
Ejection-Collision orbits in the symmetric collinear
four–body problem

M. Alvarez-Ramı́rez

Dept. de Matemáticas, UAM–Iztapalapa, 09340 Iztapalapa, Ciudad de México, México
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Abstract

In this paper, we consider the collinear symmetric four-body problem, where

four masses m3 = α, m1 = 1, m2 = 1, and m4 = α, α > 0, are aligned in this

order and move symmetrically about their center of mass. We introduce regu-

larized variables to deal with binary collisions as well as McGehee coordinates

to study the quadruple collision manifold for a negative value of the energy.

The paper is mainly focused on orbits that eject from (or collide to) quadru-

ple collision. The problem has two hyperbolic equilibrium points, located in

the quadruple collision manifold. We use high order parametrizations of their

stable/unstable manifolds to devise a numerical procedure to compute ejection-

collision orbits, for any value of α. Some results from the explorations done

for α = 1 are presented. Furthermore, we prove the existence of ejection-direct

escape orbits, which perform a unique type of binary collisions.
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1. Introduction

The classical n-body problem studies the dynamics of n point masses inter-

acting according to Newtonian gravity. In the symmetric collinear four-body

problem, the bodies are symmetrically distributed about the centre of mass by

pairs, each of those pairs have equal mass and the configuration of the four bod-5

ies is collinear at every instant. It is a two degrees of freedom problem which is

a sub-problem of the trapezoidal four-body problem that has three degrees of

freedom, see the works of Lacomba and Simó ([1, 2]).

The four-body problem has attracted the attention of numerous astronomers

since through it, the gravitational interaction of many stellar or exoplanetary10

systems can be modelled, as the interaction of two binary star systems or the

interplay of two planets with a binary star system. Many of the studies, as the

influence between two binaries, have been carried out from the numerical point

of view ( [3], [4] , [5], [6]). Also, the close interaction of systems of few stars give

rise to the possibility of collisions between two or more stars in a cluster, as close15

encounters and direct physical collisions between stars are frequent in globular

clusters, [7]. These collisions are more frequent as a binary-binary system than

as a system formed by a single star and a binary one. Other numerical studies

have been conducted to understand the numerical scattering of the influence

between binary-binary or single-binary systems, see [8].20

We focus on the particular case of the collinear model of a four body problem.

A solution of the symmetric collinear four-body problem, denoted by SC4BP,

experiences a collision if two or more particles come together at a certain time.

At such a time the potential energy approaches infinity, the equations of mo-

tion become undefined and the solution has a singularity. The analytical and25

numerical study of this problem requires the McGehee’s blow up technique to

regularize the singularity corresponding to total (quadruple) collision and the
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regularization of binary collisions (collisions between m1 and m2) and simul-

taneous binary collisions (m1 and m3 collide as well as m2 and m4), see for

example [9] and [10]. This singularity due to total collision is blown up and in30

its place is glued an invariant total collision manifold. In [2], Simó and Lacomba

analyze the flow on the total collision manifold and they find a family of con-

nection orbits between two quadruple collisions which arise as the parameter of

masses is varied. The flow on this manifold provides relevant information for

the flow close to quadruple collision.35

In addition to the mentioned works of Simó and Lacomba, several papers can

be found in the literature on the symmetric collinear four-body problem. Sweat-

man [11] studies the symmetrical collinear four-body problem with equal masses.

He finds very interesting dynamical phenomena for the problem under study,

showing the existence of periodic, quasiperiodic, fast-scattering and chaotic-40

scattering orbits. Still in the case of equal masses, Sekiguchi and Tanikawa

[12] study the SC4BP both analytically and numerically. In particular, they

classify a great variety of orbits by means of symbol sequences and they obtain

the initial conditions leading to escape using escape criteria established in the

paper.45

Focussing on periodic orbits, Bakker et al. [13] and Sweatman [14], using

analytic-numerical methods, study the existence of Schubart-like orbits (that

is, periodic solutions with exactly two binary collisions and one simultaneous

binary collision per period) as well as their stability depending on the mass

parameter. Later on, Ouyang and Yan [15] and Huang [16] analytically prove50

the existence of such Schubart periodic orbits by applying topological methods

and variational calculus, respectively.

We finally mention, for the symmetric collinear four-body problem, the pa-

pers by Alvarez et al. [9, 17], where the authors provide some analytical results

concerning singularities and regularization, and analytically study the quadru-55

ple collision manifold, the equilibrium points, the infinity manifold and the

relation between both manifolds which allow them to prove the existence of

orbits connecting quadruple collision and infinity. For the collinear non sym-
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metric four-body problem, in [18], Mather and McGehee prove the existence

of solutions which become unbounded in finite time for special values of the60

masses.

The main goal in this paper is to amalgamate both theoretical and numerical

tools to investigate, on one hand, orbits that eject from quadruple collision and

have a fast escape to infinity, and, on the other hand, ejection-collision orbits

(also denoted by ECO), that is orbits that eject from quadruple collisions and go65

back to quadruple collision. The latter are regarded as heteroclinic connections

between the two equilibrium points (that lie on the total collision manifold).

In order to numerically compute ejection-escape orbits and ejection-collision

ones we need the construction of parametrizations, up to certain order, of the

stable and unstable invariant manifolds, W s and Wu, of the equilibrium points,70

using the methodology explained in [19]. At this point we mention the work by

Sekiguchi and Tanikawa [12] where due to the Poincaré section considered, the

ejection-collision orbits are all mixed up and indistinguishable. In the present

paper a different Poincaré section has been taken into account that allows to

classify and distinguish different types of ejection-collision orbits. Following this75

classification, In [20] Lacomba and Medina proved analytically the existence of

certain ejection collision orbits for specific values of the mass parameter. In this

paper, a numerical method is explained to compute ECO for any value of the

mass parameter α and negative energy h. The results are presented for α = 1

and h = −1.80

The paper is organized as follows: in Section 2, we recall briefly some

known results about the dynamics of the SC4BP, including the regularization

of total collision using McGehee’s coordinates [10], the regularization of binary

collisions, the description of the flow on the quadruple collision manifold and

the existence of two hyperbolic equilibrium points, E±. We compute high or-85

der parametrizations of the associated stable and unstable invariant manifolds,

W s,u(E±) and some error tests have been carried out to control the accuracy of

the approximations. Section 3 is devoted to the orbits that eject from (or collide

to) quadruple collision and directly escape to (come from) infinity describing a

4



unique type of binary collisions. In Section 4 we present some properties of the90

ejection-collision orbits and devise a numerical method to compute them. We

show the results for the case α = 1.

2. The symmetric collinear four body-problem

The aim of this section is to present a summary of the equations and the

main properties of the symmetric collinear four-body problem, SC4BP. For more95

details see, for example, [17, 2] and the references therein. In particular, we focus

on the main features for the computation of ejection/collision orbits (orbits that

start/end at a quadruple collision) and ejection-collision orbits (ECO, orbits

that start and end at a quadruple collision): the dynamics on the total collision

manifold, the stable and unstable invariant manifolds of the equilibrium points100

and the Poincaré section used.

2.1. Equations of the SC4BP

The symmetric collinear four-body problem consists of four point masses,

with masses mi, i = 1, . . . , 4, moving on a straight line under the Newton’s law

of gravitation with m1 = m2 and m3 = m4 in symmetric positions with respect105

to the center of mass at the origin. Without loss of generality, we can suppose

that the first two bodies have mass m1 = m2 = 1 and are located at ±x, and the

other two bodies have mass m3 = m4 = α, where α ∈ (0,∞), and are located

at ±y/
√
α. See Figure 1.

x

m3 m1 m2 m4

y/
√
α

Figure 1: Symmetric collinear four–body problem.

In this set of coordinates, the Hamiltonian of the problem is given by

H(x, y, px, py) =
p2x
4

+
p2y
4
− U(x, y), (1)
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where px = 2dxdt , py = 2dydt and the potential function is

U(x, y) =
1

2x
+
α5/2

2y
+

2α3/2

y −
√
αx

+
2α3/2

y +
√
αx

. (2)

The phase space of the problem is U×R2 where U =
{

(x, y) ∈ R2 | 0 <
√
αx < y

}
.110

Notice that the equations have three singularities, one at x = 0 and y 6= 0,

another at y =
√
αx 6= 0, and a third one corresponding to x = y = 0. They

correspond to the following collision configurations:

• Single binary collision: the bodies m1 and m2 collide, while the other

two bodies remain bounded away from them. This type of collision corre-115

sponds to x = 0 and y 6= 0 (collision of type 1 or SBC).

• Double (simultaneous) binary collision: the bodies m1 and m3 col-

lide, and by the symmetry of the problem, so do the other two bodies.

This double collision corresponds to y =
√
αx 6= 0 (collision of type 2 or

DBC).120

• Quadruple collision: the four bodies collide. This collision corresponds

to x = y = 0.

We fix a value of the energy in H = h, so the motion takes place in a 3-

dimensional manifold and, using (1), it is confined in the configuration space

(x, y) to the Hill’s region given by

Rh = {(x, y) ∈ U | U(x, y) ≥ −h}. (3)

The function U(x, y) (given in (2)) is strictly positive for all (x, y) ∈ U , so

for h ≥ 0 the Hill’s region coincides with the configuration space U , whereas

for h < 0 the Hill’s region is limited by U(x, y) = −h. In Figure 2 we show125

the Hill’s region for a negative value of the energy h, and an orbit which ends

at the quadruple collision and performs different binary collisions. We will use

the representation of the orbits in the configuration space (x, y) inside the Hill’s

region Rh through the paper.
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Figure 2: Zero velocity curve and Hill’s region (defined in (3)) in the configuration space

(x, y), the homothetic solution (with θ = θc, dotted line, see Section 2.2), and a solution of

the SC4BP with single binary collisions (SBC, at x = 0) and double binary collisions (DBC,

at y =
√
αx) for α = 1 and h = −1.

In the N -body problem bounded motions can only occur if h < 0 (see, for130

example Chapter 4 in [21]). Therefore, to study the ejection-collision orbits we

consider only negative values of the energy.

Furthermore, in order to study the dynamics close to the quadruple colli-

sion, it is necessary to describe the total collision manifold and the flow on it.

For this purpose, we apply the blow-up technique introduced by McGehee [10].135

Moreover, since the solutions of the SC4BP typically perform several binary

collisions, we will also regularize the singularities (due to collisions) that ap-

pear in the system of the ordinary of differential equations (ODE). The suitable

transformations of the blow up and the regularization in the symmetric collinear

four-body problem have been made by Alvarez-Ramı́rez et al. [17]. For com-140

pleteness of the present work, and in order to understand the meaning of the

regularized variables, we summarize the changes carried out.

• Introduce polar coordinates

x = r√
2

cos θ, y = r√
2

sin θ,

px =
√

2pr cos θ −
√

2pθ sin θ, py =
√

2pr sin θ +
√
2
r pθ cos θ,
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θ ∈ (θα,
π
2 ), where θα = arctan(

√
α ) corresponds to double binary colli-

sions (DBC). The associated potential function is

V (θ) = rU(x, y) =
1√

2 cos θ
+

α5/2

√
2 sin θ

+
2
√

2α3/2

sin θ −
√
α cos θ

+
2
√

2α3/2

sin θ +
√
α cos θ

.

(4)

• Introduce the McGehee’s coordinates (v, u) and a change in time through

the relations

pr = r−1/2v, pθ = r1/2u, dt = r3/2dτ.

• Remove simultaneously all binary collisions, considering the regularized

potential

W (θ) = V (θ) cos θ(sin θ −
√
α cos θ),

which is a positive, real analytic function in [θα, π/2], and the change of

time and coordinates given by

dτ

ds
= ∆(θ) =

cos θ(sin θ −
√
α cos θ)√

W (θ)
, w = ∆(θ)u. (5)

In coordinates (r, v, θ, w) and s as time variable, the equations of the SC4BP

become

dr

ds
= rv∆(θ),

dv

ds
=

√
W (θ) +

(
2rh− v2

2

)
∆(θ),

dθ

ds
= w, (6)

dw

ds
= −vw

2
∆(θ) + (cos 2θ +

√
α sin 2θ)

(
2rh− v2√
W (θ)

∆(θ) + 1

)

+
W ′(θ)

W (θ)

(
cos θ(sin θ −

√
α cos θ)− w2

2

)

where W ′ =
dW

dθ
. The energy relation H = h from (1) becomes

w2 =
(
2rh− v2

)
∆(θ)2 + 2 cos θ

(
sin θ −

√
α cos θ

)
. (7)
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The vector field defined by equations (6) is an analytic vector field on the145

phase space F = [0,∞) × R × [θα, π/2] × R. The solutions of the ODE, also

called orbits, will be denoted by Γ = {γ(s)}s∈R or simply by γ(s).

A straightforward computation shows that the set of equations (6) satisfies

the symmetry

L1 : (r, v, θ, w, s)→ (r,−v, θ,−w,−s). (8)

Therefore, if Γ is a solution given by γ(s) = (r(s), v(s), θ(s), w(s)), then Γ

defined as

γ(s) = (r(−s),−v(−s), θ(−s),−w(−s)) (9)

is also a solution.150

Notice that the solutions γ(s) and γ(s) trace the same path in (r, θ) (or

(x, y)) coordinates. The paths are traveled in reverse senses. As a consequence,

if a solution goes through a point where v = w = 0 at a certain time s0, then

r(s0 + s) = r(s0 − s) and θ(s0 + s) = θ(s0 − s) for all time s. That is, the orbit

goes through the same path in configuration space before and after s0.155

Definition 1. Γ is a symmetric solution (orbit) of equations (6) if there exists

an s0 ∈ R such that the curve q(s) = (r(s), θ(s)) satisfies that q(s0 + s) =

q(s0 − s), ∀s ∈ R.

We recall that, from (7) and the definition of w (5), v = w = 0 means a

binary collision (single or double) or a point on the zero velocity curve.160

2.2. Total collision manifold, equilibrium points and invariant manifolds

Notice that the system (6) is well defined for r = 0, which corresponds to

the total collision manifold C, given by

C = {(r, v, θ, w) ; r = 0, w2 = −∆(θ)2v2 + 2 cos θ
(
sin θ −

√
α cos θ

)
},

which is a 2-dimensional manifold, topologically equivalent to a sphere minus

four points, independent of the total energy h and invariant under the flow

(6). The total collision manifold C belongs to the boundary of the manifold
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defined by a constant energy, h, for any value of h. Furthermore, the flow on165

C is gradient-like with respect the variable v, that is, dv/ds ≥ 0. See, for more

details, [17, 22, 2].

The SC4BP has two equilibrium points

E± = (0,±vc, θc, 0) (10)

where θc is the only solution of V ′(θ) = 0 (the potential V is defined in (4)).

Furthermore, the SC4BP has a specific solution for which θ = θc for all s ∈ R.

It is called the homothetic solution because the ratio y/x = tan θc remains170

constant (see [17]). It is seen as a segment in the configuration plane U and

divides it into two regions: the region of the DBC for θ ∈ [θα, θc), and the region

of the SBC for θ ∈ (θc, π/2]. See Figure 2.

Both equilibrium points are hyperbolic: the differential of the vector field

evaluated at the equilibrium points has four different real eigenvalues, two pos-175

itive and two negative, for any value of α, see Lemma 1 in the Appendix. Also,

we give explicit formulas for the eigenvalues and the corresponding eigenvectors

in terms of α, θc and the energy h.

Therefore, there exist the corresponding stable and unstable invariant mani-

folds W s(E±) and Wu(E±). On the constant energy manifold their dimensions

are the following:

dim(Wu(E+)) = dim(W s(E−)) = 2, dim(Wu(E−)) = dim(W s(E+)) = 1.

In particular, the invariant manifolds Wu(E−) and W s(E+) are embedded in

the total collision manifold C. In Figure 3, we plot their projection in the (θ, v)180

plane for two values of the mass parameter α.

The dynamics on the total collision manifold C is the key to understanding

the solutions of the SC4BP that go close to quadruple collision, in particular,

the ejection-collision orbits. In [2], Simó and Lacomba show that there exists

a sequence of values {αk}k≥1 for which one or both branches of Wu(E−) and185

W s(E+) coincide (a single or double heteroclinic connection). For values of

α ∈ (αk, αk+1) the branches of these invariant manifolds (that are contained in
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Figure 3: Projection on the (θ, v) plane of the total collision manifold C and the two branches

of the invariant manifold Wu(E−) for α = 1 (left) and α = 2 (right). W s(E+) can be

obtained using the symmetric solution (9).

C), behave similarly in a topological sense: first they have a number of alternat-

ing double collisions of both types, and then only perform one type of binary

collision as v increases. The number and type of binary collisions of each branch190

of Wu(E−) (similarly for W s(E+)) are the same for any α ∈ (αk, αk+1). In Fig-

ure 3 we show one example where each branch of Wu(E−) performs different

types of binary collisions as v increases (left, case α = 1 ∈ (α3, α4)) and another

example where both branches perform the same type of binary collisions (right,

case α = 2 ∈ (α4, α5)). That behavior has been used by Lacomba and Medina in195

[20] to prove the existence of some ejection-collision orbits for specific intervals

of values of α depending on the behavior of the invariant manifold Wu(E−).

Our purpose in this paper is to give a numerical general methodology that al-

lows to compute the ejection-collision orbits for any value of α. Clearly, these or-

bits belong to the intersection of the invariant manifolds Wu(E+) and W s(E−)

in R4. Thus, in order to deal with them, we construct an approximation of their

parametrizations. The approximations of order one are given by

Ψ−1 (ξ, ϕ) = E− + ξ (cos(2πϕ) σ1 + sin(2πϕ) σ4) ,

Ψ+
1 (ξ, ϕ) = E+ + ξ (cos(2πϕ) σ1 + sin(2πϕ) σ3)

(11)

where σi are the corresponding eigenvectors and ξ > 0 is a small fixed quantity,

the distance from the initial conditions to the equilibrium point. See the Ap-
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pendix for more details and (24) for the specific expressions of the first order200

approximation for each variable. In fact, using the symmetry (9), for any orbit

Γ ⊂W s(E−), we have that Γ ⊂Wu(E+), and the other way around. Therefore,

it is enough to construct the parametrization of one of the invariant manifolds.

From the particular expressions for the variables r and θ (see (24) in the

Appendix) we make two remarks. On one hand, we have that r > 0 only for205

values ϕ ∈ (1/4, 3/4), so these will be the only values considered. The values

ϕ = 1/4, 3/4 give the parametrization of the orbits of the invariant manifold

inside the collision manifold C. On the other hand, the values ϕ ∈ (1/4, 1/2)

are such that the initial θ satisfies θ > θc, so the orbits start in the region of

the SBC, whereas values ϕ ∈ (1/2, 3/4) correspond to initial values θ < θc, so210

the orbits start in the region of the DBC. The homothetic solution is obtained

when ϕ = 1/2.

The vectors σ1 and σ3,4 give the slow and fast directions, respectively, of

the linear dynamics on Wu(E+), W s(E−), so the slow and fast submanifolds

are given by ϕ = 1/2 and ϕ = 1/4, 3/4. The orbits close to the slow direction,215

which here coincides with the homothetic solution, will be difficult to follow

due to the stronger pull of the fast direction. In practice this means that in

order to consider orbits close to the homothetic solution, we need to take values

ϕ ∈ (1/2 − ε, 1/2 + ε), for ε small enough. As we will show, the richness of

the dynamics on the invariant manifold (in the sense of greater variety of orbits220

exhibiting different numbers of binary collisions, and in particular to obtain

ejection-collision orbits) occurs precisely around the homothetic solution. For

example, taking α = 1 and h = −1, for most of the values ϕ ∈ (1/4, 3/4), the

orbits escape to infinity directly exhibiting only one type of binary collisions (see

Section 3), so they are useless in order to compute ejection-collision orbits. If we225

take the approximation of order one, Ψ±1 (ξ, ϕ), to work with a good precision,

for example of order 10−12 (see below for details), it will be necessary to consider

values of ξ less than 10−6. However, with such small values of ξ, in order to

show the richness of the dynamics around the homothetic we need to consider

values ε ' 10−9.230
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Therefore, if we want to consider initial conditions close to the slow direc-

tion, we need to start farther away from the equilibrium point, that is, with

bigger values of ξ. Following [19] (specifically, Chapters 1 and 2), we derive

the parametrization of the invariant manifold up to different orders Ψ+
m, for

m ≤ 8, and we have performed several numerical tests to control the quality

of the approximation. Specifically, one can compute how big ξ can be in order

to maintain a certain accuracy. To do that, for each order m and distance ξ,

compute the error in the orbit eo(s, ξ, ϕ) (see Section 2.5 of [19]) for s ∈ [0, 1]

and the maximum value over all the orbits

Eo(ξ) = max
ϕ∈(1/4,3/4)

eo(1, ξ, ϕ).

The same procedure can be applied to the errors in the invariance equation and

the errors in the energy (see [19] for details). For α = 1 and h = −1 we have

computed Eo(ξ) and the parametrizations Ψ+
m for m = 2, 3, 5, 8, see Figure 4.

For example, in order to have an accuracy below 10−8 with m = 5 we need ξ

up to 0.015 approximately, whereas with m = 8 we can take values up to order235

0.05.

1e-014

1e-012

1e-010

1e-008

1e-006

0.0001

0.01

 0  0.02  0.04  0.06  0.08  0.1

E
o

ξ

m=2

m=3

m=5

m=8

Figure 4: Error of the approximations of the parametrizations Ψm for m = 2, 3, 5, 8 with

respect the distance ξ at which the initial conditions on Wu(E+) are taken, for α = 1 and

h = −1.

For the purposes of this work, we have considered, for α = 1, a parametriza-

tion of order m = 8 and ξ of order 10−2. With these values, we will show that
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all the ejection-collision trajectories will be found for ϕ ∈ (1/2− ε, 1/2 + ε), for

ε of order 10−4.240

2.3. Poincaré section

A common tool, in order to study the dynamics of a problem given by

an autonomous system of differential equations, is the Poincaré map, which

is defined on a surface of section. In [12], Sekiguchi and Tanikawa perform a

wide exploration of the dynamics of the problem using as a surface of section245

{θ = θc}. In fact, an orbit cannot cross the section {θ = θc} between two

consecutive binary collisions of the same type (see Theorem 7 in [12]).

At this point we want to stress the attention on two important facts for

the computation of ejection-collision orbits. These orbits start and end at r =

0, which corresponds to the boundary of the section {θ = θc} in the (v, w)250

plane, used by Sekiguchi and Tanikawa [12]. In their representations of the

return map to that section, different ejection-collision orbits, that are on that

boundary, share common points. Therefore, they are indistinguishable in that

representation. Moreover, the authors assure in Theorem 1 that all the solutions

of the SC4BP must cross the section {θ = θc} forwards or backwards in time at255

least once. That is not true. In the proof the authors forget about the invariant

manifolds Wu(E+) and W s(E−). We will show in Section 3 that there exist

orbits that start at a quadruple collision and escape directly without crossing

{θ = θc} (see Theorem 1) and in Section 4 we will show ejection-collision orbits

that do not cross that section (by cross we always mean transversal intersection).260

Taking into account that, typically, all the orbits perform binary collisions

(with the exception of the homothetic orbit), we consider the section

Σc = {(r, v, θ, w);w = 0, θ = θα or θ = π/2}, (12)

which corresponds to both types of binary collisions: SBC and DBC.
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3. Escape orbits

Notice that there are two different ways for the particles to escape to infinity.

In one case, the outer bodies escape, while the inner bodies perform consecutive

single binary collisions –escape of type 1–. In the other case, all the bodies265

escape performing consecutive double binary collisions –escape of type 2–.

Definition 2. A solution of the SC4BP is an escape orbit if some or all par-

ticles go to infinity forwards or backwards in time. More concretely, it has an

escape of type 1 if y → +∞ while x remains bounded, whereas it has an escape

of type 2 if x, y → +∞.270

Notice that when the escape is of type 1, the solution stays in the region

θ > θc when s → ±∞ (forwards/backwards), so only SBC occur (collisions

of type 1). Similarly, when the escape is of type 2, the solution stays in the

region θα < θ < θc when s → ±∞ (forwards/backwards), so only DBC occur

(collisions of type 2).275

Sekiguchi and Tanikawa [12] (Theorem 5) established analytical sufficient

conditions to determine when an orbit is an escape orbit. We follow the same

arguments to derive the same criteria in our variables.

Proposition 1. Let P = (r, v, θ, w) be a point in the phase space F , γ(s) be

a solution of the equations (6) that goes through P , and δ = tan(θc) (given in280

(10)).

1. For θ > θc, let Υ = v sin θ +
w

∆(θ)
cos θ. If

sin θΥ2 ≥ α3/2
√

2

(
α+ 8δ2

δ2 + α

(δ2 − α)2

)
,

then the orbit has an escape of type 1.

2. For θ < θc, let Υ = −w
√
W (θ) + v cos2 θ + v

√
α cos θ sin θ. If

sec θ(1 +
√
α tan θ)Υ2 ≥ (1 + α)2

√
2(

1

(1−
√
αε)2

+
α3

(
√
α+ ε)2

+
8α2

(2
√
α+ (1− α)ε)2

)
,

where ε = (δ −
√
α)/(1 + δ

√
α), then the orbit has an escape of type 2.
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In both cases, the orbit escapes forwards or backwards in time depending on

whether Υ is positive or negative, respectively.285

Proof. We follow exactly the same methodology as in [12] using our notation.

Consider the first case θ > θc (in the configuration plane, the region of

SBC, where x is bounded). We want to see that if the sufficient condition is

satisfied, then lims→∞ y(s) = ∞. From the system of equations associated to

the Hamiltonian (1), the equation for the variable y writes

ÿ = − 1

y2
f(x/y)

where f(z) =
α5/2

4
+2α3/2 1 + αz2

(1− αz2)2
is a positive monotone increasing function

for z ∈ (0, 1/
√
α). The region θ > θc corresponds to z = x/y < 1/δ where

δ = tan(θc) and

ÿ ≥ −f(1/δ)

y2
.

It means that the force acting on the external bodies is bounded from below

by the force of the two-body problem given by −f(1/δ)

y2
. Thus, a sufficient

condition for escape motion is that the total energy of the two-body problem

should be to be positive, that is yẏ2 ≥ 2f(1/δ). In our variables (θ, v, u) it

becomes

sin θ(v sin θ + u cos θ)2 ≥ 4
√

2f(1/δ). (13)

Now, if we rewrite (13) in terms of the variables (θ, v, w), the result stated in

the item 1. of the proposition is followed.

The next is to consider the case with θ < θc, which corresponds to the region

DBC in the configuration plane. In this hypothesis, escape motion means that

the four masses escape to infinity. Therefore, both x, y → ∞ and we need to

introduce Jacobi variables:

Q1 = x+
√
α y, Q2 = y −

√
αx.

That is, essentially, Q1 is the center of mass and Q2 is the distance between m2

and m4. In these variables, the escape through the DBC region corresponds to
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Q1 →∞ whereas Q2 remains bounded. The equation of motion corresponding

to Q1 becomes

Q̈1 =
−(1 + α)2

Q2
1

g(Q2/Q1),

where g(z) =
1

4(1−
√
α z)2

+
α3

4(
√
α+ z)2

+
2α2

(2
√
α+ (1− α)z)2

is a positive

monotone increasing function for z ∈ (0, 1/
√
α). Therefore, when θ < θc, we

have y/x < δ and

Q̈1 ≥
−(1 + α)2

Q2
1

g(D),

for z ≤ D = (δ−
√
α)/(1+δ

√
α). Again, a sufficient condition for escape motion

is the total energy of the two-body problem must be positive. It means that

Q1Q̇
2
1 ≥ 2(1 + α)2G(D). (14)

As in the previous case, if we rewrite (14) in terms of the variables (θ, v, w), the

result stated in the item 2. of the proposition is followed.290

Next, we use the above criteria and the linear approximation of the parametriza-

tion of the invariant manifolds to show that there are orbits that escape forwards

(or backwards) in time and have only one type of binary collision. We call them

ejection-direct escape orbits of type 1 or type 2 depending on the type of the

escape. In particular, this result shows that there exist solutions of the SC4BP295

that do not cross the section {θ = θc} (see Section 2.3).

Theorem 1. There exist ejection-direct escape orbits of type 1 and of type 2,

that is, orbits starting (or ending) at the quadruple collision and escaping to

(coming from) infinity with binary collisions only of one type.

Proof. By the symmetry of the problem, it is enough to prove that there exist300

orbits on Wu(E+) that escape forwards in time performing binary collisions

only of one type. We will prove the result for orbits that have only SBC. The

proof to obtain orbits with only DBC is similar.

We will use the criteria given in Proposition 1. As we want to prove escape
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forwards in time of type one, we must see that305

F (v, θ, w) = Υ2 sin θ − α3/2
√

2

(
α+ 8δ2

δ2 + α

(δ2 − α)2

)
≥ 0,

Υ(v, θ, w) = v sin θ + w cos θ/∆(θ) > 0.

Using the approximation of the parametrization of order 1 of the invariant

manifold Ψ+
1 (ξ, ϕ) given in (11) and (24), and omitting the variable r, a point

on Wu(E+) close to the equilibrium point can be written, for ξ small enough,

as

p = (v, θ, w) = p0 + p1 +O(ξ2),

where p0 = (vc, θc, 0) and p1 are the terms of order 1 in ξ for values ϕ ∈

(1/4, 1/2), so that we ensure that θ > θc and the initial condition is in the

region of SBC.

Clearly Υ(p) = Υ(p0)+O(ξ) = vc sin θc+O(ξ) > 0 for ξ small enough. Next,

consider F (p) = F (p0) + DF (p0) · p1 + O(ξ2). On one hand, Υ(p0)2 sin θc =

2V (θc) sin3 θc, where V (θ) is the potential function given in (4). Using that

V ′(θc) = 0, after some computations, one can get that F (p0) = 0. On the other

hand,

DF (p0) = 2vc sin2 θc

(
sin θc,

3vc
2

cos θc,
cos θc
∆(θc)

)
,

and using (24)

DF (p0) · p1 = 2ξ vc sin2 θc

(
−h sin θc√
h2 + v2c

cos(2πϕ)

+
cos θc√
1 + λ23

(
3vc
2

+
λ3

∆(θc)

)
sin(2πϕ)

)
(15)

where h < 0, ∆(θc) > 0 (see (5)) and λ3 = λ3(E+) > 0. Therefore, if we

consider values ϕ = 1/4 + ε, DF (p0) · p1 > 0, which concludes the proof.310

The proof of Theorem 1 shows that the orbits with initial conditions Ψ±1 (ξ, ϕ)

with ϕ = 1/4 + ε are the ones that escape (forwards/backwards) directly to

infinity exhibiting only SBC (type 1) (analogous with ϕ = 3/4 − ε and DBC).

Recall that the values ϕ = 1/4, 3/4 correspond to the fast direction on the
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invariant manifold, whereas ϕ = 1/2 corresponds to the homothetic and the315

slow direction. Therefore, the farther an initial condition from the homothetic

solution is, the higher the probability to escape directly to infinity.

We show numerically, for α = −1 and h = −1, that the orbits with initial

conditions Ψ+
8 (ξ, ϕ) for ϕ = 1/4 + ε and ϕ = 3/4 − ε are the ones that escape

directly. We consider the unstable manifold Wu(E+), ξ = 10−2 and vary ϕ ∈320

(1/4, 3/4). Given an initial condition, we integrate the ODE (6) forwards in time

and, at each step, we control the escape condition. If the condition is satisfied

and the orbit has not crossed the section {θ = θc}, we save the time se at that

point. In Figure 5 we show, on the left, that for all values of ϕ ∈ (1/4, 0.49998)

all the orbits escape directly with collisions only of type 1. A similar behavior325

is shown for ϕ ∈ (0.500006, 3/4) (right plot) , with orbits escaping directly with

collisions only of type 2. In Figure 5, some examples of direct escape are plotted

for s ≤ se.

4. Ejection-collision orbits

In this Section we present some results about the ejection-collision orbits, as330

well as the methodology to compute and classify them. Also the results obtained

for α = 1 are presented.

Definition 3. An ejection-collision orbit (ECO) of the SC4BP is a solution

Γ = {γ(s)}s∈R of (6) such that lims→±∞ r(s) = 0.

An ECO is a solution that starts and ends in a quadruple collision. Therefore,

the orbit belongs to the intersection Wu(E+) ∩W s(E−). More concretely,

lim
s→−∞

γ(s) = E+, lim
s→+∞

γ(s) = E−,

so it is a heteroclinic connection between the two equilibrium points.335

Using the symmetry of the problem given by (8), we can prove the following

statements:

Proposition 2. Let Γ be a solution of the SC4BP.
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Figure 5: For orbits on Wu(E+) with initial conditions Ψ+
8 (0.01, ϕ) for α = 1 and h = −1,

we plot the time se (in logarithmic scale) at which the escape condition through the SCB (top

left plot) or DCB (top right plot) regions is satisfied without crossing θ = θc. Bottom: some

example of orbits of direct escape, for s ≤ se.

1. If Γ ∈ Wu(E+) is a symmetric solution (see Definition 1), then it is an

ECO.340

2. If Γ is an ECO, then Γ (defined in (9)) is also an ECO.

Proof. By definition, if Γ ∈ Wu(E+), then lims→−∞ r(s) = 0. If the solution

is symmetric, then lims→+∞ r(s) = 0, so it is an ECO.

If Γ = {γ(s)}s∈R is an ECO, then it connects E+ −→ E−. Then, by definition

of γ(s)

lim
s→−∞

γ(s) = E+, lim
s→+∞

γ(s) = E−.
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Therefore Γ is an ECO.

If Γ is an ECO, both Γ and Γ trace the same path in the configuration space

(r, θ) (or (x, y)) in opposite sense.

Notice that, if a solution Γ = {γ(s)}s∈R ∈ Wu(E+), then lims→−∞ θ(s) =

θc. Therefore, Γ only can have a finite number of binary collisions backwards

in time, so there exists a first binary collision. Recall that the binary collisions

can be viewed as the intersections of a solution with the section Σc. We denote

pj =

 1 the j-th intersection is a SBC,

2 the j-th intersection is a DBC,
for j = 1, . . . , n.

Let B be the set of all possible sequences just taking into account the elements

1 and 2. Thus, we can define

P : Wu(E+) −→ B

Γ −→ (p1, p2, . . . , pn, . . . )
(16)

For example, the escape orbits shown in Figure 5 satisfy P (Γ) = (1, 1, . . .) or345

P (Γ) = (2, 2, . . .), that is, they only exhibit the same type of binary collision.

In Figure 6 we show the orbits Γ1 and Γ2 such that P (Γ1) = (1, 1, . . .) and

P (Γ2) = (1, 2, . . .).

Using the map P we have the following characterizations and properties.

Proposition 3. Let Γ ∈Wu(E+). Then350

1. P (Γ) is finite if and only if it corresponds to an ECO.

2. If Γ is an ECO such that P (Γ) = (p1, p2, . . . , pn), then Γ is an ECO with

P (Γ) = (pn, pn−1, . . . , p1).

3. Γ is a symmetric ECO if and only if P (Γ) is a symmetric sequence.

Proof. Suppose that an ECO has infinity binary collisions. Then, there exists355

a sequence S = {sn}n≥1 such that θ(sn) ∈ {θα, π/2}. Because the orbit is an

ECO, lims→±∞ θ(s) = θc, and S must be bounded which is not possible as the

function θ(s) is analytic. The second statement comes from the definition of a

symmetric solution Γ. The last one is clear using that P (Γ) = P (Γ).
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Figure 6: Two orbits Γ1,2 ∈Wu(E+) plotted up to their second intersection with the section

Σc. In one case, the two intersections correspond to SBC, so P (Γ1) = (1, 1, . . .). In the

other case, the two intersections correspond to binary collision of different type with P (Γ2) =

(1, 2, . . .).

Definition 4. Γ is an ECO of order n if P (Γ) = (p1, p2, . . . , pn).360

If an ECO of order n is symmetric, depending on the parity of n, it must

touch the zero velocity curve.

Proposition 4. Let Γ be a symmetric ECO of order n. Then, the orbit has a

point on the zero velocity curve if and only if n is even. In this case, such point

takes place between the (n/2)-th and (n/2 + 1)-th binary collision.365

Proof. If Γ = {γ(s)}s∈R is symmetric, then there exists a time s0 such that the

orbit traces the same trajectory in the (r, θ) plane before and after s0. Therefore,

γ(s0) is a point of return and the number and type of binary collisions must be

the same before and after s0. Thus, n must be even and the point must be on

the zero velocity curve.370

The dynamics on the total collision manifold C is the key to prove the exis-

tence of ECO. In [20], the authors use that information to show the existence

of some ECO for specific values of α. In particular, they prove that for any

value of the mass parameter α and for any natural number n there exists an

ECO exhibiting only and exactly n SBC or n DBC. They also prove that for375
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α ∈ (α3, α4) (see Section 2.2), an ECO with P (Γ) = (1, 2, 1, 2, 1) exists (in

particular this is true for α = 1).

Our aim is to present a methodology to compute and classify the ECO for

any fixed value of α. We will show and analyze the results obtained for the

specific value α = 1.380

4.1. Methodology

In order to look for heteroclinic connections between the two equilibrium

points, the main idea is to analyze the successive intersections of the orbits of

the invariant manifolds W s(E−) and Wu(E+) with the section Σc, defined in

(12). Due to the symmetry of the problem, it is enough to deal with one of the

invariant manifolds. In what follows, we consider initial conditions on Wu(E+)

and the approximation of its parametrization, Ψ+
m(ξ, ϕ), for a suitable m and

for a fixed value of ξ. For simplicity we denote the parametrization simply by

Ψ(ϕ). Then, each orbit γ(s) ∈Wu(E+) is characterized by its initial condition

given by

γ(0) = Ψ(ϕ) = (r0, v0, θ0, w0),

where ϕ ∈ (1/4, 3/4). For each ϕ, we integrate forward in time to compute the

first n intersections of γ(s) with Σc. We define the map

Pn : (1/4, 3/4) −→ B

ϕ −→ (p1, p2, . . . , pn),
(17)

where Pn(ϕ) = (p1, p2, . . . , pn) codes the first n intersections with Σc of the

solution γ(s) with initial condition Ψ(ϕ).

We want to notice here that for a given ϕ, p1 is the first binary collision

after the initial condition. Depending on the the initial distance ξ considered,385

there could exist a binary collision before the initial condition (backwards in

time, towards the quadruple collision). This is specially true for values of ϕ

near to 1/4 and 3/4. As we explained in Section 3, the solutions corresponding

to values far from ϕ = 1/2 (the homothetic orbit) escape directly to infinity. So

the ECO will be found for values ϕ ∈ (1/2− ε, 1/2 + ε), for ε small, depending390
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on α and ξ. For example, for α = 1 and ξ of order 10−2, ε ' 10−4. We will

show that for such values of ϕ, and for the order of the ECO computed, the

first binary collision takes place far away from the equilibrium point, so Pn(ϕ)

starts with the very first binary collision of the orbit.

Up to now, we have characterized the ejection-collisions orbits in terms of395

the map P . In order to detect and compute them we use the following result:

Proposition 5. Let the maps P and Pn be given in (16) and (17), and ϕ1 < ϕ2

be such that

Pn+1(ϕ1) = (p1, p2, . . . , pn, p
1
n+1),

Pn+1(ϕ2) = (p1, p2, . . . , pn, p
2
n+1),

with p1n+1 6= p2n+1. Then, there exists a value ϕ ∈ (ϕ1, ϕ2) such that the solution

Γ with initial condition Ψ(ϕ) is such that P (Γ) = (p1, p2, . . . , pn).400

The proof is straightforward by continuity with respect to the initial condition

ϕ.

An illustration of Proposition 5 is shown in Figure 6: the red orbit Γ1 has an

initial condition Ψ(ϕ1) with P2(ϕ1) = (1, 1) and the blue orbit Γ2 has an initial

condition Ψ(ϕ2) with P2(ϕ2) = (1, 2). So, in between there exists an ECO such405

that P (Γ) = (1).

Using Proposition 5, to detect the existence of an ECO of order n, we vary

ϕ ∈ (1/4, 3/4) and we compute Pn+1(ϕ) integrating the equations (6) of the

SC4BP up to the (n+ 1)-th crossing with Σc. To detect a change in the type of

the binary collision, it is enough to track the value of θ at the (n+1)-th crossing,410

θn+1(ϕ): when it changes from π/2 to θα, or the other way around, we are in

the situation of Proposition 5. Although the discontinuities of the function

θn+1(ϕ) show the existence of ECO, we propose to use, instead, the function

Fn+1(ϕ) = r(θ− θc), where r and θ are the values of the orbit at the (n+ 1)-th

intersection with the section Σc (or the (n + 1)-th binary collision). Clearly,415

the function Fn+1 is continuous and due to the fact that r > 0, it changes sign

depending on whether θ is greater or smaller that θc. Therefore, each solution
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of Fn+1(ϕ) = 0 corresponds to an ECO orbit of order j ≤ n. We track the

sign of the function Fn+1 and apply an iterative method to obtain the value of

ϕ (up to a certain precision) that corresponds to the ECO. We have repeated420

the explorations for α = 1 and different values of ξ = 0.001, 0.01, 0.05. In all

cases we have obtained the same results (that is, the same ECO). In Figure 7

we show the values of θn+1(ϕ) and Fn+1(ϕ) for n = 4, 5, 6 and ϕ < 1/2, using

α = 1, ξ = 0.05 and h = −1. For n = 4 the function F5 shows four zeros,

corresponding to four ECO of order n ≤ 4 (see Table 1 in next section), for425

n = 5, the function F6 shows six zeros, corresponding to the same ECO and

two new ones, of order 5. And so on.
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Figure 7: Functions θn+1(ϕ) and Fn+1(ϕ) = r(θ − θc) for α = 1, h = −1, ϕ < 1/2 and

n = 4, 5 (first row) and n = 6 (second row; on the right, the plot shows a detail showing five

of the zeros of the function). α = 1, h = −1.
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We want to notice two important issues. On one hand, the bigger the order

n, the smaller the interval I = (1/2 − ε, 1/2 + ε) where some of the zeros of

Fn+1 exist. However, fixed an order n, to look for the zeros of Fn+1 with a good430

accuracy, it is important to take a big ε, and a suitable ξ (as big as possible).

This implies that a high order approximation of the parametrization of the

invariant manifold is needed.

On the other hand, up to the values of n computed, we find that all of the

zeros of the functions Fn+1 are transversal. If this observation was true for any

ECO, the result of the Proposition 5 would be an if and only if result. That

is, if the ECO of order n corresponds to ϕ̄ and Γ is the solution with initial

condition Ψ(ϕ̄), such that

P (Γ) = (p̄1, . . . , p̄n)

then

Pn+1(ϕ̄+ ε) = (p̄1, . . . , p̄n, p
1
n+1)

Pn+1(ϕ̄− ε) = (p̄1, . . . , p̄n, p
2
n+1)

where p1n+1 6= p2n+1 for ε small enough. Numerically we observe that this is true.435

4.2. Results

We present here, for α = 1 and h = −1, the ECO computed up to order

n ≤ 7 by looking for the zeros of the function F8(ϕ) as explained in the previous

Section. The orbits obtained are summarized in Tables 1– 4. Recall that, for

any ECO of order n of type (p1, . . . , pn), there exists also the symmetric one440

(pn, . . . , p1) that traces the same path in configuration space, so they are not

included.

For n ≤ 4, only ECO of type (1, n). . ., 1) or (2, n). . ., 2) exist, so there are only

two ECOs for each order, see Table 1. For n = 5 we find four different ECO,

all of them symmetric, see Table 2. The first non-symmetric orbits are found445

for n ≥ 6. For n = 6, there exist eight different ECOs, two symmetric and

six non-symmetric, see Table 3. We plot three of the non-symmetric ones, the
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Table 1: For each order n = 1, . . . , 4 only two ECOs are found, all of them exhibiting binary

collisions of only one type for α = 1 and h = −1.
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other three are obtained by symmetry, and have the same projection in the

configuration space. Similarly, for n = 7, there exists twelve different ECOs,

four of them symmetric, see Table 4.450
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(1,2,1,2,1) (2,1,2,1,2)

 0

 2

 4

 6

 8

 0  2  4  6  8

y

x

 0

 2

 4

 6

 8

 0  2  4  6  8

y

x

Table 2: ECOs obtained for n = 5 with α = 1 and h = −1. All of them are symmetric.

Notice that, as was stated in Proposition 4, when n is even, the symmetric

orbits have a point on the zero velocity curve.

We finally notice that in [20], Lacomba and Medina give a graph, for certain

values of α, that allows to identify the possible sequences of binary collisions

for an orbit passing near the total collision. This is in accordance with [12],455

where the authors mention that not all the possible sequences are realizable. We

reproduce (in our notation) that graph in Figure 8 for α = 1. For example, from

the graph in Figure 8 it is clear, that no ECO orbits of types (2, k). . ., 2, 1, 1) and

(1, k). . ., 1, 2, 2) can exist (since from the graph, we see that the partial sequences

(2, 1, 1) or (1, 2, 2) cannot exist).460
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Table 3: ECOs obtained for n = 6 with α = 1 and h = −1. First row, symmetric orbits.

Second row, non-symmetric orbits. Their symmetric ones, which have the same projection on

the (x, y) plane, are the ECOs (2,1,2,1,2,1), (1,2,1,2,1,1) and (2,1,2,1,2,2).
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Table 4: ECOs for n = 7 with α = 1 and h = −1. Symmetric ones (first and second rows).

Non symmetric ones (third and fourth rows). Their symmetric ones, which have the same

projection on the (x, y) plane, are the ECOs (1,2,1,2,1,1,1), (2,1,2,1,2,1,1), (2,2,1,2,1,2,1) and

(2,1,2,1,2,2,2).
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Figure 8: Directed graph containing allowed sequences of binary collisions for orbits passing

near the total collision for α = 1.

5. Discussion and conclusions

As stated in [12], the invariant manifolds W s,u(E±) separate different kinds

of dynamical behaviors taking into account the type of binary collisions. In

particular, their intersections correspond to the ejection-collision orbits from/to

quadruple collision. On one hand, we present here a specific characterization465

of the ECO and a methodology to compute them for any value of the mass

parameter α and negative energy h. The method presented uses as a Poincaré

section Σc that corresponds to the binary collisions DBC and SBC. The differ-

ence with the mentioned work is that they use as a Poincaré section the plane

that contain the homothetic {θ = θc}, which is not suitable for the computation470

of the ECOs. The methodology also relies in the computation of an approx-

imation of order m (for a suitable m) of the parametrization of the invariant

manifolds. On the other hand, the approximated parametrization allows us to

prove that there exist orbits that eject from quadruple collision and escape to

infinity performing only binary collisions of one type (direct escape). Clearly,475

the same is true reversing time (orbits ending in quadruple collision). Our guess

is that there should be a separation between those ejection orbits that escape

directly with one type of binary collisions and the remaining ejection-escape

orbits (with several mixed types of binary collisions). Of course, this separation

should be visible by computing the connections between the invariant manifolds480

of E+ and E− and the manifolds of the infinity. But this is work for a future

paper.
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Although the methodology described applies for any value of α > 0, h < 0

and any given order n for the ECO, we present the results obtained for α = 1

and h = −1, and show ECO up to order n = 7. We also remark that different485

results, concerning the type of ECO, may be expected depending on α. More

precisely, for α = 1, we notice that if there exists an ECO of type (p1, ..., pn),

then we also find the ECO of type (p̂1, . . . , p̂n), with p̂j = 3 − pj . This seems

to be related with the same topological behaviour, concerning SBC and DBC,

of the invariant manifolds of E± on the quadruple collision manifold (but no490

analytical proof is known so far). However, as shown in Figure 3 for α = 2, the

behaviour of such manifolds, and therefore the type of ECO obtained, varies

with α.

6. Appendix

Here we present in detail some results concerning the eigenvalues and eigen-495

vectors associated to the equilibrium points for any values of α and h < 0. We

give their expressions in terms of h, vc and θc, and the explicit formulae for the

approximations of the invariant manifolds of order one Ψ±1 (ξ, φ).

Recall that the equilibrium points are E± = (0,±vc, θc, 0), where θc is the

minimum of V (defined in (4)) and v2c = V (θc). Then, V ′(θc) = 0 and V ′′(θc) >

0. The eigenvalues associated to the equilibrium points are

λ1(E±) = ±λ, λ2(E±) = −λ1,

λ3(E±) =
λ

4

(
∓1 +

√
1 +

8V ′′(θc)

V (θc)

)
, λ4(E±) =

λ

4

(
∓1−

√
1 +

8V ′′(θc)

V (θc)

)
,

(18)

where λ =
√

2 cos θc(sin θc −
√
α cos θc) > 0. Notice that λ3 > 0 and λ4 < 0,

and λ3 6= λ4. Next we prove that all the eigenvalues are different for any value500

of α.

Lemma 1. Let λi(E
±), i = 1, . . . , 4, be the eigenvalues associated to the equi-

librium points E± of the SC4BP. Then, for all values of α:

1. all the eigenvalues are different: λi 6= λj, i 6= j,
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2. 0 < λ1(E+) < λ3(E+), and 0 > λ1(E−) > λ4(E−).505

Proof. Notice that, from (18), the two inequalities of the second statement

are equivalent, so it is enough to prove one of them. Moreover, it is not difficult

to see that both statements are equivalent to

V ′′(θc)− 3V (θc) > 0 and V ′′(θc)− V (θc) 6= 0, (19)

where θc is the unique solution of V ′(θ) = 0, and V is given in (4). We write

V (θ) =

√
2

2 cos θ
h(z) where z = tan θ >

√
α and

h(z) = 1 +
α5/2

z
+ 8α3/2 z

z2 − α
.

Then

V ′(θ) =

√
2

2 cos θ

(
zh(z) + h′(z)(z2 + 1)

)
,

V ′′(θ) =

√
2

2 cos θ

(
z(zh(z) + h′(z)(z2 + 1))

+ (h(z) + 3zh′(z) + (z2 + 1)h′′(z))(z2 + 1)
)
,

where the prime ′ denotes derivative with respect z.

The condition V ′(θc) = 0 is equivalent to

zch(zc) + h′(zc)(z
2
c + 1) = 0, (20)

where zc = tan(θc). Introducing this relation into the expression for V ′′(θc), we

have that the conditions in (19) become

V ′′(θc)− 3V (θc) =

√
2

2 cos θc
(1 + z2c )

(
(1 + z2c )h′′(zc)− 2h(zc)

)
> 0 (21)

and

V ′′(θc)− V (θc) =

√
2

2 cos θc

(
(1 + z2c )2h′′(zc)− 2z2ch(zc)

)
6= 0, (22)

where zc is the solution of (20).

We introduce the change zc =
√
αw in (20), where w > 1. Simplifying, the

equation transforms into

w7 − 2w5 − (8 + 17α)w4 + w3 + (2α− 8)w2 − α = 0.
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The equation is linear in α, and 17w4 − 2w2 + 1 > 0 for w > 1. Therefore, we

can write

α =
w2(w5 − 2w3 − 8w2 + w − 8)

17w4 − 2w2 + 1
. (23)

Imposing the condition α > 0, we have that w > w, where w ∈ [11/5, 12/5] is

the only positive root of w5 − 2w3 − 8w2 + w − 8 = 0.510

We introduce the change zc =
√
αw in (21) and (22), and simplifying and

keeping the numerators, we get that these conditions are equivalent, respectively,

to

w9 − 3w7 − (41α+ 8)w6 + 3w5 + (11α− 24)w4 − w3 − 3αw2 + α > 0

and

αw11 − 3αw9 − (42α2 + 16α)w8 + 3αw7 + (14α2 − 49α− 8)w6

− αw5 − (6α2 − 3α+ 24)w4 + (2α2 − 3α)w2 + α 6= 0.

Finally, we introduce (23) in the above expressions, and they are equivalent

to

(w − 1)(w + 1)(3w2 + 1)(w7 − w5 − 8w4 + w2 − 1) > 0

(w − 1)5(w + 1)3(w7 − w5 − 8w4 + w2 − 1)

× (25w5 + 50w4 + 80w3 + 46w2 + 15w + 8) 6= 0

for w > w. The computation of the zeros of the term w7 − w5 − 8w4 + w2 − 1

gives that it is positive for w > 11/5, so both statements are true.

The first result of Lemma 1 implies that for all values of α there exist 2-

dimensional invariant manifolds Wu(E+) and W s(E−). The tangent space to

the unstable manifold Wu(E+) is generated by the eigenvectors associated to λ1515

and λ3. The tangent space to the stable manifold W s(E−) is generated by the

eigenvectors associated to λ1 and λ4. The corresponding eigenvectors σi(E
±)
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can also be written in terms of θc, vc and the energy as

σ1(E±) = (−vc,∓h, 0, 0),

σ3(E±) = (0, 0, 1, λ3),

σ4(E±) = (0, 0, 1, λ4).

Therefore, we can write the approximations of order one of the parametriza-

tions of the invariant manifolds. For example, using the normalized eigenvectors520

σi = σi/||σi||, we have that for Wu(E+):

Ψ+
1 (ξ, φ) = E+ + ξ (cos(2πϕ) σ1 + sin(2πϕ) σ3)

=


0

vc

θc

0

+ ξ



−vc√
h2 + v2c

cos(2πϕ)

−h√
h2 + v2c

cos(2πϕ)

1√
1 + λ23

sin(2πϕ)

λ3√
1 + λ23

sin(2πϕ)


. (24)

From the second statement of Lemma 1 we have that the eigenvector asso-

ciated to λ1 gives the slow direction in both invariant manifolds, whereas the

strong directions are given by the eigenvectors associated to λ3 (for Wu(E+))

and λ4 (for W s(E−)).525

As we noticed in Section 2.2, in order to have r > 0, we need cos(2πϕ) < 0, so

we consider ϕ ∈ (1/4, 3/4). The values ϕ = 1/4, 3/4 give the solutions along the

direction σ3 or σ4 (the fast direction). In this case, r = 0 and we obtain orbits

inside the collision manifold. The value ϕ = 1/2 gives the solution along the

direction σ1 (the slow direction), which corresponds to the homothetic solution.530

Notice that we could have taken σ1(E±) = (vc,±h, 0, 0). In this case, we must

consider ϕ ∈ (−1/4, 1/4), and the fast and slow directions would correspond to

ϕ = ±1/4 and ϕ = 0, respectively.
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