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For the computation of rovibrational levels and their spectroscopic intensities, the Eckart conditions
are essential to achieve the optimal separation between rotation and vibration. Dymarsky and Kudin
[J. Chem. Phys. 122, 124103 (2005)] proposed a procedure for a simplified calculation of the Eckart
rotation matrix. In the present work, we have adapted their approach to obtain a kinetic energy
operator in curvilinear coordinates using a numerical but exact procedure without resorting to finite
differences. Furthermore, we have modified this approach for the study of molecular systems with
several minima, for which several Eckart reference geometries are required. The HONO molecular
system has been used to show the efficiency of our implementation. Using the Eckart conditions with
multi-reference geometries allows for a calculation of the rotational levels as well as frequencies
and intensities of the infrared spectra of both HONO isomers with a single calculation. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4942172]

I. INTRODUCTION

The rotational Eckart conditions1 are critical for the
calculation of rovibrational spectra. These conditions reduce
the Coriolis coupling so that such calculations are less
expensive in terms of computational resources and time.
Furthermore, since they result in an optimal separation
between vibrational and rotational motions (see below), it
is easy to get accurate vibrational absorption intensities2–4

and nonlinear optical properties5 without including the
rotational contribution. The Eckart conditions can be used
with rectilinear normal modes,6–8 in particular with the Watson
Hamiltonian9 or with curvilinear coordinates.10–13 In the first
approach, they are included implicitly while in the second
they must be implemented explicitly.

We may write the rotational Eckart conditions as
N

λ=1

mλ · X⃗
λ

ref ,EC × X⃗
λ

EC(Q) = 0⃗,

X⃗
λ

ref ,EC =



Xλ,x
ref ,EC

Xλ, y
ref ,EC

Xλ,z
ref ,EC



, and X⃗
λ

EC(Q) =


Xλ,x
EC (Q)

Xλ, y
EC (Q)

Xλ,z
EC (Q)



, (1)

a)E-mail: David.Lauvergnat@lcp.u-psud.fr
b)On leave from Institute of Biology, Medicinal Chemistry and Biotechnol-

ogy, National Hellenic Research Foundation, 48 Vas. Constantinou Ave.,
Athens 116 35, Greece.

where N is the number of atoms, mλ is the mass of atom λ,
X⃗

λ

ref ,EC and X⃗
λ

EC(Q) are the Cartesian coordinates in the
Eckart frame (EC), the ref subscript stands for the reference
geometry, and Q is the set of n (n ≤ 3N − 6) internal defor-
mation coordinates. Several authors14,15 have shown that these
conditions are equivalent to finding the optimal orientation
to match the mass-weighted instantaneous geometry and the
reference geometry. In other words, the norm (or squared
norm) of the mass-weighted squared differences between the
Cartesian coordinates of the reference geometry, X⃗

λ

ref ,EC, and

the displaced one, X⃗
λ

EC(Q), (Eq. (2)) is minimal for a given Q,

Norm2 =

N
λ=1

mλ ·




X⃗

λ

ref ,EC − X⃗
λ

EC(Q)




2
. (2)

The numerical procedure used to apply the Eckart conditions
is well known1,12,16–20 and it is easy to transform Cartesian
coordinates from a non-Eckart frame, F, into an Eckart frame,

X⃗
λ

EC(Q) = REC
�
X(Q); Xref ,EC

�
· X⃗

λ

F(Q). (3)

Here, X⃗
λ

F are the Cartesian coordinates of atom λ in
the non-Eckart frame and REC

�
X(Q); Xref ,EC

�
is the Eckart

rotation matrix which depends on the reference geometry,
Xref ,EC = [X⃗1

ref ,EC . . . X⃗
N

ref ,EC], as well as the current Cartesian

geometry, X(Q) = [X⃗1
F(Q) . . . X⃗N

F (Q)]. Figure 1 illustrates this
transformation for the HONO molecule. In our approach,
the Cartesian reference geometries in the non-Eckart and

0021-9606/2016/144(8)/084116/13/$30.00 144, 084116-1 © 2016 AIP Publishing LLC
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FIG. 1. Illustration of the Eckart rotation matrix for HONO with respect to the non-Eckart frame F and the reference geometry. (a) Reference geometry, Xref ,EC,
in the Eckart frame and in the non-Eckart frame are identical. (b) Deformed geometry in the non-Eckart frame (top panel) and deformed geometry in the Eckart
frame (bottom panel).

in the Eckart frames are identical, as shown in Fig. 1(a).
In other words, the Eckart rotation matrix is the identity
matrix (Fig. 1(a)). In the geometry shown in the top panel of
Fig. 1(b), the O—N—O angle has been reduced with respect to
the reference geometry by moving only the terminal oxygen.
The Cartesian coordinates of this deformed geometry are
expressed in the non-Eckart frame because it partially contains
a counterclockwise rotation of the molecule. The deformed
Cartesian geometry has the central ON bond parallel to the
z-axis in the non-Eckart frame, while this bond is slightly tilted
after the Eckart rotation of the molecule (Fig. 1(b), bottom
panel). An illustrative explanation of the Eckart rotation matrix
for the water molecule can be found in chapter 10.2 of Ref. 21.

It is worth noting that analytical expressions for the
rotational angles are unknown except in the case of small
molecules such as triatomics22,23 or planar molecules.24,25

Thus, one has to calculate this matrix numerically for a given
value of the internal coordinates, Q.

If one wants to use Cartesian coordinates in the Eckart
frame or to project an operator such as the electric dipole onto
this frame, Eq. (3) can be used directly. However, if one wants
to develop a kinetic energy operator (KEO) that respects the
Eckart conditions, then Eqs. (1) and (3) have to be used with
caution. In general, the KEO can be expressed as a sum of
three terms,26 a deformation part, T̂def , a Coriolis part, T̂cor,
and a rotational part, T̂rot,

T̂def = −
~2

2

n
i, j=1

1
ρ (Q)

∂

∂Qi
ρ (Q) Σi j (Q) ∂

∂Q j
+ Vextra (Q)

= −~
2

2




i, j

Σ
i j (Q) ∂2

i j +

i, j

�
∂iΣ

i j (Q) + Σi j (Q) ∂i ln (ρ (Q))� ∂j

+ Vextra (Q) , (4)

T̂cor =

α

Ĵα


−i~


j

(
∂jΓ

α j (Q) + Γα j (Q) ∂j ln (ρ (Q))
2

)
+ Γα j (Q) ∂j


=


α

ĴαT̂α

cor , (5)
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FIG. 2. HONO isomers and orientation of the molecule with respect to the non-Eckart frame, F.

T̂rot =
1
2


α,β

µαβ(Q) Ĵα Ĵβ =

α,β

T̂αβ

rot Ĵα Ĵβ, (6)

dτdef = ρ(Q) dQ1 · · · dQn, (7)

where dτdef is the volume element corresponding to the
deformation part; ρ(Q) is a weight function used to normalize
the deformation wave functions, which must be adapted to
the vibrational basis set; and Σi j(Q), Γα j(Q), and µαβ(Q) are
the contravariant components of the metric tensor, Gi j(Q),
which correspond to deformation, Coriolis, and rotational
parts, respectively. The term Vextra(Q) appears when a non-
Euclidian normalization convention is used and is often called
the extra-potential term26–28 or pseudo-potential term29 and is
given by

Vextra (Q) = ~
2

8

n,n
i, j

Σ
i j


∂iρ

ρ

∂jρ

ρ
− ∂iJ̃

J̃

∂j J̃

J̃



+
~2

4

n,n
i, j


∂iΣ

i j


∂jρ

ρ
−
∂j J̃

J̃



+ Σi j


∂2
i jρ

ρ
−
∂2
i j J̃

J̃





, (8)

where J̃ =


det(g(Q)) and g(Q) is the matrix associated with
the covariant components of the metric tensor.

In order to obtain the KEO numerically, as done in T27

or other programs,11,28,30–32 derivatives of X⃗
λ

EC(Q) with respect
to Q need to be calculated. In the context of the Eckart frame,
several approaches have been used. Probably the earliest is
due to McCoy et al.16 More recently, a similar approach has
been utilized by the Császár group17,33 and also by Wang and
Carrington,12 who calculate the derivatives by means of finite
differences. This requires checking of the convergence with
regard to the step size used in the finite difference scheme.

Very recently, Pesonen34 and Szalay35 have shown that
it is possible to obtain the Eckart frame KEO for curvilinear
coordinates without resorting to a finite difference scheme. We
will demonstrate herein that it is also possible with T to
completely avoid the finite difference scheme and to calculate
the derivatives of X⃗

λ

EC(Q) with respect to Q exactly. The exact
KEO is evaluated numerically using the Eckart frame and
curvilinear coordinates. Furthermore, a small modification of
this implementation enables us to derive the Eckart rotation
matrix for several reference geometries in a way similar
to how the Sayvetz conditions36 have been employed for

large amplitude motions.11,37–40 In the latter case, the Eckart
reference geometry moves continuously along a one- or multi-
dimensional chemical/physical path.

To illustrate our implementation, particularly for the
multi-reference Eckart conditions, we use the HONO
molecule. This molecule exists in two isomers, the trans
and the cis forms (see Fig. 2), which are separated in energy
by only 93 cm−1.41 Richter et al.42 have calculated dipole
moment surfaces in a non-Eckart frame, where the z-axis
is parallel to the central NO bond and the ONO atoms
are in the xz plane (see Fig. 2). The experimental infrared
spectrum at room temperature shows transitions for both
isomers.43 Therefore, to calculate the vibrational intensities
(Section IV C), we need to apply the Eckart conditions for
both isomers or, in other words, we need two Eckart reference
geometries, which correspond to the two geometries at the cis
and trans minima.

We will also calculate the rotational levels of both the cis
and trans HONO isomers (Section IV B). It should be noted
that the present implementation of the usual Eckart conditions
(with a single reference geometry) in T has been used
previously in combination with the Multi Configuration Time
Dependent Hartree (MCTDH) method to calculate rovibra-
tional levels of H2O and HONO.13 However, the numerical
implementation was discussed just briefly and, therefore, more
details about this implementation are provided here.

II. NUMERICAL AND EXACT ECKART KEOs

Before explaining the calculation of the derivatives of
X⃗

λ

EC(Q), it is important to present briefly the procedure, used
in T,27 to obtain the exact KEO numerically without
imposing the Eckart conditions. We27 are using the so-called
X(Q) approach, where X is the set of body-fixed (BF) Cartesian
coordinates. The treatments of McCoy16 and Carrington,12

which use the Q(X) approach, yield the same KEO. In the
group of Császár, the numerical KEO can be obtained by
both approaches,28,44 although they have shown that the X(Q)
approach is numerically more stable,23 in particular when a
reduced dimensionality treatment is used or when internal
coordinates are defined by means of dummy atoms (see also
our analysis in Appendix A).

In both the X(Q) and Q(X) implementations one needs to
calculate the contravariant components of the metric tensor,
Gi j(Q). With the Q(X) approach, they are calculated directly
while in the X(Q) approach, the covariant components, gi j(Q),
are calculated first,
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G (Q) =


Σ(Q) Γt(Q)
Γ(Q) µ(Q)


= g(Q)−1 =



S(Q) Ct(Q)
C(Q) I(Q)



−1

.

(9)

The matrices S and C are, respectively, the deformation and
Coriolis contributions, while I is the usual inertia tensor.
To calculate the inertia tensor, no derivatives are required.
However, the first derivatives of the Cartesian coordinates with
respect to internal ones are required to determine S and C.
Indeed, the deformation, Coriolis and inertia parts read

Si j (Q) =
N
λ=1

mλ
∂X⃗

λ

F

∂Qi
·
∂X⃗

λ

F

∂Q j
, (10)

Cαi (Q) =
N
λ=1

mλ


X⃗

λ

F ×
∂X⃗

λ

F

∂Qi



α

, (11)

Iαβ (Q) =
N
λ=1

mλ

(
X⃗

λ

F · X⃗
λ

F δαβ − Xλ,α
F Xλ,β

F

)
, (12)

where α, β = [x,y,z] and [. . .]α denotes the α component of
the expression in the square brackets.

In the code T, derivatives (up to third order in

Qi), like ∂X⃗λ
F

∂Qi , are obtained numerically from the exact
expressions (see Ref. 27 for more details). In the Eckart
context, X(Q) needs to be transformed using the Eckart
conditions (Eqs. (1) and (3)), i.e., X(Q) must correspond
to


X⃗

1
EC, X⃗

2
EC, . . . , X⃗

N

EC


and, then, the latter is used in

Eqs. (4)-(12). The required derivatives, in turn, are calculated

from Eq. (13),

∂X⃗
λ

EC

∂Qi
= REC

�
X(Q) ; Xref ,EC

�
·
∂X⃗

λ

F

∂Qi
+
∂REC

∂Qi
· X⃗

λ

F (Q) . (13)

It is important to note that when the Eckart conditions are
not used, X(Q) corresponds to


X⃗

1
F, X⃗

2
F, . . . , X⃗

N

F


. In previous

work, two of us implemented the numerical calculation of

( ∂X⃗λ
F

∂Qi ) required in Eq. (13) from an exact expression in
T.27 In order to obtain the Eckart rotation matrix REC,
and its derivatives, ∂REC

∂Qi , in a similar manner, we adapted the
approach of Dymarsky and Kudin.18 In their approach, two
3 × 3 matrices (A1 = A · At and A2 = At · A) are calculated
from matrix A, with elements and derivatives (α, β = [x,y,z])
defined by




Aα,β(Q) =
N
λ=1

mλ · Xλ,α
F (Q) · Xλ,β

ref ,EC

∂Aα,β(Q)
∂Qi

=

N
λ=1

mλ ·
∂Xλ,α

F (Q)
∂Qi

.Xλ,β
ref ,EC

. (14)

As will be seen below, the Eckart rotation matrix is determined
from the eigenvectors of A1 and A2. By using a modified
version of the Jacobi diagonalization procedure, along with
the derivatives in Eq. (14), we show in Appendix B how the
derivatives of these eigenvectors may be obtained at the same
time as the eigenvectors themselves.

The expressions for the Eckart rotation matrix and its
derivatives, as given by Dymarsky and Kudin,18 are




REC
α,β =

3
k=1

Vec1(k)α · Vec2(k)β

∂REC
α,β

∂Qi
=

3
k=1

∂Vec1(k)α
∂Qi

· Vec2(k)β + Vec1(k)α · ∂Vec2(k)β
∂Qi

, (15)

where Veci (k) is the k-th eigenvector of Ai. When the deformed
geometry is close to the reference geometry, the first and second
eigenvectors of A2 must be transformed (by multiplying by−1)
so that the scalar product with the corresponding eigenvectors
of A1 is positive. Furthermore, the third eigenvector Veci (3)
may be obtained from the vector product Veci (1) × Veci (2).
With this robust procedure, we have all the ingredients needed
to calculate the Cartesian coordinates, X⃗

λ

EC(Q), and their deriv-

atives, ∂X⃗λ
EC

∂Qi , in the Eckart frame.
At this point, two comments about what has been

presented thus far can be made.

(i) The determinant of REC has to be unity for all values of
the coordinates since it is a rotation matrix. Therefore, its
derivative must be zero. This feature has enabled us to
check the numerical stability of our implementation.

(ii) As pointed out by Dymarsky and Kudin,18 the procedure
works well when the deformed geometry, XEC(Q), is close
to the reference geometry, Xref ,EC, or in other words when
the Eckart rotation matrix is close to the identity matrix.
However, that is not always the case. In particular, it is
likely not to be so if one chooses a reference geometry
oriented with respect to the principal axes, and it is
certainly not the case if the deformed geometry is far
away from the Eckart reference geometry (either for a
floppy system or when the calculation needs a grid with
a large range).

To illustrate what may happen when the deformed
geometry is far from the reference geometry, we have used a
1D-model where the internal coordinate is the torsional angle
(ϕ3) that describes the cis-trans isomerization of HONO.
The reference geometry is given by the trans configuration.
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FIG. 3. Norm2 (Eq. (2)) as a function of the torsional angle, ϕ3, using the
Dymarsky and Kudin procedure (blue curve) or our new procedure developed
for this work (red curve).

In Fig. 3, the quantity Norm2 (Eq. (2)) is plotted as a function of
ϕ3. The blue curve is obtained when the Dymarsky and Kudin
procedure is used, which works very well around the trans
geometry (ϕ3 = 180◦) where Norm2 is continuous. However,
when the torsional angle is far away from 180◦ (ϕ3 < 90◦ or
ϕ3 > 270◦), the value of Norm2 increases strongly and
becomes discontinuous because the Eckart frame axes flip
abruptly. Thus, although the Eckart conditions (Eq. (1)) are
satisfied, this approach is not reliable for all regions of the
potential energy surface (PES).

Therefore, in our new proposed procedure to avoid the
flipping of axes in the Eckart frame, we select the signs of

the first two eigenvectors of A2 such that the squared norm
gives the smallest value. More precisely, four Eckart rotation
matrices have to be calculated with the following eigenvector
signs: (i) the ones from the Dymarsky and Kudin procedure,
(ii) [Vec2 (1),−Vec2 (2)], (iii) [−Vec2 (1),Vec2 (2)], and (iv)
[−Vec2 (1),−Vec2 (2)]. Since Vec2(3) is obtained from a cross
product, its sign is just the product of the Vec2(1) and Vec2(2)
signs. This new procedure, although more expensive, works
very well even when a large grid is used. The red curve in Fig. 3
shows the plot of Norm2 obtained with our new procedure
for the 1D-model of HONO. Norm2 is now continuous over
the whole range of torsional angles. Thus, our approach
leads to reliable values of Norm2 for all possible values of
ϕ3. Of course, the result is the same as for the Dymarsky
and Kudin procedure for small deviations from the reference
geometry.

III. MULTIREFERENCE ECKART GEOMETRIES

As mentioned in the Introduction, only a key small
modification is necessary to allow for the use of Eckart
conditions based on several different reference geometries.
A similar procedure has probably been used by Wang
and Carrington in their study of methane using Eckart
conditions (see the end of Section IV of Ref. 12). In some
respects, it is related to the Sayvetz approach36 and the
treatment of Hougen, Bunker, and Johns,45 in which the
Eckart conditions follow some large amplitude motion. The
Eckart conditions can be used with curvilinear coordinates–for
instance, Fábri et al.40 use a so-called “flexible Eckart-
embedding” along the torsional angle in the H+5 cation–or
directly within the Reaction Path Hamiltonian (RPH)
method.46,47

In our approach, different reference geometries are taken
into account by the use of a moving Eckart reference geometry.
Then, in Eq. (14), we need to take into account the variation
of the reference geometry as a function of the internal
coordinates, Q,




Aα,β =
N
λ=1

mλ · Xλ,α
F (Q) · Xλ,β

ref ,EC(Q)

∂Aα,β

∂Qi
=

N
λ=1

mλ ·
∂Xλ,α

F (Q)
∂Qi

.Xλ,β
ref ,EC(Q) + mλ · Xλ,α

F (Q). ∂Xλ,β
ref ,EC(Q)
∂Qi

. (16)

To define the moving Eckart reference geometry, switching
functions are employed that smoothly convert one reference
geometry into another,




Xref ,EC (Q) =
nref
iref

f iref (Q)Xiref ,EC

∂Xref ,EC

∂Qi
=

nref
iref

∂ f iref (Q)
∂Qi

Xiref ,EC

, (17)

where we have used nref reference geometries, Xiref,EC. The
f iref(Q) are the switching functions and each of them has
to give a value close to unity around its corresponding
reference geometry (with the index iref ) and zero elsewhere. To
avoid unphysical reference geometries, the sum of the f iref(Q)
must be close to one. Furthermore, one has to calculate the
derivatives of the functions,

∂ firef (Q)
∂Qi .

Several options are open to define the switching
functions.
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FIG. 4. Examples of switching functions Switch(x)= 1
2 (1+ tanh(a · x)) along a periodic coordinate with a switching parameter a = 6 for (a) a system with three

minima and (b) a system with two minima. Eq. (18) has been used to define x.

(i) The simplest option is when just one coordinate (or a
few), Qs, is substantially modified between reference
geometries. For instance, if a molecular system has
nref symmetric reference geometries along a periodic
coordinate (dihedral angle), the switching function can be
defined as




f iref (Qs) = Switch



cos
(
Qs −Q

iref
s

)
− cos

(
π
nref

)
1 − cos

(
π
nref

) 
Q

iref
s = Q

1ref
s +

�
iref − 1

�
2π

nref

Switch (x) = 1
2
(1 + tanh(a·x))

.

(18)

Here Switch (x) is a sigmoid function, which approaches
a step function at increasingly high values of a. In
the examples shown in Fig. 4, we used a = 6 in the
tanh function. The following figure shows the switching
functions of Eq. (18) for two cases. The first is a system
with three minima (Q1

s = π and the others at ±π/3) and
the second is a system with two minima (Q1

s = 0 and
the other at π). One can see that each curve has a flat
maximum around its corresponding reference geometry
(defined by the dihedral angle Q1

s).
(ii) A second, more general, option is independent of

the specific coordinates chosen. Here, the switching
functions (see Eq. (19)) are defined using the sum of the
squared differences (Norm2

iref
(Q)) between the Cartesian

coordinates of the reference geometry (iref) and those
of the deformed geometry in a given frame. This frame
can be either the original non-Eckart frame, F, or the
Eckart frame. In the latter case, it means we need to, first,
apply the nref Eckart conditions. Then the multi-reference

switching functions are defined as




f iref (Q) =
Exp


−a · Norm2

iref
(Q)nref

jref=1
Exp


−a · Norm2

jref
(Q)

Norm2
iref
(Q) =

N
λ=1





X⃗
λ

iref ,EC
− X⃗

λ

NF(Q)




2

. (19)

FIG. 5. Examples of switching functions for the cis-isomer of HONO with
the parameter a = 6 for all curves. See text for details.
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X⃗
λ

NF(Q) can be either X⃗
λ

F(Q) or X⃗
λ

EC(Q). Also in this
case, each f iref (Q) function approaches a step function at
increasingly high values of a. Using this definition, the
switching functions always exactly sum up to one. We also
need to calculate the derivatives of these functions. Since
the derivatives of X⃗

λ

NF (Q) are known, we can calculate
those of Norm2

iref
(Q) and then the derivatives of f iref (Q).

The three switching functions along the torsional angle,
ϕ3 for the cis isomer of HONO (see Fig. 2): (i) Eq. (18), (ii)
Eq. (19) with the non-Eckart frame, and (iii) Eq. (19) with
the Eckart frame are shown in Fig. 5. It can be seen that all
three are almost identical. It is important to stress that the
calculations of the switching functions using Eq. (19) need
only the Cartesian coordinates, although we have plotted them
as a function of the torsional angle.

IV. APPLICATIONS

In the present study, the HONO molecule is employed
to check our implementation of the Eckart conditions with
several reference geometries, using the PES and dipole
moments obtained by Richter et al.41,42 The computational
details are presented in Section IV A. In Section IV B, the
J = 1 and J = 5 rotational levels are calculated for both the
cis and trans isomers. Finally, the vibrational intensities are
computed in Section IV C.

A. Computational details

In order to minimize the computational resources needed
to calculate the (ro)-vibrational levels, we have carried out
a sequence of coordinate transformations (schematized in
Fig. 6) to describe both isomers in a well-balanced way:
(i) z-matrix transformation. This first transformation defines
the six internal coordinates, Qzmat (r1, r2, θ2, r3, θ3, and
ϕ3) from a set of Cartesian coordinates, Qcart. (ii) Flexible
transformation. Except for ϕ3, the five remaining internal
coordinates are shifted to their optimal values along the
torsional path, Qzmat,opt (obtained from the minimization of
the Richter PES), to form the flexible coordinates, Qflex

k
with

k = 1 . . . 5. (iii) Normal coordinates transformation, QNM. To
reduce the quadratic couplings, the five flexible coordinates
are transformed to get physically well-adapted curvilinear
normal coordinates.48–50 However, the Hessian and the kinetic
contributions for these five coordinates are averaged over both
the trans and the cis isomers.51 (iv) Active transformation,

Qact. When full dimensionality is used, this transformation is
the identity, Qact = QNM. In general, however, it can be used
to set up constraints or reduced dimensionality models, which
separate the active coordinates from the inactive ones. In the
present study, this feature is used to define a 1D-contracted
basis set associated with the torsion as an active coordinate.

In a way, our coordinates are similar to those used in a
RPH,46 in particular the RPH implemented in the program
Multimode47 or related approaches developed by Meyer and
Günthard52 and Hougen et al.45 The main difference concerns
the curvilinear normal modes, which are unique in our case
(based on averaged Hessian and kinetic contributions), while
theirs follow the isomerization path.

The vibrational multidimensional basis set used in our
calculations was defined as follows:

(i) A 5D-harmonic oscillator (HO) basis set was used
for all five curvilinear normal coordinates (Qk, k
= 1. . . 5) along the torsional path. These basis functions
were selected in terms of excitation level, LB. More
precisely, we kept a basis function,

5
k=1 HOik(Qk),

(HO = Harmonic oscillator) when the sum of the ik is
smaller or equal to LB.51,53 With this basis set, a Smolyak
sparse grid54,51,53,55,56 can be used with a Smolyak
parameter, Lsmol, which determines the size of the
grid.51

(ii) A 1D-basis set in the torsional coordinate containing 20
contracted basis functions was obtained from a Fourier
series with 64 sine or cosine functions and 80 grid points.
The contracted basis functions are the eigenstates of a
1D-flexible model Hamiltonian along the torsional path
(see Refs. 51 and 53) and are obtained automatically in
EVR.57

Next, to calculate the vibrational intensities or the
rotational levels, we have used two different approaches to get
the vibrational wave functions (J = 0).

(i) For the vibrational intensities:
The 5D-basis set has 3003 basis functions and

109 207 grid points (with LB = 10 and Lsmol = 11).51

Thus, the 6D basis has 60 060 (3003 × 20) basis functions.
The eigenstates up to 4000 cm−1 above the vibrational
zero point energy were then obtained through an iterative
block-Davidson procedure, described in Ribeiro et al.58

that does not involve storing the Hamiltonian matrix.
Fundamental transition frequencies were converged to
within 0.1 cm−1 and the wave functions were analyzed

FIG. 6. Scheme describing the coordi-
nate transformations. The coordinates
on the right are the active ones, Qact,
used during the dynamics, while the co-
ordinates on the left are the Cartesian
ones, Qcart, required in T.
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using the 1D-reduced density associated with each 1D-
basis set. This procedure enabled us to automatically label
each level in terms of the dominant 1D-basis function.
The dominant basis function associated with the torsion
(ϕ3) allowed us to label each level as cis or trans. Indeed,
the 1D-torsional basis is obtained through a contraction
procedure and the first 13 basis functions are strictly
localized around each isomer.

(ii) For the rotational levels:
To converge the rotational levels in a rovibrational

expansion, the vibrational basis set size needs to be
smaller than the one used for the vibrational intensities.
For this purpose, we used a 5D-basis set with 252 basis
functions and 6788 grid points (LB = 5 and Lsmol = 7).
Thus, the 6D basis has only 5040 (252 × 20) basis
functions, which allowed us to perform a standard
diagonalization of the Hamiltonian matrix.

The subsequent calculation of rovibrational levels is rather
standard; we followed the approach used by Yurchenko et al.11

and Csaba et al.44 For a given value of the total angular
momenta, J, the usual |J,K,M⟩ basis functions were utilized,
where K and M are the quantum numbers associated to the
z-components of the molecular frame (Eckart or not) and the
space-fixed frame, respectively. Since M is a good quantum
number, only 2J + 1 basis functions with K ∈ [−J, . . . .J] are
needed.

The Ĵx, Ĵy, and Ĵz operators projected in the non-Eckart
frame or the Eckart frame are represented in the |J,K,M⟩ basis
as complex matrices for which the only non-zero element is
the following:44,59






J,K,M | Ĵz |J,K,M

�
= ~2K



J,K,M | Ĵx |J,K ± 1, M

�
=

1
2
~2


J (J + 1) − K(K ± 1)



J,K,M | Ĵy |J, K ± 1,M

�
= ∓ i

2
~2


J (J + 1) − K(K ± 1)

.

(20)

These relations are obtained using the anomalous commuta-
tions relations, since the Ĵx, Ĵy, and Ĵz operators are projected
in the molecular frame (non-Eckart or Eckart).59 Next, these
matrices are transformed to the Wang basis,

�
W±

JKM

�
,11,12,44,59

which enables to express the Ĵx, Ĵy, and Ĵz operators as purely
imaginary matrices, Jx

W , Jy
W , and Jz

W ,




�
W+

J0M

�
= |J,0,M⟩ for K = 0

�
W+

JKM

�
=

1
√

2
(|J,K,M⟩ + |J,−K,M⟩) for K even

�
W+

JKM

�
=

1
√

2
(|J,K,M⟩ − |J,−K,M⟩) for K odd

�
W−

JKM

�
=

i
√

2
(|J,K,M⟩ − |J,−K,M⟩) for K even

�
W−

JKM

�
=

i
√

2
(|J,K,M⟩ + |J,−K,M⟩) for K odd

.

(21)

The others operators, Ĵ2
α and

�
Ĵα Ĵβ + Ĵβ Ĵα

�
, present in the

rovibrational Hamiltonian (Eq. (5) and (6)) are projected on
the Wang basis, Jαα

W and Jαβ
W , using sums and products of the

Jα
W matrices. Finally, the rovibrational Hamiltonian matrix,

HRV, which is real, is built up as follows:

HRV = Iw⊗Hdef +

α

JαW ⊗Tα
cor +


α≥β

Jαβ
W ⊗Tαβ

rot , (22)

where Iw is the identity matrix in the Wang basis and Hdef ,
Tα
cor , and Tαβ

rot are, respectively, the matrix representation of
the Ĥdef (T̂def + V), T̂α

cor , and T̂αβ

rot (see Eqs. (4)-(6)) in a
vibrational basis, which will be specified below.

B. Rotational levels

As mentioned in the introduction, one of us has calculated
the rovibrational levels of the trans HONO isomer and H2O
using the T implementation with the single-reference
Eckart conditions and the MCTDH method.13 In that paper,
the rovibrational levels were obtained using the Eckart and
non-Eckart frames with almost identical results in both cases,
thereby showing the correctness of the Eckart implementation
in T. Here, however, we have added a new feature in
the Eckart implementation: the Eckart reference geometry
can be switched from one reference geometry (cis isomer) to
another one (trans isomer). Therefore, we performed several
rotational calculations (in a rovibrational basis expansion)
where the vibrational basis is made up of eigenfunctions,���Ψ

V
p


, at J = 0 (2 or 1000 functions for different calculations).

This vibrational basis enables us to easily analyze the Ith
rovibrational states,

�
ΨRV

I

�
, with the help of the population on

the pth vibrational level,13,60,61 ρ
p
I ,

�
Ψ

RV
I

�
=

nb_V ib
p=1

2J+1
r=1

Cpr
I |Wr⟩ ���ΨV

p


,

ρ
p
I =

2J+1
r=1

���

Wr · ΨV

p |ΨRV
I

���2 = 2J+1
r=1

�
Cpr
I

�2
,

(23)

where |Wr⟩ is one of the rotational Wang basis functions given
in the following order:

��
W+

J0M

�
. . .

�
W+

JJM

�
,
�
W−

J1M

�
. . .

�
W−

JJM

��
.

The rotational energy levels associated with the
vibrational ground state of both HONO isomers calculated
using EVR are presented for J = 1 in Table I and for J = 5
in Table II. We note first of all that the comparison between
the converged rotational energies (Eckart with multireference
geometry, column 3) and the ones obtained with MCTDH13,60

(column 2) shows excellent agreement, since the largest
difference is only about 0.03 cm−1 (Table II).

When the vibrational basis is large enough, the rotational
energy levels should be identical for all molecular frames.
For J = 1, the largest energy difference between the converged
rotational energies (column 3, Eckart with multireference) and
the rotational energies using non-Eckart frame (column 4) is
about 0.002 cm−1 for both isomers, while this energy difference
increases to 0.2 cm−1 for J = 5. This larger difference is due to
an insufficient number of vibrational levels (nb_Vib = 1000).
Indeed, when rotational calculations are performed with 500
vibrational states, the largest energy differences increase,
0.03 cm−1 for J = 1 and 0.6 cm−1 for J = 5.

Furthermore, as expected, for the calculations at J > 0,
the vibrational population of the rotational levels demonstrates
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TABLE I. J = 1 rotational energies (in cm−1) from MCTDH (Ref. 60 for the cis isomer) and from calculations with and without Eckart conditions (single
reference or multireference). Numbers in parentheses: population, ρp

I , of the main vibrational state, ���Ψ
V
p


.

Label MCTDH
Eckart with multireference

nb_Vib= 1000
Without Eckart
nb_Vib= 1000

Eckart with trans-reference
nb_Vib= 2

Eckart with cis-reference
nb_Vib= 2

Eckart with multireference
nb_Vib= 2

Trans isomer
/ 0.782 0.783 (0.99) 0.783 0.817 0.783

3.450 3.451 (0.98) 3.457 5.619 3.457
3.500 3.501 (0.97) 3.507 5.646 3.507

Cis isomer
0.81 0.815 0.815 (0.99) 0.851 0.815 0.815
3.17 3.170 3.172 (0.98) 5.156 3.176 3.176
3.23 3.230 3.232 (0.97) 5.193 3.236 3.236

the efficient separation between the rotational and vibrational
contributions.13,61 Indeed, when the correct Eckart conditions
are used, only one vibrational state is populated (population
greater than 0.99; not shown in table). In particular, this is true
in the case when the rotational levels of a given isomer are
calculated with the corresponding Eckart reference geometry
(not shown in the table) as well as when the rotational levels
are calculated for both isomers using the Eckart multireference
geometry approach. However, when the Eckart conditions are
not used (or used with the wrong reference geometry), the
vibrational populations of the main vibrational state become
smaller than one (see the numbers in parentheses in column
4 of Tables I and II). In particular for J = 5, the lowest
population drops to 0.54 for the trans isomer of the 10th and
11th rotational states associated with the ground vibrational
state.

The excellent separation between the vibrational and
rotational motions at J > 0 when the Eckart conditions are

used, yields almost converged rotational energy levels for
both isomers with only two vibrational levels (nb_Vib = 2,
one for the trans isomer and the other one for the cis isomer).
Indeed, the largest energy difference between the converged
rotational energies (third column, with nb_Vib = 1000) and
the rotational energies using Eckart conditions with the trans
isomer (fifth column) or with cis isomer (sixth column) is
smaller than 0.01 cm−1 at J = 1 (Table I, bold values of
columns 5 and 6) and about 0.2 cm−1 at J = 5 (Table II,
bold values of columns 5 and 6). Of course, here we have
to consider only the energy levels of a given isomer with its
corresponding Eckart reference geometry. One could note also
that the rotational states calculated without Eckart frame and
with nb_Vib = 2 (not shown in the tables) are very different
from the converged rotational levels. In particular for J = 1
and for the trans isomer, the rotational energy levels are 2.12,
21.37, and 21.42 cm−1 which are several time larger than the
converged ones.

TABLE II. J= 5 rotational energies (in cm−1) from MCTDH (Ref. 13 for trans and Ref. 60 for cis isomer) and calculated with and without Eckart conditions
(single reference or multireference). Numbers in parentheses: population, ρp

I , of the main vibrational state, ���Ψ
V
p


.

Label MCTDH
Eckart with multireference

nb_Vib= 1000
Without Eckart
nb_Vib= 1000

Eckart with trans-reference
nb_Vib= 2

Eckart with cis-reference
nb_Vib= 2

Eckart with multireference
nb_Vib= 2

Trans isomer

11.71 11.71 11.73 (0.88) 11.71 12.25 11.72
14.05 14.05 14.07 (0.91) 14.06 16.86 14.06
14.80 14.80 14.82 (0.81) 14.81 17.27 14.81
22.50 22.50 22.53 (0.82) 22.53 31.51 22.54
22.53 22.53 22.56 (0.82) 22.56 31.52 22.56
35.97 35.96 36.01 (0.76) 36.03 55.60 36.04
35.97 35.96 36.01 (0.76) 36.03 55.60 36.04
54.80 54.79 54.87 (0.66) 54.93 89.31 54.93
54.80 54.79 54.87 (0.66) 54.93 89.31 54.93
79.01 78.98 79.09 (0.54) 79.22 132.65 79.21
79.01 78.98 79.09 (0.54) 79.22 132.65 79.21

Cis isomer

12.18 12.18 12.21 (0.88) 12.76 12.19 12.19
14.15 14.15 14.18 (0.92) 16.81 14.16 14.17
15.05 15.05 15.09 (0.81) 17.37 15.06 15.06
21.76 21.76 21.81 (0.83) 30.06 21.77 21.79
21.80 21.80 21.86 (0.83) 30.07 21.83 21.83
33.70 33.69 33.77 (0.78) 51.68 33.75 33.76
33.70 33.69 33.78 (0.78) 51.68 33.75 33.76
50.39 50.38 50.52 (0.70) 81.94 50.49 50.49
50.39 50.38 50.52 (0.70) 81.94 50.49 50.49
71.84 71.82 72.01 (0.60) 120.85 72.01 72.01
71.84 71.82 72.01 (0.60) 120.85 72.01 72.01
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TABLE III. Fundamental vibrational transition frequencies (in cm−1) and intensities (km mol−1) for the trans-
isomer of HONO at 1 K calculated with and without Eckart conditions. The Eckart calculations are done separately
with a trans-isomer reference and with a cis-isomer reference.

Intensities (km mol−1)

Label
Fundamental transitions

(cm−1)
Without
Eckart

Eckart with trans-isomer
reference

Eckart with cis-isomer
reference

Torsion 537.7 100.5 76.2 170.2
ONO bend 600.9 135.5 113.6 112.0
NO stretch 795.8 130.9 148.7 152.3
HON bend 1267.6 171.9 189.0 178.5
N==O stretch 1689.7 161.7 142.3 143.9
OH stretch 3590.2 59.3 58.1 54.6

Finally, the use of a multireference geometry (using the
switch function Norm2; Eq. (19)) with the Eckart conditions
gives almost the same results as when the Eckart conditions are
applied with a single trans-reference geometry (last column
of Tables I and II). The differences, all of them smaller than
0.02 cm−1, are due to the use of a small value of the scaling
parameter which gives smoother switching functions than the
ones shown in Fig. 5. Therefore, the molecular frame with
multireference geometries is slightly different than the usual
Eckart frame.

For the J > 0 calculations using the Eckart multireference
approach, the value of the switching parameter, a (Eqs. (18)
and (19)), has to be well chosen to avoid numerical problems.
Indeed, when a is too large, the switching function becomes a
step-like function and the numerical integration becomes less
precise. Therefore, the rovibrational Hamiltonian becomes
non-Hermitian unless a large grid is used. In the present
calculations, the value a = 6 was too large with the number
of grid points (80) used along the torsion, so we have chosen
the value a = 2, which enabled us to perform the calculations
without trouble.

C. Vibrational intensities

The transition intensity, I ( f ← i), between an
initial level, i, and a final level, f , may be calculated

using the standard formula (see chapter 14.1 of
Ref. 21),

I ( f ← i) ∝ �
E f − Ei

� �
popi − popf

� 
Ψ

V
i | µ⃗|ΨV

f

2
, (24)

where Ep, popp, and ΨV
p are, respectively, the energy, the

Boltzmann population, and the vibrational wave function of
the level p (p = i or f ). Although we discuss only fundamental
transitions, the previous expression (Eq. (24)) is general and
valid also for overtones and combination bands.

At low temperature (1 K), only the trans isomer is
populated and then only the transitions of that isomer are
obtained. Our results calculated without the Eckart conditions
(Table III, third column) are in excellent agreement with
those computed by Richter et al. (cf. Table V of Ref. 42).
In Table III, one can also see the influence of the Eckart
Frame. Indeed, except for the OH stretch, the intensities of the
fundamental transitions are quite different when the Eckart
conditions are used (4th vs. 3rd column). This effect is well
known; see, for instance, the work of Le Sueur et al. on the
H2S molecule.2 Furthermore, if one uses the cis-reference (5th
column) geometry, the intensity for the torsion is different from
the intensity obtained using the trans-reference geometry (4th
column). Finally, the use of a multireference geometry with
the Eckart conditions gives exactly the same results as when

TABLE IV. Fundamental transition frequencies (in cm−1) and intensities (km mol−1) for HONO at 300K calculated with and without Eckart conditions. For
the calculations with Eckart conditions, the multireference results are compared with those obtained using a single reference at either the trans or cis geometry
(columns in bold).

Intensities (km mol−1)

Label Transitions (cm−1) Without Eckart Eckart with trans-reference Eckart with cis-reference Eckart with multireference

Trans isomer

Torsion 537.7 48.9 37.1 82.9 37.1
ONO bend 600.9 67.4 56.5 55.7 56.5
NO stretch 795.8 67.5 76.6 78.5 76.6
HON bend 1267.6 90.4 99.3 93.8 99.3
N==O stretch 1689.7 85.2 74.9 75.8 74.9
OH stretch 3590.2 31.3 30.7 28.8 30.7

Cis isomer

ONO bend 616.6 10.8 7.2 7.4 7.4
Torsion 631.8 31.5 38.3 20.7 20.7
NO stretch 850.0 93.0 100.9 99.6 99.6
HON bend 1311.5 2.5 3.0 2.6 2.6
N==O stretch 1631.8 59.5 48.3 47.8 47.8
OH stretch 3435.9 5.7 5.7 6.1 6.1
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the Eckart conditions are applied with a single trans-reference
geometry. For this application, we could use a = 6 for the
switching parameter, because this value did not give rise to a
non-Hermitian Hamiltonian.

The energy difference between the ground state
vibrational levels of the two isomers is about 94 cm−1.
Therefore, at 300K, the population of the cis-isomer is
39.0% of the total and transitions from both isomers are
visible.43 In Table IV, the vibrational intensities are reported
at 300K. In this case, the advantage of employing the
Eckart conditions with multi-reference geometries is that
the frequencies and intensities of the infrared spectra of both
isomers are obtained with only one calculation. With a single
reference, two calculations would be required. In the fourth
and fifth columns of Table IV, we have reported the vibrational
intensities calculated using Eckart conditions with a single
reference geometry. In the fourth column, the trans-minimum
is used as Eckart reference geometry and only the trans-
transitions have correct vibrational intensities (bold values),
while in the fifth column, the cis-minimum is used and the
correct intensities correspond only to the cis-transitions (bold
values). The vibrational transitions obtained (column 6) with
a multireference geometry (with the trans-minimum and cis-
minimum reference geometries) are identical (within 0.01 km
mol−1) with those obtained with a single reference geometry.
Furthermore, for this comparison, the three definitions of the
switching functions have been used and they give the same
results.

It is also interesting to note that satisfying the
Eckart conditions is necessary for a good rotation-vibration
separation but not sufficient since, of course, the choice
of the “correct” reference geometry is also required.
So, the results in column 5 (noted “Eckart with trans-
reference”) for the cis-isomer and in column 6 (Eckart
with cis-reference) for the trans-isomer reflect a poor
rotation-vibration separation because, although the Eckart
conditions are fulfilled, the “wrong” reference geometry is
used.

V. CONCLUSIONS

Although numerical implementations of the Eckart
conditions have been available for many years, in this study,
we propose a new numerical and exact procedure, which
completely avoids a finite difference scheme to get the kinetic
energy operator for curvilinear coordinates. The Watson
Hamiltonian9 and the geometrical approach of Pesonen34 also
avoid finite differences, but only for specific coordinates,
namely, normal and polyspherical coordinates. Recently,
Szalay35 has proposed an interesting two-step strategy in
which the Watson Hamiltonian is transformed from the normal
coordinates to another set of coordinates without resorting to
finite differences. On the other hand, our implementation is
completely general and can be used with all sets of coordinates
already present in T. In particular, the primitive internal
coordinates could be defined using a z-matrix or polyspherical
coordinates (with Jacobi, Radau, valence vectors, and also
with sub-systems).62,63 In addition, we can add transformations
(linear combinations, flexible transformations, normal modes,

and many others) to adapt the coordinates for the process
under study.51

The program T is highly modular. Therefore, it is
easy to modify the procedure to calculate the Eckart rotation
matrix. Here, we have adapted the Dymarsky and Kudin
procedure,18 but other approaches could be tested, like the
recent one proposed by Krasnoshchekov et al.19 In particular,
it would be interesting if this new approach enabled one to
avoid the Norm2 test (Eq. (2)) on the four Eckart rotation
matrices to prevent axis switching (see Fig. 3).

Our new implementation enables us to use Eckart
conditions for molecular systems with a moving reference
geometry. Of course, this approach is related to the Sayvetz
conditions,36 which can be viewed as an extension of
the Eckart conditions for molecular systems with one or
several large amplitude motions. In the Sayvetz approach,
the rotational Eckart conditions are applied with a moving
reference geometry, Xref ,EC (Q), along the coordinates, Qs,
associated with the large amplitude motions (the first Sayvetz
condition; see below). The Xref ,EC (Q) are usually the Cartesian
coordinates of the optimal geometry, Xopt,EC (Qs), along
one or several Qs. In other words, the Eckart reference
geometry changes continuously along a chemical or physical
path in Qs. In our approach, the moving geometry is defined
using several reference geometries and switching functions
so that knowledge of a chemical or physical path is not
required.

Another condition is added in the Sayvetz approach to
reduce the coupling between the coordinates, Qs, associated
with the large amplitude motions (see also Eq. (4.9) of
Ref. 64),

N
λ=1

mλ ·


α=x, y,z

(
X λ,α

EC (Q) − X λ,α
ref ,EC (Q)) ∂X λ,α

ref ,EC (Q)
∂Qs

= 0.

(25)

In our approach, we do not impose this Sayvetz condition
because it is almost fulfilled around the reference geometries.
Indeed, when the current geometry is close to one of the
reference geometries (among the nref ones), the values of
the switching functions are almost constant (see Fig. 5), and
therefore, the derivatives of the moving reference geometry

with respect to any coordinates are zero (
∂Xλ,α

ref ,EC(Q)
∂Qs

= 0).
Furthermore, when the current geometry is in between two or
more reference geometries, the derivatives in Eq. (25) are not
zero anymore, but the value of the wave function is zero when
the energy barriers between the minima are high. Therefore,
for a high barrier case, the effect of Eq. (25) does not really
matter.

Of course, when the system is really floppy with low
barriers between minima, the Sayvetz conditions are required.
We could easily modify our implementation to use the moving
reference geometry along a path like the Sayvetz one as in
the approach used by Fábri et al.40 In that case, the second
Sayvetz relation (Eq. (25)) could be fulfilled, for instance, by
using Szalay’s approach.65

Our approach can be applied to molecular systems with
several minima separated with a large barrier,66,67 like NH3
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or partially deuterated ammonia or the boat-chair cyclohexyl
process.
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APPENDIX A: NUMERICAL KEO WITH THE Q(X )
APPROACH

With the Q (X) approach, one can directly obtain the
contravariant components of the metric tensor. In particular
the elements of the deformation part, Σ, read

Σ i j (X) =
3N
r=1

1
mr

∂Qi (X)
∂X r

∂Q j (X)
∂X r

. (A1)

However, one can see that the previous expression is a function
of body-fixed Cartesian coordinates, X, and the metric tensor
needs to be expressed as a function of the internal coordinates,
Q. Therefore, both relations, Q (X) (up to the first order
derivatives) and X(Q) (no derivative), are required to calculate
Σ i j (Q). When the extrapotential term is omitted in some
implementations, the Q (X) approach can be used directly.28

However, in the T and EVR implementation, we also
need the first derivative of Σ i j (Q) with respect to the internal
coordinates (see Eq. (4)). This can be obtained from Eq. (A1),

but one has to use the chain-rule with special precautions to
get the correct expression,

∂Σ i j (Q)
∂Qk

=

3N
s=1

∂X s

∂Qk

∂Σ i j (X)
∂X s

. (A2)

In the above relation, derivatives of Q with respect to X
up to second-order and derivatives of X with respect to Q
up to first-order are required (see Eq. (A1)). Moreover, the
calculation of the extrapotential term requires derivatives of
Q with respect to X up to third-order as well as second order
derivatives of X with respect to Q. A Q (X) implementation
without finite differences is possible. However, it involves
many transformations and requires X(Q) as well, which makes
the implementation numerically less favorable than the X(Q)
approach.

APPENDIX B: EIGENVALUES AND EIGENVECTORS
WITH THEIR DERIVATIVES WITH RESPECT
TO PARAMETERS

The aim of this appendix is to show the modification
of the Jacobi diagonalization procedure in order to get the
eigenvalues, the eigenvectors, and their derivatives with
respect to Qi. For each Jacobi iteration ( j), a two-by-
two diagonalization is performed and, simultaneously, the
derivatives are obtained. In this appendix, we will only show
the first derivative but higher order derivatives can be also
calculated. For a matrix, M, the modified Jacobi iterations
read




M( j+1) = R( j) ·M(j) · R( j), t

∂M( j+1)

∂Qi
=

∂R( j)

∂Qi
·M( j) · R( j), t + R( j) · ∂M( j)

∂Qi
· R( j), t + R( j) ·M( j) · ∂R( j), t

∂Qi

. (B1)

For the first iteration, the matrix, M( j), is simply the matrix to be diagonalized, M, and when the procedure reaches
convergence at the iteration, ( jconv), the matrix M( jconv) and its derivatives are diagonal.

The matrix R( j) is a rotation matrix chosen such that the two-by-two submatrix (M ( j)
pp, M ( j)

pq, M ( j)
qp, and M ( j)

qq)
becomes diagonal. This matrix is the identity matrix except for four elements (R( j)

pp = c, R( j)
pq = −s, R( j)

qp = s, and
R( j)
qq = c),

R(j) =



1 0

0
. . .

0

c 0 −s

0
. . . 0

s 0 c
. . . 0
0 1



. (B2)

In the previous equation, c and s are, respectively, the cosine and sine of the rotational angle and θ at the iteration j. The
derivatives of R( j) just require the calculation of ∂c

∂Qi and ∂s
∂Qi . In our implementation, we calculate θ with the help of the

following expressions such that − π
4 ≤ θ ≤ π

4 :
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


θ =
1
2

tan−1 *
,

M ( j)
pq

δ
+
-

for ���M
( j)
pq
��� ≤ |δ|

θ =
1
2

tan−1 *
,

δ

M ( j)
pq

+
-
− π

2
for ���M

( j)
pq
��� > |δ| and M ( j)

pq > 0

θ =
1
2

tan−1 *
,

δ

M ( j)
pq

+
-
+

π

2
for ���M

( j)
pq
��� > |δ| and M ( j)

pq ≤ 0

. (B3)

Here, δ =
M

( j)
pp−M

( j)
qq

2 ; the comparison between ���M
( j)
pq
��� and |δ| avoids small denominators.
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