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Abstract—This article compares distinct signal-based and
knowledge-based approaches often applied to process and detect
events in vast amounts of data collected by phasor measurement
units (PMU). The computation times and the accuracy of correct
event detections are tested and evaluated in a 1−hour data file
from the UT-Austin Independent Texas Synchrophasor Network
with phasor quantities plus an additive noise gathered at different
PMU substations. A sliding time window is considered to build
a representative model of the system operating conditions on the
fly and search for power system phenomena as soon as new data
are available.

Index Terms—fault detection, phasor measurement units,
power system faults, principal component analysis

I. INTRODUCTION

ELECTRIC power systems are becoming increasingly
complex, albeit decreasingly tolerant to faults and power

quality concerns. As a result, any types of abnormal operating
conditions must be detected and diagnosed as early as possible
to minimize performance degradation and prevent dangerous
situations.

Although smart grid infrastructures have the ability to
collect massive amounts of data that can be exploited to
identify anomalies at different locations and voltage levels,
it is a difficult task to visualize and identify patterns, outliers,
and abnormal behaviors at relevant scales. In this context, an
automated methodology capable of processing huge amounts
of data and detecting anomalies of different nature may
contribute to the task.

Overall, the techniques applied to fault detection and di-
agnosis in power systems (in this article, fault refers to
distinct anomalies in power system operation) can be classified
as model-based, signal-based, knowledge-based, and hybrid
approaches [1], [2]. Model-based fault detection techniques
request a model of the system or process for evaluation
of the consistency between the measured outputs and the
model predicted outputs. They can be categorized as deter-
ministic (e.g. solvable with linear matrix inequalities) and
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stochastic (e.g. Kalman filters). Signal-based fault detection
techniques rely on measured signals for feature extraction
in either or both time domain and frequency domain. Time-
domain features include continuous monitoring of average,
standard deviation, phases, slope, peak, and root mean square
magnitudes (e.g. min-max difference, differential function),
whereas frequency-domain features include spectrum analysis
(e.g. discrete Fourier transform, Yule-Walker spectral method)
[3]. Knowledge-based fault detection methods rely on the
availability of large amounts of historical data for extrac-
tion of the underlying knowledge of a given process and
can be categorized as quantitative or qualitative. Qualitative
methods (e.g. expert systems, qualitative trend analysis) are
based on a set of rules, whereas quantitative methods rely
on pattern recognition and can be statistical (e.g. principal
component analysis, independent component analysis, partial
least squares, support vector machines) or non-statistical (e.g.
neural networks, fuzzy logic). Finally, hybrid approaches for
fault detection consist of a combination of the fault detection
strategies previously described.

The usage of signal-based and statistical quantitative
knowledge-based fault detection methods is advised when the
monitored process is non-stationary and the evaluation has
to adapt to changing operating conditions, since model-based
fault detection techniques require an accurate input-output
description which is not always available, whereas qualitative
and non-statistical quantitative knowledge-based methods are
process specific and are computationally more expensive than
statistical quantitative methods to be re-trained. Nonetheless,
there is a lack of consensus about the most effective approach
to detect anomalies in power system operation, especially in
the presence of noisy data, which adds uncertainties to the
analysis.

Fitting into this context, this article provides a comparative
analysis of different fault detection approaches with respect
to the accuracy of correct event detections in the presence
of noisy data. The methods are tested in a 1-hour data file
from Texas Synchrophasor Network and applicable to power
transmission and distribution networks, relying on electrical
quantities gathered at different locations. The operating con-
ditions of the grid are modelled over a sliding window basis,
which improves the situational awareness of the analysis.

The text is organized as follows. The signal-based and/20/$31.00 © 2020 IEEE



knowledge-based fault detection techniques are presented in
Sections II and III, respectively, together with the criteria com-
monly used to detect data anomalies. Afterwards, Section IV
presents a case study, whose results are discussed in Section V.
Finally, conclusions are presented in Section VI.

II. SIGNAL-BASED FAULT DETECTION METHODS

A. Fast Fourier transform

The Fast Fourier transform (FFT) computes the discrete
Fourier transform of a signal to quantify its frequency content.
For an in-depth explanation, refer to [4].

B. Yule-Walker Spectral method

The Yule-Walker Spectral method computes the power
spectral density of a signal using the autoregressive Yule-
Walker method. For a thorough explanation, see [5].

C. Min-Max difference

This method computes the difference between maximum
and minimum values of the signal within the time window.
For more details, see [3].

D. Difference and approximate derivative

This method computes the maximum difference between
consecutive samples of the signal within the time window.
The calculation is analogous to the rate of change of frequency
(ROCOF). For more details, refer to [3].

III. KNOWLEDGE-BASED FAULT DETECTION METHODS

A. Principal Component Analysis

This method builds a statistical model of the data with
dimensionality reduction and detects anomalies by projecting
the subsequent data onto the projection subspace. For an in-
depth explanation, see [6]. In this article, the minimization of
the variance reconstruction error (VRE) is considered to select
the number of principal components to build the PCA model.
For an in-depth explanation, see [7].

B. Support Vector Machines

This method finds the best hyperplane that separates all data
points representing normal operation from those representing
abnormal operation and detects anomalies with use of this
classification hyperplane. If the data do not allow for a
separating hyperplane, Kernel functions and soft margins can
be used to separate as many data points as possible. For a
thorough explanation, refer to [8].

IV. CASE STUDY

The event detection techniques are tested with PMU data
from the UT-Austin Independent Texas Synchrophasor Net-
work available in [3] (see website). The PMU substations are
located at distinct transmission and distribution voltage levels
within the Electric Reliability Council of Texas (ERCOT) and
provide a good overview of the system [9].

The events that can be found in the data set, illustrated
in Fig. 1 to 20, consist of low-frequency voltage oscillations
which last no more than a few hundred milliseconds (below
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Fig. 1. Event detected between 425 s and 435 s
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Fig. 2. Event detected between 435 s and 445 s

15 Hz, as the PMU sampling rate is 30 Hz). All of
them can be identified by at least one of the signal-based
fault detection methods described in Section II without
noise in the data, as shown in Table I. In particular,
Fig. 1, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19,
and 20 contain impulses, whereas Fig. 2, 9, 12,
and 18 contain step changes; the events displayed in
Fig. 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17, 19, and 20
occurred at the McDonald station (extra low voltage), whereas
those displayed in Fig. 2, 12, 14, and 18 occurred at the
Waco station (high voltage).

In this article, the signal-based fault detection methods
detect anomalies with use of the 3 σ rule, in accordance to
the analysis performed in [3]. Meanwhile, the PCA algorithm
relies on square prediction error (SPE) statistics with the 3 σ
rule to detect anomalies, in agreement with the signal-based
methodologies aforementioned. Although the limits calculated
with the 3 σ rule are more conservative than those calculated
with the analytical method for the SPE statistics, the results
are not affected negatively, as shown in Section V. In turn,
the SVM classification considers that normal operation is
represented by the average values of the data over a sliding
time window and that a deviation of 2% from the average
represents abnormal operation, based on the magnitude of the
events recorded in Fig. 1 to 20.

The event detection techniques are run over a 10−second
sliding window basis, which captures the dynamic time-
varying nature of the system and enables adaptation to the
most recent operating conditions, and further tested and com-
pared in terms of performance of correct event detections with
an additive disturbance represented by a white Gaussian noise
δ with var (δ) = 0.25 V 2 added to the original PMU data.
This choice results in a signal to noise (SNR) ratio of 40 dB at
the McDonald station, slightly below the 45 dB approximation
suggested in [10].
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Fig. 3. Event detected between 555 s and 565 s
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Fig. 4. Event detected between 635 s and 645 s
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Fig. 5. Event detected between 935 s and 945 s
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Fig. 6. Event detected between 1170 s and 1180 s
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Fig. 7. Event detected between 1240 s and 1250 s
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Fig. 8. Event detected between 1520 s and 1530 s
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Fig. 9. Event detected between 1590 s and 1600 s
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Fig. 10. Event detected between 1660 s and 1670 s
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Fig. 11. Event detected between 1785 s and 1795 s
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Fig. 12. Event detected between 1865 s and 1875 s
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Fig. 13. Event detected between 2310 s and 2320 s
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Fig. 14. Event detected between 2345 s and 2355 s
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Fig. 15. Event detected between 2690 s and 2700 s
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Fig. 16. Event detected between 2705 s and 2715 s
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Fig. 17. Event detected between 2725 s and 2735 s
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Fig. 18. Event detected between 2760 s and 2770 s
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Fig. 19. Event detected between 2900 s and 2910 s
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Fig. 20. Event detected between 3565 s and 3575 s

TABLE I
EVENT DETECTION RESULTS OVER A 10−S WINDOW WITHOUT NOISE

time (s) FFT Yule-Walker Min-Max Derivative PCA SVM
435 Yes No Yes No Yes Yes
445 No Yes No No Yes No
565 No No Yes Yes Yes Yes
645 No No No Yes Yes Yes
945 Yes No Yes No Yes Yes
1180 Yes No Yes No Yes Yes
1250 Yes No Yes No Yes Yes
1530 No No Yes Yes Yes Yes
1600 Yes Yes No No Yes Yes
1670 No No Yes No Yes Yes
1795 No No No Yes Yes Yes
1875 No Yes Yes No Yes No
2320 No No No Yes Yes Yes
2355 No No No Yes Yes Yes
2700 Yes No Yes No Yes Yes
2715 Yes No No No Yes Yes
2735 Yes No No No Yes Yes
2770 No Yes Yes No Yes No
2910 No No No Yes Yes Yes
3575 No No Yes Yes Yes Yes

V. RESULTS AND DISCUSSION

This section presents the results of event detection for the
scenarios described in Section IV and compares the accuracy
of the methods described. The results of correct event detec-
tions in the original data are presented in Table I, whereas
the results of correct event detections in the presence of an
additive noise are presented in Table II.

Considering the correct detections indicated in Table I, the
best performance is obtained with principal component anal-
ysis (PCA), which detects all 20 events, followed by support
vector machines (SVM), which detects 17 out of 20 events,
whereas the results detected with the Fast Fourier transform
(FFT), Yule-Walker spectral analysis, min-max difference,
and approximate derivative methods are complementary. In
particular, the min-max difference detects 11 occurrences,
whereas both the FFT and the approximate derivative detect 8
events and the Yule-Walker spectral analysis detects 4 events.

In turn, considering the correct detections indicated in
Table II, the best performance is obtained with support vector
machines (SVM), which detects 15 out of 20 events, followed
by principal component analysis (PCA), which detects 12 out
of 20 events. Additionally, it can be noticed in Table II that 18
out of 20 detections are achieved by PCA and SVM combined.
Conversely, the Yule-Walker spectral analysis detects 3 events,
whereas the min-max difference detects 2 events and both the
FFT and the approximate derivative detect 1 event each.



TABLE II
EVENT DETECTION RESULTS OVER A 10−S WINDOW WITH NOISE

time (s) FFT Yule-Walker Min-Max Derivative PCA SVM
435 No No No No No Yes
445 No Yes No No Yes No
565 No No No No No Yes
645 No No No No No Yes
945 No No No No Yes Yes
1180 No No No No No Yes
1250 No No No No Yes Yes
1530 No No No No Yes Yes
1600 Yes No No No Yes No
1670 No No No No Yes Yes
1795 No No No No No Yes
1875 No Yes Yes No No No
2320 No No No No Yes Yes
2355 No No No Yes Yes No
2700 No No No No Yes Yes
2715 No No No No Yes Yes
2735 No No No No Yes Yes
2770 No Yes Yes No No No
2910 No No No No Yes Yes
3575 No No No No No Yes

Alternatively, if only voltage impulses are considered (i.e.
all sliding windows but those ending at 445, 1600, 1875, 2770
s), all 16 remaining events are detected with both PCA and
SVM without noise according to Table I. In this case, the best
performance in the presence of noise is obtained with SVM,
which detects 15 out of 16 events, followed by PCA, which
detects 10 out of 16 events.

Moreover, it is expected that the additive noise will affect
most significantly the events detected at low voltage distribu-
tion level for its magnitude. This is verified in Tables I and II,
as the results obtained for the sliding windows ending at 445
and 1670 s remain the same for all methods. However, the
step changes in the sliding windows ending at 1875 and 2770
s are missed by the PCA algorithm in the presence of noise
and detected by both the Yule-Walker spectral method and the
min-max difference algorithm.

VI. CONCLUSION

This article has considered different signal-based and
knowledge-based methods for PMU data event detection and
compared them in terms of accuracy of correct event detections
with noisy data applied to a 1−hour data file from the Texas
Synchrophasor Network. The results obtained with this data
set indicate that the statistical knowledge-based fault detection
techniques present the best performance individually and are
more robust to disturbances than signal-based fault detection
techniques. Therefore, the usage of knowledge-based tech-
niques is recommended for accurate PMU data event detection.
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