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Abstract— The marine robotics community is lacking a high
quality simulator for doing scientific research, especially when
it comes to testing control and vision algorithms in realistic
underwater intervention tasks. All of the solutions used today
are either outdated or try to combine different software tools,
which often results in bad performance, stability issues and
lack of important features. This paper presents a new software
tool, focused on, but not limited to, simulation of intervention
autonomous underwater vehicles (I-AUV). It delivers advanced
hydrodynamics based on actual geometry, simulation of un-
derwater sensors and actuators, as well as realistic rendering
of underwater environment and ocean surface. It consists of a
library written in C++ and a Robot Operating System (ROS)
package.

I. INTRODUCTION

Simulation tools are essential in robotics, due to the many
different aspects of robot design that have to be integrated
and tested. They are even more important when access to
the testing facilities and the robot itself is limited, which is
often the case in marine robotics and especially underwater
robotics. Multiple open-source solutions were created during
the realisation of different projects in this field but there is
no ultimate modern tool. Moreover, most of the developed
solutions were either partial or abandoned after the projects
were finished. One of the first and most commonly known,
which is still used although not developed anymore, is the
UWSim [14]. It enabled simulation of underwater inspection
and intervention missions with one or more robots. One of its
main advantages is that it delivers a ROS (Robot Operating
System [15]) package which allows for easy integration with
ROS-based software architectures, commonly used in robots
developed by scientific community. This allows for replacing
the real robot with a simulator, without the need for any code
modifications. However, in practice, UWSim is mostly used
as a visualisation tool and for simulating underwater sensors.
It lacks accurate simulation of dynamics and hydrodynamics
of vehicles and it does not support simulation of manipulator
dynamics (only kinematics). In practice, users of UWSim
often simulate the physics with their own code. The rendering
it delivers is still the best available, although outdated. A
more modern approach is to use the ROS standard simulator
Gazebo [12]. It is lacking native support for hydrodynamics
and its poor rendering quality does not allow for convincing
simulation of underwater vision. It can be used either with
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a custom dynamics code, like UWSim, or combined, e.g.,
with the UUV Simulator plugin [13] which adds simple
hydrodynamics to the Gazebo physics engine. However,
this solution is lacking the simulation of manipulator hy-
drodynamics and buoyancy. Gazebo was used in a recent
project called DexROV [1], coupled with a set of plugins.
Apart from visual tools, prepared for integration with ROS,
there is also the Marine Systems Simulator [11] which is
a Matlab/Simulink package. However, lack of visualisation,
and no direct interface with ROS makes it unpopular in the
community.

This paper presents a new simulation tool that was de-
signed to fulfil the needs of researchers requiring accurate
simulation of robot dynamics, vision and underwater sen-
sors/actuators, i.e., ones working with control, perception
and navigation algorithms. What makes it unique is the
simulation of complete dynamics/hydrodynamics of vehicle-
manipulator systems with contact and force sensing. It also
sports a modern rendering pipeline to deliver better rendering
of underwater scenes. In Section II the general architecture
of the simulation tool is described, including its integration
with external software and ROS. Section III presents all
important and unique features of the software. In Section IV
author describes the technical details of the simulation of
robot hydrodynamics. Section V provides insight into the
rendering pipeline, responsible for generating realistic im-
ages of underwater scenes. Section VI gives an overview
of building a simulator using the Stonefish library. Finally,
Section VII concludes the presentation and discusses further
developments planned by the author.

II. ARCHITECTURE

The presented simulation tool is composed of two parts:
a C++ library and a ROS package, as shown in Fig. 1.

The first part, the C++ library, constitutes the simulation
framework, which is a set of classes that wrap around
the physics library (Bullet Physics [7]), adding an abstrac-
tion layer which greatly simplifies creation of simulation
scenarios and adds features related to robotics, especially
marine robotics, e.g., buoyancy and hydrodynamics. The
choice of the physics library to build upon was made
based on a survey [2]. The Stonefish library also contains
classes representing different types of virtual sensors and
actuators used in surface, underwater and even flying robots.
To deliver a lightweight, high performance solution, the
rendering pipeline is custom and closely coupled with the
simulation, i.e., no external graphics engine was used, all
is implemented directly in OpenGL. At the top level, the
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Fig. 1. General architecture of the Stonefish simulation tool.

Stonefish library implements classes which allow for creating
standalone simulators, thus it can be used on any platform.
Moreover, if the graphical part of the simulation is not
needed (not only visualisation but also virtual cameras) or
the platform that is used does not meet GPU requirements,
one can use a console based simulation.

The second part, the ROS package, contains a ROS
message interface, which allows for convenient publishing
of virtual sensors’ measurements in a standard way, as well
as examples of simulators and launch files needed to run
them. These examples are based on GIRONA500 AUV [16]
which is the main research platform of the author. Thus,
they need open-source COLA2 architecture, developed by
Iqua Robotics, to be installed and run. However, it is not
necessary to use COLA2 in general, users can combine the
simulator with whatever architecture they normally use on-
board their robots, to naturally substitute the real robots with
the simulation.

III. FEATURES

The Stonefish library implements multiple standard and
unique features, not limited to marine robotics. An overview
of the most important components is presented in Fig. 2. The
simulation scenario is a combination of a model of the envi-
ronment and one or more models of robots. The environment
can be configured to include ocean simulation but it is not
required. There is also an atmosphere model implemented,
with a realistic dynamic sky. It is possible to create static
as well as dynamic objects in the environment. Apart from
standard solids, the library implements a heightfield terrain,
i.e., terrain mesh based on a 2D height map, and allows
for loading geometry from mesh files. Each robot can be a
single rigid-body or a rigid-body tree. Links of the robot are
connected with joints (revolute, linear, fixed), which can be
propelled by different actuators. Some actuators are attached
to the links directly. Sensors work in the same way. The
following subsections give more details about most important
components of the simulation framework.

A. Dynamics and Collision

The software can accurately simulate complete dynam-
ics of vehicle-manipulator systems, using the Featherstone
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Fig. 2. Features implemented in the library.

multi-body algorithm [9]. Each link of the robot can be
a simple solid, a polyhedron loaded from a mesh file, a
wing profile (NACA 4-digit system) or a composition of
all of them. It is possible to define geometry used for
physics and rendering separately. To calculate the physical
properties, like mass and inertia, a material is assigned to
each body. Materials are created before the geometry and
include such data as density and restitution. Moreover, to
accurately simulate friction of sliding bodies, interaction
between each pair of materials is defined with static and
dynamic friction coefficients. All dynamic and static bodies
can collide and the character of the collisions can be stiff
or compliant. In case of a compliant contact it is possible
to define stiffness and damping coefficients. Additionally, it
is possible to track the contact paths and forces between
selected bodies.

B. Ocean and Atmosphere

The most unique features of the simulation tool are ones
connected with the medium in which robots work. The
Stonefish library implements ocean and atmosphere models,
including fluid dynamics and realistic rendering. Both ele-
ments play key roles in the simulation of robots: the former
one is necessary to achieve high quality estimation of the



motion of bodies and the latter one to produce realistic
images from virtual cameras, including the effects of light
attenuation and scattering, which limit the practical use of
vision sensors.

The ocean model includes geometrical waves, underwater
currents, computation of geometry-based hydrodynamics and
buoyancy (see Section IV), as well as realistic surface and
underwater rendering (see Section V). Waves are generated
using FFT based algorithms [18]. The velocity of water in
the ocean volume can be modified by defining velocity fields:
uniform, currents, jets, map based, and combining them.

The atmosphere model includes winds, computation of
geometry-based drag (see Section IV), as well as physically
correct sky rendering and lighting (see Section V). The
velocity of air in the atmosphere can be modified by defining
velocity fields like in the case of the ocean model.

C. Actuators

The software is prepared for simulating actuators which
are attached to the multi-body joints or links. Joint actuators
are rotary or linear drives that are commonly used in robots.
A basic servomotor is implemented to serve the purpose of
moving joints of a virtual manipulator. There is also a linear
model of a geared DC motor, to present how to extend the
capabilities of the library by subclassing general actuator
classes. In terms of link actuators, the library implements
models of an underwater thruster and a fixed propeller (for
a quadcopter). At the time of writing the fins are simulated
using the geometry-based hydrodynamics and the airplane
wings are not supported, due to the lack of lift calculation.
The solution to the latter will be to implement lift models
based on wing profile characteristics. This is not the main
focus of the software thought. It should be noted that lights
are also considered link actuators in the presented software.

D. Sensors

All commonly used robot sensors can be simulated with
Stonefish. Sensors are primarily divided based on the data
they deliver and the way they are implemented, into Scalar
and Vision. The Scalar sensors are ones outputting a single
number or a vector of numbers, while the Vision sensors
output a matrix of data and they only work in graphical
simulation mode. Like in the case of the actuators, the Scalar
sensors can also be attached either to a joint or to a link
of a robot, depending on the type of the sensor. Moreover,
all sensors provide a way to define their range as well as
noise characteristics. The available models of sensors should
cover most of the needs but in case a specific sensor model
has to be implemented subclassing standard sensor classes
is the way to go. What is currently implemented can be
checked in Fig. 2. Finally, the library implements a special
kind of sensor called Contact, which enables monitoring of
contact path and contact forces between selected pair of rigid
bodies. With the actuators and sensors currently implemented
the author was able to simulate complete underwater non-
destructive testing experiment, presented in Fig. 3, which
was later performed with the real system [6].

Fig. 3. Simulated NDT testing performed by GIRONA500 I-AUV.

Fig. 4. Automatically computed, best fitting ellipsoids, for the estimation
of added mass and shape coefficients.

E. Input Support and Simple GUI

To facilitate the use of the software to build stand-alone
simulators, the library implements support for keyboard and
joystick input as well as a simple immediate-mode graphical
user interface (GUI). It allows for putting buttons, sliders,
checkboxes and even simple plots in the main application
window. It can also be useful to change some parameters of
the simulation that are not necessarily connected with the
robot architecture, like time of day or turbidity of water.
There is a standard GUI implemented in the base classes,
which can be overwritten by the user. Moreover, the GUI also
includes a console which displays messages, warnings and
errors, generated during the initialisation of the simulation
world, which is useful for debugging.

IV. GEOMETRY-BASED HYDRODYNAMICS

The most unique feature of the Stonefish library is the
computation of buoyancy and hydrodynamics based on actual
geometry. Due to the fact that true computational fluid
dynamics (CFD) cannot be simulated in realtime, the method
used in this software is an approximation and extension of
the Fossen model [10], accurately reproducing motion of
underwater objects in a qualitative sense. Each rigid body is



represented by a polyhedron. For standard solids, the mesh
used for force computation is generated automatically. When
loading geometry from a file, the user is fully in control of
the quality of the simulation, because the computations are
based on the mesh loaded. Therefore it is important to avoid
large faces and keep them all at a similar size. In the future,
automatic mesh refinement algorithms may be implemented.
Computation of buoyancy, linear drag and quadratic drag is
performed by iterating through all N faces of a mesh. For
each face i a force component and a torque component is
computed. The sum of all of the components gives the net
force and torque acting on the centre of gravity of the body.
Thus, the buoyancy calculation is given by

b̄i =

{
−n̂ihiSi hi > 0
0, hi ≤ 0

B̄ = ρg
N∑
i=1

b̄i, τ̄b = ρg
N∑
i=1

r̄i × b̄i,
(1)

where n̂i is a versor normal to face i (pointing outwards),
hi is the water depth at the centre of face i (this allows
for geometrical waves), Si is the surface area of face i,
ρ constitutes the density of fluid, g is the gravitational
acceleration and r̄i is a vector from the centre of gravity to
the centre of face i. The accuracy of buoyancy computation
is only limited by the discretisation of the geometry. The
same technique is used to compute the linear and quadratic
drag:

l̄i =

{
v̄ie
−0.5|v̄i|2Si, v̄i · n̂i < 0

0, v̄i · n̂i ≥ 0

q̄i =

{
v̄i|v̄i|Si, v̄i · n̂i < 0
0, v̄i · n̂i ≥ 0

D̄l =
1

2
ρC̄l ·

N∑
i=1

l̄i, τ̄l =
1

2
ρC̄l ·

N∑
i=1

r̄i × l̄i

D̄q =
1

2
ρC̄q ·

N∑
i=1

q̄i, τ̄q =
1

2
ρC̄q ·

N∑
i=1

r̄i × q̄i,

(2)

where v̄i is a component of fluid velocity perpendicular
to face i, at the centre of this face, while C̄l and C̄q are
vectors of shape coefficients for the linear and quadratic drag
respectively (three coefficients - one for each axis). Thanks
to the sampling of velocity at each face of the mesh it is
possible to simulate effects of currents, water jets etc., acting
only on a part of the robot. The accuracy of this computation
is limited by the fact that fluid velocity around the body
follows Navier-Stokes equations, which are not possible to
solve in realtime in a general case, and the unknown shape
coefficients. The latter ones are approximated by finding an
ellipsoid or cylinder best fitting the geometry. This idea is
also used for approximating the added mass of the bodies,
see Fig. 4. All of the presented calculations can be easily
parallelised to significantly improve the performance and
allow for more submerged bodies and higher sampling rates,
which is a future goal of the author.

V. REALISTIC RENDERING

An important part of the software is the realistic rendering
of simulated scenarios. It is crucial for accurate simulation
of images generated by cameras, which are then used to test
developed vision algorithms. This is especially important for
researchers working with underwater robots, for whom the
more similar the images are to reality the better the algo-
rithms can be tuned for real applications. Realistic rendering
of underwater scenes as well delivers an estimation of the
range at which cameras can be used, depending on the type
of water and amount of light available.

The Stonefish library is not using any external graph-
ics engine but implements a lightweight, custom solution,
closely coupled with the simulation. Most of the open-source
rendering engines are designed for game developers and
need to cover a wide range of applications, which results
in bulky and heavy software, with lots of configuration and
unnecessary code burden. Moreover, the rendering quality
often does not live up to the current standards and the
algorithms used are not physically based. They also do not
provide functions needed for generating realistic underwa-
ter images. The rendering pipeline of Stonefish is using
the new OpenGL API (application programming interface),
solely based on shaders, with no fixed rendering functions.
Shaders enable endless possibilities for utilising physically
based algorithms and thus simulating all effects encountered
in unusual environments, like the underwater. All lighting
calculations are performed with HDR (high dynamic range)
buffers, later tone-mapped to LDR (low dynamic range)
results, which allows for covering a wide range of light
intensities, occurring especially in real world outdoor scenes.
The main light sources in the environment are sun and sky.
Stonefish simulates both of them with physical correctness,
based on [4], [3]. The simulated effects include multiple
scattering and absorption of sun light in a multilayered model
of Earth’s atmosphere. The complexity of the problem can
be appreciated by realising that the illuminance and colour
at each point on Earth’s surface depends on light reaching
it from every direction. The heavy computations are done
at the start of the simulation and stored in multidimensional
textures. The position of the sun can be changed dynamically,
e.g., according to the date/time and geographic coordinates.
All this gives natural sky rendering and lighting of objects.
The pipeline also supports local lights and shadows. Another
complex element to render is the ocean surface. The shaders
used here are implemented following [8], [5]. The result of
all of the mentioned algorithms can be appreciated in Fig. 5.

The most important, as the simulation is directed towards
marine robotic researchers, is the rendering of underwater
environment. The simulated effects of underwater lighting
include absorption, scattering and air-light. Other simulators
commonly implement just a simple fog effect when rendering
underwater scenes. The intensity of light absorption depends
heavily on light wavelength and water type (algae), as shown
in [17]. This work was used to obtain absorption coefficients
for three basic colour components - red, green and blue.



Fig. 5. Realistic rendering of sky and ocean surface.

This results in realistic colour fading and image darkening.
It is easiest to see with colours related to long wavelengths
- the red elements are quickly faded to dark blue. Figure 6
shows an example of this effect on a poster used for vehicle
localisation. The scattering of light results from turbidity and
it affects images with haze (fog) and blur. Figure 7 presents
an example of images generated with different turbidities.

VI. BUILDING A SIMULATOR

The Stonefish library contains all components needed to
build a stand-alone simulator. This kind of simulator can
run on any platform supported by the SDL library and the
OpenGL library (version ≥ 3.2). In case of the console mode
simulation the OpenGL support is not necessary. There are
two base classes that can be overwritten when building a
simulator: a) a class representing the application (GUI and
input handling) and b) a class representing the simulation
(physics, rendering). If no modification of GUI and no
special input handling are needed, only class b) has to be
subclassed. In class b) there are basically 3 methods that
have to be overwritten: b1) constructor (e.g., initialisation
of data fields, creating ROS publishers and subscribers), b2)
scenario definition (creating and setting up all elements of
the simulation) and b3) post simulation tick callback (called
after a simulation step is completed, used for, e.g., publishing
sensor outputs, updating actuators). In class a) it is possible
to overwrite handling of keyboard, mouse and joystick input
as well as display and operation of the immediate mode GUI.

Building a simulation scenario (overwriting method b2)
is based on writing intuitive code, hiding the complex
interaction with the Bullet Physics library. User has to first
define physical and graphical materials and enable ocean
simulation if needed. Then objects in the environment are
created - either static (flat plane, terrain etc.) or dynamic,
moving when in collision. Next, the user defines meshes
used for robot links, creates sensors and actuators. Lastly,
a robot or multiple robots are composed of the created
components, following concepts used in the URDF (Unified
Robot Description Format) files.

Fig. 6. Simulated map-based navigation using a large poster. From the top:
simulated image without water, simulated image with water, image from a
real camera captured in our test tank.

VII. CONCLUSIONS

In this paper a new open-source simulation tool called
Stonefish is presented. It is composed of a C++ library
and a ROS package to facilitate easy integration with ROS
based robots. The library can run on any platform to ensure
independence from the control architecture used by the users
in their robots, i.e., the ROS package is just an optional part
of the tool. Stonefish delivers realistic simulation of physics
and high quality rendering, which can satisfy the needs of
researchers working both in control of robots and vision
algorithms. The tool implements unique features related to
marine robotics, like geometry-based hydrodynamics, re-
producing real effects in a qualitative sense, or advanced
rendering of underwater scenes, including light absorption
and scattering, really limiting the usable range of cameras.



Fig. 7. Simulated effect of light scattering and air-light for different
turbidity values. From the top: low turbidity, high turbidity.

The future works on the library will focus on further
development of underwater rendering algorithms and im-
proving the performance of the physics computations. In
terms of graphics, author wants to include suspended, mov-
ing particles, volumetric light effects, god-rays and caustics.
In terms of physics, the simulator needs parallelisation of
geometry-based hydrodynamics, through the use of OpenCL,
and an option to use a simplified model following the Fossen
equations. Moreover, robot definition will be simplified by
implementing a URDF file parser.
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