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A different approach for calculating Franck—Condon factors
including anharmonicity
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An efficient new procedure for calculating Franck—Condon factors, based on the direct solution of
an appropriate set of simultaneous equations, is presented. Both Duschinsky rotations and
anharmonicity are included, the latter by means of second-order perturbation theory. The critical
truncation of basis set is accomplished by a build-up procedure that simultaneously removes
negligible vibrational states. A successful test is carried out on, @ which there are
experimental data and other theoretical calculations.2@4 American Institute of Physics.
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I. INTRODUCTION sional FCF’s by generalizing Lerris& procedure for two-
dimensional FCF’s. Also employing the generating function

Along with the development of experimental high- method, Islampouet al. derived a closed-form multidimen-

resolution vibronic spectroscopies, the problem of analyzingSi nal harmoni illator expression. where the FCE’s wer
the observed spectra is receiving increased attention. In thaonal harmonic oscilator expression, wnere the S Wwere

Born—Oppenheimer approximation the leading term thafaxpressed as sums of products of Hermite polynomials.

governs the spectral intensity pattern is given by the square An ¢ z[a)lternatlveMprligedurg,Mut|llyi|£)gh theb recursmln re(lja—
of the vibrational overlap integrals, also known as Franck_t'ons of Doctorov, Malkin, and Man'ko, has been employe

; 2 3
Condon factor§FCF’s), between the initial and final states. for a varle_tyé(jf moleggles such as pheﬁjo]r, anthracene;
If the vibrational normal coordinates for the two electronic and pyrazine: In addition, two different methods for calcu-

states are paralldi.e., if they are the same except for the lating the FCF's were developed by Faulkner and

shift in equilibrium geometry then these integrals will sepa- Richardsort® The central feature of their first method is a

rate in the harmonic oscillator approximation into a productin€ar transformation of the normal coordinates in both the
of individual oscillator terms. In general, however, this is notground and excited electronic states in order to effectively

the case and, discounting possible simplifications due t&emove the Duschinsky rotaticfr?_s(i.e., the transformation
symmetry, one must evaluaté36 (or 3N-5 for linear mol-  Of coordinates from one electronic state to andthEhis was

ecules dimensional overlap integrals. The difficulty of doing originally restricted to the case where either the initial or
so is compounded by the fact that the difference in equi”b.final vibrational wave function is the ground state, but Ku-
rium geometry as well as the anharmonicity of the electronidander later removed this restrictioh:® The second method
potential-energy surfaces must be taken into account. of Faulkner and Richardson is based on a perturbation ex-
A variety of methods have been proposed for dealing?@nsion of the vibrational wave functions of the excited elec-
with this problem, particularly at the harmonic levebne of tronic state in terms of the ground electronic state vibrational
these is based on the generating function approach of Sha¥ave functions® Finally, Malmqvist and Forsbetd have
and Rosenstockwhich is an extension of the method intro- €xpressed the FCF matrix as the product of lower triangular
duced by Hutchissohnfor diatomics. This method has been and upper triangular matrices which are calculated from re-
further developed by Ché&rand improved by Erviretal®  cursion formulas.
in their application to the naphthyl radical. Very recently, At this juncture we take note of a very different ap-
Kikuchi et al® derived a simpler form of the Sharp and proach, developed by Segev, Heller, and co-work®f,
Rosenstock general formula and applied it to,S@ the  based on considering the transitions in phase space. Those
harmonic oscillator approximation. Another method based oPhase-space points where the classical Wigner function for
the generating function approach is due to Ruhaffio de-  the initial state is maximal, subject to a classical energy con-

rived recursion relations for the calculation of multidimen- Straint on the final state, determine propensity rules for the
FCF’s. These rules, in turn, provide a way of selecting the

dpermanent address: Institute of Computational Chemistry and Departme;%{anSItlons that have substantial Intensity and their FCF’s can

of Chemistry, University of Girona, Campus de Montilivi, 17071 Girona, be eSti_mated by _SUbS_equem pha_se-spa_lc_e integratic_m- The
Catalonia, Spain. truncation of the vibrational basis is a critical aspect in re-
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ducing the computational effort of any method. Our ownthus the rotational state is suppressed. Then the respective

prescription for doing this is described in Sec. IID. Schralinger equations for nuclear motion are given by
Although the procedures mentioned above can, in prin- .

ciple, include vibrational anharmonicity not much attention Hg|¢%g>:Egg|¢gg>' @

has been paid to this aspect. lachello’s group has developed a

procedure based on the use of Morse oscillators in a novel H¢ lﬂie):EfJ iﬁie)- 2)

Lie algebraic schem& 24 More recently Moket al®® have o . :
proposed an expansion technique that builds on the ear“é\pultlpllcatlon of Eq.(1) by<¢ve| and Eq.(2) by<wvg| leads
work of Botschwina and co-workef§ However, these meth- 10
ods and other approaciés?°to the vibrational anharmonic- e 149y Y —E9 S
ity problem have only been applied to small molecules or to <w%' |w”g>_ Vg Vely’
two-dimensional model potentials. Reimers has also 0 1Crel e\ e
described an approximate method for taking into account <'f/’Vg|H |‘/’Ve>:EVeSVgVe' (4)
the floppy motions of large molecules by means of curvilin-
ear coordinates. .

Apart from one-photon absorptigand emissionFCF’s wave functions are taken to be rgal
figure prominently in two-photon absorpti@giPA). The vi- S S, =8[9 Y =(y2 |4°). (5)
brational contribution to nonlinear opticéMLO) properties, o ¢ o
including TPAZ? has occupied the attention of the presentSubtraction of Eq(4) from Eq.(3), and using the Hermitian
authors for some tim&3®As far as nonresonant NLO pro- property ofH9, gives
cesses are concerned, it is also known that mechanical and . .
electrical anharmonicities of ordinarfas well as floppy <¢gg|Hg—He| lﬂie):(Egg—Eie)Sygue- (6)
molecules often play a major rofé.On the basis of very . o . . .
approximate treatmerits it has been suggested that the Slnqe the V|berat|onal eigenfunctions for the excited elec-
same is true for resonant processes and in particular for TPAHO”'C state (/I/'Le below) form a complete set, the left-hand
We have now begun to develop a rigorous theory for vibraSide of Eq.(6) can be expressed as
tional effects in TPA in order to investigate that situation
more thoroughly. In the course of doing so, we have come (9 |[H9—H|y° )= (49 L W5, [H9—He|y° )
across a simple direct way to evaluate FCF's and it is this ’ S ke $e ) °
new scheme that is presented here. Effects due(ijo: L
changes in the normal coordinates with electronic state =2 Sgul U JHI=HYL). (7)
(Duschinsky rotations'® (ii) changes in the equilibrium ge- Fe
ometry with electronic state; an@i) mechanical anharmo- Equation(7) contains the entire set of Franck—Condon over-
nicities in both electronic states, are all taken into account.laps between the initial vibrational wave function of the

In the next section a general theory, which includes all ofground electronic state and all final vibrational wave func-
the above effects, is formulated. Then, in Sec. Il we discussions of the excited electronic state. This allows us to solve
how the resulting equations are solved along with other comfor the entire set of overlap integrals in which we are inter-
putational details. This is followed by an example where ourested simultaneously. If the vibrational wave functions of the
method is used to simulate the He | photoeleci®B) spec- electronic excited state had been expanded in terms of the
trum of CIO,, in order to compare with the work of Mok electronic ground-state vibrational wave functions, then only
et al® Finally, we conclude with a brief discussion of future one of the desired overlaps would be obtained and the pro-
plans for incorporating this methodology into our treatmentcess would have to be repeated for each final state. In either
of TPA for large conjugated molecules. event the properties of both the ground and excited electronic

states are necessary for the calculations.
Combining Egs.(6) and (7), while taking into account

Il. THEORY the fact that the total nuclear kinetic energy operator is the
‘same in both Hamiltoniang49=T+ V9, H®=T+V®), one
Pbtains

3

where S,,eyg are the Franck—Condon overlap integréise

VeVg

The goal of this section is the derivation of a new ana
lytical procedure to calculate the Franck—Condon factors o
polyatomic molecules taking into account both the Duschin- e o0 el e . g
sky rotations and the mechanical anharmonicity. % Sygud (W VO= VI, )+ (ES —ED)d,.0,]

A. | f lati
General formulation 0, Ve, and Vg, ®)

We denote the vibrational Hamiltonian, wave functions, .
. . - 9 whered, , is the Kronecker delta.
and energies of the ground electronic stateHy |49 ), and Meve . .
£ 9 For a givenvy, Eq. (8) constitutes an infinite set of
14

Y and their counterparts for an electronic excited state b¥1omogeneous simultaneous linear equations with an infinite
He, |z,//‘§e>, andEie. Note that ‘g” refers to the ground elec- number of unknownsyg#e (@all ue). The first step in solving

tronic state and &” to an excited electronic state throughout. this set of equations is to truncate to a finite seigfand v,
In either case the molecule is assumed to be nonrotating andlues. The details of the systematic iterative algorithm used
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to select theM equations that survive the truncation are are associated with translations and rotations, while the re-
given in the next section. Then after dividing Bygxe (Neis  mainder correspond to the normal vibrations. By combining

arbitrary as long a$, , #0), Egs.(13) and(14) we find that
M
Mgy e |\ /el e e _ Q9=JQ%+K, (15
% Oy [ V9=Vl )+ (ES —ES ) 8,0, 1 =0,
whereJ=L9L¢ andK=L9'R. The J matrix describes the
(eh ={ne}. Ve, ©) Duschinsky rotation between the normal modes of the
wherer is the ratio, ground and excited electronic state, whieis associated
e with the change in the normal modes due to the displacement
r§\‘9=S,,M IS, \ (10) of the equilibrium geometry between the two electronic
e grte gre
states.
(the index v, is understood irr;‘:). There areM simulta- The effect of the Duschinsky rotation and the equilib-

neous equations in Eq9) but only M —1 unknown ratios; rium geometry displacement on the Franck—Condon factors

hence one of these equations is redundant. Any one can §curs in the potential-energy differenw€—V® in Eq. (9)

omitted (assuming the remaining set is nonsingukamd our ~ Which, for nonlinear states, is given by

choice is to remove the equation corresponding’de -\ .

In order to obtainS, , from the ratiosr‘® we use the nor- I 1308 a2ve
e . Vghte Ne Vg_ve:Vgg:o_Vee:o+ = 2 (—2)

malization condition, Q Q 2 =1\ a(QP) 09=0

3N-6 3N-6 }

M M
2 S =2 (U8 s ) =1, (1D X
He HMe

K2+ 2K, ]2,1 \]iije—i_j%l JijJikQfQk

which leads to 13N=6 ) 2y
2

N7
i -5 2 —ez) (QP)? (16)
= IO
Svg)‘e=1/ 2 (r;"e)z' (12) 1 (QI) Qe=0
Me e

. . in the harmonic approximation.
The remammgsygﬂe are obtained from Eq(10) as Sygﬂe PP

=r’<esvg)\e (me#Ng). Finally, the Franck—Condon factors
e
are given by the square of the corresponding Franck

Condon integralsg, ,, = Sigue) .

"C. Mechanical anharmonicity

Mechanical anharmonicity can be included through a
perturbation treatment using the harmonic oscillator Hamil-
tonian as the zeroth-order approximatf8nAn alternative
B. Duschinsky rotations approach is to introduce the anharmonicity by using curvi-

In general the equilibrium geometry and the potential-near coord_mate%l. _ _

energy surfacdPES of the electronic excited and ground _ EXPanding Eq(8) in orders of perturbation theory, we
states are not the same. Therefore the respective normal cfj2d that the first-order equation is

ordinatesQ® and QY are also different. The relationship be-
tween the two sets of normal coordinates can be obtaine
from the corresponding relationship between their massi;
weighted Cartesian displacement coordinates and the formu-
las that connect the normal and Cartesian coordinates. For +E g0 [<¢Ze|\"/g_\"/e| lﬁie)

14

the mass-weighted Cartesian displacement coordinates we e ote

h
e +(ES,~E9)8,,, ]V =0, (7

(1) e |\7/9_\re|,.e e _ g (0)
S (W5 V9=Vl )+ (ES ~ES ) 8,,0,]

X9=X°+R, (13

where X9 (X® represents the coordinates of the electronicwhere the superscript®) and (1) indicate the order of per-
ground(excited state ancR is the vector(in mass-weighted turbation theory. The zeroth-order equation is identical to Eq.
Cartesiangobtained by subtracting the ground-state equilib-(8) except that all quantities have a supersc(@t This in-
rium geometry from that of the excited state. The normalfinite set of equations is truncated to the same finite set
coordinates are related to the mass-weighted Cartesian codme} ={u.} that is used in the zeroth-order equation. As in
dinates by previous work? we take the cubic terms 9 andV® to be
first order. In that event, the first-order correctionfﬁg and

EY vanish. On the other hand, the first-order corrections to

9
whereL9 andL ® are unitary matrice¢see, for example, Ref. the terms in which the potential-energy difference occurs in
41). Six columns ofL% andL*® (or five for linear molecules  Eq. (17) are given by

QI=L9'X9 and Q°=L®'Xe, (14)
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e |\7g_xrsel,.e \(1)
AN

— (8D 79 _\7e\(0)],/,e(0) e(0)| \79_\se\(1)],,e0)
(P V8= O gl + (g | (V9= Vo) Dy

(YO (VI- Ve Oy, (18)
where
M (SO VR ) g )
e(1) fe 19
R = 19
and
3N-6 3
1 J3V9
(Va-Vo=2 > (W)
6ik=1\dQ &QJ(}QK Q9=0
3N-6

X| KiKKy+ 3KiK; ; JuQe

3N—-6

+3Ki| g;l 31 IkmQrQR,

3N—-6
+ X JankanQFQﬁqQﬁ}
I,mn=1

°ve

1 3N—-6
dQFaQaQy

_Ei,j,k=1 )Qe=0QiQiQk'
(20

The column vectoSy’ with component§(yz)ﬂe, can be

written as

1)=S\'/é1)+%(1) S\,él)+fsf,°)

(

(21)

whereSv(l) is the component orthogonal t (O) and

%(1) is the component o$f,1) parallel toS(y. The flrst term
on the left-hand side of Eq17) vanlshes if we substitute
Sf,g) for the first-order eigenvect (é) [cf. Eq. (8)]. There-
fore Sf,é) is a solution of Eq.(17) for any arbitraryf. We
choosef equal to zero so thﬁ\%) is orthogonal tosig) and
thereby satisfies the first-order normalization condition

22 S —2s<vl> Se=0 (22)

a*ve
ananQE&Q| )Qg 0

3N-6 3N-6

X 2 JmdnQnQit 4K >
mn=1 m,n,p=

3N-6

+ X

J|m‘]Jn‘]kp‘]IquQ Qqu
m,n,p,q=1

3N-—

6
24, ,; 1<W

Luis, Bishop, and Kirtman

One easy procedure to solve the set of simultaneous equa-
tions (17) is to transform to a basis consisting of the vector
(O) and an arbitrary set ol —1 vectors perpendicular to

(O) . Then we only need to solve the reduced seMof 1
mhomogeneous equations in the subspace orthogonal to
<2>. Once the solution foS(Vl)Me has been determined, the

first-order corrections to the FCF’s are found as

S(l)

Vghe

Flrie=2S0) (23)

A similar procedure may be followed for the second-
order correction which is obtained by solving

M

>

Me

Su i (4, V9= Vel )+ (ES —ES)

(0)
vghte l“e e]

+ ; Sl (U Vo= VoS )+ (ES ~ES )6, ]
e

S(l)

+2 e
Me

[ Vo= Vel g5 )+ (E5 —ES

1)
vy ) ”‘eve](

M
(0) e I\79__\, e e g (2)
+§e S (U5, V9= Vel g )+ (ES —E9 ) 8,,0,]

=0, (24

where we have writters\’,gz) for the component 0855) or-
thogonal toSf,O) ands(léz) for the component oSV(Z) parallel
to (O). Again the parallel component is given ts’(,(z)
=f§,°) where the multiplicative constaifiis chosen to sat-
isfy the normalization condition which, in second-order, is

2)T (0 Hta(1

0-252"60 ¢ Vg
(2ta(0) | (DTl Dl
=2547"9g + 87 'slg =2 f+ 55 "Sg (25)
f=-055¢ S .

In this caseV®® andV9®) contain the quartic terms in the
expansion of the vibrational potential in terms of normal
coordinates:

(26)

3N—-6

KiK KK+ 4KiK K Y 3mQ8+6KiK;
m=1

1 ijJknJIpQ%QﬁQS

J*Ve

) QRS 27
Qe=0
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Thens{?) is obtained by solving Eq24) for S/5?) in a basis ~ tum number except, of course, that the minimum cannot be
orthogonal toSf,g) and addings’\;éz)z fsflg) with the value of reduced below zero. The next step in the cycle is a screening
f determined by Eq26). Finally, the second-order correction ©Of the states created in this manner which is based on the

to the Franck—Condon factors is given by difference betw_een the quantum number in each mode and
@) ©0) o2 1) D) the corresponding quantum number for the FC state. If the
g™ 20 ueSrguet SuguSvgue (28 sum over modes of the absolute value of these differences for

any given state is larger than a threshold value, then that state
is removed. The threshold is taken to be the largest differ-

It is critical to perform the truncation of the vibrational ence between the maximum and minimum quantum numbers
basis set in a way that is efficient and does not create signifin any one mode considering all states. Matlkal. employed
cant error. Our procedure involves an iterative buildup bya similar screening criterion to reduce their basis $etss-
increasing the range of vibrational quantum numbers whileing this reduced basis E) is solved and a new set of FC
simultaneously, removing unimportant states. overlap integralsS,q is obtained.

We begin by identifying an initial guess for the vibra- Although the algorithm described above limits the
tional state associated with the vertical FC transition to thegrowth of the basis set, the latter still increases in size more
excited electronic state based on energy and geometry corapidly than desired. It turns out, however, that most of the
siderations. This gives a starting set of vibrational quantuniC overlaps obtained from E¢P) are quite small. Therefore
numbers for all modes. Next, an initial basis set is formedhe cycle is completed by setting &ly smaller than a pre-
which contains all vibrational wave functions wherein theset threshold (10°) equal to zero, and the corresponding
guantum number for each mode differs by less than two unitstates are marked for exclusion in subsequent cycles. They
from the corresponding quantum number in the vertical FCare retained, however, for the purpose of augmentation. This
state. Equationf9) is solved in this basis to yield an initial set simple procedure drastically reduces the growth of the basis
of FC overlapsS,s. Augmentation of the basis set is, then, set thereby leading to a major improvement in efficiency.
carried out iteratively. In each iterative cycle we, simulta-The overall process is converged when a complete cycle
neously, increase by one unit the maximum quantum numbdeads to no augmentation of the basis set.
of all modes where the previous two augmentations pro- We tested our algorithm in several different ways for
duced one or more states that have a non-negligible FC ove€lO,. Thus the calculations were repeated separately with:
lap (i.e., an overlap larger than 16). An exactly analogous (i) the FC overlap threshold for expanding the range of quan-
procedure is applied at the same time to the minimum quartum numbers systematically decreased from“é 10 °,

D. Truncation of the vibrational basis set

0,00), (0,1,0), (00,1, (0,1,1), (0,0,2), (0,1,2), (0,03), (0,1.3), (0,04), (0,1, 4, (0,0,5)

Intensity (arbritary units)
i

10.2 103 104 105 10.6 10.7 10.8 10.9 11.0 111 11.2
Ionization potential (eV)
FIG. 1. Simulated first band of the Cj®e | PE spectrum using harmonic FCF’s obtained from the QCISD PES. The dashed and solid lines represent our

work and that of Moket al. (Ref. 29, respectively. The geometry of Cj@s the experimental on@Refs. 51 and 5Rand the geometrical parameters of the
cation areRg_o=1.410 A andfy_c,_o=121.8°.
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(ii) the FC overlap criterion for excluding states after a com-neutral and cationic force constants, respectively, for the har-
plete cycle eliminated, an@ii ) the maximum quantum num- monic calculations. The harmonic and anharmonic force con-
ber in each cycle increased by 2 and by 4. Although the tesstants  derived from the PEF's calculated by
calculations were far more time consuming, the difference$eterson and Werner for the neutfaand cationié® ground

in the calculated FCF's were always negligiltke0.1% for  states at the complete active space multi configuration
FC overlap. Nevertheless, we realize that our algorithm mayself-consistent field/multi reference configuration interaction
need to be further refined when larger systems are considfCASSCF/MRC) level with a cc-pVQZ basis set were used
ered. As part of our verification strategy we confirmed thatin the anharmonic calculations.

the determinant associated with thé simultaneous equa- The harmonic vibrational wave functioqaiio) is given

tions given by Eq(9) is zero. by the product of harmonic oscillator functiogs® for each

mode:

I1l. COMPUTATIONAL DETAILS NG

In order to test our method we computed the e | (29)
ClO, " XA, ClO, X?B, ionization band of the He | PE =1
spectrum and compared our results with those of Mok  and the harmonic vibrational energy is a sum of individual
et al®® at the same geometries aig with thelexp.enm.ental mode contributions. Integrals such ag we(0)|(\“/g
spectrum obtained by Flesat al*® Harmonic vibrational S (O)] e(0) o(0) Ae(l’)‘e o(0)
force constants were obtained numerically from analytical” V)" %5, ) [cf. EAs.(9) and(16)] and( ¢ 7|V g ™)
gradients at the quadratic configuration interaction with[cf. EQ.(19)] can easily be evaluated as a simple product of
single and double excitationéQCISD) level, using the one-dimensional integrals of the tyge®|(QP)|4/“e). 3>
GAUsSIAN98 suite of programé? Like Mok et al, > the basis  The first- and second-order corrections to the wave function
sets 6-311@d) and 6-311@3df) were used to calculate the are given by Eq(19) and?

Mo IV VIR e ) M (sl VRl ) )

| ¢$(2)> = E e(0) e(0) e(0) e(0) - 2 e e(0)
e aevﬁe#”e (E:Be _EVe )(Eae _EVe ) ae#ve E”‘e _EVe
M e(0)|\ye(1)| 4e(0y2) ,e(0)
N - |¢a:(o>) | au 0
2aeive (Eae _Eye )

respectively. As mentioned above, the first-order correction=121.8°), for the cation. The IFCA procedure consists in
to the energy is zero whereas the second-order correction tjusting the geometrical parameters systematically until the
the energy can be written as best match between the simulated and the experimental spec-
M (O R 202 trum is obtained.
a2 _ ( lﬂe(o)|\78(2)| lﬁe(o))— E Ve e Only the two totally symmetric vibrations of ClQare
Ve Ve ve I G,  EX9-—gO active in the He | PE spectrum and two vibrational progres-
e e . . . .
(31 sions related to the symmetric stretchingsX and bending
(v2) modes are observed. The most intense vibrational pro-
In order to simulate the spectra we used Gaussian func
gression is composed of the (Q,@) peaks, where s is the

tions with a full width at half maximum of 30 meV. The ntum number of th mmetric stretch. Th nd
intensities and positions of the peaks were determined by th@-antu umber ot the symmetric strete € second-

theoretical FCF's and vibronic energies, but the posmonsslbratlo;]1al progressmnfl{/ls ;orrr:ed by th% (@3) peaks.
were uniformly shifted so that the first peak occurs at the>"'C€ the intensities of Mokt al. are in arbitrary units, in

experimental adiabatic ionization ener@E) of 10.345 eV “order to compare our harmonic spectrum with theirs we
as measured by Fleseh al*? forced the intensities of th€),0,1) peaks to be equal. The

comparison shows no appreciable differences in the§),0,
progression, whereas a small discrepancy can be observed
IV. RESULTS for (0,1p3). This minor discrepancy could be due to differ-

In Fig. 1 we present our simulated harmonic first band ofences in the algorithms used to truncate the vibrational basis
the CIO, He | PE spectrum and the harmonic results of MokSet. At the harmonic level our theoretical spectrum is essen-
et al.both calculated at the QCISD level. The geometry usedially the same as that of Moét al. and thus our geometrical
was the experimental offe*® (Rg_o=1.4698 A and parameters for CIQ", obtained from the best match between

0o_cl-o=117.41°) for CIQ and that obtained by Mokt al,  the simulated and experimental spectrum, are also the same
from an iterative Franck—Condon analy$I§CA),*° based  as theirs.
on the harmonic result Rg_o=1.410A and 65_¢_o Our simulated harmonic and experimental first band of
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0,00, (0,1,0), (0,0,1), (O,L1), (0,02), (0,1,2), (0,03), (0,1,3), (0,04), (0,1.4), (0,0,5

Intensity (arbritary units)
i

10.2 103 104 10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.2
Tonization potential (eV)
FIG. 2. Simulateddashed lingand experimentaRef. 43 (solid line) first band of the CIQ He | PE spectrum. Our theoretical harmonic spectrum is obtained

using the OCISD PES. The geometry of GIi® the experimental on@Refs. 51 and 5pand the geometrical parameters of the cationRyieo=1.410 A and
Oo_cl-o=121.8°.

0,0,0, (0,1,0), (0,0,1), (0,1,1), (0,0,2), (0,1,2), (0,0,3), (0,1,3), (0,0,4)

Intensity (arbritary units)

10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.2
Ionization potential (eV)
FIG. 3. Simulated first band of the CJ®He | PE spectrum using PEF calculated by Peterson and Wé&Reds. 46 and 47 The dashed and solid lines
represent the second-order anharmonic spectra obtained by us and that obtained ey adiRef. 25, respectively. The geometry of CJOs the

experimental ongRefs. 51 and 52and the geometrical parameters of the cation Rgeo=1.411 A and6y_c_o=121.80 for our work andR¢_o
=1.414 A andfy_c_o=121.80 for Moket al.
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(00,0, (0,1,0), (6,0,1), (0,1,1), (0,0,2), (0,1,2), (0,0,3), (0,1,3), (0,0.4)

Intensity (arbritary units)

10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0 11.1 11.2

Ionization potential (eV)

FIG. 4. Simulateddashed lingand experimenta(solid line) first band of the CIQHe | PE spectrum. The theoretical second-order anharmonic spectrum is
obtained by us using the PEF calculated by Peterson and WeReés. 46 and 4i7and the experimental geometry for GIQRefs. 51 and 5RandR¢_g
=1.411 A andf,_c_o=121.80° as geometrical parameters for the cation.

the He | PE spectrum of ClOdetermined by Flescht al3 mental spectrum. It would be of interest to have an accurate
are shown in Fig. 2. Again, in order to compare the twoexperimental geometry for comparison. In Fig. 3 we present
spectra the intensities of th®,0,1) peaks are forced to be the simulated anharmonic spectra calculated by Mokl.
equal. A comparison of the peaks shows two main discrepand ourselves. As in the harmonic case, the intensities of the
ancies:(i) The intensity ratio between th@®,0,1) peak and (0,0,1) peaks were forced to be identical and, then, the the-
the (0,0,0 or (0,0,2 peaks is far larger in the experimental oretical spectra are seen to be very similar. In fact, the only
spectrum than in the harmonic simulated spectrum; @d meaningful difference is the intensity ¢,0,4 peak, which

the intensities of the high-energy peaks are much smaller ifs smaller in our spectrum. Including anharmonicity in-
the experimental spectrum. For instance, whereas®ed  creases the intensity ratio between ted, 1) and(0,0,0 or
peak has a intensity similar to th®,1,2 peak in the har- (g 0 2 peaks and also decreases the intensity of the highest

monic spectrum it is not observed in the experiment. energy peaks. Thus, the correction to the harmonic spectrum
Mok et al. used a variational method, which involves is in the right direction.

diagonalization of the Watson Hamiltonidh®*to obtain the In Fig. 4 we depict the experimental spectrum and our

anharmonic wave functions as linear combinations of har; . - -
S : ; best simulated anharmonic spectrum. It is clear that close
monic vibrational wave functions. Then, the FCF's were

) . . similarity between the experimental and simulated spectra
computed by evaluating harmonic overlap integrals accord- t be obtainetsee Fig. 2without taki h it
ing to Chen’é procedure and carrying out a double sum over"annot be optainegee Fig. 2 without taking anharmonicity

into account. Only the two highest energy pefies., (0,1,3

the harmonic wave functions of both electronic statese o ) .
Ref. 25 for details On the contrary, we include anharmonic- and (0,0,4] Sh_OW any significant difference from (.axpen-
ment. These differences could be due to anharmonicity con-

ity through the application of perturbation theory to K8). o . . - .
Nevertheless, both methods should give similar results. tributions higher than second order, which are omitted in our
The CIO,* equilibrium geometry was obtained by Mok {reatment. A comparison of Figs. 2 and 4 reveals the great

et al. by means of the IFCA procedure using the PEF ofimprovement that is gained by including first- and second-
Peterson and Werrf&*® with anharmonicity taken into ac- order anharmonicity. Finally, in order to evaluate the conver-
count. This resulted iNRg_o=1.414A and 65_c_o 9ence of the perturbation theory corrections, we depict in
=121.8°. Utilizing the same PEF, and also including anhar¥ig. 5 the first-order anharmonic, and second-order anhar-
monicity, we find that the geometriRc_o=1.411A and monic simulated spectra. The difference between the first-
0o_c-o=121.8° yields the best agreement with the experi-and second-order results is quite small and, as expected, this
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0,00, (0,1,0), (0,0,1), (0,1,1), (0,0,2), (0,1,2), (0,0,3), (0,1,3), (0,0,4)

Intensity (arbritary units)

T T T T T T T T T T T

10.2 10.3 10.4 10.5 10.6 10.7 10.8 109 11.0 11.1 11.2
Ionization potential (eV)
FIG. 5. Simulated first band of the CJ®He | PE spectrum using the PEF calculated by Peterson and W&ets. 46 and 47 The dashed and solid lines

represent our first-order and second-order anharmonic spectra, respectively. The geometry f tBOexperimental onéRefs. 51 and 5Rand the
geometrical parameters of the cation &g_o=1.411 A andfy_c_o=121.8°.

difference increases as the quantum numbers of the cationigith experiment achieved for both calculatiofsurs and

state increase. Mok et al), makes it unlikely that the good results are an
artifact of the geometric parameter adjustnment.
V. CONCLUSIONS The full value of this new methodology will become

In this work a new method to calculate FCF’s taking into 0" @pparent when itis applied to larger species; something
account Duschinsky rotations as well as anharmonicity hal1at We plan to do in the near future. The harmonic, first-
been developed and implemented. Harmonic FCF’s are ofrder and second-order anharmonic calculations presented in
tained in a simple and direct manner by solving a set ofNis work required 0.09, 0.14, and 0.19 sec of CPU time,
homogeneous linear equatioisee Eq(9)]. The Duschinsky ~espectively, on an AMD XP 1900-Mhz computer. This com-
rotation and shift of equilibrium geometry appear in the dif- Putational efficiency is due in large part to the major trunca-
ference potential between the ground and excited electroniéon of the vibrational basis set. For COusing our algo-
states. Anharmonicity is included through a second-ordefithm to reduce the vibrational basis set, the number of states
perturbation treatment of the linear equations. The criticafonsidered is only 55, 75, and 78 for the harmonic, first-
truncation of the basis set is carried out through a rapidly?rder, and second-order terms, respectively. In order to ob-
Convergent procedure Whereby the basis set is systematicam?ln the same accuracy without truncation of the basis set the

increased in size while, at the same time, negligible states afgimber of states needed is several thousand. Our method
removed. scales adM?® where M is the number of vibrational states

As a verification of our method we have applied it to taken into account. Without truncation this number would
simulate the first band of the CjCHe | PE spectrum. Our grow much too rapidly for the method to be practical except
harmonic results are in excellent agreement with those ofor very small molecules. In the case ofi,, which we are
Mok et al.who used a different procedure and both calcula-currently investigating, about 210" vibrational states
tions predict the same geometry for GIO At the anhar- would be needed for 1% accuracy, but with our truncation
monic level we, again, match the results of Meikal. quite ~ scheme this is reduced to less thax ¥0° states.
closely, although the geometry of CJO that gives the best Refinements of the algorithm and code currently being
fit to experiment differs from theirs by 0.003 &.411 A implemented add to our confidence that the methodology
versus 1.414 RAin Rg_o (the predicted bond angle is the presented here will be adequate to simulate the spectra of
same in either cageBoth geometries fall within the range of much larger systems. We plan to take advantage of our pro-
predictions made by the best post-Hartree-Fadk initio ~ gram to calculate the vibrational contribution to two-photon
treatment$® This fact, and the resulting close agreementabsorption(TPA) of polyatomic molecules. This requires
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