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In this work a new method to calculate anharmonic vibrational ground and excited state energies
is proposed. The method relies on the auto-adjusting perturbation theory (APT) which has been
successfully used to diagonalize square matrices. We use as zeroth order correction the self-consistent
vibrational energies, and with the APT approach we calculate the vibrational anharmonic correlation
correction to any desired order. In this paper we present the methodology and apply it to a model
system and formaldehyde. Vibrational APT approach shows a robust convergent behavior even
for the states where the standard (Rayleigh-Schrödinger) vibrational Møller-Plesset perturbation
theory is clearly divergent.

INTRODUCTION

The calculation of vibrational spectrum of polyatomic molecules is not always an easy task. While small molecules
allow for the calculation of anharmonic energies with great accuracy, as soon as the size of the molecule increases more
and more approximations need to be taken into account in order to make the calculation computationally feasible.
Assuming overall Born-Oppenheimer separation of electronic and nuclei motions [1], a first group of approximations
concerns the accuracy of the electronic structure calculations and the potential energy surfaces (PESs) constructed
from these calculations [2–4]. Here we concentrate on a second kind of approximations, those related with the method
chosen to solve the vibrational Schrödinger equation.

The calculation of anharmonic energies can be done in a number of ways. One of the simplest of these methods, is
the vibrational self-consistent field approach (VSCF) of Bowman [5–8]. In the VSCF approach a Hartree product of
one-mode functions (denoted modals) is determined self-consistently by the application of the variational principle.
Vibrational Møller-Plesset (VMP) [9–11], is to VSCF what MP [12] is to SCF in electronic structure theory. It is thus
the simplest way to introduce correlation between modes. VMP2 usually provides reasonably accurate fundamental
vibrational frequencies, and has been applied to many systems in its simplest two-mode coupling variant by Gerber
and coworkers [9, 10]. A number of developments aiming at rather large molecules has also recently been presented
[13–15]. However, as shown by one of us [11], VMP has other severe problems, e.g. handling systems with Fermi
resonance. Vibrational Coupled-Cluster (VCC) [16, 17] and vibrational configuration interactions (VCI) [18–21]
are good alternatives to VMP calculations which can cope more effectively with Fermi resonance. VCI calculations
are computationally more demanding as compared with low-order corrections of VMP series. VCC methods,
when implemented in a straightforward fashion, scale even worse than VCI with respect to the number of modes.
However, efficient implementation of VCC methods holds promise of accurate results at a reasonable computational
time. Recently a VCC[2] method for a two-mode coupled Hamiltonian scaling as the corresponding VCI[2] method
was reported [13], thus providing with higher correlation between mode pairs at similar computational expense as VCI.

While an efficient implementation of a general VCC[n] method is yet a challenge, a method which is easy to
program and can cope with Fermi resonance would be desirable. In this line, the quasi-degenerate perturbation
theory (QDPT) has been studied using as a starting either harmonic oscillator [22, 23] or the VSCF modals [24]. In
this paper we present a new alternative to deal with resonant states based on the auto-adjusting perturbation theory
(APT) [25]. The method, which has been used to diagonalize large matrices [26, 27], it is tested here as an alternative
to Rayleigh Schrödinger perturbation theory (RSPT) in vibrational theory. Despite APT was not originally designed
to deal with nearly degenerate states, it will be shown to be able to handle this kind of systems. Our vibrational
APT (VAPT) implementation is based on a VSCF reference wavefunction, though any other reference wavefunction
is possible. The VAPT approach is applied to two examples with well-known Fermi resonance problems: H2CO
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and the model developed by Thompson and Truhlar [28]. Whereas RSPT-VMP methods do not converge for the
calculation of some states, APT-VMP is shown to converge in all cases, including the quasi-degenerate vibrational
states for which standard (Rayleigh-Schrödinger) vibrational Møller-Plesset perturbation theory is clearly divergent.
The manuscript is organized as follows: in the next section we briefly review VSCF and VMP methods and introduce
VAPT. The section following describes the systems under study and the section afterwards presents the results. The
paper concludes with the summary.

METHODOLOGY

We will here use the notation introduced elsewhere [29]. Capital letters refer to dimensions, while lower case letters
are used for the dummy indexes. Hence, the number of degrees of freedom (the number of modes) is denoted as M ,
whereas m corresponds to the index for the modes. φm

sm (qm) is used to denote the modals or the one-mode functions,
indexed by sm for mode m which depends on normal coordinate qm. The dimension of the basis for mode m is Nm

and the set of basis is assumed orthonormal so that 〈φm
sm (qm) |φm

rm (qm)〉 = δrm,sm .

In the following we will consider M -mode wavefunctions as a Hartree product of modals:

|Φs (q)〉 =
M∏

m=1

φm
sm (qm) = φ1

s1 (q1) φ2
s2 (q2) ...φM

sM (qM ) (1)

Any wavefunction in the M -mode space can be written as a linear combination of Hartree products,
|Φc (q)〉 =

∑
s cs |Φs (q)〉. Thus, the exact solution for the vibrational wavefunction can be obtained for a

complete modal set (Nm → ∞) and a complete expansion of Hartree products. Obviously, the exact solution to
the nuclear Schrödinger equation can not be obtained in general, and several approximations need to be taken into
account to solve the problem.

As commonly done in the literature, we will neglect rotovibrational couplings and mass-dependent terms in the
effective vibrational potential of the full Watson Hamiltonian [30, 31]:

H = −1
2

M∑
m=1

∂2

∂q2
m

+ V (q) (2)

The potential function, V (q), usually consists of a linear combination of products of normal coordinates, i.e., a
polynomial in powers of qm

sm . Therefore, the Hamiltonian becomes a sum over T product terms:

H =
T∑

t=1

M∏
m

hm,t (3)

and the integrals to be solved only involve one coordinate at a time [32, 33].

Vibrational self-consistent field (VSCF) theory

In the VSCF method we variationally optimize the energy:

es = 〈Φs|H|Φs〉 (4)

under variation of the orthonormal modals. This condition leads straightforwardly to self-consistent field equations
for the modals:

Fm,sφm
sm = εm

smφm
sm (5)

where the mean field Hamiltonian is given by:

Fm,s =

〈
M∏

m′ 6=m

φm′

sm′

∣∣∣∣∣∣H
∣∣∣∣∣∣

M∏
m′′ 6=m

φm′′

sm′′

〉
(6)
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Due to the fact modes are distinguishable, VSCF can be performed analogously for any vibrational excited state.
Since H depends on V (q) which contains the information of several modes, the mean field Hamiltonian depends
implicitly on the other modals. Hence the Eq. 5 needs to be solved iteratively. Once self-consistency is achieved a
set of variationally optimized modals and modals energies are obtained for the ground state.

Although some coupling between the modes is implicitly included by this mean field approach, explicit mode
correlation is ignored. The set of virtual modes obtained can be used in post-VSCF methods to introduce explicit
mode correlation. One might mention here that resonances are troublesome for VSCF. Resonance in polyatomic
molecules can occur when a given vibrational mode has the same energy as another level associated with another
vibration or a combination of vibrations. In that event, more than a single Hartree product is essential to properly
describe the system.

Vibrational Møller-Plesset (VMP) Theory

In the VMP [9–11] theory, as in the case of the MP, the zeroth order Hamiltonian is obtained from the VSCF
approach. Let us here separate the Hamiltonian as follows:

H = H(0) + V =
∑
m

Fm,s + V (7)

where V , the perturbation, is called fluctuation potential. Expanding the energy and the wavefunction in orders of
the perturbation we get:

e =
∞∑

i=0

e(i) (8)

|Ψ 〉 =
∞∑

i=0

∣∣∣Ψ(i)
〉

(9)

Using VSCF as zeroth order wavefunction (i.e.
∣∣Ψ(0)

〉
= |Φs〉), and assuming intermediate normalization,〈

Ψ(0)|Ψ(n)
〉

= δ0,n, we get from the zeroth and the first order equations:

es,VSCF =
〈

Ψ(0)
∣∣∣H(0)

∣∣∣Ψ(0)
〉

+
〈

Ψ(0)
∣∣∣V ∣∣∣Ψ(0)

〉
= e(0) + e(1) (10)

Collecting terms of the same order in the perturbation expansion, the nth order equation is obtained:

(
H(0) − e(0)

) ∣∣∣Ψ(n)
〉

= −V
∣∣∣Ψ(n−1)

〉
+

n∑
k=1

e(k)
∣∣∣Ψ(n−k)

〉
(11)

The sigma vector is obtained by projection against the lower order correction to the wavefunction:

∣∣∣σ(k)
〉

= H
∣∣∣Ψ(k−1)

〉
(12)

We get the energy and the wavefunction correction in terms of
∣∣σ(n)

〉
:

e(n) =
〈
Ψ(0)

∣∣∣σ(n)
〉

∀n > 1 (13)∣∣∣Ψ(n)
〉

=
(
H(0) − e(0)

)−1
(

H(0)
∣∣∣Ψ(n−1)

〉
−
∣∣∣σ(n)

〉
+

n∑
k=1

e(k)
∣∣∣Ψ(n−k)

〉)
(14)

The calculation of VMP series is driven by the computation of the sigma vector. We can drastically reduce the
computational cost for the energies, by means of the 2n + 1 rule, which states that the correction 2n + 1 for the
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energy can be calculated from the nth-order and lower orders corrections to the wavefunction. Thus at the cost of∣∣σ(n+1)
〉
, we may get the (2n + 1)th correction to the energy.

Although VMP method introduces explicit mode-correlation, basically it aims at introducing dynamic correlation
i.e., interaction between non-degenerate states. Indeed, systems which contain considerable static correlation (Fermi
resonance) usually produce divergent VMP[n] series [11]. It has also been illustrated that divergent VMP series are
frequently found yet in the non-degenerate case.

In the next subsection we introduce the vibrational auto-adjusting perturbation theory, which by a two-step proce-
dure, repeated at each order, provides energy and wavefunction corrections. The procedure consists of a perturbative
correction and a transformation of the system on the basis of this perturbative correction. This dynamic reformulation
of the system is what makes the APT different from common RSPT, makes possible the treatment of static correlation
and will overall significantly modify the behavior of the perturbation series.

Vibrational auto-adjusting perturbation theory (VAPT)

Besalú et al. [25] described the APT as an iterative procedure to diagonalize square matrices. The procedure is
thus useful to solve CI problems and by collecting different orders, APT becomes an alternative perturbation theory
to the traditional Rayleigh-Schrödinger one.

The APT starts its iterative procedure from an unperturbed system,
(
H(0),Ψ(0)

)
and gets a correction of its

eigenvector and eigenvalue. In practice, the eigenvalue correction is chosen in a convenient way to simplify the whole
procedure, c.f. Ref. [25]. At the end of each step, a new unperturbed system is defined from the corrected eigenvector
and eigenvalue. A new iteration step involves a new perturbation correction of the new eigenvalue and eigenvector [25].

The main distinctive feature of APT is that it relaxes the system by re-defining the unperturbed system after each
perturbation step. This is what makes APT capable of handling quasi-degeneracy of the eigenstates in a better way
than RSPT. It does this in a black-box way, avoiding a priori choice of modals and configurations.

In this paper, the APT is used to introduce mode-correlation between VSCF modals. Using the VSCF as
unperturbed system, and RSPT as the perturbation method to get a first order correction of the eigenvector and a
second order correction of the eigenvalue, we obtain the APT[n] series, which in analogy to other vibrational theories
we will call VAPT[n].

The wavefunction and the energy for the VAPT series are calculated in an analogous way to RSPT theory. Assuming
convergence:

e = lim
n→∞

e
(n)
VAPT e

(n)
VAPT =

n∑
k=0

e
(k)
VAPT (15)

|Ψ〉 = lim
n→∞

∣∣∣Ψ(n)

VAPT

〉 ∣∣∣Ψ(n)

VAPT

〉
=

n∑
k=0

∣∣∣Ψ(k)
VAPT

〉
(16)

Instead of using all corrections up to a given order, in APT we work with the energy corrected up to the target
order, i.e., the accumulated correction (accumulated quantities are denoted with an overline). This is a feature which
makes APT implementation quite appealing; while in RSPT all lower order energy and wavefunction corrections need
to be stored, in APT we only need to store the last accumulated correction to compute the next one. The wavefunction
corrected up to nth order is calculated as follows:∣∣∣Ψ(n)

VAPT

〉
=
(
e
(n−1)
VAPT − E

(n−1)

VAPT

)−1 (∣∣∣σ(n−1)
VAPT

〉
− E

(n−1)

VAPT

∣∣∣Ψ(n−1)

VAPT

〉)
(17)

where : ∣∣∣σ(n)
VAPT

〉
= H

∣∣∣Ψ(n)

VAPT

〉
(18)

e
(n)
VAPT =

〈
Ψ(0)

∣∣∣σ(n)
VAPT

〉
(19)
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where we have used lower case for the energy to emphasize it is a scalar, corresponding to the sth state we are studying.
When capitals are used for the energy, we refer to a diagonal matrix containing the energy correction for all states.
Notice, however, that unlike VMP[n], VAPT requires the calculation of the wavefunction before subsequently using it
in the calculation of the energy correction corresponding to that wavefunction. Because of this, there is no 2n+1 rule
for VAPT. In addition, to compute the nth order wavefunction, one needs to calculate the E

(n−1)

VAPT which is a diagonal
matrix containing the effect of the correction on the other states s 6= i:

E
(n)

ii = Hii −HisΨ
(n)

is ∀i 6= s (20)

Notice, that APT needs to store the sth column and the diagonal of H, the accumulated eigenvalue correction,∣∣Ψ(n)
〉

and σ(n). E
(n−1)
VAPT can be calculated straightforwardly on-the-fly from previous quantities. Actually, comparing

with Eq. 13, we see that APT[n] bears a similar computational cost to VMP[n] (when the 2n + 1 rule is not used for
VMP), and that the bottleneck of the algorithm is likewise the calculation of the sigma vector.

Since we cannot benefit from the 2n + 1 rule, the cost of VAPT is about twice the cost of VMP. One should
also notice that since the MP partition is not kept during the iteration procedure, VAPT is not size-extensive.
Although these may seem important drawbacks against VAPT, there are several other features that compensate. In
the VAPT hereof, we have chosen RSPT first order correction of the wavefunction as the first order correction of
the wavefunction in VAPT. In addition, the first-order correction of the energy in VAPT is taken as the first plus
the second order corrections of RSPT. Therefore, the energy corrected up to first order with VAPT corresponds
to the energy corrected up to second order with RSPT. It is thus expected that VAPT[n] introduces more corre-
lation than VMP[n]. Another advantage of APT, is that it redefines the unperturbed system in every iteration.
Although it is somehow hidden in the previous equations this property is responsible for the ability of VAPT to
deal with quasi-degenerate systems. Altogether, higher cost of VAPT pays off by getting more accurate results
than the corresponding order in the VMP series (vide infra) and providing convergent series in case of strong resonance.

COMPUTATIONAL DETAILS

The calculations are based on those done in Ref. [11] on formaldehyde and 2DB, a two-mode model system developed
by Thompson and Truhlar [28]. 2DB was developed with the aim to have a simple model which displays Fermi resonance
and is represented with the Hamiltonian:

H = −1
2

∂2

∂q2
1

+
1
2
ω2

1q2
1 −

1
2

∂2

∂q2
2

+
1
2
ω2

2q2
2 + k122q1q

2
2 + k111q

3
1 (21)

where w1 = 1.4, w2 = 0.7, k122 = −0.8 and k111 = 0.0064. By construction w1 = 2w2 and coupling between the
modes (k122) is significant; these are the reasons for the system to exhibit Fermi resonance. We have used a basis
set of 33 harmonic oscillators. FVCI calculations have been performed using the full basis. We note in passing that
the FVCI results for 2DB model in Ref. [11] are not in this basis as indicated erratically, but in a smaller basis of 7
harmonic oscillators. The differences are minor, in the worst case affecting the fourth digit, and by no means have
any effect on the conclusions drawn in the paper.

Formaldehyde calculations are based on the quartic force field of Romanowski et al. [34] using 7 harmonic oscillators
as the basis set for the VSCF calculation, 4 of which were retained for the VCI[3] and VMP[n] calculations. At this
level of theory the same divergent character of the VMP[n] series found by Christiansen [11] using 7 modals for FVCI
calculations is reproduced for 3 of the 4 strongly divergent series. Although we have reduced the number of divergent
cases at our disposal to test VAPT method, we believe these strongly divergent cases in formaldehyde and those
found in the 2DB model are sufficient to illustrate the performance of VAPT. The reason for this simplification of
the correlated calculation is practical. At this stage the VAPT[n] series is calculated with the VAPT program [35] by
using the (F)VCI matrix generated with MidasCpp [36]. Reducing the number of correlated modals and the number
of excitations we reduce the size of the VCI matrix which needs to be stored on disk. Since the only purpose of this
paper is to test VAPT for VMP divergent series we believe this simplification has no effect on the conclusions drawn
in this manuscript.
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FIG. 1: Difference between VMP[n] and FVCI energies for the model 2DB.
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RESULTS

2DB model

Figure 1 summarizes the VMP results for some selected states; each calculation has been performed using the
modals optimized for the specific state (ss hereafter). From the chosen set, four out of six states produce divergent
VMP series, as already reported [11]. In the supporting information (SI), the reader may find the tables with these
results and also the calculations performed using ground-state (gs) modals for all states. In addition, the SI collects
the tables with the calculations using Epstein-Nesbet (EN) partition. All the results show the same divergent trends
for the same states, regardless the partition or the modals used for the calculation.

In Figure 2 we give the energies for this set of states calculated using VAPT. The results are likewise calculated
using Møller-Plesset partition and the ss modals. Indeed, as it was explained in the previous section, in the VAPT
procedure, the user-defined partition (here Møller-Plesset) is only used in the first iteration. In the second and
subsequent iterations the partition is dynamically redefined by the VAPT method. It is shown how VAPT converges
the energy up to 10th digit for all states with less than 15 iterations, and most of them in less than 8 iterations. Only
[1, 0] and [1, 1] present slow convergent series. In the SI one may find tables for these calculations using MP and EN
partitions, as well as working with ss and gs modals. The same qualitative results are reproduced, irrespective of the
partition and the modals used for the calculation, excepting gs-EN-VAPT which converges the VAPT series for [1, 1]
in the wrong state, [0, 3]. Although VAPT never diverges in these examples, when the zeroth order wavefunction is
not good enough it can fail in targeting the correct state. It is worth mentioning the outperforming role of VAPT[4],
which gives results converged up to 7th decimal place for all states but [1, 1].
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FIG. 2: Difference between VAPT[n] and FVCI energies for the model 2DB.
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Formaldehyde

Table I collects the fundamental transition energies for formaldehyde computed with VMP and VAPT methods.
One may observe that VMP diverges for the state [0, 0, 0, 0, 1, 0], while VAPT series is convergent for this state. In
Table II we give overtones and combination bands below 9000cm−1. We can clearly see two states with divergent
VMP series, [0, 0, 1, 0, 0, 1] and [0, 1, 0, 0, 0, 1]. Both are converged using VAPT, though the latter converges to the
wrong state, [0, 0, 0, 0, 1, 0], which was the troublesome fundamental. This puts forward the reason for the divergent
series for these two states, [0, 0, 0, 0, 1, 0] and [0, 1, 0, 0, 0, 1], with RSPT: there is high coupling between them.
Although this is beyond the scope of this paper, it is worth mentioning there are ways to target the right state by
tuning the perturbation. For instance, it can be imposed that the highest contribution from a given Hartree product
is preserved in the iteration procedure. Research in this line is underway in our groups.

For the non-troublesome states of formaldehyde (those not divergent in RSPT), VMP[2] provides an accuracy
of 5cm−1, an indication that performance of low-order corrections of VMP acquire a good compromise between
accuracy and computational cost. VAPT[1] energy is, in the present version of VAPT, equal to VMP[2], and it is
thus not surprising that VAPT[2] performs similar or better, even for troublesome states. One can also observe than
VAPT[4] results are less that 4cm−1 off the VCI[3] results, even for the troublesome states (the only exception is, of
course, the state which is not correctly targeted with VAPT).

In the SI the reader may find the tables for formaldehyde gs and ss calculations with both EP and MP partitions
for VMP and VAPT series. ss-EN-VAPT results, gs-EN-VAPT and gs-MP-VAPT are similar to those presented for
ss-MP-VAPT given in tables I and II. On the other hand, while gs-MP-RSPT results mimic those presented in the
tables for ss-MP-RSPT results, when using EN partition (irrespective of the modals used for the calculation) the
perturbation series for the state [0, 0, 1, 0, 0, 1] is convergent (though very slowly convergent for gs-EN-RSPT). Despite
this particular success of ss-EN-RSPT, it is expected to find far more RSPT diverging cases in vibrational high-energy
region, where Fermi resonances are common. Inasmuch EN-RSPT exhibited non-convergent series in the model
system studied in this paper, we believe this particular example does not prove much about the performance of this
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TABLE I: Above the difference between VMP[n] (specific-state) and VCI[3] energies for fundamental vibrations of formalde-
hyde. Below difference between VAPT[n] (Møller-Plesset, specific-state) and VCI[3] energies for fundamental vibrations of
formaldehyde. Units are cm−1.

n [0,0,0,0,0,0] [1,0,0,0,0,0] [0,1,0,0,0,0] [0,0,1,0,0,0] [0,0,0,1,0,0] [0,0,0,0,1,0] [0,0,0,0,0,1]

0 -77.8250 -113.154 -89.9610 -111.006 -123.422 -423.253 -105.896

1 17.3950 48.0138 21.2373 24.1006 22.5338 69.0745 23.1594

2 -0.32512 -4.25313 -0.52500 -0.01947 -0.28432 37.9514 -0.28038

3 0.61222 3.65345 0.66457 0.87580 0.89884 70.3987 0.84611

4 -0.08144 -0.60203 -0.11427 -0.10723 -0.11883 109.611 -0.11249

5 0.03843 0.27888 0.04450 0.05607 0.06345 162.100 0.05742

6 -0.00812 -0.02089 -0.01284 -0.01206 -0.01483 221.697 -0.01283

7 0.00274 -0.01044 0.00378 0.00482 0.00536 272.566 0.00458

8 -0.00067 0.00267 -0.00130 -0.00129 -0.00147 284.240 -0.00119

9 0.00020 0.00249 0.00037 0.00044 0.00047 209.221 0.00037

10 -0.00005 -0.00495 -0.00013 -0.00013 -0.00013 -13.5316 -0.00010

11 0.00001 0.00321 0.00004 0.00004 0.00004 -437.751 0.00003

12 <1.0e-05 -0.00096 -0.00001 -0.00001 -0.00001 -1063.53 <1.0e-05

13 -0.00045 <1.0e-05 <1.0e-05 <1.0e-05 -1755.78

14 0.00081 -2130.55

15 -0.00059 -1442.26

16 0.00022 1440.04

17 0.00002 7798.50

18 -0.00011 18320.1

19 0.00009 31555.9

20 -0.00004 41458.9

30 <1.0e-05 7.0e+06

V CI[3] 5778.89357 8562.57175 7525.56402 7278.85923 6925.23893 8570.99222 7021.58903

n [0,0,0,0,0,0] [1,0,0,0,0,0] [0,1,0,0,0,0] [0,0,1,0,0,0] [0,0,0,1,0,0] [0,0,0,0,1,0] [0,0,0,0,0,1]

0 -77.8250 -113.154 -89.9610 -111.006 -123.422 -423.253 -105.896

1 -0.32512 -4.25313 -0.52500 -0.01947 -0.28431 37.9514 -0.28038

2 0.65030 7.47277 0.79050 1.01756 0.97215 -18.9283 0.92571

3 -0.08616 -0.65278 -0.09434 -0.09574 -0.13365 0.40470 -0.12207

4 0.04417 0.52775 0.06421 0.07495 0.07741 -3.68385 0.06999

5 -0.00947 -0.23142 -0.01307 -0.01406 -0.01876 0.23663 -0.01580

6 0.00354 0.12239 0.00598 0.00685 0.00761 -0.67975 0.00644

7 -0.00091 -0.02980 -0.00155 -0.00173 -0.00224 0.07279 -0.00176

8 0.00030 0.01390 0.00066 0.00070 0.00081 -0.12966 0.00064

9 -0.00008 -0.00629 -0.00020 -0.00021 -0.00026 0.01814 -0.00019

10 0.00003 0.00280 0.00008 0.00008 0.00009 -0.02554 0.00006

11 <1.0e-05 -0.00090 -0.00003 -0.00003 -0.00003 0.00399 -0.00002

12 0.00039 0.00001 <1.0e-05 <1.0e-05 -0.00515 <1.0e-05

13 -0.00017 <1.0e-05 0.00083

14 0.00007 -0.00105

15 -0.00003 0.00016

16 0.00001 -0.00022

17 <1.0e-05 0.00003

18 -0.00005

19 <1.0e-05

V CI[3] 5778.89357 8562.57175 7525.56402 7278.85923 6925.23893 8570.99222 7021.58903
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TABLE II: Above difference between VMP[n] (specific-state) and VCI[3] energies for overtones and combination bands of
formaldehyde below 9000cm−1. Below difference between VAPT[n] (Møller-Plesset, specific-state) and VCI[3] energies for
overtones and combination bands of formaldehyde below 9000cm−1. Units are cm−1.

n [0,0,0,2,0,0] [0,0,0,0,0,2] [0,0,0,1,0,1] [0,0,1,1,0,0] [0,0,1,0,0,1] [0,1,0,1,0,0] [0,1,0,0,0,1] [0,0,2,0,0,0]

0 -186.120 -142.817 -150.814 -163.244 -112.077 -142.506 -83.5495 -152.181

1 30.1863 32.7725 29.1230 31.0342 51.0603 28.3351 70.3343 28.7336

2 -4.42063 -2.92391 -0.25216 0.36042 -22.3242 -0.14398 64.7057 0.61480

3 3.81575 1.77072 1.20583 1.33526 27.8968 1.06224 83.6440 1.43499

4 -2.17265 -0.42062 -0.16182 -0.12988 -17.7660 -0.14367 97.2071 -0.06769

5 1.51633 0.07024 0.09190 0.09350 -10.9940 0.07288 104.962 0.06840

6 -1.02863 0.14001 -0.02264 -0.01967 55.9833 -0.02349 104.967 -0.02234

7 0.69190 -0.21168 0.00858 0.00916 -91.6704 0.00623 98.3409 0.00446

8 -0.45529 0.20985 -0.00249 -0.00254 65.4835 -0.00304 88.2469 -0.00280

9 0.29252 -0.17307 0.00083 0.00093 80.1019 0.00064 79.3476 0.00075

10 -0.18229 0.12537 -0.00025 -0.00029 -339.675 -0.00037 76.1124 -0.00028

11 0.10944 -0.07995 0.00008 0.00010 543.908 0.00008 80.9085 0.00011

12 -0.06250 0.04298 -0.00002 -0.00003 -309.849 -0.00004 92.5405 -0.00004

13 0.03322 -0.01632 <1.0e-05 0.00001 -787.668 0.00001 106.116 0.00002

14 -0.01565 -0.00068 <1.0e-05 2659.71 <1.0e-05 114.663 <1.0e-05

15 0.00565 0.00983 -3870.52 112.223

16 -0.00039 -0.01332 1283.99 97.2749

17 -0.00203 0.01317 8301.44 74.8090

18 0.00283 -0.01105 -23160.3 55.5100

19 -0.00280 0.00816 29574.9 51.5571

20 0.00239 -0.00527 -29.2365 70.2133

30 -0.00003 0.00025 1.9e+07 208.416

50 <1.0e-05 <1.0e-05 -8.3e+11 7311.78

V CI[3] 8076.92868 8266.22525 8171.96016 8418.32902 8507.38957 8662.08376 8719.99894 8778.30299

n [0,0,0,2,0,0] [0,0,0,0,0,2] [0,0,0,1,0,1] [0,0,1,1,0,0] [0,0,1,0,0,1] [0,1,0,1,0,0] [0,1,0,0,0,1] [0,0,2,0,0,0]

0 -186.120 -142.817 -150.814 -163.244 -112.077 -142.506 -83.5495 -152.181

1 -4.42063 -2.92391 -0.25216 0.36042 -22.3242 -0.14398 64.7057 0.61480

2 3.60077 2.09677 1.34225 1.57696 1.70111 1.30442 102.696 1.82030

3 -1.64449 -0.75397 -0.18565 -0.10683 -2.51403 -0.09383 91.0549 -0.06454

4 1.09782 0.65867 0.11842 0.13975 0.30689 0.12941 91.7997 0.06465

5 -0.63080 -0.30207 -0.03002 -0.02217 -0.31631 -0.01855 91.9419 -0.00495

6 0.40077 0.17694 0.01316 0.01534 0.05848 0.01476 91.7361 0.03297

7 -0.24151 -0.10009 -0.00410 -0.00346 -0.04470 -0.00282 91.7028 -0.01009

8 0.15097 0.06422 0.00159 0.00187 0.01160 0.00195 91.7298 -0.00342

9 -0.09236 -0.03629 -0.00054 -0.00051 -0.00725 -0.00045 91.7186 0.00301

10 0.05737 0.02183 0.00020 0.00024 0.00248 0.00028 91.7202 0.00121

11 -0.03529 -0.01281 -0.00007 -0.00007 -0.00139 -0.00008 91.7205 -0.00141

12 0.02186 0.00777 0.00003 0.00003 0.00058 0.00004 91.7203 -0.00004

13 -0.01348 -0.00457 <1.0e-05 -0.00001 -0.00031 -0.00001 91.7203 0.00045

14 0.00834 0.00274 <1.0e-05 0.00015 <1.0e-05 91.7204 -0.00006

15 -0.00514 -0.00162 -0.00008 91.7204 -0.00014

16 0.00318 0.00097 0.00004 91.7204 0.00005

17 -0.00196 -0.00058 -0.00002 91.7204 0.00004

18 0.00121 0.00035 0.00001 91.7204 -0.00002

19 -0.00075 -0.00021 <1.0e-05 91.7204 <1.0e-05

20 0.00046 0.00012 91.7204

30 <1.0e-05 <1.0e-05 91.7204

V CI[3] 8076.92868 8266.22525 8171.96016 8418.32902 8507.38957 8662.08376 8719.99894 8778.30299
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method. On the contrary, VAPT does not diverge for any state, in spite of the fact it fails in targeting one of the states.

Here we should also mention about the computational cost, which is lower per order for VMP due to the 2n + 1
rule. As a rule of thumb one may compare VMP[2n + 1] against VAPT[n] which come at similar computational
cost. In that comparison, VMP is clearly superior to VAPT for the non-troublesome states. Notwithstanding, it
becomes evident that VAPT is capable of introducing more static correlation energy than VMP[2n + 1] despite
VAPT[n] usually introduces less dynamic correlation energy. Prospective work faces the challenge to make VAPT
yet computational cheaper, to reach similar cost to VMP methods.

SUMMARY

In this paper we introduce a new method in vibrational theory, the vibrational auto-adjusting perturbation theory
(VAPT). VAPT is an alternative method to vibrational Rayleigh-Schrödinger perturbation theory (RSPT). The
VAPT performs iteration steps with a twofold mechanism. First, a perturbative correction (by in principle any
method, here we have chosen first order RSPT) is calculated, then, VAPT redefines the unperturbed system, and
starts all over again. This last peculiarity is what makes VAPT capable of handling systems with significant static
mode-correlation, avoiding the convergence problems suffered by VMP.

This feature is illustrated by calculation on the Fermi-resonant two-model system developed by Thompson and
Truhlar and the quartic force field of Romanowski for formaldehyde. VAPT is shown to converge the series where
VMP could not.

From this manuscript three main conclusions are drawn. First, VAPT is capable of introducing more static
correlation than VMP[2n + 1]. Second, VAPT[n] introduces less dynamic correlation energy than VMP[2n + 1],
the method we should compare with to balance computational costs. Third, the major problem of our current
implementation of VAPT is not divergence of VAPT, but the targeting of the correct state. Nevertheless, VAPT
has targeting problems only for one case, which was one of the divergent VMP cases. In this sense, a faster VAPT
method which avoids wrong targeting would be desired, so that we had a method that could effectively cope with
static correlation and scale similar to VMP. Work in this line is in progress in our laboratories.

Overall, VAPT stands as a promising method in vibrational theory: it is easy to implement, it seems capable of
handling resonant systems, and provides accuracy already for low order terms of its series.

ACKNOWLEDGMENTS

E.B. and J.M.B. thank the project CTQ2006-04410/BQU of the Spanish Ministerio de Ciencia y Tecnoloǵıa.
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