlapping zone.

Since the change of the density surface in the overlapping zone exists but is very
small (see Figure 9), we set λdis to be related to the standard deviation of Gaussian
Blur σ. By extensive experiments, we found that λdis = 3τσ achieves good results.

5. Results and discussion

This section presents extensive experiments on different trajectory datasets. First,
we begin by comparing the four-step approach to other road network construction
algorithms. Second, we check the runtime improvement of utilizing the split-and-
merge strategy. Our method was implemented and ran in Matlab 2018a, on a Debian
GNU/Linux machine with AMD Ryzen Threadripper 1950X 16-Core Processor and
32 GB RAM. The Parallel Computing Toolbox of Matlab was used to execute for-loop
iterations with the parfor command. This command allows exploiting parallelism al-
most without any change to the sequential code, just identifying the corresponding
loops.
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5.1. Comparison between our approach and other algorithms

In this section, we test our approach by using four urban datasets (Athens small,
Athens large, Chicago and Berlin), four hiking datasets (Delta, Aiguamolls, Garraf and
Montseny) and one jogging dataset (Joensuu). The Joensuu dataset was made publicly
available by Mariescu-Istodor and Fränti (Mariescu-Istodor and Fränti 2019) and used
by intersection linking algorithm, CellNet (Mariescu-Istodor and Fränti 2018). The
trajectories in the Joensuu dataset take place in the city, mostly along streets, with
only a few stretches going through parks or other pathways banned to vehicles. For
this reason, we consider it more similar to the urban data sets above than to the
hiking data sets. Table 2 summarizes the specifications of these datasets. Besides, it
provides the runtime of our algorithm for each of them, without applying the split-
and-merge strategy. Column Runtime indicates the runtime with the parallelizable
loops parallelized, and Seq. Runtime presents the runtime of the sequential version
of our algorithm (i.e., without using the parfor instruction). From this table, we can
see that our algorithm generates road networks rather fast. These datasets have been
previously used in the literature to evaluate road network construction algorithms,
for example, in (Ahmed et al. 2015a), (Duran et al. 2020) and (Mariescu-Istodor and
Fränti 2018). (Ahmed et al. 2015a) gives a detailed comparison of several algorithms
based on different distance measures using urban datasets. Duran et al. (2020) presents
an analysis of local artifacts that usually appear in route graphs generated when
using both urban and hiking data. We also compare our approach with one additional
algorithm that which we call WWL (Wang et al. 2015). WWL is a recent density-
based method but not evaluated in previous work, but we consider worth including it
in our study for several reasons. Firstly, it is a density-based method that uses tools
from computational topology, which is very different from previously studied methods.
Secondly, the results obtained, as presented by the authors, seem to improve over many
previous methods. Thirdly, it has a public implementation (Wang 2016) that we could
use to evaluate their algorithm. The parameters of this algorithm have been tuned to
obtain the best results.

Table 2. Statistics of GPS trajectory datasets and runtime of our approach to generate road networks.

Dataset Area # Trajectories # Points
Runtime
(seconds)

Seq. Runtime
(seconds)

Athens small 2.6km× 6km 129 2839 4.21 26.81
Athens large 12km× 14km 482 32745 113.99 595.28

Chicago 3.8km× 2.4km 889 118360 10.77 119.13
Berlin 6km× 6km 27189 192223 112.33 1253.13

Joensuu 2.8km× 2.2km 109 43891 14.05 19.68
Delta 2.9km× 2.8km 161 38029 6.97 19.67

Aiguamolls 9.6km× 5.9km 101 46116 21.88 38.34
Garraf 6.7km× 4.6km 630 288472 31.47 259.67

Montseny 7km× 4.7km 101 128181 30.08 168.69

This section is organized as follows. First, a general comparison similar to the one
by Ahmed et al. (2015a) is presented. It comprises road network complexity, length,
path-based, and direct Hausdorff distance comparison. Second, a visual inspection,
including the data coverage on the Chicago and Joensuu datasets, and ten common
artifacts in hiking data analyzed by Duran et al. (2020), is given. Finally, we give
a summary of the results. We note that the results of the algorithms AW (Ahmed
and Wenk 2012), BE (Biagioni and Eriksson 2012), CK (Cao and Krumm 2009),
DBH (Davies et al. 2006), ES (Edelkamp and Schrödl 2003), and KP (Karagiorgou
and Pfoser 2012) for urban and hiking datasets are taken from (Ahmed et al. 2015a)
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and (Duran et al. 2020), respectively. The results of BE, CK, DBH, ES, and CellNet
for Joensuu dataset were calculated by using the output networks made available
by (Mariescu-Istodor and Fränti 2019).

5.1.1. General comparison

In this general comparison, we evaluate our road networks with some standard mea-
sures used in (Ahmed et al. 2015a).

5.1.1.1. Road network complexity. The road network complexity refers to the
number of vertices and edges in the network and the total length of edges. The length of
an edge is the Euclidean distance between the two vertices defining the edge. Tables 3
and 4 present the network complexities for the different algorithms using urban and
hiking datasets, respectively. In fact, Table 3 does not contain results for all the algo-
rithms when considering the larger sets, Athens large and Berlin. According to Ahmed
et al. (2015a), this is because the missing algorithms could not cope with the size of
the input datasets.

We note first that, in terms of the number of vertices and edges, our algorithm
generates less complex graphs than most algorithms, while WWL and DBH produce
the most complex route graphs for urban and hiking data, respectively. Concerning
the length, the results vary a lot with the different algorithms, especially with the
hiking datasets. The difference in map complexity comes from how the algorithms
proceed. In fact, in the intersection-linking-based (KP) and point-clustering-based
(ES) algorithms, the first step identifies intersections or vertices from all the points,
and the second step connects them by associating them with the trajectories, which
often results in redundant vertices (Duran et al. 2020). Incremental methods (AW, CK)
insert a trajectory into an existing (initially empty) road network incrementally. If a
part of a trajectory is different from the existing network, the algorithms add this part
as a new path in the network. Due to the noise in data, trajectories following the same
road are not always matched to each other, so the algorithms often create redundant
edges. The noise in the data also affects the density-based algorithms (DBH, WWL),
resulting in zigzagging shapes that increase the overall network length. In most of the
road networks obtained when dealing with the hiking data, the existence of redundant,
unnecessary, or incorrect edges increases the total length of the network. This can be
easily seen in the networks obtained with the existent algorithms, see Figure 11 for
urban, Figure 12 for jogging, or Figure 14 for hiking data.

5.1.1.2. Distance measures. We evaluate the global quality of the resulting route
graphs using two distance measures presented in (Ahmed et al. 2015a), the path-based
and the directed Hausdorff distances. These measures compute the distance between a
ground truth road network and the generated networks. Since the ground truth is only
available for urban data, we only consider the urban datasets in this comparison. To
compute the distance measures for our networks, we used the public implementation
by Pfoser and Wenk (2016). Tables 5 and 6 list the results. Small distance values
indicate similarity to the ground truth, and hence, good performance. The computation
of these measures is computationally intensive, which caused issues in the largest route
graphs: The graphs of Athens Large, Chicago and Berlin generated by WWL resulted
too large, with the program computing the path-based distance aborted after one
week of computations. According to (Ahmed et al. 2015a), out of the seven algorithms
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Table 3. Road network complexity for urban datasets. The

results of AW, BE, CK, DBH, ES, and KP are taken from

(Ahmed et al. 2015a). The result of CellNet was produced
based on the output networks made available by Mariescu-

Istodor and Fränti (2019).

Methods
Vertex

Amount
Edge

Amount
Length
(km)

Athens small
AW 344 378 35
BE 391 398 22
CK 20 14 3

DBH 209 227 2
ES 526 1037 197
KP 660 637 35

WWL 7104 8260 44
Ours 433 473 39

Athens large
AW 7067 7960 1358
KP 6584 5280 252

WWL 56456 80377 430
Ours 4364 4937 413

Chicago
AW 1195 1286 34
BE 303 322 24
CK 2092 2948 78

DBH 1277 1310 14
ES 828 1247 83
KP 596 558 26

WWL 3234 3549 36
CellNet 306 214 35
Ours 272 307 33

Berlin
AW 1322 1567 164
KP 2542 2262 161

WWL 20747 25711 277
Ours 1650 1867 160

Joensuu
BE 105 90 2
CK 4015 2970 24

DBH 4732 4312 46
ES 2303 1502 136

CellNet 1419 1065 65
Ours 833 977 57

Table 4. Road network complexity for hiking

datasets. The results of AW, CK, DBH, ES, and
KP are taken from (Duran et al. 2020).

Methods
Vertex

Amount
Edge

Amount
Length
(km)

Delta
AW 2362 2459 395
CK 2667 2436 1810

DBH 10229 10197 45
ES 1028 1756 11029
KP 6787 4817 446

WWL 4994 5467 19
Ours 443 466 20

Aiguamolls
AW 13454 13516 2179
CK 10621 5308 2208

DBH 39786 39206 121
ES 4147 4918 40849
KP 21690 21810 1990

WWL 22228 24258 131
Ours 1537 1608 112

Garraf
AW 7827 7898 2005
CK 13565 8172 4345

DBH 88009 87162 363
ES 5295 9320 30763
KP 36487 36574 2229

WWL 7922 8720 95
Ours 1290 1338 66

Montseny
AW 8893 8940 1721
CK 19323 11625 2809

DBH 83025 81783 214
ES 4610 7774 9661
KP 24329 24492 4478

WWL 17519 19143 103
Ours 1678 1754 82

evaluated, the ones performing better, in general, were the ones by KP and by BE.
In Table 5, the result of our algorithm does not seem to be as good as these two
algorithms but is better than the other methods. On the other hand, according to
Table 6, our algorithm behaves better with the directed Hausdorff distance measure.

There are two main reasons for the relatively poor performance of our method ac-
cording to the measures above. First, the number of vertices of the generated road
networks influences the distance measures, since they are based on measuring the
distance between vertices. The path-based and Hausdorff distances are based on the
discrete Fréchet and discrete Hausdorff distances, respectively. Both are very sensitive
to vertex density, as illustrated in Figure 10. The figure shows two simple trajectories,
P and Q. Q draws a straight line which is defined by 2 points in Figure 10(a) and 3
points in Figure 10(b). The Fréchet and Hausdorff distances between Q and P are given
by the length of the dashed line. Hence, using three points, instead of two, to represent
Q benefits these distance measures. Therefore, more compact networks (Figure 10(a)),
which are desirable for memory reasons, perform worse in these measures than net-
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Table 5. Comparison of path-based distance measure of urban datasets. The results of AW, BE, CK, DBH,

ES, and KP are taken from (Ahmed et al. 2015a).

Methods
Path-based Distance(m)

min max median average 2% 5% 10% 15%
Athens small

AW 9 224 45 52 101 101 81 72
BE 5 73 35 36 67 66 61 57
CK The road network is too small to perform this measure.

DBH 4 38 11 11 38 18 14 14
ES 2 229 36 39 89 72 68 61
KP 7 229 32 38 113 68 59 57

WWL 8 304 117 127 247 229 222 208
Ours 5 229 41 45 106 76 75 72

Athens large
AW 7 849 70 85 250 164 132 114
KP 2 175 25 32 109 80 63 53

WWL The road network is too large to perform this measure.
Ours 3 465 35 40 121 87 71 62

Chicago
AW 7 201 35 42 127 100 85 76
BE 3 71 15 18 71 38 27 26
CK 1 126 24 27 79 61 49 42

DBH 2 92 12 14 57 24 22 21
ES 1 205 29 37 99 84 72 66
KP 3 89 15 23 72 72 65 51

WWL The road network is too large to perform this measure.
Ours 4 109 23 29 91 73 62 42

Berlin
AW 9 540 66 74 207 147 120 107
KP 4 306 28 37 120 85 65 52

WWL The road network is too large to perform this measure.
Ours 5 395 32 39 104 81 67 60

works with many redundant points (Figure 10(b)). Note that this is an artifact caused
by using discrete measures (vertex-based), as opposed to the original continuous ver-
sion of Fréchet and Hausdorff distance, which would not have this bias. In practice,
if we compute the Hausdorff measure before the Douglas-Peucker simplification, our
road network is much better evaluated (see the results in the Our-no-simplify row of
the tables). In this case, our method becomes the best or second-best for all datasets,
concerning both median and average distances. Second, these two measures evaluate
the similarity between the generated network and the ground truth without taking
into account whether they cover the same area or not. Smaller networks containing
fewer paths will easily be better evaluated. Indeed, identifying paths that exist in the
input data but do not appear in the ground truth could result in a large distance.
Since our algorithm tries to keep all the paths followed by trajectory data, some of
these paths are kept. However, the other algorithms regard them as unimportant and
eliminate them.

p1

p2

p3

q1 q2

(a) Trajectory Q has 2 points.

p1

p2

p3

q1 q3q2

(b) Trajectory Q has 3 points.

Figure 10. Two different distance values (length of the dashed segment) between trajectories P and Q
depending on the number of points of Q.
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Table 6. Comparison of directed Hausdorff distance measure of urban datasets. The results of AW, BE, CK,

DBH, ES, and KP are taken from (Ahmed et al. 2015a).

Methods
Directed Hausdorff Distance(m)

min max median average 2% 5% 10% 15%
Athens small

AW 1 82 25 26 82 54 46 40
BE 3 74 19 20 47 43 31 31
CK 5 25 13 13 25 25 25 22

DBH 2 13 7 6 13 13 13 11
ES 1 86 18 21 63 50 42 37
KP 2 84 14 17 54 40 33 30

WWL 1 106 9 12 56 38 26 21
Ours 1 79 14 18 54 43 32 29

Ours-no-simplify 1 79 8 11 45 31 23 19
Athens large

AW 1 269 30 33 84 67 56 50
KP 1 200 10 13 46 35 26 22

WWL 1 1143 7 12 47 28 20 17
Ours 1 130 14 17 49 40 32 28

Ours-no-simplify 1 130 8 10 38 28 22 18
Chicago

AW 1 81 14 19 72 59 43 35
BE 2 53 9 11 29 25 23 17
CK 1 78 9 12 44 35 28 25

DBH 2 20 8 7 20 14 13 12
ES 1 93 8 13 57 48 35 25
KP 1 48 7 8 41 23 15 13

WWL 1 111 6 10 63 38 17 13
CellNet 9 1085 106 162 816 453 343 256
Ours 1 60 9 11 40 29 20 17

Ours-no-simplify 1 60 5 6 23 16 11 10
Berlin

AW 1 219 30 33 95 70 60 53
KP 1 232 14 18 59 42 34 30

WWL 1 334 14 25 141 111 61 32
Ours 1 162 14 18 51 42 34 29

Ours-no-simplify 1 165 8 11 39 29 22 18
Joensuu

BE 1 211 20 26 70 59 48 43
CK 1 50 7 8 19 16 13 12

DBH 1 55 10 11 28 22 20 17
ES 1 475 89 91 233 172 132 126

CellNet 8 241 51 61 163 138 114 102
Ours 3 256 46 58 168 147 113 100

Ours-no-simplify 3 18 3 4 4 4 4 4

5.1.2. Visual inspection

The previous measures provide global indicators of the produced road networks. In this
section, we analyze the generated networks locally by visual inspection. We visually
inspect and compare the networks obtained with our approach to those obtained using
some of the existent algorithms. We focus on two important factors: (i) data coverage,
i.e., we analyze if the generated network covers all the data in the input dataset,
and (ii) local road network quality, based on the presence of visual artifacts. The
latter follows Duran et al. (2020), who performed a local evaluation of road network
construction algorithms generated by five previous methods. Their analysis identified
several common artifacts present in the networks generated for the four hiking datasets
described earlier. We study the networks generated by our method in the same areas
studied by Duran et al. (2020), to determine to what extent our method suffers from
the same limitations.
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(a) Chicago data (b) AW (c) BE (d) CK

(e) DBH (f) ES (g) KP (h) WWL

(i) CellNet (j) Ours

Figure 11. Road networks of (a) Chicago dataset by (b) - (i) several methods. Figures (b) - (g) are produced
by the results in (Pfoser and Wenk 2016).

5.1.2.1. Data coverage. To analyze the coverage of the generated road network
on the original data, we use the Chicago and Joensuu dataset and evaluate the results
by eight different algorithms, see Figure 11 and Figure 12, respectively. Figures 11(d)
and 11(f) include obviously redundant edges around the same paths, which results
in a large number of edges, as listed in Table 3. Figure 11(b) has multiple broken
edges on the very right side. Figures 11(c) - 11(e) have low data coverage where only
a few edges are produced compared to the other route graphs. Figure 11(g) misses the
left bottom and left up paths, which also occurs in some other route graphs. WWL
(Figure 11(h)) and CellNet (Figure 11(i)) generate road networks quite similar to ours,
but the networks still do not cover all the paths. Our method (Figure 11(j)) has the
highest coverage of the paths, and at the same time, low road network complexity.
Appendix A gives the route graphs obtained using the other datasets. On the other
hand, Figure 12(b) and 12(c) shows how BE and CK miss most of the edges and present
several disconnected parts. DBH, shown in Figure 12(d), produces many edges but
misses some paths, mainly in the top-left and bottom-right part of the road network,
while ES generates many redundant edges. Finally, CellNet and ours are comparable.

5.1.2.2. Local artifacts. The evaluation of five road network construction algo-
rithms by Duran et al. (2020)) found that although most algorithms can produce
reasonable road networks at a global scale, they fail to represent the route graph ac-
curately at a local scale. This lack of low-level accuracy, not detected by distance
measures, has a high impact on the perceived quality of the generated route graph.
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(a) Joensuu data (b) BE (c) CK (d) DBH

(e) ES (f) CellNet (g) Ours

Figure 12. Resulting road networks for the Joensuu dataset (shown in a)) by several methods (b) - (i).
Figures (b) - (f) was produced based on the output networks made available by Mariescu-Istodor and Fränti

(2019).

In this section, we evaluate the performance of our method in the same situations
that Duran et al. (2020) identified as most challenging for existing algorithms, which
correspond to ten different common artifacts, denoted [C 1] to [C 10]. (Duran et al.
2020) evaluated each artifact at a specific location of one of the four hiking datasets,
where the input trajectories and the terrain generated a situation that is particularly
difficult for most road network construction algorithms.

The presence of each artifact in the resulting route graphs was quantified with an
ad-hoc score that measures to what extent the artifact is present. That is, (Duran et al.
2020) defines one different score function for each of the ten artifacts. For instance,
artifact [C7], illustrated in Figure 14(i) - (l), is concerned with the creation of an
excessive amount of map edges in areas with high GPS error. The score function for
this artifact computes the ratio of the total length of the produced map to that of
the ground truth. We refer to (Duran et al. 2020) for the exact definition of the score
functions. Table 7 presents, for each artifact, the scores obtained by the algorithms
according to the score functions described in (Duran et al. 2020). The scores for AW,
CK, DBH, ES, and KP are taken from (Duran et al. 2020).

The table shows that our method obtains good results, ranking first in five cases,
second in one case, and around average for the remaining four. None of the other
evaluated algorithms obtains such a good result, being the one by Cao and Krumm
(2009) the second-best in this regard. It is interesting to take a look at some of these
artifacts, to understand the type of situations evaluated. We present a snapshot of our
results in Figure 14. The figure exhibits partial results for four of the artifacts. For
each artifact, we show four route graphs corresponding to (i) the worst one among
the five evaluated by Duran et al. (2020)), (ii) the best one among those evaluated
by Duran et al. (2020), (iii) the one produced by WWL, and (iv) the one generated
by our method. For a detailed description of each artifact and the measures used to
quantify them, we refer to (Duran et al. 2020).

Next, we comment briefly on each of these four examples.
Artifact [C 8], Excessive number of connections along single path, shows a simple

but fundamental challenge: a single path with a large number of trajectories and high
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noise (in this case, due to dense forest). Many methods fail to get a single path in
such a situation, producing parallel partials paths connected, see Figure 14(a). While
the best method evaluated by Duran et al. (2020) produces a single path, and its
geometry presents issues towards the right end. WWL captures roughly the correct
shape, but with severe wiggling. Our method produces a path with almost perfect
geometry, obtaining maximum score according to the measure used by Duran et al.
(2020).

Artifact [C 3], Artificial bridges, is shown in the second row of the table. It depicts
the problematic situation of having two parallel paths at a relatively small distance.
Most algorithms tend to merge or connect such paths by creating artificial connections.
While both our method and DBH succeed in not adding artificial connections, and
thus obtain a maximum score, the paths produced by our method are much closer to
the ground truth, as can be verified visually (and based on the ground truth provided
by Duran et al. (2020)).

The third row illustrates artifact [C 7], Excessive number of connections in area. This
area is particularly challenging due to the high noise produced by the canopy and a
large number of paths crossing multiple times. Most algorithms generate an excessive
number of connections for this input, similar to the result shown in Figure 14(m). In
contrast, WWL and our algorithm obtain much cleaner route graphs. The score reflects
the total amount of edge length in the route graph concerning the ground truth. Our
method misses only a couple of links, covering 88% of the route graph. Even though
the graph by WWL visually is worse than ours, its slightly better score comes from
the fact that it includes several nonexistent links that increase the total edge length.

The last row of Figure 14 shows artifact [C 2], Shortcuts at intersections, which illus-
trates one of the most challenging situations for road network construction methods:
bifurcations with high noise. When a path forks into two, most methods identify the
bifurcation point too late, producing shortcuts in the route graph. In this case, (Du-
ran et al. 2020) computes the score for each method as the distance between the first
and second bifurcations in the route graph. From that point of view, the best result
is the one shown in Figure 14(p), which gets the bifurcation point close to the real
one, but produces a lot of noise around it, and even later. In contrast, our method
(Figure 14(p)) computes the bifurcation a bit further, thus obtains a worse score, but
produces a cleaner and more clear route graph, with the correct topology.

These four artifacts give a good general idea of the behavior of our method for
the ten artifacts identified by Duran et al. (2020). The results for the remaining six
artifacts can be found in Appendix B. Overall, our experiment shows that, at the local
level, our method produces better results than all previously analyzed methods.

5.1.2.3. Visual use of frequency information. Finally, we illustrate in Fig-
ure 7(b) how assigning a weight to each edge proportional to the frequency information
provides results into road networks that show insights into the popularity of the dif-
ferent parts of the network. In the figures, the frequencies of edges are visualized with
colors ranging from light blue (lowest frequency) to black (highest frequency). Further
examples, corresponding to the datasets of Chicago and Montseny, are presented in
Figure 13.

5.1.3. Summary

To sum up, in terms of road network complexity, our approach generates the simplest
road networks for most datasets, while still offering good data coverage. The majority
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[C1] score
(best: 0)
1 AW 0.04
2 CK 0.15
3 DBH 0.32
4 ES 0.52
4 Ours 0.52
5 WWL 0.56
6 KP 0.74

[C2] score
(best: 0)
1 CK 0.02
2 DBH 0.06
3 ES 0.14
4 Ours 0.38
5 WWL 0.59
6 AW 0.77
7 KP 0.99

[C3] score
(best: 0)
1 DBH 0.00
1 KP 0.00
1 Ours 0.00
2 WWL 0.11
3 AW 0.21
4 CK 0.56
5 ES 0.69

[C4] score
(best: closest to 1)
1 CK 1.01
2 DBH 0.95
3 WWL 1.12
4 Ours 0.87
5 ES 0.55
6 AW 0.29
7 KP 0.05

[C5] score
(best: closest to 1)
1 Ours 0.99
2 AW 1.02
2 KP 1.02
2 WWL 1.02
3 DBH 1.05
4 CK 2.00
5 ES 5.35

[C6] score
(best: closest to 1)
1 Ours 1.05
2 WWL 1.12
3 DBH 1.17
4 KP 1.46
5 CK 1.66
6 AW 1.98
7 ES 2.19

[C7] score
(best: closest to 1)
1 WWL 1.02
2 Ours 0.88
3 AW 1.13
4 KP 1.14
5 DBH 0.82
6 CK 2.16
7 ES 2.74

[C8] score
(best: closest to 1)
1 Ours 1.00
2 KP 1.06
3 AW 1.08
4 WWL 1.12
5 ES 3.01
6 DBH 3.12
7 CK 4.01

[C9] score
(best: closest to 1)
1 Ours 1.01
2 KP 0.98
3 AW 0.93
4 WWL 1.14
5 DBH 0.80
6 CK 0.72
7 ES 2.99

[C10] score
(Yes/No (best: No))
1 CK No
1 DBH No
1 WWL No
2 KP Yes
2 AW Yes
2 ES Yes
2 Ours Yes

Method Average rank
Ours 2.1
WWL 2.9
DBH 3.1
AW 3.5
CK 3.7
KP 3.7
ES 5.0

Table 7. Scores of the compared algorithms for the ten common artifacts identified by Duran et al. (2020).
Algorithms presented sorted from best (top) to worst (bottom). The bottom-right table gives the average rank

of each method over the ten common artifacts.

(a) Chicago (b) Montseny

Figure 13. Road networks of Chicago and Montseny obtained by our four-step method.

of the other algorithms produce redundant vertices and spurious edges, often caused
by wrongly identifying intersections and by the influence of noisy trajectories. Consid-
ering the evaluation based on the two distance measures, our results are competitive
but somewhat penalized by the fact that our approach sometimes keeps paths that
are followed by trajectories but do not exist in the ground truth (as explained in
Section 5.1.1.2), although we consider that in most cases this results in meaningful
maps. Regarding the data coverage and the presence of local artifacts, our approach
performs particularly well, clearly ahead of the other evaluated methods. Also, taking
advantage of edge weights to visualize the road network gives extra insights into the
route popularity from the given data, and to filter spurious edges in the initial network
improves the quality of the route graph. Finally, in terms of performance, our approach
can produce road networks for all datasets tested in a matter of a few minutes using
a standard laptop computer, making it a practical tool for map construction.
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(a) ES (b) KP (c) WWL (d) Ours

(e) ES (f) DBH (g) WWL (h) Ours

(i) ES (j) DBH (k) WWL (l) Ours

(m) KP (n) CK (o) WWL (p) Ours

Figure 14. Artifacts in the generated road networks. Rows from top to bottom: [C8], [C3], [C7], and [C2].
Columns left to right: worst and best result in (Duran et al. 2020), WWL and our approach. Figures in the

first two columns are taken from (Duran et al. 2020).

5.2. Road network evaluation by utilizing the split-and-merge strategy

To validate our split-and-merge strategy, we compare the road networks obtained with
and without it by visual inspection, in terms of road network complexity, distance mea-
sures, and runtime. For simplicity, we use “single” and “split-and-merge” to indicate
these two ways of handling the input data. Datasets are split into two regions based on
the midline, and the two resulting regions of the split-and-merge strategy are processed
sequentially and independently one after the other.

According to the results presented in Table 8, the split-and-merge strategy leads to
road networks with almost the same complexity and total length than those obtained
without splitting. Concerning the runtime, we can see how the split-and-merge strategy
also generally saves time. Note that the runtimes of Athens small, Chicago and Berlin
datasets slightly increase. There are two reasons for this raise in execution time. First,
for simple datasets like Athens small, computing the edge weight in each region takes
more time than computing it in the whole dataset. Second, fixing the boundaries takes
more time if the graph in the overlapping zone is complicated. Since the trajectories
in the Berlin dataset are densely distributed, especially in the overlapping zone, both
the splitting and fixing take a relatively long time. This shows that the choice of the
splitting line is important since the difficulty and time needed in the merging process
depend on the number of trajectories intersecting the splitting line. The vertical central

25



splitting line is not necessarily the best option. How to find an optimal splitting line,
resulting in few intersection points with the trajectories, is an interesting line to further
study.

Next, we study how different the route graphs with and without split-and-merge
are. Ideally, we would like the distortion caused by split-and-merge to be minimal.
In Table 9 we provide the path-based and directed Hausdorff distance measures for
the urban data for both strategies, single and split-and-merge. Note that the min,
max, median and average values almost coincide for all the urban datasets, and in the
percentiles, there are only small changes. From this, we can conclude that there are
no significant differences between the two resulting route graphs at the global level.

Finally, we present a visual inspection of the route graphs obtained with both strate-
gies in Appendix C. There we can visually confirm that the split-and-merge road
networks (colored in blue) do not differ much from those obtained with single (in red).

Overall, the split-and-merge strategy makes our approach scalable to huge datasets
without a major impact on the produced route graphs. In addition, it often improves
the computational cost of the approach for the datasets studied.

Table 8. Road network complexity and runtime with and without the split-and-merge strategy.

Dataset
Single Split-and-merge

Vertex
Amount

Edge
Amount

Length
(km)

Runtime
(seconds)

Vertex
Amount

Edge
Amount

Length
km)

Runtime
(seconds)

Athens small 433 473 39 4.21 445 487 38.80 4.46
Athens large 4364 4937 413 113.99 4481 4934 408.32 88.79

Chicago 272 307 33 10.77 288 323 33.35 11.55
Berlin 1650 1867 160 112.33 1763 1947 164.23 147.68
Delta 443 466 20 6.97 441 466 19.55 6.24

Aiguamolls 1537 1608 112 21.88 1550 1616 112.25 14.53
Garraf 1290 1338 66 31.47 1443 1485 71.38 29.40

Montseny 1678 1754 82 30.08 1702 1773 82.29 25.21

Table 9. With and without the split-and-merge strategy comparison: road network distance measures.
Path-based Distance(m)

Datasets Methods min max median average 2% 5% 10% 15%

Athens small
single 5 229 41 45 106 76 75 72

split-and-merge 5 229 41 45 106 75 73 69

Athens large
single 3 465 35 40 121 87 71 62

split-and-merge 3 465 35 42 127 92 73 66

Chicago
single 4 109 23 29 91 73 62 42

split-and-merge 4 140 23 28 89 71 58 41

Berlin
single 5 395 32 39 104 81 67 60

split-and-merge 6 368 32 39 105 89 67 60
Directed Hausdorff Distance(m)

Datasets Methods min max median average 2% 5% 10% 15%

Athens small
single 1 79 14 18 54 43 32 29

split-and-merge 1 79 14 18 54 45 35 29

Athens large
single 1 130 14 17 49 40 32 28

split-and-merge 1 139 14 17 50 40 32 28

Chicago
single 1 60 9 11 40 29 20 17

split-and-merge 1 60 9 11 45 32 20 17

Berlin
single 1 162 14 18 51 42 34 29

split-and-merge 1 162 14 18 51 42 34 28
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6. Conclusions

In this paper, we have presented a four-step road network construction approach that
is fast, robust, scalable, and partially parallelizable. It combines a density surface
smoothed by a Gaussian filter to reduce noise; the Slide tool to adjust trajectories to
the higher density zones making the density surface more compact; a thinning algo-
rithm followed by a Douglas-Peucker simplification algorithm to construct the route
graph that records the transited zones; and a refinement step assigning and taking into
account the weight, combining length and frequency, of the edges. Besides, we have
proposed two solutions to solve some defects of Slide, which have been demonstrated to
be effective. Overall, the road networks obtained in our experiments provide a simple
and good representation of the initial trajectory data. The local analysis shows that
in most cases, the generated networks are better than those obtained with the best
previously evaluated methods, according to the measures proposed by Duran et al.
(2020). A remarkable feature of the produced networks is that they present very few
redundant edges while including both frequent and infrequent paths. Moreover, the
visualization of edge weights in the generated road network gives insight into the im-
portance or popularity of different routes, providing more information than regular
networks.

Considering the limitations of storage and computational cost of previous methods,
we have designed a split-and-merge strategy that allows handling large-scale data
in a distributed manner. The geographical area is split into small regions, with an
overlapping zone being kept between adjacent regions to improve the consistency of
the combined road network. For each region, the four-step approach is applied to
generate a route graph. The individual graphs are merged into a global single graph
taking advantage of the overlapping zone to fix the adjacent networks. Experiments on
real datasets demonstrate that this strategy succeeds in producing an accurate global
road network, very similar to the network that would be obtained if the input data was
handled entirely. Indeed, even in the case that the input data can be handled at once,
our experiments on real urban and hiking data show that applying the split-and-merge
strategy may accelerate the process while keeping the accuracy.

However, there is still room for improvement. First, in the split-and-merge strategy,
it would be interesting to study what is the best way to split the geographical area,
so that the computation time is reduced and the global road network accuracy is
preserved. This could be achieved using the density distribution to decide how to
split the area. Moreover, the individual route graphs associated with the small areas
could be obtained in parallel. Second, the Slide tool always smooths the sharp turns
considering the route is straight, which in some cases causes excessive simplification in
turns and wrong merging in narrow curves. A possible solution would be segmenting
the trajectories into small sub-trajectories based on the direction change.

Data codes and availability statement

The urban data and codes that support the findings of this study are available with the
identifier (https://doi.org/10.6084/m9.figshare.12199541). The hiking data cannot be
made publicly available due to the data privacy, but we have made a mocked example
on the Garraf dataset to give insights into the format of hiking data.
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Appendix A. Generated road networks by our approach

This section shows the generated route graphs in Figure A1. The edges with higher
weight are darker.

(a) Athens small (b) Athens large (c) Berlin

(d) Joensuu (e) Aiguamolls (f) Garraf

Figure A1. Road networks generated with our four-step approach.

Appendix B. Remaining artifacts in local analysis

Figure B1 provides the route graphs obtained with our approach for the rest of the
common artifacts analyzed by Duran et al. (2020), [C1], [C4], [C5]2, [C6], [C9] and
[C10]. As before, each row presents, from left to right, the worst and best road network
according to (Duran et al. 2020), the one by WWL, and our route graph. Recall that
the scores obtained by each algorithm for each of the artifacts are given in Table 7.

For artifact [C 1], Figure B1(d) shows a closed turn with a pointed shape similar
to that of the bifurcation of Figure 14(p). In this situation, our algorithm behaves
similarly, producing a neat route graph but with the actual turning point detected a
bit too early. The best algorithm analyzed by Duran et al. (2020) in this situation
is AW. The score here is based solely on how well the turning point is computed,
something that AW does accurately here. However, the route graph by AW presents
several incorrect edges that make the overall route graph much noisier than ours.
Artifact [C 4] consists of two close parallel paths that many algorithms tend to merge
incorrectly. In this situation, our method generates arguably the best route graph
(Figure B1(h), with two almost straight lines without bridges. The route graphs in
Figure B1(g) and Figure B1(f) manage to identify the two parallel paths but suffer
from some erroneous connections. The route graph in Figure B1(e) shows two paths
that almost overlap halfway from the original trajectories. We note that our method
obtains a worse score than CK and WWL here because the bottom path is detected

2We note that the location of this artifact provided in (Duran et al. 2020) is incorrect. The correct location

is 41◦ 18’16.13”N, 2◦ 7’28.64”E.
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a bit too high compared to the ground truth, and the score function used by Duran
et al. (2020) picks that up. However, we consider that the effect of this displacement
is negligible compared to the more notorious issues in the route graphs produced by
CK and WWL.

Artifact [C 5] evaluates if the algorithms generate duplications for one path due to
noisy trajectories. All of CK (best in the previous comparison), WWL, and ours man-
age to avoid duplicating this stretch. However, WWL shows its typical wiggling that
deteriorates the result, and KP also has, to a much lesser extent, artificial oscillations.
In contrast, our method produces a straight path, which scores best among the seven
algorithms compared.

Artifact [C 6] focuses on places where a large number of trajectories go back and
forth. This creates issues for many methods, which fail to identify this and produce
duplicates of what should be a single path. The best method in the previous com-
parison (DBH), WWL, and ours do a rather good job of avoiding this duplication.
However, our road network is best in this setting, producing a simple path with the
correct topology (Figure B1(p)). Not surprisingly, our route graph scores best, using
the measure by Duran et al. (2020), over the seven methods compared.

Artifact [C 9] focuses on the missing parts of the single path due to having very
few trajectories going through it. Many algorithms produce disconnected paths in this
situation, as CK in Figure B1(q). The best algorithm in the previous comparison, KP,
WWL and ours (Figures B1(r) - B1(t)) cover the input data continuously. For this
artifact, considering that the length of path produced by our method is most similar to
that of the ground truth, our method obtains the best score among the seven methods.

Finally, the last row contains the results for artifact [C 10]. This situation depicts
an area with a high density of trajectories that also contains a separated outlier tra-
jectory that runs top-down. Several methods, including ours, fail to realize that this
central trajectory is an outlier. While our method produces a reasonable road network
(Figure B1(x)), it does include the outlier trajectory, since it is long and different
enough from nearby ones. This issue would have been avoided if we had used a higher
frequency threshold f .

B.1. Specific artifacts

In addition to the ten common artifacts, we also analyze the performance of our
method (and WWL) for the seven specific artifacts identified by Duran et al. (2020),
see Figure B2. These are artifacts that appear in only one of the five algorithms
compared by Duran et al. (2020). Thus they are not as common as the previous ones.
Nevertheless, it is interesting to see how our method behaves in such situations since
most of them are challenging in one way or another.

Artifact [S1] (first row in Figure B2) contains a highway underpass that some al-
gorithms miss to present given its relatively short length. Our algorithm not only
includes the connection in the route graph but catches the geometry. In contrast, AW
(Figure B2(a)) misses the connection, while WWL captures the pass, but with highly
zigzagging geometries.

Artifact [S2] (second row in Figure B2) considers a wide turn with high number
of trajectories, where methods like CK (Figure B2(d)) tend to shortcut and reduce
the turn curvature. WWL (Figure B2(e)) also suffers a bit from this issue, while our
method (Figure B2(f)) gives the best result, producing a curve that stays all the time
within the bundle of trajectories, thus reducing the curvature only marginally.
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(a) KP (b) AW (c) WWL (d) Ours

(e) KP (f) CK (g) WWL (h) Ours

(i) ES (j) KP (k) WWL (l) Ours

(m) ES (n) DBH (o) WWL (p) Ours

(q) CK (r) KP (s) WWL (t) Ours

(u) ES (v) CK (w) WWL (x) Ours

Figure B1. Artifacts in generated road networks. Rows from top to bottom: [C1], [C4], [C5], [C6], [C9],

[C10]. Columns left to right: worst and best result in (Duran et al. 2020), WWL and our approach. Figures in
the first two columns are taken from (Duran et al. 2020).
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Artifact [S3] (third row in Figure B2), shows an area where some methods produce
spurious short segments or turns. In this case, Figure B2(g) includes a “hair” along
the path. WWL and our algorithm avoid this issue. However, the route graph in
Figure B2(h) has a somewhat zigzagging geometry.

Artifact [S4] (fourth row in Figure B2) focuses on the zigzagging or wiggling of
generated paths. This is a typical artifact in density-based methods. Indeed, both
DBH and WWL (Figure B2(j) and Figure B2(k)) have this problem. In contrast,
our algorithm, despite being also density-based, does not suffer from this issue (see
Figure B2(l)).

Artifact [S5] (fifth row in Figure B2) focuses on paths that end up over-sampled
in the resulting road networks. For instance, the route graph by CK includes dozens
of vertices for the stretch showed alone (Figure B2(m)). By comparison, Figure B2(n)
and Figure B2(o) show better results, and our approach generates the best route graph
concerning the similarity with the ground truth.

Artifact [S6] (sixth row in Figure B2), shows the issue of excessively simplifying
zigzagging paths. Here the three methods suffer from this problem. However, we ob-
serve that the route graph produced by our method is still better than that of KP
and WWL (Figure B2(p) and Figure B2(q)), in the sense that it does not include any
erroneous connection.

Finally, artifact [S7] (last row in Figure B2) checks if the resulting road networks
are missing the beginning or ends of paths. Both WWL and our method don’t have
this problem. However, WWL still misses the paths on the right side. Our algorithm
produces the best route graph that includes all the paths followed by the trajectories
(note that the short connection between both paths is not followed by any trajectory
in the data).

Appendix C. Road networks generated by using the split-and-merge
strategy

Next, we provide the route graphs obtained without and with the split-and-merge
strategy depicted in red and blue, respectively, in Figure C1.
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(a) AW (b) WWL (c) Ours

(d) CK (e) WWL (f) Ours

(g) CK (h) WWL (i) Ours

(j) DBH (k) WWL (l) Ours

(m) KP (n) WWL (o) Ours

(p) KP (q) WWL (r) Ours

(s) KP (t) WWL (u) Ours

Figure B2. Artifact [S1] - [S7] (from up to down) in generated road networks. Columns left to right: result
in (Duran et al. 2020), WWL, and our approach. Figures in the first column are taken from (Duran et al.
2020).
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(a) Athens small (b) Athens large (c) Chicago

(d) Berlin (e) Joensuu (f) Delta

(g) Aiguamolls (h) Garraf (i) Montseny

Figure C1. Road network generated with our approach for different datasets. The single (in red) and split-

and-merge (in blue) obtained route graphs are overlaid. The overlapping zone (in black) and the splitting line
(red dotted) are marked and zoomed.
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