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An efficient new procedure for calculating Franck–Condon factors, based on the direct solution of
an appropriate set of simultaneous equations, is presented. Both Duschinsky rotations and
anharmonicity are included, the latter by means of second-order perturbation theory. The critical
truncation of basis set is accomplished by a build-up procedure that simultaneously removes
negligible vibrational states. A successful test is carried out on ClO2 for which there are
experimental data and other theoretical calculations. ©2004 American Institute of Physics.
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I. INTRODUCTION

Along with the development of experimental high-
resolution vibronic spectroscopies, the problem of analyzing
the observed spectra is receiving increased attention. In the
Born–Oppenheimer approximation the leading term that
governs the spectral intensity pattern is given by the square
of the vibrational overlap integrals, also known as Franck–
Condon factors~FCF’s!, between the initial and final states.
If the vibrational normal coordinates for the two electronic
states are parallel~i.e., if they are the same except for the
shift in equilibrium geometry!, then these integrals will sepa-
rate in the harmonic oscillator approximation into a product
of individual oscillator terms. In general, however, this is not
the case and, discounting possible simplifications due to
symmetry, one must evaluate 3N-6 ~or 3N-5 for linear mol-
ecules! dimensional overlap integrals. The difficulty of doing
so is compounded by the fact that the difference in equilib-
rium geometry as well as the anharmonicity of the electronic
potential-energy surfaces must be taken into account.

A variety of methods have been proposed for dealing
with this problem, particularly at the harmonic level.1 One of
these is based on the generating function approach of Sharp
and Rosenstock,2 which is an extension of the method intro-
duced by Hutchisson3 for diatomics. This method has been
further developed by Chen4 and improved by Ervinet al.5

in their application to the naphthyl radical. Very recently,
Kikuchi et al.6 derived a simpler form of the Sharp and
Rosenstock general formula and applied it to SO2 in the
harmonic oscillator approximation. Another method based on
the generating function approach is due to Ruhoff7 who de-
rived recursion relations for the calculation of multidimen-

sional FCF’s by generalizing Lerme´’s8 procedure for two-
dimensional FCF’s. Also employing the generating function
method, Islampouret al. derived a closed-form multidimen-
sional harmonic oscillator expression, where the FCF’s were
expressed as sums of products of Hermite polynomials.9

An alternative procedure, utilizing the recursion rela-
tions of Doctorov, Malkin, and Man’ko,10 has been employed
for a variety of molecules such as phenol,11,12 anthracene,13

and pyrazine.14 In addition, two different methods for calcu-
lating the FCF’s were developed by Faulkner and
Richardson.15 The central feature of their first method is a
linear transformation of the normal coordinates in both the
ground and excited electronic states in order to effectively
remove the Duschinsky rotations16 ~i.e., the transformation
of coordinates from one electronic state to another!. This was
originally restricted to the case where either the initial or
final vibrational wave function is the ground state, but Ku-
lander later removed this restriction.17,18The second method
of Faulkner and Richardson is based on a perturbation ex-
pansion of the vibrational wave functions of the excited elec-
tronic state in terms of the ground electronic state vibrational
wave functions.15 Finally, Malmqvist and Forsberg19 have
expressed the FCF matrix as the product of lower triangular
and upper triangular matrices which are calculated from re-
cursion formulas.

At this juncture we take note of a very different ap-
proach, developed by Segev, Heller, and co-workers,20,21

based on considering the transitions in phase space. Those
phase-space points where the classical Wigner function for
the initial state is maximal, subject to a classical energy con-
straint on the final state, determine propensity rules for the
FCF’s. These rules, in turn, provide a way of selecting the
transitions that have substantial intensity and their FCF’s can
be estimated by subsequent phase-space integration. The
truncation of the vibrational basis is a critical aspect in re-
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ducing the computational effort of any method. Our own
prescription for doing this is described in Sec. II D.

Although the procedures mentioned above can, in prin-
ciple, include vibrational anharmonicity not much attention
has been paid to this aspect. Iachello’s group has developed a
procedure based on the use of Morse oscillators in a novel
Lie algebraic scheme.22–24 More recently Moket al.25 have
proposed an expansion technique that builds on the earlier
work of Botschwina and co-workers.26 However, these meth-
ods and other approaches27–29to the vibrational anharmonic-
ity problem have only been applied to small molecules or to
two-dimensional model potentials.30 Reimers has also
described31 an approximate method for taking into account
the floppy motions of large molecules by means of curvilin-
ear coordinates.

Apart from one-photon absorption~and emission! FCF’s
figure prominently in two-photon absorption~TPA!. The vi-
brational contribution to nonlinear optical~NLO! properties,
including TPA,32 has occupied the attention of the present
authors for some time.33–36As far as nonresonant NLO pro-
cesses are concerned, it is also known that mechanical and
electrical anharmonicities of ordinary~as well as floppy!
molecules often play a major role.37 On the basis of very
approximate treatments38–40 it has been suggested that the
same is true for resonant processes and in particular for TPA.
We have now begun to develop a rigorous theory for vibra-
tional effects in TPA in order to investigate that situation
more thoroughly. In the course of doing so, we have come
across a simple direct way to evaluate FCF’s and it is this
new scheme that is presented here. Effects due to:~i!
changes in the normal coordinates with electronic state
~Duschinsky rotations!;16 ~ii ! changes in the equilibrium ge-
ometry with electronic state; and~iii ! mechanical anharmo-
nicities in both electronic states, are all taken into account.

In the next section a general theory, which includes all of
the above effects, is formulated. Then, in Sec. III we discuss
how the resulting equations are solved along with other com-
putational details. This is followed by an example where our
method is used to simulate the He I photoelectron~PE! spec-
trum of ClO2 , in order to compare with the work of Mok
et al.25 Finally, we conclude with a brief discussion of future
plans for incorporating this methodology into our treatment
of TPA for large conjugated molecules.

II. THEORY

The goal of this section is the derivation of a new ana-
lytical procedure to calculate the Franck–Condon factors of
polyatomic molecules taking into account both the Duschin-
sky rotations and the mechanical anharmonicity.

A. General formulation

We denote the vibrational Hamiltonian, wave functions,
and energies of the ground electronic state byĤg, ucng

g &, and

Eng

g and their counterparts for an electronic excited state by

Ĥe, ucne

e &, andEne

e . Note that ‘‘g’’ refers to the ground elec-

tronic state and ‘‘e’’ to an excited electronic state throughout.
In either case the molecule is assumed to be nonrotating and

thus the rotational state is suppressed. Then the respective
Schrödinger equations for nuclear motion are given by

Ĥgucng

g &5Eng

g ucng

g &, ~1!

Ĥeucne

e &5Ene

e ucne

e &. ~2!

Multiplication of Eq.~1! by ^cne

e u and Eq.~2! by ^cng

g u leads

to

^cne

e uĤgucng

g &5Eng

g Sneng
, ~3!

^cng

g uĤeucne

e &5Ene

e Sngne
, ~4!

where Sneng
are the Franck–Condon overlap integrals~the

wave functions are taken to be real!:

Sneng
5Sngne

5^cne

e ucng

g &5^cng

g ucne

e &. ~5!

Subtraction of Eq.~4! from Eq. ~3!, and using the Hermitian
property ofĤg, gives

^cng

g uĤg2Ĥeucne

e &5~Eng

g 2Ene

e !Sngne
. ~6!

Since the vibrational eigenfunctions for the excited elec-
tronic state (cme

e below! form a complete set, the left-hand

side of Eq.~6! can be expressed as

^cng

g uĤg2Ĥeucne

e &5(
me

^cng

g ucme

e &^cme

e uĤg2Ĥeucne

e &

5(
me

Sngme
^cme

e uĤg2Ĥeucne

e &. ~7!

Equation~7! contains the entire set of Franck–Condon over-
laps between the initial vibrational wave function of the
ground electronic state and all final vibrational wave func-
tions of the excited electronic state. This allows us to solve
for the entire set of overlap integrals in which we are inter-
ested simultaneously. If the vibrational wave functions of the
electronic excited state had been expanded in terms of the
electronic ground-state vibrational wave functions, then only
one of the desired overlaps would be obtained and the pro-
cess would have to be repeated for each final state. In either
event the properties of both the ground and excited electronic
states are necessary for the calculations.

Combining Eqs.~6! and ~7!, while taking into account
the fact that the total nuclear kinetic energy operator is the
same in both Hamiltonians (Ĥg5T̂1V̂g, Ĥe5T̂1V̂e), one
obtains

(
me

Sngme
@^cme

e uV̂g2V̂eucne

e &1~Ene

e 2Eng

g !dmene
#

50, ;ne , and ;ng , ~8!

wheredmene
is the Kronecker delta.

For a givenng , Eq. ~8! constitutes an infinite set of
homogeneous simultaneous linear equations with an infinite
number of unknownsSngme

~all me). The first step in solving
this set of equations is to truncate to a finite set ofme andne

values. The details of the systematic iterative algorithm used
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to select theM equations that survive the truncation are
given in the next section. Then after dividing bySngle

(le is
arbitrary as long asSngle

Þ0),

(
me

M

r le

me@^cme

e uV̂g2V̂eucne

e &1~Ene

e 2Eng

g !dmene
#50,

$ne%5$me%, ;ne , ~9!

wherer le

me is the ratio,

r le

me5Sngme
/Sngle

~10!

~the indexng is understood inr le

me). There areM simulta-

neous equations in Eq.~9! but only M21 unknown ratios;
hence one of these equations is redundant. Any one can be
omitted~assuming the remaining set is nonsingular! and our
choice is to remove the equation corresponding tone5le .
In order to obtainSngme

from the ratiosr le

me we use the nor-

malization condition,

(
me

M

Sngme

2 5(
me

M

^cng

g ucme

e &^cme

e ucng

g &51, ~11!

which leads to

Sngle
51YA(

me

M

~r le

me!2. ~12!

The remainingSngme
are obtained from Eq.~10! as Sngme

5r le

meSngle
(meÞle). Finally, the Franck–Condon factors

are given by the square of the corresponding Franck–
Condon integrals (Fngme

5Sngme

2 ).

B. Duschinsky rotations

In general the equilibrium geometry and the potential-
energy surface~PES! of the electronic excited and ground
states are not the same. Therefore the respective normal co-
ordinatesQe andQg are also different. The relationship be-
tween the two sets of normal coordinates can be obtained
from the corresponding relationship between their mass-
weighted Cartesian displacement coordinates and the formu-
las that connect the normal and Cartesian coordinates. For
the mass-weighted Cartesian displacement coordinates we
have

Xg5Xe1R, ~13!

whereXg (Xe) represents the coordinates of the electronic
ground~excited! state andR is the vector~in mass-weighted
Cartesians! obtained by subtracting the ground-state equilib-
rium geometry from that of the excited state. The normal
coordinates are related to the mass-weighted Cartesian coor-
dinates by

Qg5Lg†
Xg and Qe5Le†

Xe, ~14!

whereLg andLe are unitary matrices~see, for example, Ref.
41!. Six columns ofLg andLe ~or five for linear molecules!

are associated with translations and rotations, while the re-
mainder correspond to the normal vibrations. By combining
Eqs.~13! and ~14! we find that

Qg5JQe1K , ~15!

whereJ5Lg†
Le and K5Lg†

R. The J matrix describes the
Duschinsky rotation between the normal modes of the
ground and excited electronic state, whileK is associated
with the change in the normal modes due to the displacement
of the equilibrium geometry between the two electronic
states.

The effect of the Duschinsky rotation and the equilib-
rium geometry displacement on the Franck–Condon factors
occurs in the potential-energy differenceV̂g2V̂e in Eq. ~9!
which, for nonlinear states, is given by

V̂g2V̂e5VQg50
g

2VQe50
e

1
1

2 (
i 51

3N26 S ]2Vg

]~Qi
g!2D

Qg50

3FKi
212Ki (

j 51

3N26

Ji j Qj
e1 (

j ,k51

3N26

Ji j JikQj
eQk

eG
2

1

2 (
i 51

3N26 S ]2Ve

]~Qi
e!2D

Qe50

~Qi
e!2 ~16!

in the harmonic approximation.

C. Mechanical anharmonicity

Mechanical anharmonicity can be included through a
perturbation treatment using the harmonic oscillator Hamil-
tonian as the zeroth-order approximation.42 An alternative
approach is to introduce the anharmonicity by using curvi-
linear coordinates.31

Expanding Eq.~8! in orders of perturbation theory, we
find that the first-order equation is

(
me

Sngme

~1! @^cme

e uV̂g2V̂eucne

e &1~Ene

e 2Eng

g !dmene
#~0!

1(
me

Sngme

~0! @^cme

e uV̂g2V̂eucne

e &

1~Ene

e 2Eng

g !dmene
#~1!50, ~17!

where the superscripts~0! and ~1! indicate the order of per-
turbation theory. The zeroth-order equation is identical to Eq.
~8! except that all quantities have a superscript~0!. This in-
finite set of equations is truncated to the same finite set
$ne%5$me% that is used in the zeroth-order equation. As in
previous work32 we take the cubic terms inVg andVe to be
first order. In that event, the first-order corrections toEne

e and

Eng

g vanish. On the other hand, the first-order corrections to

the terms in which the potential-energy difference occurs in
Eq. ~17! are given by
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^cme

e uV̂g2V̂eucne

e &~1!

5^cme

e~1!u~V̂g2V̂e!~0!ucne

e~0!&1^cme

e~0!u~V̂g2V̂e!~1!ucne

e~0!&

1^cme

e~0!u~V̂g2V̂e!~0!ucne

e~1!&, ~18!

where

ucne

e~1!&52 (
meÞne

M ^cne

e~0!uV̂e~1!ucme

e~0!&ucme

e~0!&

Eme

e~0!2Ene

e~0! ~19!

and

~V̂g2V̂e!~1!5
1

6 (
i , j ,k51

3N26 S ]3Vg

]Qi
g]Qj

g]Qk
gD

Qg50

3FKiK jKk13KiK j (
l 51

3N26

JklQl
e

13Ki (
l ,m51

3N26

Jjl JkmQl
eQm

e

1 (
l ,m,n51

3N26

Jil JjmJknQl
eQm

e Qn
eG

2
1

6 (
i , j ,k51

3N26 S ]3Ve

]Qi
e]Qj

e]Qk
eD

Qe50

Qi
eQj

eQk
e .

~20!

The column vectorSvg
(1) with componentsSngme

(1) , can be

written as

Svg
~1!

5Svg8
~1!

1Svg9
~1!

5Svg8
~1!

1 f Svg
~0! , ~21!

whereSvg8
(1) is the component ofSvg

(1) orthogonal toSvg
(0) and

Svg9
(1) is the component ofSvg

(1) parallel toSvg
(0) . The first term

on the left-hand side of Eq.~17! vanishes if we substitute
Svg

(0) for the first-order eigenvectorSvg
(1) @cf. Eq. ~8!#. There-

fore Svg
(1) is a solution of Eq.~17! for any arbitraryf. We

choosef equal to zero so thatSvg
(1) is orthogonal toSvg

(0) and
thereby satisfies the first-order normalization condition

2(
me

Sngme

~1! Sngme

~0! 52Svg
~1!†

Svg
~0!

50. ~22!

One easy procedure to solve the set of simultaneous equa-
tions ~17! is to transform to a basis consisting of the vector
Svg

(0) and an arbitrary set ofM21 vectors perpendicular to
Svg

(0) . Then we only need to solve the reduced set ofM21
inhomogeneous equations in the subspace orthogonal to
Svg

(0) . Once the solution forSngme

(1) has been determined, the

first-order corrections to the FCF’s are found as

Fngme

~1! 52Sngme

~0! Sngme

~1! . ~23!

A similar procedure may be followed for the second-
order correction which is obtained by solving

(
me

M

Sngme
8~2! @^cme

e uV̂g2V̂eucne

e &1~Ene

e 2Eng

g !dmene
#~0!

1(
me

M

Sngme
9~2! @^cme

e uV̂g2V̂eucne

e &1~Ene

e 2Eng

g !dmene
#~0!

1(
me

M

Sngme

~1! @^cme

e uV̂g2V̂eucne

e &1~Eng

e 2Eng

g !dmene
#~1!

1(
me

M

Sngme

~0! @^cme

e uV̂g2V̂eucne

e &1~Ene

e 2Eng

g !dmene
#~2!

50, ~24!

where we have writtenSvg8
(2) for the component ofSvg

(2) or-
thogonal toSvg

(0) andSvg9
(2) for the component ofSvg8

(2) parallel
to Svg

(0) . Again the parallel component is given bySvg9
(2)

5 f Svg
(0) where the multiplicative constantf is chosen to sat-

isfy the normalization condition which, in second-order, is

052Svg
~2!†Svg

~0!
1Svg

~1!†Svg
~1!

52Svg9
~2!†Svg

~0!
1Svg

~1!†Svg
~1!

52 f 1Svg
~1!†Svg

~1! ~25!

or

f 520.5Svg
~1!†Svg

~1! . ~26!

In this caseVe(2) andVg(2) contain the quartic terms in the
expansion of the vibrational potential in terms of normal
coordinates:

~V̂g2V̂e!~2!5
1

24 (
i , j ,k,l 51

3N26 S ]4Vg

]Qi
g]Qj

g]Qk
g]Ql

gD
Qg50

FKiK jKkKl14KiK jKk (
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3 (
m,n51

3N26
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e Qn

e14Ki (
m,n,p51

3N26

JjmJknJlpQm
e Qn

eQp
e

1 (
m,n,p,q51

3N26

JimJjnJkpJlqQm
e Qn

eQp
eQq

eG2
1

24 (
i , j ,k,l 51

3N26 S ]4Ve

]Qi
e]Qj

e]Qk
e]Ql

eD
Qe50
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eQj

eQk
eQl

e . ~27!
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ThenSvg
(2) is obtained by solving Eq.~24! for Svg8

(2) in a basis
orthogonal toSvg

(0) and addingSvg9
(2)

5 f Svg
(0) with the value of

f determined by Eq.~26!. Finally, the second-order correction
to the Franck–Condon factors is given by

Fngmg

~2! 52Sngme

~0! Sngme

~2! 1Sngme

~1! Sngme

~1! . ~28!

D. Truncation of the vibrational basis set

It is critical to perform the truncation of the vibrational
basis set in a way that is efficient and does not create signifi-
cant error. Our procedure involves an iterative buildup by
increasing the range of vibrational quantum numbers while,
simultaneously, removing unimportant states.

We begin by identifying an initial guess for the vibra-
tional state associated with the vertical FC transition to the
excited electronic state based on energy and geometry con-
siderations. This gives a starting set of vibrational quantum
numbers for all modes. Next, an initial basis set is formed
which contains all vibrational wave functions wherein the
quantum number for each mode differs by less than two units
from the corresponding quantum number in the vertical FC
state. Equation~9! is solved in this basis to yield an initial set
of FC overlapsSvg. Augmentation of the basis set is, then,
carried out iteratively. In each iterative cycle we, simulta-
neously, increase by one unit the maximum quantum number
of all modes where the previous two augmentations pro-
duced one or more states that have a non-negligible FC over-
lap ~i.e., an overlap larger than 1026). An exactly analogous
procedure is applied at the same time to the minimum quan-

tum number except, of course, that the minimum cannot be
reduced below zero. The next step in the cycle is a screening
of the states created in this manner which is based on the
difference between the quantum number in each mode and
the corresponding quantum number for the FC state. If the
sum over modes of the absolute value of these differences for
any given state is larger than a threshold value, then that state
is removed. The threshold is taken to be the largest differ-
ence between the maximum and minimum quantum numbers
in any one mode considering all states. Moket al. employed
a similar screening criterion to reduce their basis sets.25 Us-
ing this reduced basis Eq.~9! is solved and a new set of FC
overlap integralsSvg is obtained.

Although the algorithm described above limits the
growth of the basis set, the latter still increases in size more
rapidly than desired. It turns out, however, that most of the
FC overlaps obtained from Eq.~9! are quite small. Therefore
the cycle is completed by setting allSvg smaller than a pre-
set threshold (1026) equal to zero, and the corresponding
states are marked for exclusion in subsequent cycles. They
are retained, however, for the purpose of augmentation. This
simple procedure drastically reduces the growth of the basis
set thereby leading to a major improvement in efficiency.
The overall process is converged when a complete cycle
leads to no augmentation of the basis set.

We tested our algorithm in several different ways for
ClO2 . Thus the calculations were repeated separately with:
~i! the FC overlap threshold for expanding the range of quan-
tum numbers systematically decreased from 1024 to 1029,

FIG. 1. Simulated first band of the ClO2 He I PE spectrum using harmonic FCF’s obtained from the QCISD PES. The dashed and solid lines represent our
work and that of Moket al. ~Ref. 25!, respectively. The geometry of ClO2 is the experimental one~Refs. 51 and 52! and the geometrical parameters of the
cation areRCl–O51.410 Å anduO–Cl–O5121.8°.
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~ii ! the FC overlap criterion for excluding states after a com-
plete cycle eliminated, and~iii ! the maximum quantum num-
ber in each cycle increased by 2 and by 4. Although the test
calculations were far more time consuming, the differences
in the calculated FCF’s were always negligible~,0.1% for
FC overlap!. Nevertheless, we realize that our algorithm may
need to be further refined when larger systems are consid-
ered. As part of our verification strategy we confirmed that
the determinant associated with theM simultaneous equa-
tions given by Eq.~9! is zero.

III. COMPUTATIONAL DETAILS

In order to test our method we computed the
ClO2

1X̃1A1←ClO2 X̃2B1 ionization band of the He I PE
spectrum and compared our results~i! with those of Mok
et al.25 at the same geometries and~ii ! with the experimental
spectrum obtained by Fleschet al.43 Harmonic vibrational
force constants were obtained numerically from analytical
gradients at the quadratic configuration interaction with
single and double excitations~QCISD! level, using the
GAUSSIAN98suite of programs.44 Like Mok et al.,25 the basis
sets 6-311G~2d! and 6-311G~3df! were used to calculate the

neutral and cationic force constants, respectively, for the har-
monic calculations. The harmonic and anharmonic force con-
stants derived from the PEF’s calculated by
Peterson and Werner for the neutral45 and cationic46 ground
states at the complete active space multi configuration
self-consistent field/multi reference configuration interaction
~CASSCF/MRCI! level with a cc-pVQZ basis set were used
in the anharmonic calculations.

The harmonic vibrational wave functioncne

e(0) is given

by the product of harmonic oscillator functionsf i
ne for each

mode:

cne

e~0!5 )
i 51

3N26

f i
ne, ~29!

and the harmonic vibrational energy is a sum of individual
mode contributions. Integrals such aŝ cme

e(0)u(V̂g

2V̂e)(0)ucne

e(0)& @cf. Eqs.~9! and~16!# and^cne

e(0)uV̂e(1)ucme

e(0)&
@cf. Eq. ~19!# can easily be evaluated as a simple product of
one-dimensional integrals of the type^f i

neu(Qi
e) tuf i

me&.32,41

The first- and second-order corrections to the wave function
are given by Eq.~19! and42

ucne

e~2!&5 (
ae ,beÞne

M ^cne

c~0!uV̂e~1!ucbe

e~0!&^cbe

e~0!uV̂e~1!ucae

e~0!&ucae

e~0!&

~Ebe

e~0!2Ene

e~0!!~Eae

e~0!2Ene

e~0!!
2 (

aeÞne

M ^cne

e~0!uV̂e~2!ucae

e~0!&ucae
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respectively. As mentioned above, the first-order correction
to the energy is zero whereas the second-order correction to
the energy can be written as

Ene

e~2!5^cne

e~0!uV̂e~2!ucne

e~0!&2 (
aeÞne

M ^cne

e~0!uV̂e~1!ucae

e~0!&2

Eae

e~0!2Ene

e~0! .

~31!

In order to simulate the spectra we used Gaussian func-
tions with a full width at half maximum of 30 meV. The
intensities and positions of the peaks were determined by the
theoretical FCF’s and vibronic energies, but the positions
were uniformly shifted so that the first peak occurs at the
experimental adiabatic ionization energy~AIE! of 10.345 eV
as measured by Fleschet al.43

IV. RESULTS

In Fig. 1 we present our simulated harmonic first band of
the ClO2 He I PE spectrum and the harmonic results of Mok
et al.both calculated at the QCISD level. The geometry used
was the experimental one47,48 (RCl–O51.4698 Å and
uO–Cl–O5117.41°) for ClO2 and that obtained by Moket al.,
from an iterative Franck–Condon analysis~IFCA!,49 based
on the harmonic result (RCl–O51.410 Å and uO–Cl–O

5121.8°), for the cation. The IFCA procedure consists in
adjusting the geometrical parameters systematically until the
best match between the simulated and the experimental spec-
trum is obtained.

Only the two totally symmetric vibrations of ClO2 are
active in the He I PE spectrum and two vibrational progres-
sions related to the symmetric stretching (n3) and bending
(n2) modes are observed. The most intense vibrational pro-
gression is composed of the (0,0,v3) peaks, wherev3 is the
quantum number of the symmetric stretch. The second-
vibrational progression is formed by the (0,1,v3) peaks.
Since the intensities of Moket al. are in arbitrary units, in
order to compare our harmonic spectrum with theirs we
forced the intensities of the~0,0,1! peaks to be equal. The
comparison shows no appreciable differences in the (0,0,v3)
progression, whereas a small discrepancy can be observed
for (0,1,v3). This minor discrepancy could be due to differ-
ences in the algorithms used to truncate the vibrational basis
set. At the harmonic level our theoretical spectrum is essen-
tially the same as that of Moket al.and thus our geometrical
parameters for ClO2

1, obtained from the best match between
the simulated and experimental spectrum, are also the same
as theirs.

Our simulated harmonic and experimental first band of
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FIG. 2. Simulated~dashed line! and experimental~Ref. 43! ~solid line! first band of the ClO2 He I PE spectrum. Our theoretical harmonic spectrum is obtained
using the OCISD PES. The geometry of ClO2 is the experimental one~Refs. 51 and 52! and the geometrical parameters of the cation areRCl–O51.410 Å and
uO–Cl–O5121.8°.

FIG. 3. Simulated first band of the ClO2 He I PE spectrum using PEF calculated by Peterson and Werner~Refs. 46 and 47!. The dashed and solid lines
represent the second-order anharmonic spectra obtained by us and that obtained by Moket al. ~Ref. 25!, respectively. The geometry of ClO2 is the
experimental one~Refs. 51 and 52! and the geometrical parameters of the cation areRCl–O51.411 Å anduO–Cl–O5121.80 for our work andRCl–O

51.414 Å anduO–Cl–O5121.80 for Moket al.
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the He I PE spectrum of ClO2 determined by Fleschet al.43

are shown in Fig. 2. Again, in order to compare the two
spectra the intensities of the~0,0,1! peaks are forced to be
equal. A comparison of the peaks shows two main discrep-
ancies:~i! The intensity ratio between the~0,0,1! peak and
the ~0,0,0! or ~0,0,2! peaks is far larger in the experimental
spectrum than in the harmonic simulated spectrum; and~ii !
the intensities of the high-energy peaks are much smaller in
the experimental spectrum. For instance, whereas the~0,0,5!
peak has a intensity similar to the~0,1,2! peak in the har-
monic spectrum it is not observed in the experiment.

Mok et al. used a variational method, which involves
diagonalization of the Watson Hamiltonian,50,51 to obtain the
anharmonic wave functions as linear combinations of har-
monic vibrational wave functions. Then, the FCF’s were
computed by evaluating harmonic overlap integrals accord-
ing to Chen’s4 procedure and carrying out a double sum over
the harmonic wave functions of both electronic states~see
Ref. 25 for details!. On the contrary, we include anharmonic-
ity through the application of perturbation theory to Eq.~8!.
Nevertheless, both methods should give similar results.

The ClO2
1 equilibrium geometry was obtained by Mok

et al. by means of the IFCA procedure using the PEF of
Peterson and Werner45,46 with anharmonicity taken into ac-
count. This resulted inRCl–O51.414 Å and uO–Cl–O

5121.8°. Utilizing the same PEF, and also including anhar-
monicity, we find that the geometryRCl–O51.411 Å and
uO–Cl–O5121.8° yields the best agreement with the experi-

mental spectrum. It would be of interest to have an accurate
experimental geometry for comparison. In Fig. 3 we present
the simulated anharmonic spectra calculated by Moket al.
and ourselves. As in the harmonic case, the intensities of the
~0,0,1! peaks were forced to be identical and, then, the the-
oretical spectra are seen to be very similar. In fact, the only
meaningful difference is the intensity of~0,0,4! peak, which
is smaller in our spectrum. Including anharmonicity in-
creases the intensity ratio between the~0,0,1! and ~0,0,0! or
~0,0,2! peaks and also decreases the intensity of the highest
energy peaks. Thus, the correction to the harmonic spectrum
is in the right direction.

In Fig. 4 we depict the experimental spectrum and our
best simulated anharmonic spectrum. It is clear that close
similarity between the experimental and simulated spectra
cannot be obtained~see Fig. 2! without taking anharmonicity
into account. Only the two highest energy peaks@i.e., ~0,1,3!
and ~0,0,4!# show any significant difference from experi-
ment. These differences could be due to anharmonicity con-
tributions higher than second order, which are omitted in our
treatment. A comparison of Figs. 2 and 4 reveals the great
improvement that is gained by including first- and second-
order anharmonicity. Finally, in order to evaluate the conver-
gence of the perturbation theory corrections, we depict in
Fig. 5 the first-order anharmonic, and second-order anhar-
monic simulated spectra. The difference between the first-
and second-order results is quite small and, as expected, this

FIG. 4. Simulated~dashed line! and experimental~solid line! first band of the ClO2 He I PE spectrum. The theoretical second-order anharmonic spectrum is
obtained by us using the PEF calculated by Peterson and Werner~Refs. 46 and 47! and the experimental geometry for ClO2 ~Refs. 51 and 52! and RCl–O

51.411 Å anduO–Cl–O5121.80° as geometrical parameters for the cation.
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difference increases as the quantum numbers of the cationic
state increase.

V. CONCLUSIONS

In this work a new method to calculate FCF’s taking into
account Duschinsky rotations as well as anharmonicity has
been developed and implemented. Harmonic FCF’s are ob-
tained in a simple and direct manner by solving a set of
homogeneous linear equations@see Eq.~9!#. The Duschinsky
rotation and shift of equilibrium geometry appear in the dif-
ference potential between the ground and excited electronic
states. Anharmonicity is included through a second-order
perturbation treatment of the linear equations. The critical
truncation of the basis set is carried out through a rapidly
convergent procedure whereby the basis set is systematically
increased in size while, at the same time, negligible states are
removed.

As a verification of our method we have applied it to
simulate the first band of the ClO2 He I PE spectrum. Our
harmonic results are in excellent agreement with those of
Mok et al. who used a different procedure and both calcula-
tions predict the same geometry for ClO2

1. At the anhar-
monic level we, again, match the results of Moket al. quite
closely, although the geometry of ClO2

1 that gives the best
fit to experiment differs from theirs by 0.003 Å~1.411 Å
versus 1.414 Å! in RCl–O ~the predicted bond angle is the
same in either case!. Both geometries fall within the range of
predictions made by the best post-Hartree-Fockab initio
treatments.25 This fact, and the resulting close agreement

with experiment achieved for both calculations~ours and
Mok et al.!, makes it unlikely that the good results are an
artifact of the geometric parameter adjustment.52

The full value of this new methodology will become
more apparent when it is applied to larger species; something
that we plan to do in the near future. The harmonic, first-
order and second-order anharmonic calculations presented in
this work required 0.09, 0.14, and 0.19 sec of CPU time,
respectively, on an AMD XP 1900-Mhz computer. This com-
putational efficiency is due in large part to the major trunca-
tion of the vibrational basis set. For ClO2 , using our algo-
rithm to reduce the vibrational basis set, the number of states
considered is only 55, 75, and 78 for the harmonic, first-
order, and second-order terms, respectively. In order to ob-
tain the same accuracy without truncation of the basis set the
number of states needed is several thousand. Our method
scales asM3 where M is the number of vibrational states
taken into account. Without truncation this number would
grow much too rapidly for the method to be practical except
for very small molecules. In the case of C2H4 , which we are
currently investigating, about 23107 vibrational states
would be needed for 1% accuracy, but with our truncation
scheme this is reduced to less than 43103 states.

Refinements of the algorithm and code currently being
implemented add to our confidence that the methodology
presented here will be adequate to simulate the spectra of
much larger systems. We plan to take advantage of our pro-
gram to calculate the vibrational contribution to two-photon
absorption ~TPA! of polyatomic molecules. This requires

FIG. 5. Simulated first band of the ClO2 He I PE spectrum using the PEF calculated by Peterson and Werner~Refs. 46 and 47!. The dashed and solid lines
represent our first-order and second-order anharmonic spectra, respectively. The geometry of ClO2 is the experimental one~Refs. 51 and 52! and the
geometrical parameters of the cation areRCl–O51.411 Å anduO–Cl–O5121.8°.
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evaluating transition dipole moment matrix elements for the
entire vibrational manifold associated with a pair of elec-
tronic states, which may be done using the FCF’s and the
transition dipole moment surface as we have previously
shown.32 The same technique can be applied to obtain the
Herzberg–Teller contributions to one-photon spectra.

ACKNOWLEDGMENTS

Support for this work under Grant Nos. BQU2002-
04112-C02-02 and BQU2002-03334 from the Direccio´n
General de Ensen˜anza Superior e Investigacio´n Cientı́fica y
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