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Abstract—Principal component analysis (PCA) is a dimension- accuracy of correct event detections with usage of distitect
ality reduction technique often applied to process and detect tistical tests. To do so, it relies on phasor quantities mnesas
events in large amounts of data collected by phasor measurement ;¢ multiple PMU substations to build a PCA model of the
units (PMU) at transmission and distribution level. This article . - . . L
considers five different approaches to select an appropriate ngtwqu operating conditions in real F'me' which '_n(_:rem
number of principal components, builds the statistical model Situational awareness of the analysis, over a sliding windo
of the PMU data online over a sliding window of 10 seconds of distinct lengths of time. The analysis is tested in-hour
and 1 minute, and evaluates the computation times and the data file from Texas Synchrophasor Network and applicable
accuracy of correct event detections with use of two statistical to power transmission and distribution networks with i

tests in a 1—hour data file from the UT-Austin Independent PMUs installed at diff t locati ithout fi
Texas Synchrophasor Network with phasor gquantities collected S Installed at diirerent locations without requesting a

at different PMU substations. information about the network topology and its electrical

Index Terms—fault detection, phasor measurement units, parameters.
power system faults, principal component analysis The text is organized as follows. The theoretical backgdoun
is presented in Section IlI: 1I-A explains the building of the

|. INTRODUCTION PCA model, 1I-C includes five different calculation methods

HE increasing digitalisation of electric power systems i select the number of principal components, II-B dessribe

generating vast quantities of data at different locationgvent detection in the projection subspace and residual sub
voltage levels, and time intervals. These data includendist space. Afterwards, a study case is shown in Section I,
electrical quantities collected by smart meters and phaspe results and discussion are described in Section IV, and
measurement units (PMU) that can be exploited to charaeteréonclusions are finally presented in Section V.
energy behavioural patterns and identify anomalies oérhffit
nature. However, due to the high complexity and massive
amounts of data, it is a difficult task to visualise and idignti

patterns, outliers, and abnormal behaviours at relevalésc , ) ,
In this scenario, dimensionality reduction techniques are 1he PCA methodology presented in this article, adapted

appealing to reduce a dataset with optimality and minimgP™ [8], builds a statistical model of the PMU data collette
loss of information. Among the dimensionality reductiontte OVer & time window of duratiom; and detects anomalies with

L i ) 5
niques commonly applied to electric power systems, pr'adcipuse of two complementary indicators: the Hotelling% (T?2)

component analysis (PCA) is one of the most widely used (Sé'léi’d the square predicilon error (SPE) .StatIStICS. The forme
e.g. [L]-[5]). It builds a data-driven model of observatiqgn measures the square distance of the projected data to thie_ cen
which the covariance structure is described with a reduc@fthe model, whereas the latter measures the square distanc
number of dimensions through a few linear combinations 8f the observation to the projection subspace.

the original variables that express major trends in thesgata Thereby, the method may be divided into three main steps,
Much as the strategies to define an appropriate number a8 Presented in Sections II-A-II-B: building the PCA model
principal components are well known in literature (see, e.§ith PMU data, selection of principal components to the
[6], [7]), there is a lack of consensus about how to adjumheorojection subspace, and event detection in the projection
to detect specific events of interest in PMU data. Thereforgubspace and residual subspace.

a systematic evaluation of those procedures is necessary to

perform dimensionality reduction and event detection witR Building the PCA model with PMU data

PCA effectively.

Fitting into this context, this paper provides an in-depth Let X be then x m observation matrix displayed in (1) with
comparative analysis of five different approaches to selectobservations — referred to the number of samples of phasor
an adequate number of principal components that define tigantities — andn variables — referred to PMU locations —
statistical model of a PMU network when it comes to theupposed to be centered (zero mean) and scaled (unit vayianc

II. THEORETICAL BACKGROUND ONPCA
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Then, compute the covariance matrix o and apply Al 0 5 0 %

eigenvalue decomposition to obtain twe x m matricesV ]
(whose columns are the eigenvectors and contain the pahcip 0o 0 ... 2
components) and (diagonal matrix whose elements express
the variability in the direction of each principal compohen The statistical limit7}2, , is calculated analytically with (8)
column of V) with (2)
5 T (n2 — 1)
1 TaziFoz (’I",’I’L—T) (8)
VAVT — 1XTX ) n(n—r)
where « is the confidence level and, (r,n —r) is the
béaritical point of the Fischer-Snedecor distribution forand
n — r degrees of freedom. Any result that surpasggs, is
TIagged as faulty for the Tstatistics.

In turn, event detection in the residual subspace is evaduat

Dimensionality reduction in the number of variables can
performed by retaining: principal components oV (r <
m) with the largest eigenvalues. Then, thex m matrix V
becomes am xr matrix P which defines a projection space o
lower dimension representing themost significant pr_incipal with the SPE index, which evaluates the variation out of
components. As the choice of an appropriate value isfnot the projection space defined by theprincipal components

straightforward, five different methods to select an appate through the error componeit The SPE of an observation
value of r are presented later in Section II-C and comparerg is given by (9)

in Section 1V.
. The usage oP instead ofV to transformX into the prin- Qn = (x— %) (x =) = |7|? 9)

cipal components representation space results in a pi@ject

onto a space of lower dimension in which some information The statistical limitQ;;,,, is calculated analytically with (10)

contained in the original data is lost. As a matter of a fact,

sinceV is a unitary matrix, the inverse operation is carried

1
GYN _ o
out with the transpose, i.&/' VT = I, but P is not unitary, Qo =0, {1 + hocav20> | hots (h20 DI (10)
thereforePPT # 1. The scores and the transformation of 0 01
scores into the original data witR can be calculated with (3)  with
{ t=xP and x=tPT 3) - 206
T=XP and X=TP" b= > Ak={123} and ho=1-—5 (11)
2

wheret andx denote the score and projection of a single i=r+l
observationx (top) andT and X denote the score matrix wherec, is the normal deviation for a confidence level
and projection matrix of the whole dataskt (bottom). The Any result that surpasseg;;,,, is tagged as faulty for the SPE
difference betweeX and X is the residual matriX which statistics.
resumes the information contained in the— » components

from the residual space for each observation and can e S€lection of principal components to the projection sub-

calculated with the residual matri&. Thereby, the complete space
PCA model can be described as in (4) Five different methods to select an appropriate value of
are taken into consideration, as described in the following
X=X-X=X(I-PPT)=XC (4) subsections.

. L i 1) Kaiser criterion: In this method,- is selected such that
B. Detection in the projection subspace and residual subspa, | principal components whose eigenvalues are below the
Event detection in the projection subspace is evaluatel Wﬁverage variance are dropped from the ma#j%n agreement
the T* index, which computes a weighted distance of thgith (12). In other words, this criterion consists in retam
projected data to the centre of the model uslags a weight all » principal components whose variance is larger than one,
using (5) as X is a scaled matrix. This ensures that every principal
component selected contains at least as many information as
(5) a single original variable in terms of variance.

r 2

t:

T2 = "
i=1""

For a single observatior whose score vector i, the T2

) 1 m
index is given by (6) ri={max j € {L--- mp | A 2 E;)‘i} 12)



2) Automatic scree plotin this method, the eigenvalues
are plotted decreasingly as a function of their element rarmb
¢ in the matrix A and the chosen value of corresponds to
the eigenvalue whose distance to the origin of the coordinat
system is the shortest, in agreement with (13). The idea is
to search for an elbow in the plot, which always displays
a downward curve, from which the eigenvalues are approx-
imately equal.
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ri={ie{l,---,m} | miny/A\? + 4%} (13)

3) Explained variance:In this method, a minimum per-
centage of the total variancBar (%) is previously defined
andr is taken as the smallest integer satisfying (14)

1 I
ri=— ;)\ x 100 > Var (%) (14)
4) Variance reconstruction errorin this method, further Fig. 1. Map of PMU substations within the Texas Synchrophasetwork
explained in [6], the optimal value of is determined by the
minimum variance reconstruction error (VRE), in agreement
with (15), considering a faulty observatioxy represented
by anm-dimensional unitary vectog; multiplied by a fault ~ The procedures described in Section [I-C to select an
magnitudef and the correlation matrix of reconstruction errogPpropriate number of principal components and perform
R. This procedure results in the best reconstruction of tig¥ent detection are tested with PMU data from the UT-Austin
variables, as the VRE decreases monotonically in the rakidindependent Texas Synchrophasor Network available in [9]
subspace and increases in the projection subspace with (e website). A map of the locations of the PMUs, installed
number of principal components, and the selection fan at distinct transmission and distribution voltage levelthin
be adjusted to detect specific events of interest definedgby FheF_EIe:tric Reliability Council of Texas (ERCQOT), is shown
in Fig. 1.
ri={je{l,---,m} | min&T R} (15) Only low-frequency oscillations belows H z can be found
J in the dataset, as the phasor quantities are gathergd -at
5) Statistical detectability:In this criterion, based on [8], 30 Hz. Thus, this article is concerned about low-frequency
r is chosen such that the smallest detectable events canvbkage transients which last no more than a few hundred
detected statistically in the projection subspace andluesi milliseconds, as highlighted in Fig. 2; the detection oftéas
subspace, according to Section II-B, considering tHat> dynamic events is out of the scope of this article, as it negui
Ty, must hold so that an event can be detected with & higher sampling frequency of PMUs. The events found in
statistics and?), > @, must hold so that an event can behe dataset, whose types and inner causes are unknown, are
detected with SPE statistics. For a faulty observatignr is listed in Table I. Overall, they are expected to be isolated
selected such that (16) holds with a single PCA model or (1éyents at a single location (which ensures detection of the
holds with two PCA models built separately fof &nd SPE smallest events in the worst-case scenario) and occur once
statistics, which enables adjustments to detect speciéintsv or less everyl) seconds. Their magnitudes are greater than

Ill. CASE STUDY

of interest defined bys. 1 % of the nominal voltage, varying from a few Volts at low
voltage level (substation at Fort Davis) to a few thousand
ri={min i € {1,--- ,m} | Tff > T2 and Qu, > Quim} \olts at high voltage level (substations at Edinburg and &Yac

(16) Duration of disturbances is also heterogeneous, lastiog fr
a few milliseconds (impulses) to a few hundred milliseconds
L (transients).
- { rr2 = {H.“n e {1 m} [ T2 > T3} (17) Relying on voltage magnitudes, the PCA model is built
rq = {min i € {1,---,m} | Qu; = Quim} online over a sliding window. This approach captures the
This criterion considers the worst-case scenario to buiket o dynamic time-varying nature of power systems and adapts
size-fits-all PCA models for the overall grid. This choicakh the PCA model to the most recent operating conditions.
be able to detect the smallest theoretical vaIuéEfpfandef The five different methods to select the number of principal
computed with each individual variable possibly involved icomponents described in Section II-C are considered ta buil
the event for 16 or 17 and consequently presents the highist PCA model and further tested and compared in terms
theoretical statistical detectability without requirigiifferent of performance of T and SPE statistics over BF)—second
PCA models for each set of variables. and 1—minute sliding window, supposedly associated with
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Kaiser Scree plot Variance  VRE Detectability

# r T2 Qr T2 Qr T2 Qr T2 Qr T2 r Q

1 3Y Y 4Y Y 3Y Y 3Y Y 2Y 2Y

2 2N Y3NY3NYI1INY4Y 1Y

3 2Y Y 2Y Y3NY2Y Y 4Y 1Y

4 2Y Y 2Y Y 3Y Y1lY Y 2Y 2Y
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Fig. 2. Time ranges of distinct dynamic phenomena in power systadapted 52Y vYy2Y Y3Y Y1INYZ2Y 2Y

from [10]) 6 2 Y Y2 Y Y2Y Y1NVY2Y 2Y
TABLE |

TYPES OF EVENTS TABLE Il

EVENT DETECTION RESULTS(YES/NO) OVER A 1—MIN WINDOW

# Location Category
1 Edinburg  Impulse, multiple Kaiser Scree plot Variance  VRE Detectability
2 Edlnburg TranS|er_1t # r T2 Q r T2 Q r T2 Q r T2 Q r T2 r Q
3  Fort Davis Impulse, single 1T 3Y Y 4 Y N3IY Y 2Y Y 2Y 2Y¢Y
4 Edinburg  Impulse, multiple 2 2Y Y5Y Y3Y Y1NY2Y 2%Y
5  Edinburg Transient 3 2Y Y5Y N3Y Y1Y Y2Y 2Y
6  Fort Davis Impulse, single 4 2Y Y 2VY Y 3Y Y1Y Y2Y 2Y
7  Fort Davis Impulse, single 5 2Y Y 2Y Y3Y Y1N Y 2Y 2%Y
8 WaCO Trans[ent 6 2Y N 2Y N3Y NI1INY2Y 1Y
9  Edinburg Transient 7 2Y Y3Y Y3Y Y2Y Y4Y 1Y
10 Edinburg  Impulse, multiple 8 2 N N3N N3N NI1N N2 N 2N
11  Edinburg  Impulse, multiple 9 3Y Y2N Y 3Y Y1N Y 3Y 3Y
12 Edinburg  Impulse, multiple 100 2 N Y2 N Y 3Y Y1N Y 3Y 3Y
13 Edinburg Transient 11 2 Y Y 3 Y Y 3Y Y1N Y 2Y 2Y
14 Edinburg Transient 12 3 Y Y5Y Y3Y Y1N Y 3Y 3Y
15 Fort Davis Impulse, single 13 2 N Y 2 N Y 3Y N2N Y 3Y 1Y
16 Edinburg Impulse, multiple 14 2 Y Y 3 Y Y 2 Y Y 2 Y Y 2Y 2Y
15 2 Y Y 3Y Y3Y Y1N Y 2Y 2Y
16 2 Y Y3Y Y 3Y Y1INY2Y 2Y

different types of events and intrinsic characteristics. &
result, 20 different scenarios were produced per detectert e
(i.e. 2 statistical tests times selection criteria of- times2 75 % because of the average residual subspace defined by the
window lengths). other criteria.
On the whole, considering the correct detections with both
IV. RESULTS AND DISCUSSION T2 and SPE statistics, the best method to select the number
This section presents the results of event detection for theprincipal components is the statistical detectabilityecion,
scenarios described in Section Ill, comparing the accucdcywhich detects more events than the other criteria for afitles
the methods described in Section II-C to select the numbafrtime evaluated. Nevertheless, it is noteworthy that\aings
of principal components: for the events shown in Table |.of interest are detected with at least one of thfedf SPE
Tables Il and Il display the event detection results anstatistics when a0—second window is used to build the PCA
the corresponding obtained for each selection method anthodel, and that the event numbgis always missed with a
time window, considering a0—second and —minute sliding 1—minute window, regardless of the method chosen to define
window to build the PCA models, respectively. A confidencen appropriate number of principal components. Additiynal
level « = 0.95 is chosen to calculate 2Tand SPE for all it can be noticed that the combined use &fahd SPE statistics
selection methods because it does not result in missed-deteads to a higher number of correct event detections, raduce
tions in this dataset with the statistical detectabilititesion the number of missed detections, and consequently inease
over al0—second sliding window. The locations and everthe detection capability of the PCA model.
magnitudes listed in Table | are considered to compute theln general, the SPE is expected to detect variations asso-
statistical detectability and the VRE. In addition, thelexped ciated with changes in the correlation structure and ptesen
variance criterion is computed with an explained variante emall values, whereas the’ Ts expected to detect deviations



from the average normal operating conditions and presentsmber of principal components. Moreover, the window size
larger values. As a consequence, the SPE is more sensiive thpplied to build the PCA model also contributes to the task
the T2 and tends to be a better indicator of abnormalities, sine@d shall be adjusted according to the events of interest.

changes in the correlation structure of faulty observatiare

expected to be observed in the residual matrix. In particula
the SPE is expected to present the best performance whefhis research was supported by the European Union's
the VRE criterion is applied to seleet as it is aimed at Horizon 2020 research and innovation programme, call LCE-
minimizing the variance reconstruction error associatétth w 01-2016-2017, under the auspices of the project “Renewable

the residual subspace to ensure detection of specific eséntenetration levered by Efficient Low Voltage Distribution
interest. grids”, grant agreement number 773715, and University of
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occurs when d0-second window is applied to build the PCA
model with both ? and SPE statistics. It happens because the
PCA models built over this length of time are more sensitive
to the dynamics of the system and consequently are more
suitable to detect the events of interest, which last no moriél
than a few hundred milliseconds. Therefore, it is expedted t

a higher number of missed detections will occur with longer
window sizes, which are associated with different phenameri3]
and/or a static representation of the operating conditions
of the grid. This explains why the results obtained with a
1—minute window are slightly worse than those obtained witH4]
a 10—second window in most cases.

Furthermore, a comparative analysis of the five approaches
presented in Section 1I-C to select an adequate value of [5]
over time evinces that the Kaiser criterion, the automatic
scree plot, and the explained variance are quantitative and
arbitrary, whereas the statistical detectability and tiREvare  [6]
gualitative. As a matter of a fact, the former criteria rely o
the variance of the data and do not allow for adjustments that
ensure the detection of specific events of interest, wheaheas [8]
latter criteria can be adjusted to detect events defined by sp
cific magnitudesf and direction vectorg. This explains why [g]
the results obtained with the statistical detectabilitifecion
with both T2 and SPE statistics are the most accurate, Whim]
implies that the detectability in the projection subspaue the
residual subspace is the best indicator to select an adequat
number of principal components and detect distinct evehts o
interest.

V. CONCLUSION

This paper presents a PCA-based strategy for PMU data
event detection with usage of Tand SPE statistics, consid-
ering five different methods to select an appropriate number
of principal components which are compared in terms of
correct event detections. The results indicate that the PCA
methodology is able to identify different types of events, r
gardless of the approach used to select the number of paincip
components, and that the results calculated withafid SPE
statistics are complementary in some cases, which enhances
the detection capability of the PCA model. Nonetheless, the
results obtained when the statistical detectability dote
is used to define the number of principal components are
the most accurate with both?Tand SPE statistics, which
implies that the detectability in the projection subspand a
the residual subspace is the best indicator to select amiatieq
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