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Any rigorous approach to first-order reduced density (Γ) matrix functional theory faces the phase
dilemma, that is, having to deal with a large number of possible combinations of signs in terms of
the electron-electron interaction energy. This problem was discovered by reducing a ground-state
energy generated from an approximate N-particle wavefunction into a functional of Γ, known as the
top-down method. Here, we show that the phase dilemma also appears in the bottom-up method,
in which the functional E [Γ] is generated by progressive inclusion of N-representability conditions
on the reconstructed two-particle reduced density matrix. It is shown that an adequate choice of
signs is essential to accurately describe model systems with strong non-dynamic (static) electron
correlation, specifically, the one-dimensional Hubbard model with periodic boundary conditions and
hydrogen rings. For the latter, the Piris natural orbital functional 7 (PNOF7), with phases equal
to -1 for the inter-pair energy terms containing the exchange-time-inversion integrals, agrees with
exact diagonalization results.

The first-order reduced density matrix (Γ) functional the-
ory, that is, the theory where the ground-state energy (E)
is represented in terms of Γ, has emerged in recent years
as a promising method to study strongly correlated ma-
terials. The seminal article of Gilbert [1] on the existence
of the functional along with the works of Donnelly and
Parr [2], Levy [3] and Valone [4] laid the foundations,
however, the computational schemes based on these ex-
act formulations are several times more expensive than
solving directly the Schrödinger equation, so practical
applications require a different approach for E [Γ].

In 1967 [5], Rosina demonstrated that there is a one-
to-one mapping from the ground-state two-particle re-
duced density matrix (D) to the N-particle wavefunction
in the case of a Hamiltonian with at most two-body in-
teractions. Taking advantage of the Rosina’s theorem,
the existence theorem of Gilbert implicitly establishes a
one-to-one correspondence between the ground-state D
and Γ, therefore, the functional E [Γ] must match the
exact well-known functional E [D]. It should be noted
that the unknown functional in a Γ-based theory is the
electron-electron potential energy (Vee) since the rest of
the Hamiltonian is actually a single-particle operator.
Unfortunately, the exact reconstruction Vee [Γ] has been
an unattainable goal so far, and we have to settle for
making approximations. The typical approach is to em-
ploy the exact energy expression E [D] but using solely a
reconstruction functional D [Γ].

Approximating the energy functional in that way im-
plies that theorems obtained for the exact functional
E [Γ] are no longer valid, since an approximate func-
tional still depends on D [6]. An undesired implication
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is that the functional N-representability problem arises
[7–9], that is, we have to comply the requirement that
D reconstructed in terms of Γ must satisfy the same N-
representability conditions as those imposed on unrecon-
structed two-matrices to ensure a physical value of the
approximate ground-state energy; otherwise, there will
not be an N-electron system with an energy value E [D].

In general, Γ-based functionals have been proposed us-
ing reasonable heuristic or physical arguments [10], so
that most of the approximate functionals currently in
use are not N-representable, and that is why energy is
often obtained far below true energy. It has been as-
sumed that there is no N-representability problem of the
functional, since it is believed that only N-representable
conditions [11] on Γ are sufficient, but the latter is only
true for the exact reconstruction of Vee [Γ]. The en-
semble N-representability constraints for acceptable Γ
are easy to implement, but are insufficient to guarantee
that the reconstructed D is N-representable, and thereby
the approximate functional either. To date, only the
functionals proposed by Piris and coworkers [12–15] re-
lies on the reconstruction of D subject to ensemble N-
representability conditions.

One issue related to the functional N-representability is
that approximate N-representable functionals are not in-
variant with respect to a unitary transformation of the
orbitals. The fact is that apart from the simple Hartree-
Fock (HF) approximation, none of the known approx-
imate functionals are explicitly given in terms of Γ, in-
cluding the familiar functional which accurately describes
two-electron closed-shell systems [16, 17]. It is worth not-
ing that there are functionals [18–21] that seem to de-
pend properly on Γ. However, these functionals violate
the antisymmetric requirement for D [22], consequently
none of these functionals affords an N-representable two-
matrix, nor can they reproduce the simplest two-electron
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case. Extensive N-representability violations have been
recently reported [23] for this kind of functionals.

Approximations for E [Γ] can be obtained essentially us-
ing two methods, namely, the top-down and bottom-up
methods [8, 24]. The top-down method consists in the
reduction of an N-particle ground-state energy generated
from an approximate wavefunction into a functional of
Γ, whereas, in the bottom-up method E [Γ] is generated
by progressive inclusion of N-representability conditions
[25] on the reconstructed D [Γ].

The use of the top-down method with a parametrization
of coefficients in a configuration interaction (CI) expan-
sions reveals a very serious bottleneck affecting any rig-
orous approach to E [Γ], namely the phase dilemma that
stems from the necessity to carry out minimization over
a large number of possible combinations of CI coefficient
signs [26]. As expected, the phase dilemma also appears
when the bottom-up method is used, i.e., we have to deal
with a large number of possible combinations of signs in
terms of the electron-electron interaction energy.

In the next section, we analyze how the phase dilemma
arises when applying N-representabilty conditions to
the reconstructed D [Γ]. In sections II and III, we
demonstrate that a suitable choice of signs is essential
to describe accurately model systems with strong non-
dynamic (static) electron correlation. This leads us to
the formulation of the Piris natural orbital functional 7
(PNOF7) with phases equal to -1 for the inter-pair energy
terms containing the exchange-time-inversion integrals,
which captures the electron correlation energy close to
the exact diagonalization values.

I. NATURAL ORBITAL FUNCTIONAL

THEORY AND N-REPRESENTABILITY

The present-day functionals are constructed in the basis
where Γ is diagonal, which is the definition of a natural
orbital functional (NOF) [27, 28]. In this context, the
natural orbitals (NOs) are the orbitals that diagonalize
the one-matrix corresponding to an approximate ground-
state energy, so it is more appropriate to speak of a NOF
rather than a functional of Γ due to the explicit depen-
dence on D mentioned above for approximate functionals.

Accordingly, the ground-state electronic energy is given
in terms of the NOs and their occupation numbers (ONs),
namely,

E =
∑

i

niHii +
∑

ijkl

D[ni, nj , nk, nl] < kl|ij > (1)

where Hii denotes the diagonal elements of the core-
Hamiltonian, < kl|ij > are the matrix elements of the
two-particle interaction, and D[ni, nj , nk, nl] represents
the reconstructed D from the ONs. Restrictions on the
ONs to the range 0 ≤ ni ≤ 1, also known as Pauli con-
straints, represent the necessary and sufficient conditions

for ensemble N-representability of Γ [11] under the nor-
malization condition

∑

i ni = N.

On this respect, it is worth noting that we focus on the N-
representability problem for statistical ensembles. Con-
ditions named generalized Pauli constraints have been
obtained [29, 30] for pure-state N-representability of Γ.
However, the number of these conditions increases dra-
matically with the number of NOs, so it becomes quite
difficult to handle them in practical implementations
[31]. Anyway, in order to guarantee the pure-state N-
representability conditions in the minimization of E [Γ]
only Pauli constraints are necessary if the functional is
the appropriate one [4, 32]. Indeed, if the approximate
NOF is pure-state N-representable, i.e., it is obtained
from the reconstruction of a pure-state N-representable
two-matrix, then contraction of D will always lead to a
pure-state N-representable one-matrix.
It is clear that the construction of an N-representable
functional given by (1) is related to the N-representability
problem of D[ni, nj , nk, nl]. The use of ensemble N-
representability conditions [33] for generating a recon-
struction functional was proposed in Ref. [12]. This par-
ticular reconstruction is based on the introduction of two
auxiliary matrices △ and Π expressed in terms of the ONs
to reconstruct the cumulant part of D [34]. In this work,
we address only singlet states and adopt a restricted spin
theory, so that energy (1) becomes

E = 2
∑

p
npHpp +

∑

qp
ΠqpLpq

+
∑

qp
(nqnp −∆qp) (2Jpq −Kpq)

(2)

where Jpq, Kpq, and Lpq are the direct, exchange,
and exchange-time-inversion integrals [35]. Appropriate
forms of matrices ∆ and Π lead to different implementa-
tions known in the literature as PNOFi (i=1-7) [12–15].
Remarkable is the case of PNOF5 [36, 37] which turned
out to be strictly pure N-representable [38, 39].

The conservation of the total spin allows us to derive the
diagonal elements ∆pp = n2

p and Πpp = np [40]. The
N-representability D and Q conditions of the two-matrix
impose the following inequalities on the off-diagonal ele-
ments of ∆ [12],

∆qp ≤ nqnp , ∆qp ≤ hqhp (3)

whereas to fulfill the G condition, the elements of the
Π-matrix must satisfy the constraint [7]

Π2

qp ≤ (nqhp +∆qp) (hqnp +∆qp) (4)

Here, hp denotes the hole 1−np. Notice that for singlets
the total hole for a given spatial orbital p is 2hp.
For a given approximation of ∆qp that satisfies the in-
equalities of Eq. (3), it is evident that the modulus of
Π matrix elements is determined from Eq. (4) assuming
the equality, however, there is not any hint to determine
the sign of Πqp. Consequently, a large number of possible
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combinations of these signs looms up for those terms con-
taining exchange-time-inversion integrals Lpq in Eq. (2).
We need to solve this phase dilemma to propose a NOF,
that is, make an adequate selection of the Πqp signs.

We now focus on the simplest case of two electrons. For-
tunately, an accurate NOF is well-known for this system
from the exact wavefunction [16] assuming that all am-
plitudes, with the exception of the first one, are negative
if the first amplitude is chosen to be positive [17]. The
two-electron singlet energy reads as

E (2e−) = 2
∞
∑

p=1

npHpp + n1L11

+
∞
∑

p,q=2

√
nqnpLpq − 2

∞
∑

p=2

√
n1npLp1

(5)

It is worth mentioning that in some stretched two-
electron molecules, small contributions to energy may
have opposite signs to those adopted in Eq. (5) [41, 42].
A recent study [23] on the two-electron Harmonium atom
reveals similar small deviations in the high-correlation
regime. Nevertheless, the convention of signs adopted in
Eq. (5) provides very accurate results for almost all cor-
relation regimes in two-electron systems, including those
with strong non-dynamic correlation.

The requirement that for any two-electron singlet system
the NOF (2) yields the accurate expression (5), together
with the cumulant sum rules, and the N-representability
conditions (3) and (4), imply that ∆qp = nqnp and
|Πqp| = √

nqnp, respectively [7]. Furthermore, the phase
factor of Πqp is +1 if q, p ∈ (1,∞), and -1 otherwise.

For systems with N>2, the generalization of these ex-
pressions for auxiliary matrices △ and Π leads to the
independent pair model (PNOF5) [36, 37]:

∆qp = n2
pδqp + nqnp (1− δqp) δqΩg

δpΩg

Πqp = npδqp +Πg
qp (1− δqp) δqΩg

δpΩg

Πg
qp =

{

−√
nqnp , p = g or q = g

+
√
nqnp , p, q > N/2

δqΩg
=

{

1 , q ∈ Ωg

0 , q /∈ Ωg
; g = 1, 2, . . . ,N/2

(6)

where we have divided the orbital space Ω into N/2 mu-
tually disjoint subspaces Ωg, so each orbital belongs only
to one subspace. Each subspace contains one orbital g
below the Fermi level (N/2), and Ng orbitals above it,
which is reflected in additional sum rules for the ONs:

∑

p∈Ωg

np = 1; g = 1, 2, . . . ,N/2 (7)

Taking into account the spin, each subspace contains
solely an electron pair, and the normalization condition
for Γ (2

∑

p np = N) is automatically fulfilled.

The energy (2) of PNOF5 can be then conveniently writ-
ten as

E =
N/2
∑

g=1

Eg +
N/2
∑

f 6=g

Efg

Eg =
∑

p∈Ωg

np (2Hpp + Jpp) +
∑

p,q∈Ωg ,p6=q

Πg
qpLpq

Efg =
∑

q∈Ωf

∑

p∈Ωg

nqnp (2Jpq −Kpq)

(8)

The first term of the energy draws the system as inde-
pendent N/2 electron pairs, whereas the second term con-
tains the contribution to the HF mean-field of the elec-
trons belonging to different pairs.

To go beyond the independent-pair approximation, let’s
maintain ∆qp = 0 and consider nonzero the Π-elements
between orbitals belonging to different subspaces [15].
From Eq. (4), note that provided the ∆qp vanishes,
|Πqp| ≤ ΦqΦp with Φq =

√

nqhq. Assuming equality once
again, the sign of Πqp remains undetermined, so there is
a large number of possible combinations of signs that af-
fect now the inter-pair interactions. Again, we need to
solve this phase dilemma to propose a NOF, but this time
we need to make a proper selection of the Πqp signs for
orbitals q and p belonging to different pairs (subspaces).
In contrast to the intra-pair interactions, there is no in-
dication to determine the phase factor for the inter-pair
Πqp.

Recently [15], the generalization of the sign convention
adopted for Πg

qp in Eq. (6), namely ΠΦ
qp = ΦqΦp if

q, p > N/2, and ΠΦ
qp = −ΦqΦp otherwise, led to a new

functional denoted as PNOF7. The resulting energy is

E =
N/2
∑

g=1

Eg +
N/2
∑

f 6=g

Efg

Eg =
∑

p∈Ωg

np (2Hpp + Jpp) +
∑

q,p∈Ωg ,q 6=p

Πg
qpLpq

Efg =
∑

p∈Ωf

∑

q∈Ωg

[

nqnp (2Jpq −Kpq) + ΠΦ
qpLpq

]

(9)

It is obvious that a possible election that favors decreas-
ing of the energy (9) is to consider all the phase factors
negative, i.e., ΠΦ

qp = −ΦqΦp. From now on we will denote
by PNOF7(+) the functional that considers +1 the phase
factors of ΠΦ

qp for q, p > N/2, whereas PNOF7(-) will be
employed to denote the NOF (9) with these phases equal
to -1.

Since we do not have an accurate functional like (5) that
helps us to determine which is the best combination of
signs for ΠΦ

qp, in the following sections, we analyze sev-
eral examples with strong non-dynamic (static) electron
correlation in order to make a proper phase choice after
comparing with exact diagonalization calculations.



4

II. HUBBARD MODEL

The Hubbard model is an ideal candidate for the study of
electron correlation due to its conceptual simplicity. The
corresponding one-dimensional (1D) Hamiltonian reads
as [43]

H = −t
∑

<µ,υ>

(

c†µ,σcυ,σ + cµ,σc
†
υ,σ

)

+U
∑

µ

nµ,αnµ,β

(10)

where greek indices µ and υ denote sites of the model,
< µ, υ > indicates only near-neighbors interactions,
t > 0 is the hopping parameter, σ = α, β; U is the
on-site inter-electron repulsion parameter, and nµ,σ =
c†µ,σcµ,σ where c†µ,σ (cµ,σ) corresponds to fermionic cre-
ation(annihilation) operator. It is known that the HF
approximation retrieves the exact solution for the 1D
Hubbard model at half-filling if U = 0, where, in the
site basis, all the possible states | −−〉, |− ↑〉, |− ↓〉, and
| ↓↑〉 have the same weight. Conversely, in the U/t → ∞
limit the singly occupied states |− ↑〉 and |− ↓〉 appear
uniquely, so the antiferromagnetic scheme is recovered
and the model becomes equivalent to the spin-1/2 Heisen-
berg model.

The performance of commonly used NOF approximations
in the 1D Hubbard model with periodic boundary con-
ditions has been recently studied [44, 45], showing that
the here presented PNOF7(+) is in good agreement with
exact results for the Hubbard model at half-filling. Nev-
ertheless, the amount of electron correlation recovered
by PNOF7(+) for large systems is slightly less than for
small systems. Since the NOF theory is a promising ap-
proach for large many-body systems, it is crucial to de-
velop approximations that do not deteriorate as the size
of the system increases. In the following, we show that a
proper choice of inter-pair interaction signs prevents the
accumulation of errors as the number of electron pairs in
the system gets larger.

In Fig. 1, we show the differences in E values with re-
spect to the exact diagonalization (ED) results (△E =
ENOF −EED) obtained for the 8, 10, 12 and 14 sites sys-
tems for a range of U/t values in order to cover all correla-
tion regimes (exact energy curves corresponding to these
systems are included in the supplementary material). Ex-
act results are computed using a modified version of the
code developed by Knowles and Handy [46, 47], whereas
results for NOF approximations have been computed us-
ing DoNOF code developed by M. Piris and coworkers.

First, we observe that energies obtained by using the
independent-pair model PNOF5, which is equivalent to
a special case of an antisymmetrized product of strongly
orthogonal geminals [24], systematically underestimate
the correlation effects for all U/t values regardless of the
number of sites of the system. Therefore, it is mandatory
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Figure 1: Differences in E values with respect to exact results
vs. U/t values for the 8, 10, 12, and 14 sites homogeneous 1D
Hubbard model with periodic boundary conditions at half-
filling; obtained by using PNOF5, PNOF7(+) and PNOF7(-).
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to consider the interactions between electron pairs to get
an accurate description for the Hubbard model.
Considering nonzero inter-pair interactions by introduc-
ing the ΠΦ

qp term given in Eq. (9), the amount of elec-
tron correlation recovered in the region 0 < U/t < 10
is larger, but the behavior for large U/t values is rather
similar to neglecting inter-pair interactions if PNOF7(+)
is used. As illustrated in Fig. 1, this issue can be prop-
erly solved simply by considering a different choice of the
signs for ΠΦ

qp. Thus, PNOF7(-) significantly improves
the performance of PNOF7(+) not only for any correla-
tion regime, but also for any size of the system. While
PNOF7(+) produces larger errors as the number of sites
increases, the accuracy of PNOF7(-) independent of the
system size. In the region U/t ≫ 1, when the on-site
electronic repulsion gets larger, the PNOF7(-) curve at-
taches to the exact curve giving an outstanding descrip-
tion of the asymptotic behavior. Hence, this approxima-
tion is able to reproduce the antiferromagnetic nature of
the model in this region, in contrast to other approaches
based on electron-pair states, such as AP1roG [48], which
fail to describe weak orbital-pair correlations arising from
singly occupied states in the strong correlation limit.

III. HYDROGEN RINGS

In accordance with our previous benchmarking [44, 45]
and results showed in Fig. 1, PNOF7(-) is the best ap-
proximation within NOF theory to study systems de-
scribed by the Hubbard model. Within the limitations of
the Hubbard model, the lack of long-range inter-electron
interactions may be one of the most important. There-
fore, in the following we focus on model systems with
strong static electron correlation in order to examine if
the conclusion obtained from the previous section still
holds in presence of long-range interaction effects.
Let us consider a ring of hydrogen atoms and vary the
number of atoms as done in the Hubbard model with
the sites. We consider the non-relativistic many-electron
Hamiltonian to describe these systems, i.e.

H = Hnuc +
∑

σ

∑

pq

hpqc
†
pσcqσ

+
1

2

∑

στ

∑

pqrt

< pq|rt > c†pσc
†
qτ ctτ crσ,

(11)

where the first term accounts for the inter-nuclear repul-
sion, the second term includes both the kinetic energy
and the nuclear repulsion, and the last term introduces
Coulombic repulsion between electrons. Note that in-
dices p, q, r, and t run over spatial orbitals, whereas τ
and σ run over spin functions. This model may be the
simplest example of strong electronic correlation in low
dimensions since a multi-reference method is required to

......

Figure 2: 2-dimensional polygon distribution of hydrogen
atoms for 2, 4 and 16 atoms. Near-neighbor distance is fixed
to RH−H = 2.0 Å for all the cases.
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Figure 3: Relative differences with respect to exact diago-
nalization (ED) energies obtained by using PNOF7(+) and
PNOF7(-) for the periodic chain of hydrogens at RH−H = 2.0
Å with varying size. Calculations are performed using a min-
imal basis.

get an accurate description for RH−H = 2.0 Å or larger
bond distances, due to the strong correlation near the
equilibrium geometry and at the dissociation limit [49].
The employed systems are illustrated in Fig. 2 for chains
of 2, 4, and 16 hydrogen atoms.

In Fig. 3, we show the relative energies obtained by using
PNOF7(+) and PNOF7(-) with respect to exact diago-
nalization, increasing the chain of hydrogen atoms from
2 to 16 at an internuclear distance of RH−H = 2.0 Å.
We use a minimal basis in all the calculations. Accord-
ing to Fig. 3, the results obtained employing PNOF7(+)
show the same drawbacks already displayed for the Hub-
bard model. The relative errors shown by this approx-
imation get larger as the size of the chain increases, so
PNOF7(+) is not expected to give an accurate descrip-
tion of the electron correlation in the presence of many
inter-pair interactions. In contrast, when we choose neg-
atives, all the electron correlation functions ΠΦ

qp in Eq.
(9), the relative errors with respect to the results of ex-
act diagonalization remain equally small when increasing
the number of hydrogens, as shown in Fig. 3. Note that
the accurate energy (5) is recovered for the two-electron
system by using either PNOF7(+) or PNOF7(-). The
largest error obtained by using PNOF7(-) is below 0.007
Hartree (exact and approximated energies are given in
supplementary material), so the latter is notably supe-
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rior to PNOF7(+), and does not present any issue with
the size of the system.

IV. CLOSING REMARKS

In this work, we have presented a novel approach to tackle
the phase dilemma in the context of natural orbital func-
tional theory. The bottom-up method employed by Piris
to develop approximate functionals does not require the
use of a N-particle wavefunction and makes use of ensem-
ble N-representability conditions to get an explicit form
of the functional. Nevertheless, there is still an indeter-
minacy with respect to the phase of the interaction be-
tween electron pairs with opposite spins. We have shown
that this indefiniteness must be studied carefully, as it
dramatically affects the performance of our approach.
For this purpose, we selected model systems with a strong
static electron correlation, such as the one-dimensional
Hubbard model with periodic boundary conditions and
molecular hydrogen rings. Despite of their simplicity,
the Hubbard model and the hydrogen atom chain (lo-
cated at RH−H = 2.0 Å) present strong non-dynamic
correlation effects, and can be viewed as benchmarking
systems for testing multi-reference electronic structure
methods. It has been demonstrated that the PNOF7 ap-

proach presented here captures the physics that appears
in strongly correlated systems. After an adequate choice
of sign factors for the inter-pair interactions, the so-called
PNOF7 approximation gives a quasi-exact description of
non-dynamic correlation effects appearing in these sys-
tems, even in the region of strong correlation.

According to the results shown throughout the paper,
the proper selection of phases amends the behavior of
the functional when applying to large systems. Thus,
the performance of the here presented method, denoted
as PNOF7(-), does not deteriorate with the size of the
system, so the latter could be used to study strongly
correlated systems beyond small molecules, e.g. periodic
polymers or heavy-element-containing molecules.
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