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Abstract

Four analytical techniques are compared: AGNES €Abs of Gradients and Nernstian
Equilibrium Stripping), LASV (Anodic Stripping Va@immetry with Linear stripping),
DGT (Diffusive Gradients in Thin films) and PIM (Rmer Inclusion Membranes).
These techniques have been designed to provid&eaon concentration or a labile
fraction, complementarily contributing to an intatgd description of speciation and
availability. Their simultaneous application to théetermination of free Zn
concentrations or labile fluxes in seven solutimisa hydroponic medium reveals
characteristics of each technique and correlatlmetsveen their results. All dynamic
results can be interpreted in terms of a geneeadréttical framework on fluxes. Indeed,
in techniques under diffusion-limited conditionstive sample, the flux can be split into
the free contribution (linearly proportional to tfiree fraction), plus the contribution of
the complexes (where mobility, lability and abuntnof complexation are

intertwined). A methodology to compute lability degs is developed. Measurements
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with PIM devices confirm that diffusion in the sagolution is not rate limiting, so its
flux is proportional to the free metal in the dorsmiution. A proportionality between
the responses of any given two techniques is obdewhich suggests that, for the low
ligand-to-metal concentration ratios used in thespnt work, any of these techniques

would correlate similarly with uptake, toxic or ritibnal measurements.

Keywords: Diffusive Gradients in Thin Films; Absence of @Grents and Nernstian

Equilibrium Stripping; Polymer Inclusion Membran&ltammetry; Zinc ; Speciation

1. Introduction

Hegemonic paradigms, such as the Free lon ActiMibgel (FIAM) [1] and the Biotic
Ligand Model (BLM) [2], correlate the toxicity (awtritional capacity) of a trace metal
to the free metal ion concentration (or activity) the medium in contact with the
organism. However, some exceptions to this key oblthe free metal ion have been
pointed out [3, 4]. The uptake of Zn and Cu by apmand tomato plants, for fixed free
metal ion concentrations ([Zf} and [Cf']), increased when more metal was also
bound to ligands [5], indicating that metal com@exmight contribute to the uptake by
dissociating close to the root surface accordinthéir lability [6]. More recent reports
[7-9] also indicate the contribution of complexegher by their dissociation or by their
direct internalization on the roots, in some casésle the key role of the free metal ion

is confirmed in most cases.
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So, there is a current debate on the extent otonéribution of the different chemical
species towards the resulting uptake of a metalaiGl, there is a need for knowing not
only the equilibrium concentrations (i.e. the disition of the element amongst
different chemical species, which is called theildmium speciation of the element),
but also the rate of contribution to the uptakerfrthe dissociation of the complexes
(i.e. the dynamic speciation) in the medium [10-IPHe answer to this need is the
development of analytical techniques able to qfjcbncrete fractions of an element,
such as the concentration of the free fractiorhergo-called “labile fraction”. Some of
these fractions have shown good correlation withrttetals accumulated in plants [13-
15]. Central to this development is the improvemehtheir interpretation, i.e. the
assessment of which species and to which extenthelp contribute to the fluxes.
Comprehensive reviews of the main developments wfachic and equilibrium

techniques have been recently published [12, 16-19]

Free metal ion concentrations can be directly nreaisby a few techniques. The use of
an lon Selective Electrode (ISE) [20] would beraple way to determine the free Zn

concentration, but, up to date, there is no comialet8E for Zn. Membrane based
techniques have also been developed for the detatiom of the free metal

concentration. The Donnan Membrane Technique (DMT) uses a cation exchange
membrane to measure free ion concentrations bas&bonan membrane equilibrium.
In the Resin Titration Technique[16] and in the -EBxchange Technique [22] the
analyte is accumulated in an ionic exchange reEire electroanalytical technique
AGNES [19, 23] has proved successful in measutiegftee concentration of Zn in a
range of systems including natural waters [24-@88persions of nanoparticles [28, 29]

or wine[30].
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Labile fractions are accessed via the dynamic tigci@s. The general recorded signal of
these techniques is an arriving flux of metal ®easor. Apart from the direct supply of
the free metal to this flux, there might be othentcibutions. In some cases, the
complexes might contribute directly (e.g. secondenia stripping techniques [31]), but
usually some prior dissociation of the complexesegating free metal is required [32].
The rate of such dissociation (in comparison wit diffusion rate) determines the so-

called “lability degree’§) of the complex [33, 34].

One of the classical dynamic techniques is Anodipfing Voltammetry (ASV), with
many variants such as the one with the applicatiba linear potential scan in the
stripping stage (LASV). Along the deposition stagieany ASV variant, the arriving
metal species is reduced to® Nbrming a metal amalgam at the mercury electrode,
which is later on stripped from the mercury by @tidn, yielding an intensity current
which is the response signal [16]. The correatripretation of such a signal remains
still a challenge, given complications such asdleetrodic adsorption of humic matter.
Since time ago [35, 36] operational correlation®\8V lability and bioavailabity were
indicated. More recent investigations have alsaetared stripping signals with the

uptake of ZA" to a diatom [37] or to wheat roots [9].

Diffusive Gradients in Thin films (DGT) is based thre accumulation of metal in a disc
of gel with embedded beads of Chelex resin, whitetlzer disc of gel serves to
(practically) define the diffusion domain [38]. DGi&as been applied to natural waters,

sediments and soils [8, 39] and to hydroponic mgdid0].
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The Permeation Liquid Membrane (PLM) technique eelion the selective
transportation of the analyte across a hydrophoi@mbrane via a carrier [41-43] and
can be tuned to determine the free species (oroioeslabile fraction). Polymer
Inclusion Membrane (PIM) is a membrane based tectenwhere ion transfer requires
binding to a carrier molecule [44], similarly to MIl_but much more robust. PIM have

been recently shown to measure free ion concemtiafé5].

The aim of the present work is to apply differesthiniques to determine the free (with
AGNES and PIM) and labile fractions (with DGT and@3V) of Zn available in
hydroponic medium at different concentrations gahd (EDTA or humic acid). Zinc
Is an essential metal for plants (and its deficyehas been reported in soils of many
arid regions of the world [7]), so its uptake attsamuch attention. The relevant
medium for plants is the soil solution, which cdsoabe approximated by hydroponic
media, much more controlled. Comparison of PIM, D@md LASV results is
performed by converting their respective responsdtuxes [40]. Special emphasis is
devoted to the interpretation of the fluxes obtdingith the dynamic speciation

techniques.

2. Materials and Methods

2.1 Reagents

For the preparation of the nutrient solution thdlofeing reagents were used:
KNO3-4H,0, Ca(NQ),;, KH,PO, MgSQ; 7H,0, NHNO;z; H;BOs;, MnCly-4H,0,
CuSQ:5H,0, NaMo0O, 2H,0, ZnSQ-7H,0; they were all purchased from Panreac

(Barcelona, Spain). As an iron source, the comrakprioduct Kelamix Fe was used
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(Sicosa, Girona, Spain). According to the productcmmpany, 6% of the mass
corresponds to Fe, which is chelated by ethylemeidiaN,N'-bis(2-

hydroxyphenylacetic acid) (EDDHA); but the complé&rmulation is undisclosed. The
ESI-MS spectra of the product are shown in Fig .SHie buffer employed was 2-(N-
morpholino) ethanesulfonic acid (MES) obtained frdftuka (Bern, Switzerland).
Organic ligands such as humic acid sodium salh(tieal grade, HA) and EDTA were
provided by Sigma-Aldrich (St Louis, Missouri, USAJlemental composition of HA,

used as received, is presented in Table SI-1.

For PIM preparation, the polymer polyvinyl chlorid®VC) and the carrier di-2-
ethylhexyl phosphoric acid (D2EHPA) were from FlukBern, Switzerland) and
Sigma-Aldrich (St Louis, Missouri, USA), respeclieTetrahydrofuran (THF) solvent

was from Panreac (Barcelona, Spain).

A standard solution 1000 mgLzn (Merck, Darmstadt, Germany) and solid KNO
(Fluka, St Louis, USA) TraceSelect grade were usqatepare the calibration standards

for AGNES and LASV.

HNO3; 69% (Fisher Chemical, Loughborough, UK) was usedXGT elutions prior to
ICP-MS analysis. A standard solution 1000 mg Zn (High Purity Standards,

Charleston, USA) was used to prepare the calibraiandards for ICP-MS.
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All reagents and solvents used in this study wdranalytical grade except the ones

whose different quality has been specified.

Ultrapure water with 18 I cm resistivity (Synergy UV puication system Millipore)

was used in all preparations.

2.2 Preparation of hydroponic media

The nutrient solution was based on Hoagland graongldium [46]. The concentrations
were modified by dilution to reach a final compisit as follows: 2.5mmol L*
KNO3.4H,0, 2.5 mmol ' Ca(NQ), 0.25 mmol ' KH,PO, 1 mmol L*
MgS0,.7H,0, 0.5 mmol ! NH4NOs, 23 pmol ! H3BOs, 4.2 pmol [ MnCl,.4H,0,
0.1 uM CuSQ@5H,0, 0.25 pmol X NaM004.2H,0, 0.38 pmol ! ZnSQ.7H,0, and
12 pmol * Fe (from Kelamix). This solution composition isferred to as half-
strength Hoagland medium. The pH was adjusted @061 by using 2.5 mmol t

MES buffer. It has been reported that MES doe<aptplex Zn significantly [47].

Different media have been considered in this wavkh Zn added according to a

previous work [45] and EDTA or HA concentrationsprovide similar [ZA7]:
I. The control medium, with the composition detaisbove.

ii. The control medium with an added Zn concentratieither 35.Qumol L™ (zn_1) or

69.6pumol L™ (Zn_2), added as ZnS@H,O.
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iii. The medium with added Zn (35)0mol L™ and 69.6umol L™), and also with the

presence of 2fmol L* EDTA (Zn+EDTA_1 and Zn+EDTA_2, respectively).

iv. The medium with added Zn (35imol L™* and 69.6umol L™Y), and also with the

presence of 60 mgthumic acid (Zn+HA_1 and Zn+HA_2, respectively).

2.3 Experimental setups and instrumentation

PIMs containing 70% PVC and 30%D2EHPA were prepaiedg a procedure similar
to that reported by Sugiura [48]. Briefly, 400 migRY/C were weighted and dissolved
in 12 mL of THF. After two hours stirring, one mi the carrier solution, 0.5 molL
D2EHPA in THF, was added to the mixture and stidf@dl more hour. Finally, the
resulting mixture was poured into a 9.0 cm diam#ggrbottom glass petri dish, which
was set horizontally and covered loosely. The amanlvent was allowed to evaporate
over 24 h at room temperature, and the resultingwas carefully peeled off from the
bottom of the petri dish. Circular pieces of 2 cranteter were cut from the centre of
the membrane and were, then, incorporated in acdedi device, used as passive
sampler [45]. The membrane device was partially @rsed in 250 mL of the
hydroponic solution under study, which was contdine a glass beaker placed on a
magnetic stirrer, whereas 5 mL of 0.01 m& HNO; was used as acceptor phase. After
a given contact time, the device was removed frbm dolution and the nitric acid
solution was analyzed for total Zn content usingeguential inductively coupled
plasma atomic emission spectrometer (ICP-AES) ¢tyoBL, Varian, Mulgrave, Vic.,

Australia). PIM determinations were run at room penature (23+1°C).
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AGNES and LASV voltammetric measurements were edrout with Eco Chemie
Autolab PGSTAT101 angAutolab Type Il potentiostats attached to MetroB63VA
Stands being controlled from a computer by meanh®fNOVA 1.11 software. The
working electrode was a Metrohm multimode mercurgpdelectrode. The smallest
drop in our stand was chosen, which according ¢éoctitalogue corresponds to a radius
aroundro = 1.41x10" m. The auxiliary electrode was a glassy carbootelde and the
reference electrode was Ag/AgCl/3 met KCI, encased in a jacket containing 0.1 mol

L1KNOs.

A glass combined electrode (Crison) was attachemht@rion Research 720A+ or to an
Orion Dual Star ion analyzer (Thermo) and introadugethe cell to control the pH. A
glass jacketed cell provided by Metrohm was useallimeasurements. The vessel was

thermostated at 25.0 °C.

DGT holders (piston type, 2 cm diameter window)lyporylamide gel discs (tfusive
disc, 0.8 mm thick, and Chelex resin disc, 0.4 rhiok) from DGT Research Ltd and
cellulose nitrate membrane filters (0.4% Whatman) were used. DGT devices were
prepared as described elsewhere[49]. The senseoks heen left to equilibrate in a
solution at the same pH and ionic strength as ahepte (0.011 mol £ KNOs and 2.5
mmol L* MES) for at least 18 hours (see Supporting Infdiomaof ref. [49]). After
that, the sensors have been deployed, for 24 arg #8ide a plastic bucket containing
2 L of medium kept at 240 rpm stirring rate and2&t0°C in a thermostated bath.

Deployment solutions and metal accumulations (once eluted with HNO3) in DGT
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experiments were analysed, in triplicate, with an ICP-MS 7700x (Agilent

Technologies, Inc, Tokyo, Japan).

2.4 Procedures

2.4.1 Determination of free Zn concentrations with AGNES

AGNES consists in applying two stages [23, 29]Aifirst stage where we apply a
deposition potential for a long enough time to heabsence of Gradients in the
concentration profiles and Nernstian Equilibriuntreg electrode surface (these specific
conditions are the main difference with other §timg techniques, like LASV); and ii) a
second stage where we apply a reoxidation prograime measure the total charge or
the diffusion-limited current after a certain timk this work, we use the variant
AGNES-I where the reoxidation program is a (congtpatential pulse under diffusion-

limited conditions and we measure the current.

At the end of the first stage a preconcentratiatoiay has been achieved

MY _ T 2F -
Y—[qu —exp[ RT(El EO)} (1)

whereF is the Faraday constam the gas constant, the temperatureg; is the applied
deposition potential and® the standard formal potential of the redox ceuplis the
gain in metal concentration across the surface wués preconcentration in the
amalgam following the application & and, in practise, is usually computed from the
peak potential of an ancillary Differential Pulseldogram (DPP) with just metal and

the background electrolyte.
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The measurement of the faradaic current in thergkstage allows the quantification of

the free metal ion concentration
|, =nY[M*] 2)

wherel; is the faradaic current (obtained from the subiwacof the blank to the total

current) andy is the normalised proportionality factor.

Prior to AGNES measurements, a calibration to obtais needed at the same ionic
strength as the sample. The calibrations were pedd at 0.011 M KN@given the
predictions of Visual MINTEQ [50] with the compasih of the hydroponic medium

described in Section 2.2.

The quantification of the free metal concentraiioeach hydroponic medium has been
performed applying AGNES with two differeMvalues as an extra checking. THe
ranged from 2 to 200 depending on the free conaeoitr. For the control medium (the
lowest free Zn concentratioiY)of 100 and 200 were required. Only for this mediton
avoid large deposition times, AGNES with 2 Pulseshe deposition stage [51] was
applied witht; , = 70 s and; , =210 s (when preconcentrating Ye100) ort; =140 s
andt; ;=420 s (when aiming at=200). In all the cases, the waiting time at thsireel
gain (Y) without stirring was 50 s and the preconcentratfactor applied in the

stripping stage was 0
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2.4.2 Determination of labile fluxes with LASV using linear stripping scan

Essentially, LASV technique provides an accumuiatr@sulting from the flux of
analyte under diffusion-limited conditions actingrdughout the deposition time.
Indeed, the very negative potential during the déjmm stage creates a flux, due to the
reduction -at the electrode surface- of Zfresulting directly from the free Zn flux or
from the diffusion and dissociation of labile comx®s). Steady state can be assumed
during this deposition stage due to the vigorousirgg in the electrochemical cell and
the short life of the transient regime. The linsipping scan quantifies the amount of
Zn° accumulated in the amalgam (which correspoadbé steady-state accumulation
during the deposition stage plus a small amouZin8faccumulated at the beginning of
the linear stripping scan, when the stripping pt#dis still close to the deposition one,
before Zn° re-oxidation starts), without furthemications (as in the Differential
Pulse mode, where repeated oxidation/reductionesyare much more difficult to
interpret). The interfering impact of adsorptiong(ehumic acid complexes on the
electrode surface) on the final stripped chargeis variant of LASV is expected to be
mild, because diffusion-limited conditions in thepasition stage hinder electrodic
adsorption [52] and any possible adsorption aldmg dtripping step might distort a
transient intensity current, but not the final defthat, due to Faraday law, has to be

proportional to the total accumulated concentratibdn®).

In the first stage of the LASV experiment, a deposi potential of -1.3V is applied
during 60 s, followed -in the second stage- bynadr scan from -1.3V to 0 V at a scan
rate of 0.0198 V §v) which produces a peak in thers E representation. The area of

the peak is measured and allows the determinafidredlux (J) as
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— Q — Areq_ASVpeak (3)
2F At V2FAt

whereQ is the charge (corresponding to the moles of daird metal) which can be
obtained from the peak ardaea asvpeak and the scan rat®)( A is the surface area of

the mercury electrode (0.25 mandt is the deposition time.

2.4.3 Determination of labile fluxes with DGT

Under the assumption of steady-state regime alomgleployment time (which will be
checked for the hydroponic systems), the flilixdan be computed from the number of
(measured) accumulated moles of analyte in the sc,nz,, with the expression [53]:

n
= _Zn 4
J At 4)

whereA is the area of the opening (3.14%mndt the deployment time.

In many works, the accumulation of the analyte itite binding phase is associated
with a labile fraction or the so-called DGT-congatibn ¢yt [53] assuming a steady-
state regime under diffusion-limited conditions:

- Dy Goer
1= )

whereDy, is the diffusion coefficient of the metal analyedd® is the thickness of the
diffusion domain (usually the aggregate thickne$sdisc gel, filter and diffusive

boundary layer).
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2.4.4 Determination of free concentration with PIM

The PIM technique is based on carrier-mediatedspart of the metal across the
polymeric membrane. The carrier, D2EHPA in thisegcderms a neutral complex with
the Zrf* ion at the membrane/donor interface. Then, theptexndiffuses across the
membrane, and when reaching the membrane/accepéoface, the metal is released
into the acceptor phase due to the protonatiomefcarrier in the aqueous phase with
existing HNQ. This chemical pumping allows the accumulatiorthef analyte in the
acceptor solution. Recent work [45] has proposeat there is a co-limitation by
transport both across the membrane and in the sxcggution (rather than a limitation
by diffusion in the source solution), leading toatumulation proportional to the free
ion concentration in the source solution, analobois some cases of the PLM

technique.

3. Results and discussion

3.1 Free concentration and fluxes provided by eachnigcie

The free Zn concentration in the different hydrapaonedia considered in this work has
been determined with AGNES (see Fig 1 or Table)Sl#8ing the parameters detailed
in section 2.4.1. The [Z# found in the control medium, 0.13imol L™, is negligible

in front of the free concentrations in media withiked Zn. As expected, the free Zn
concentration increases when increasing the to&thlntoncentration of the medium
(compare full and empty blue square markers inlffjigvhile the free Zn concentration

decreases with the addition of a ligand like EDTAd(triangles) or humic acid (green
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circles). For the conditions and concentrationssiered in this work, 60 mgLhumic
acid (equivalent to a concentration of sites of @bl L™, according to the generic
parameters of the NICA-Donnan model [54]) bindss |8 than 2Qumol L EDTA,

given the found lower free Zn concentrations inEREr A-enriched solutions.

For the sake of simplicity, when quantifying thexttdbution of the different complexes,
one can consider that the Hoagland medium actsnasqgaivalent ligand (labelled
“Hoag”) to form an effective 1:1 complex labellebMoag”. We neglect any variation
of the effective free ligand due to its complexatwith the metal (the so-called ligand

excess conditions), so that
CMHoag = K'CM (6)

whereK’ is the excess (conditional) stability constant étability coefficient). The

mass balance (when other complexes are still m#d)dcan be written as
Crm = G * Garoag = (1+ K) G, (7)

K’ has been evaluated as 0.21 £ 0.06 from the regne®f the data (free and total) of
AGNES experiments with the control and with justded Zn (i.e. Zn_1 and Zn_2),
while also forcing the regression to pass throdghdrigin. Using only on&’ for the
Hoagland mixture is valid, for exemple, when theefconcentrations of all participating
ligands (including EDDHA not bound to Fe) are canstdespite Zn complexation. The
linearity observed in the plat v vscy lends support to the use of just dleas a first

approximation to describe the binding propertiethefHoagland medium.
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Fluxes recorded with LASV followed a similar pattedo the concentrations measured
with AGNES (see Table SI-2 in Supporting Informati@and Fig 2): lower fluxes for
lower total concentrations or solutions with an edidigand. The flux computed with
egn. (3) from the LASV peak area measured in th@robmedium was 10.3 nmol'm
’s' The flux of Zn_2 is approximately twice that ohZl, consistent with the
approximation of labile complexation with the Haagll mediumThe decrease (with
respect to fluxes of Zn_1 and Zn_2) due to EDTAItamld is similar for both total Zn

concentrations, as expected for a formed strong auenplex. The impact of EDTA in

reducing the analytical signal is, again, more ingot than that of humic acid.

For DGT, the accumulations were measured after riti 48 h. The almost direct
proportionality between accumulation and deployntiené seen in Fig. 3 indicates that
the system is under steady-state regime. Undee tbesditions, equation (4) can be
applied to compute the flux. DGT fluxes follow amdar trend to the free
concentrations measured with AGNES: the presenc&@TA or HA reduce the
accumulation (for a given time) as seen in FigTl3 reduction of the flux due to the
addition of a ligand can be understood as duepartial complexation of the Zn ions,
leading to a reduced availability (compared withttresulting if the total concentration
of Zn was free). This decrease in availability dendue to a much lower diffusion
coefficient of the complex (the expected case fonacromolecular entity like humic
acid diffusing in a gel), due to a lower labildggree (the expected case for EDTA), as
described below in section 3.2 or due to a comlnatf both effects. From the point
of view of DGT, the fluxes with EDTA and HA havesesitially the same value (within
experimental error) which is compatible with théudion coefficient of ZnHA being

smaller than that of ZnEDTA.
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As with DGT technique, the direct proportionalityetveen accumulation and
deployment time seen in Fig. SI-2 for PIM experitsemdicates that the system is
under steady-state regime and can be computedusiitig equation (4). PIM fluxes due
to ligand additions can be seen in Fig. 4 and aamterpreted along the lines of the
previous paragraph. In agreement with the measursnod the other techniquedyu
decreases when EDTA is added, as expected foraimeafion of a complex, and
remains belowlp)y corresponding to the system with HA. Moreover, deelines in the
computed fluxes due to the addition of EDTA or haracid are similar to those seen

with AGNES, LASV and DGT.

3.2. Relationship between the information provibdgdlifferent techniques

The interpretative framework developed for DGT (sé® instance [53]) can be
extended to other techniques yielding fluxes. A kkaa is to split the total flux of metal
into the contribution from the free metakde represented as dotted lines in Figs. 5-6)
plus the contribution from the complexes. Thesmmexes can be classified as those
complexes existing in the Hoagland medium and thosmaplexes due to a ligand
addition (EDTA and HA), with the general label ML.:

DHoag

DML
5 5 Cuk mt (8)

J=1J Jiee T J

total — “free Hoag

D
+ ‘]ML=7'V1 CM+ q\/IHoag Hoag+

whereD; is the diffusion coefficient of the species (fneetal, M; complex with the
medium MHoag; complex with added ligand, MLY; is the concentration of each

species,é, is the lability degree of each species (see Initddn), andod is the
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thickness of the diffusion layer of the technique. DGT, Jdcorresponds to the
summation of gel, filter and Diffusive Boundary lemythicknesses, while in LASY
will depend on the stirring rate with no fixed terih one consider® an operational
parameter to reproduce fluxes in well defined hggrmamic regimes (such as laminar
flow), it will depend on (some powers of) the dsfaon coefficients of the participating
species [55, 56]. However, turbulence (or naturainvection due to local
inhomogeneities in temperature o density of sohjticenders the consideration of
laminar flow also approximate, supporting the rotigst approximation of considering
0 as fixed. This is the satisfactory standard apgrda deal with the DBL in DGT [57].
For PIM, eqgn. (8) would apply if the limiting steyas diffusion in the solution. On the
other hand, if the liming step is not diffusion time solution, then the flux does not
contain any information on the lability or amouritcomplexes in the sample, but just

on the free metal ion[45].

Given that the ligands of the Hoagland medium asé macromolecular, one can
assumeDyoag=Dm. As the expected (inorganic) complexes of Zn whté medium are

weak, one can assume that they are fully labiledgg=1. Combining eqns. (8) and

(7):

D ) D
3= (1K) G+, & ©)

From the particular case of experiments Zn_1 and2Zf.e. whency, =0), one can

computeD,, / & which could be called the flux factor
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D,, J J
5 oK) o (10)

For DGT, the experimentally retrieved flux factdr.§2x10° m s%) is close to the
theoretical one (0.55x10m s%) computed fronDz,=6.08x10"° m?*s? for Zn diffusion
in the gel (from DGT research website) &wd.1 mm. For LASV, I()M/E'>)exp=3.4><105
m s' while Ou/d)meo=3.6x10° m ' (taking d.asy=2x10°> m [23, 58, 59] and

Dz.=7.3x10"° m?s™ for Zn diffusion in water).

According to equation (9), a representation of tle in terms of the free metal
concentration, for solutions where the second teras negligible, would yield a
straight line passing through the origin. Such a@dmam line” can be drawn from the
experimental flux factor of each technique anddb&inedK’ (see brown continuous
lines in Figs. 5-6). These lines should go throutdrkers corresponding to Zn_1 and

Zn_2 (square blue markers), which is approximatedycase in Figs. 5-6.

The ordinate difference between any of the regixperimental markers and this brown
continuous line can be called “offset” and phydicabrresponds to the contribution to
the flux of the complex (other than the complexéh whe medium, MHoag) expressed
by the last term in eqn. (9):

Juy = G i ((11)
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430 For cases with an added ligand, the lability degce@ be computed from the
431  corresponding offset of the marker with respedhi medium line (brown continuous

432 line), just by solving fogy. in egn (11) and takingy_ as:
433 ¢, =G, — G (1+ K) (12)

434

435 In the technique DGT, see Fig 5, EDTA offsets cardnverted into lability degrees by
436  assumingDy =Dy. For the low Zn concentration, one finfls;tAa=0.31, while for the
437  higher concentrationéepta=0.60. The difference has to be mostly ascribed to
438 experimental errors and inaccuracies in the inpuameters (total concentrations, free
439  concentrationK’, DGT fluxes, etc.) required for the calculatiomsdeed, as most of the
440 analytical signal (i.e. the flux) comes from thesdr Zn concentration, the small
441 difference between the total and this free contriou (i.e. the offset) accumulates
442  (relatively) large uncertainties. The key conclasi® a rather lowepra, cOnsistent with
443  the inert nature of ZNEDTA, but it could also baasistent with an insufficient effective
444  affinity of Zn for the iminodiacetic resin (of tiéhelex resin used in our DGT) in front

445  of the strong ligand (EDTA), see [60, 61].
446

447 To extract lability degrees for HA complexes froninet offsets, we take
448 Dn=Dz=6.08x10"° m’s’ and Dy =4.77x10"° m’s’ (average value of the range

449 reported recently [62]) which lead to a rdiig, /Du=0.78.
450

451  For the probed HA solutions with DGT, Fig 5, assugnby, =0.78>Dy, the offsets

452  translate to€ua=0.10 for Zn+HA 1 andya=0.99 for Zn+HA_2, respectively. The
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increase of the lability degree of humic acid whig® Zn concentration increases can be
understood due to the increasing occupation byods bf humic sites with decreasing
affinity. Assuming Eigen’s complexation mechaniss}]| a decrease in the affinity of a
site can be ascribed to an increase of the didsmtieate constant, increasing in this
way the lability. For the higher concentration o€ fpresent worlkéya is higher than for
EDTA, in broad agreement with some quite labilegsebur reported for Zn complexes
with humic acids [64]. Notice that the knowledgetloé diffusion coefficient value is
necessary to compute the lability degree. In tbgard, an equation previously used in
the literature, egn (7) in [5] and eqgn. (6) in y@uld not be valid for a complex with a
diffusion coefficient different from that of the taé (as it is the case with HA). The

equation can be corrected as follows:

J Gy
. ‘]free DML CML ( )

where Jiee IS the flux obtained in a system which has onlytah@nd whose free
concentration is just the same as in the solutiberes there is also the complex. This
equation is not applied in this work because tpecgl solution with just metal has not

been prepared.

For the technique LASV, triangle markers in Fig &flact a positive offset for
Zn+EDTA 1, while for the higher concentration, thiéset is negative. As both are of
the same order of magnitude, and considering thapative offset renders meaningless
any computation with Eqn. ((11), we can concluds the lability degree of ZnEDTA
is close to zero for this technique. The offsetsHA are too disperse to be subject to a

qualitative mathematical analysis. We speculaté¢ peahaps a low reproducibility of
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476  stirring between days (which impacts on the thicknef the diffusion layer) might be
477  responsible for an accuracy insufficient for thevIitigand to metal ratio of these

478  experiments.

479

480 One can highlight that the lability degree of a pten is not an intrinsic property of the
481 complex, but it is also sensor and technique deg@ndictually, the lability depends
482 not only on the ability of the complex to dissoeiafdissociation rate constant,
483 composition of the media), but also on the spaimal time scale where this dissociation

484  takes place (e.g. the characteristics of the sg[Boy.

485

486 A well-known effect is that lability increases whtre thickness of the diffusion layer
487 increases [33, 65]. Thus, one expects that laldigrees measured by DGT are higher
488 than those measured by LASV in the same chemicslesy because the main
489 difference between both techniques is the thicknéske diffusion layer (of the order
490 of 1.1 mm for DGT and just 2Am for LASV [58]). Additionally, the penetration of
491 complexes in the resin disc, where free metal iseaband dissociation proceeds,
492 renders them more labile in DGT [66, 67]. Althoutifis is the trend of values
493  obtained above for EDTA, unfortunately, they do alkdw a clear confirmation of this
494  expectation. In this respect, DGT computationsheflability degree are more trustable,
495 because of the smaller variation between experisnamd a better defined value&®in

496 the technique.

497
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In the PIM technique, egn. (8) does not apply, bseahe flux is not determined by
diffusion in the solution [45]. So, with PIM -despimeasuring a flux - no information
on the lability of the complexes in the solutiomdze gained. Fig 7 confirms -within
the experimental error- the proportionality betwédM fluxes and the measurements
of free Zn concentrations provided by AGNES. Tkigxpected from PIM fluxes being

proportional to the free Zn concentration [45].

If we compare now directly the results between neplres, we observe that DGT and
LASV are very well correlated (see Fig 8). The DNAfluxes also correlate well with
PIM fluxes (see Fig SI-3). These correlations cenaltributed to the low ligand to

metal ratio used in these experiments.

4. Conclusions

Equation (9) supports the representation (seemgs B, and 6) of the fluxes in front of
the free ion concentration (provided by AGNES aviRIThe last term in Equation (9)

is visualized as the distance (or offset) betweemagker and the line corresponding to
the contribution of the fixed ligands of the mediufnom this last term, lability degree
can be computed, though more work is needed tarobtare reliable estimates. Those
lability degrees derived here from DGT measurenart the most robust, probably

because of the better controlled thickness of itiesibn layer.

The results from this work (see Fig 7) confirm thatthese conditions, PIM can be

used to measure free metal ion concentrationsplsts like Figs 5 and 6 could also be
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drawn taking as abscissae the values of the PIMediuor its conversion into free

concentrations via a calibration) instead of AGNEE® concentrations.

In principle, the different techniques provide a&sceo different fractions of the
analyzed system and their information can be censil as complementary [32].
However, for some conditions, the differences migkt not large enough to be
guantified. This leads to a kind of equivalencetlod techniques (for such systems)
which results in more robust and confirmed concdinsi when there is general
agreement between them. Due to this equivalencde(utine present conditions this
might be related to a relative large proportionfige Zn in comparison with the
complexed forms), other criteria for selecting ehteque can be adopted. For instance,
the application of LASV with the mercury electrodas the advantage of the reduced
time of the experiment when compared with DGT atMd.RASV does not requires the
analysis with a complementary technique (ICP-MSQGf-OES). On the other hand,
DGT and PIM can be applieid situ, which avoids contaminations in sampling and
storage (though there is also a transport of theuraalated analyte towards the

laboratory for an instrumental analysis).

The found correlations between the assayed tecbsiglso suggests that in some
systems, like the one shown here, a correlatiowdsst the results of one technique
with a particular plant uptake or toxicity mighttrme proof of the free metal or a given

labile fraction being their relevant determinant.
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Figure 1. Free [Zn%*] measured with AGNES in the different hydroponic media. Empty
markers correspond to an added cr,z,=3.50%10-5> mol L1 and full markers to 6.96 10-5 mol
L-1. Orange cross: control medium (see Section 2.2); blue squares: control media with an
added extra Zn concentration; red triangles: control media with added Zn and EDTA (20
pmol L-1); green circles: control media with added Zn and humic acid (60 mg L-1). Error
bars represent the standard deviation (if larger than the markers) corresponding to

replicates of two independent samples.
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784  Figure 2: Zn flux measured with LASV (with linear stripping) in the different media.
785  Markers as in Fig 1. Error bars represent the standard deviations (n=3), whenever larger
786  than the marker, corresponding to different determinations in the same sample.
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790  Figure 3. Zn accumulated in DGT devices after 24 and 48 h. Markers as in Fig 1. Lines are
791  an aid to the eye to show the linear regime for the case with just added metal. Error bars
792  represent the standard deviations (n=3), whenever larger than the marker, corresponding

793  to different determinations in the same sample.
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Figure 4. Zn flux measured with PIM-based devices in the different media. Markers as in
Fig 1. Error bars represent the standard deviations (n=2 or 3) corresponding to replicates

of three independent samples.
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Figure 5. Zn flux with DGT versus free Zn concentration with AGNES. Markers as in Fig 1.
Error bars as in previous figures. The brown continuous line quantifies the contribution to

the flux of free metal plus the complexes in the Hoagland medium, i.e.

—_ DM [ . . e . .
Jinedium = 7(1+ K ) Cy- The purple dotted line quantifies the free metal contribution to
: Dy . : :
the flux, i.e. J; ., = Cc, with D,, / O obtained from equation (10).
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Figure 6. Zn flux obtained with LASV versus free Zn concentration obtained with AGNES.

Markers as in Fig 1. Error bars as in previous figures. Lines as in previous figure.
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Figure 7. Zn flux measured with PIM versus free Zn concentration with AGNES. Markers as

in Fig 1. Error bars as in previous figures . The added straight line is the global regression

of the plotted data .
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Figure 8. Zn flux with DGT versus Zn flux with LASV. Markers as in Fig 1. Error bars as in
previous figures. The added straight line is the global regression of the plotted data.



HIGHLIGHTS

e Different speciation techniques provide complementary information on the system
¢ AGNES and PIM measure free Zn concentrations, while LSAV and DGT measure fluxes
¢ Aplot of fluxes vs. free concentrations provides dynamic speciation information

¢ Lability degrees can be computed combining results of speciation techniques



