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                                                                Abstract 

          The zero-point static vibrational averaging (ZPVA) correction to the (hyper)polarizability 

is written in first-order as the sum of two contributions, one involving electric field derivatives, 

and the other a sum over normal coordinate derivatives of the zero point energy. It is shown that 

the sum over 3N-6 normal modes can be replaced by a single term using field-induced 

coordinates (FICs). A computational strategy that takes advantage of this simplification is 

presented and applied to a typical push-pull polyene NH2-(CH=CH)3-NO2. From the dependence 

of the first-order ZPVA on the field-dependent equilibrium geometry we also obtain other low-

order static and dynamic vibrational curvature contributions to the (hyper)polarizabilities. The 

entire set of electronic and vibrational terms is partitioned into two different sequences, each of 

which exhibits rapid initial convergence for NH2(CH=CH)3NO2 at the Hartree-Fock/6-31G+p 

level. Including electron correlation at the MP2 level and the frequency-dependence of the 

ZPVA correction is discussed.    
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I. Introduction     

It is now widely recognized [1,2] that vibrational contributions to polarizabilities and 

hyperpolarizabilities can be of major importance for many molecules, especially those of 

practical interest as nonlinear optical chromophores. In some cases the vibrational terms are  

much  larger than the corresponding electronic properties. Ab initio calculations of  the former 

have been carried out at different levels of approximation. The simplest level is the double 

harmonic approximation where the vibrational potential is assumed to be harmonic and the 

dependence of the electrical properties on nuclear displacements is taken to be linear. 

Anharmonic effects are completely accounted for in the general perturbation treatment of 

Bishop and Kirtman (BK) [3-5].  A particular set of low-order perturbation terms constitutes 

what is known as the nuclear relaxation approximation [6,7]. Here nuclear relaxation (NR) refers 

to the fact that part of the vibrational effect is associated with the shift in equilibrium nuclear 

positions caused by an electric field. The NR approximation was originally applied to static 

properties using a finite field (FF) method [7] and, then, extended to dynamic properties in the 

infinite optical frequency (ω→∞) limit  by Bishop, Hasan and Kirtman (BHK) [8-10]. Taking the 

limit ω→∞ is equivalent to the assumption that (ωa/ω)2 is neglible compared to unity (ωa is a 

fundamental vibrational frequency); an assumption that has been found to give reasonably 

accurate results in the cases examined thus far [11,12]. Finally, a generalization of the NR 

approximation to include properties calculated at an arbitrary optical frequency, which is based 

on a combination of BK perturbation theory and the FF procedure, has now been presented [13]. 

It turns out that the NR approximation includes the leading vibrational term of each 

square bracket type that occurs in the BK perturbation treatment. From the results found by 

applying the BHK method [10,14,15] to prototypes for  molecules of practical interest, mixed 
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conclusions about the role of anharmonicity in nuclear relaxation have been reached. On the one 

hand, anharmonicity does not seem to be important for planar π-conjugated oligomers while, on 

the other hand, it is quite significant for polysilanes [14] and even more so for push-pull 

π-conjugated molecules [15]. 

The zero-point vibrational averaging (ZPVA) correction is not included in the NR  

approximation because it has a different origin. In the BK perturbation treatment this correction 

is, in fact, considered as an adjunct to the equilibrium electronic property. Nonetheless, this term 

gives rise to first- (and higher- ) order perturbation contributions due to mechanical and electrical 

anharmonicity. These are the only first-order terms that are not contained in the NR 

approximation. Although the first-order ZPVA contribution to β [16-18] and γ [19-22] has been 

investigated for a few small polyatomic molecules, the importance of this contribution for 

medium-sized and large molecules is unknown owing to extensive computational requirements 

for its determination [19]. In this paper we present a simplification that makes ab initio Hartree-

Fock and correlated calculations of the ZPVA correction much more feasible for systems larger 

than those previously treated. 

Our new procedure for evaluating the static ZPVA correction includes the utilization of 

field-induced coordinates (FICs), which were introduced recently [10] in implementing BHK 

finite field NR calculations. In general terms these coordinates are specified by the shift in 

equilibrium nuclear configuration due to imposing a static electric field on the system. 

Subsequently, we defined a set of analytical FICs [15] and showed that a small number of them 

suffice to reproduce exactly the results of a complete 3N-6 normal coordinate treatment of the 

static and ω→∞ NR effect. Since the required number of FICs does not grow with the size of the 

system this leads to computational simplification. 
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We demonstrate here that a situation similar to the above exists for the static first-order 

ZPVA correction. This correction  is the sum of two terms, one due to mechanical anharmonicity 

and the other to electrical anharmonicity. In Sec. II both are written in terms of the zero-point 

vibrational energy. The electrical anharmonicity term involves electric field derivatives of the 

force constants, while the mechanical anharmonicity term utilizes normal coordinate derivatives. 

Instead of requiring all 3N-6 normal coordinate derivatives, the derivative with respect to a 

single FIC turns out to be sufficient for any component of the polarizability or 

hyperpolarizability. Again, there results a reduction in the computations involved, particularly 

for large molecules. 

The reference geometry for a ZPVA calculation is, normally, taken to be the field-free 

equilibrium nuclear configuration. However, there has been a renewed interest [23-25] in 

selecting alternative reference points. Although this does not give rise to any computational 

savings, tests on diatomics [24,25] show a gain in accuracy – albeit quite small – can be achieved 

by shifting to an optimized effective geometry. In the treatment presented here we retain the 

conventional choice. 

After discussing computational considerations in Sec. III, we present a case study in Sec. 

IV of the static longitudinal polarizability and hyperpolarizabilities of  the typical donor/acceptor 

polyene NH2-(CH=CH)3-NO2. This molecule was chosen not only because it illustrates the 

capabilities of the method but also because the first-order anharmonicity contribution to the NR 

hyperpolarizabilities is known [15] to be large. Although both Hartree-Fock and MP2   

calculations of the ZPVA corrections are feasible with our procedure only Hartree-Fock results 

are reported for reasons discussed in Sec.III. These results were obtained using several basis sets 

from 6-31G to 6-31G+pd. Our values provide a first indication of  the significance of  the ZPVA 

correction for α, β, and γ in π-conjugated push-pull systems and of the relative importance of 

mechanical versus electrical anharmonicity.  
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If one can obtain the first-order ZPVA correction, then FF methods [26] can be employed 

to determine perturbation terms (called C-ZPVA for reasons that will be evident later) beyond 

those included in the NR approximation. These C-ZPVA terms contain the next (non-vanishing) 

higher-order vibrational contribution of each (square bracket) type that occurs in the BK 

perturbation treatment. Thus, they provide information on the convergence of the perturbation 

series. Using the FF method of Kirtman, Luis and Bishop (KLB) [26] for the first time, the 

C-ZPVA terms derived from the first-order ZPVA correction are calculated in Sec. IV. The KLB 

method produces not only static values but also values for various nonlinear optical (NLO) 

processes in the ω→∞ approximation. Although the static quantities have been obtained 

previously for a couple of small polyatomic molecules [19,27], NLO calculations have been 

reported only for diatomics [28].  

In the last section (Sec. V) we present our conclusions and discuss possible future 

extensions. One of these is to account for the frequency-dependence of the ZPVA correction. In 

that regard two different scaling approaches are suggested. We also speculate on further 

computational simplifications of the procedure given here.   

     

II. Theory and computational considerations 

The ZPVA correction to the electronic property P is just the difference between the 

average value of the property in the ground vibrational state and the value at the reference 

geometry, which is taken here to be the field-free equilibrium structure R0 

eezpva PPP −=  (1)  

As noted in the Introduction the perturbation treatment of Pzpva yields two first-order terms that 

may be written as [26,29]: 
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Pzpva = [P]0,1+[P]1,0 (2)  

with 
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In Eqs. (3)–(4) all quantities are evaluated at R0 and Qa is a normal coordinate. The quantity 

[P]0,1 is first-order in mechanical anharmonicity since it is linear in the cubic vibrational force 

constants Fabb. Given the vibrational potential V(Q) one may regard the quadratic vibrational 

force constants, defined by Fbb(Q) = ∂ 2V/∂ Qb
2, as a function of the normal coordinates. Then 

Fabb in Eq.(3) is given by (∂Fbb/∂Qa)0 and it has been observed [20] that the rhs of Eq. (3)  may 
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Again all quantities in Eq.(5) are evaluated at R0 or, equivalently, Q = 0.  Similarly, one can 

write  Eq. (4) in terms of electric field derivatives of Ezp: 
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where n = 1 for the dipole moment, µ ;  n = 2 for the linear polarizability, α ; n = 3 for the first 

hyperpolarizability, β ; and n = 4 for the second hyperpolarizability, γ . For convenience, the 

designation of the components of the electric field, F, has been suppressed. Eqs. (5)-(6) are more 
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compact than Eqs. (3)-(4), in either case, however, one must compute the complete Hessian in 

order to evaluate the term [P]0,1 or [P]1,0. That is because  ∑∑∑ ≠=
a

aa
a

aa
a

a FFω . 

We define the FIC associated with the property P by the relation – 
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If Pe is the dipole moment then, in the notation of our previous paper [15],  χP = χ1
a= χ1, har

a . 

where the subscript har denotes the harmonic component of the FIC. Similarly, for the 

polarizability  χP =χ 2, har
ab , whereas for the first and second hyperpolarizability  χP =χ 3,har

abc
  and 

 χP =χ 4,har
abcd  respectively. There is a different  χP  associated with each independent tensor 

component (a total of 3 for the dipole moment, 6 for the linear polarizability, 10 for the first 

hyperpolarizability and 15 for the second hyperpolarizability). Following the same procedure as in 

Ref. [15], one can transform from normal coordinates to the set consisting of P χ   (for a 

particular component) plus 3N-7 orthogonal (but otherwise arbitrary) coordinates. This leads to: 
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 being the circular frequency obtained from the Hessian defined by χP . Eq. (8) has an 
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 is required rather than the entire set of 3N–6 derivatives ∂Ezp/∂Qa. 

The term [P]1,0 contains the second derivatives ∂ 2Pe/∂Qa
2 and, hence, is first-order in 

electrical anharmonicity. However, starting from Ezp (or, equivalently, the Hessian) the only 

derivatives that appear in Eq. (6) are taken with respect to the electric field. This means that there 

is no opportunity to take advantage of the FICs for [P]1,0 as we do for [P]0,1. The ZPVA 

correction differs from the NR contribution in that regard because the latter can be obtained by 
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means of a geometry optimization [7,8] without explicit calculation of the vibrational force 

constants [10,14]. 

              From the effect of a finite field on the static Pzpva
  one can obtain the static and dynamic  

(in the ω→∞ approximation) C-ZPVA vibrational contribution Pc-zpva. The procedure [26] is 

exactly analogous to that used in calculating static and dynamic (ω→∞) NR vibrational 

contributions from the pure electronic properties. In either case one determines the change in 

property values arising from the relaxation of the equilibrium nuclear geometry due to an applied 

field. On the other hand, it can also be shown [7,30] that the sum  Pc-zpva = Pzpva + Pc-zpva is 

associated with the shape of the field-dependent vibrational potential (evaluated at the field-

dependent equilibrium geometry). That is why Pc is usually referred to as the curvature term and 

why we have chosen the notation Pc-zpva = Pc -  Pzpva. 

          Let us define – 

zpvazpva
F

zpva PPP 0−=∆  (10)  

as the difference in the ZPVA correction caused by changing from R0 to the field-dependent 

equilbrium geometry RF. In the latter case the property is determined in the presence of the field. 

For each property this difference can be expanded as a power series in the field [26]: 
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The expansion parameters in Eqs.(11)–(13) are  [26]:  

(0;0)+(0;0) zpvaczpvaa −= αβαβαβ αα1  (14)  

(0;0,0)+(0;0,0) zpvaczpvab −= αβγαβγαβγ ββ1  (15)  
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(0;0,0,0)+(0;0,0,0) zpvaczpvag −= αβγδαβγδαβγδ γγ1  (16)  
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where the subscript ω→∞ indicates the infinite optical frequency approximation. These relations 

are valid for the ZPVA correction through any order. Using the first-order approximation, i.e. 

Eq. (2), leads to – 

II
0

2 ][=(0;0) =
−

ωαβ µα zpvac  (20)  

III
0

3II
0 ][][=(0;0,0) ==

− + ωωαβγ µµαβ zpvac  (21)  

IV
0

4III
0

II
0

II
0 ][][][][=(0;0,0,0) ====

− +++ ωωωωαβγδ µαµµβαγ 22zpvac  (22)  

II][=,0);(- ∞→∞→ ωωαβγ µαωωβ c-zpva  (23)  

IIIIIII ][][][=,0,0);(- ∞→∞→∞→∞→
− ++ ωωωωαβγδ αµµβαωωγ 22zpvac  (24)  

II][=,0),;(-2 ∞→∞→
−

ωωαβγδ µβωωωγ zpvac  (25)  

in the square bracket perturbation theory notation of  BK (the Roman numeral superscript gives 

the total order in electrical and mechanical anharmonicity). In this notation the subscripts on the 

rhs are The terms on the rhs in Eqs. (20)-(25) are of exactly the same (square bracket) type as the 

corresponding NR contributions but they are each two orders of perturbation theory higher; for 

example, 

I00 ][][][=,0,0);(- ∞→∞→∞→∞→ ++ ωωωωαβγδ αµµβαωωγ 22nr  (26)  

It is easy to show [4] that the terms of intermediate order vanish. Thus, from FF calculations 

based on Eqs. (11)-(13), we can test the convergence of the square bracket quantities in BK 
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perturbation theory for the first time in a polyatomic molecule. Finally, it is important to note 

that the non-vanishing ZPVA correction terms also increase by two-orders of perturbation theory 

in each step -  in other words, [Pzpva]II = [Pzpva]IV =  ...   =   0.  

 

III. Computational considerations 

For our initial study we chose the typical push-pull polyene NH2-(CH=CH)3-NO2. Only 

the dominant longitudinal component of the polarizability and hyperpolarizabilities was 

considered. A recent investigation [15] of the NR contribution to the longitudinal β  and γ  found 

that first-order anharmonic terms are quite important in this molecule. Thus, it is natural to 

question whether the first-order ZPVA correction might be considerable as well.   

In order to determine the FICs from Eq. (7) normal coordinate property derivatives are 

required. In the GAUSSIAN98 [31] suite of programs that we use both ∂µ/∂Qa and ∂α/∂Qa  are 

computed analytically for the Hartree-Fock wavefunction. These derivatives can be calculated in 

the presence of an applied field and, hence, the corresponding derivatives of the higher-order 

properties are determined by numerical differentiation with respect to the field. (The same is true 

for an MP2 calculation except that only ∂µ/∂Qa is available analytically.) An alternative way to 

obtain the higher- (and lower-) order property derivatives is to start with the analytical force and 

differentiate with respect to the field as many time as necessary [32]. For ∂γ/∂Qa, however, this 

method requires fourth derivatives whereas in the above procedure no higher than third 

derivatives are necessary.  

For the evaluation of [P]1,0 by means of Eq. (6) the key quantity is the field-dependent Ezp 

or, equivalently, the field-dependent Hessian. The latter is determined analytically at the Hartree-

Fock level and, in principle, also at the MP2 level in GAUSSIAN98 [31]. In practice, after  MP2 

calculations were completed we found that the analytical results did not reproduce literature 
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values [18] for H2O. Although, the numerical MP2 treatment was successful in this regard it is  

much more time-consuming and, in addition, numerical fifth derivatives are required for γzpva.  

This is the reason why only Hartree-Fock values are reported for the ZPVA correction. Even 

with the analytical Hartree-Fock Hessian, numerical fourth derivatives are necessary for γ. An 

alternative is to differentiate the analytical ∂α/∂Qa but, then, one of the three differentiations 

would involve the 3N-6 normal coordinates and this is not desirable. One must be careful in 

evaluating ∂ 4Faa/∂F4 to stay within the window of field values where the fourth derivative is 

stable. In this study it was found that fields of ±0.0050 a.u. and ±0.0100 a.u. were satisfactory. 

We checked the stability by repeating our calculations with F = ±0.0040, ±0.0080 a.u.  

The advantage of using FICs is that [P]0,1 is obtained by evaluating the single term in Eq. 

(8) rather than a sum over 3N-6 normal coordinates. This term contains ∂Ezp/∂χP, which is 

calculated from Eq. (9) by the method of finite nuclear displacements. The magnitude of the 

displacement used was 0.04 a.u. and the stability of the derivative was checked by repeating the 

calculation with the magnitude of the displacement doubled.   

For the Hartree-Fock C-ZPVA contribution we need to determine the ZPVA correction at 

the field-free, and at several field-dependent, equilibrium geometries. The geometry 

optimizations were carried out for the fields 2k x F0,  with k=0-4 and F0 = 8 x 10-4 a.u., following 

the procedure of Ref. [10] where the field-free Eckart conditions are rigorously enforced. Then 

the coefficients of the power series expansions in Eqs. (14)-(20) were obtained using the 

Romberg technique [33]. 

 In order to compare Pc-zpva with  Pnr we also calculated the NR vibrational polarizability 

and hyperpolarizabilities at both the Hartree-Fock and MP2 levels. The same method was 

employed as in our recent paper on analytical FICs [15]. For π-conjugated molecules, previous 
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correlated treatments of vibrational (hyper)polarizabilities are almost non-existent [34,35] even 

in the double harmonic approximation.  

Four different basis sets were employed, the smallest being 6-31G [36]. The latter has 

been widely used in studies of the electronic and vibrational hyperpolarizabilities of 

π-conjugated molecules. We, then, added diffuse p or sp functions on the heavy atoms (N,C,O) 

with exponents that were optimized by maximizing α. This optimization technique has been used 

previously, for example, in studies by  Kirtman and Hasan [37], Spackman [38], and Werner and 

Meyer [39]. In practice the exponents were varied manually in steps of 0.01. The p exponents so 

obtained were ξp=0.05 for C, ξp=0.05 for N, ξp=0.07 for O; and exactly the same results were 

found for the sp diffuse functions. Finally, an extra set of 5 d polarization functions was added to 

the 6-31G+p basis set. In this case the exponents ξd=0.09 for C, ξd=0.2 for N, and ξd=0.09 for O 

were chosen to maximize α ; the p exponents were not reoptimized. The 6-31G +pd basis was 

first introduced by Hurst, et al. [40] to calculate polarizabilities and hyperpolarizabilities of 

polyacetylene oligomers and has been extensively employed since then. A 6-31G+sp basis was 

found to be most efficient for polysilane oligomers in  Ref. [37].      

 

IV. Results and discussion 

Table I summarizes the results (in a.u.) of our restricted Hartree-Fock (RHF) calculations 

for the longitudinal component of Pe, Pzpva, Pnr and Pc-zpva. Although there is a significant 

variation with basis set, for the three larger bases the variation is modest. The 6-31G basis seems 

satisfactory for a qualitative analysis – there are a couple of large differences ( > 50%) from 6-

31G+p but these occur only when the contribution of that term to the total property value is quite 

small. We judge the 6-31G+p basis to be appropriate for a semiquantitative treatment. The 

maximum difference from 6-31G+sp or 6-31G+pd is about 30% (again, only for small 
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contributions) and, in most instances, it is much less.  For this reason we did not undertake finite 

field C-ZPVA calculations for the +sp or +pd basis.    

          In agreement with previous work [1,15] the NR hyperpolarizabilities are often comparable 

to, or substantially larger than, the corresponding static electronic property. For the molecule 

studied here this occurs in the case of βnr(0;0,0), βnr(-ω;ω,0)ω→∞, γnr(0;0,0,0), and γnr(-ω;ω,0,0)ω→∞ 

with the ratio [versus β e(0;0,0) or γ e(0;0,0,0)] varying between 0.7 and 9.0.  As discussed earlier the 

C-ZPVA hyperpolarizabilities may be derived from the static ZPVA corrections in exactly the same 

way that the NR hyperpolarizablities are derived from the static electronic properties.  Thus, it is not 

too surprising to find that the C-ZPVA hyperpolarizability is often comparable to, or substantially 

larger than, the corresponding static ZPVA correction. Indeed, γc- (0; 0, 0, 0) is comparable to γe(0; 

0, 0, 0).   

             In examining the convergence of the BK perturbation treatment [3-5] we suggest that it is 

best to look separately at two different sequences which combined give the total property: 

    (A)   Pe,  [Pzpva]I,  [Pzpva]III, ... 

(B) Pnr,  Pc-zpva(I),  Pc-zpva(III), ...  

Here Pc-zpva(I) , for example, is used to indicate the fact that this C-ZPVA term is derived from 

[Pzpva]I (although it only contains contributions higher than first-order). From Table I it is evident 

that the RHF value of the first-order static ZPVA correction is always much smaller than its static 

electronic  counterpart as expected. The relevant ratios are less than .02 for α,  .08 for β , and .07 for 

γ.  Thus, sequence (A) initially converges quite rapidly for NH2-(CH=CH)3-NO2. The same is true 

of sequence (B) where, in every case, the ratio Pc-zpva(I)/Pnr is less than 0.12. Finally, we note that 

the C-ZPVA contribution to each dynamic process is smaller in magnitude than the 

corresponding static value.  
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           Our MP2 results for the electronic and nuclear relaxation contributions (in a.u.) are 

presented in Table II. Although correlation has a large effect, the qualitative conclusions we have 

drawn from the RHF calculations remain unaltered (where appropriate). The difference between 

the 6-31G and 6-31G+p basis sets is somewhat larger for MP2 – typically, of the order of 50% - 

but that is still sufficient for qualitative purposes. Assuming that the 6-31G+p basis will give 

semiquantitative accuracy, as it does for RHF, the MP2 calculations using the +sp and +pd bases 

were omitted for the sake of computational convenience. From the 6-31G+p results we see that 

the ratio of Pnr to the corresponding static Pe consistently decreases when correlation is added at 

the MP2 level. Nonetheless, this ratio remains greater than, or comparable to, unity for all the 

properties mentioned in connection with the RHF treatment except βnr(-ω; ω, 0)ω→∞. The 

conclusions drawn here about the effect of electron correlation must be treated as preliminary 

since the basis sets are relatively small and no calculations beyond MP2 have been attempted. 

           It is of interest to consider the relative magnitude of  the electrical and mechanical 

anharmonicity contributions to Pzpva, i.e. [P]1,0  and [P]0,1 respectively. At the RHF/6-31G+p 

level we obtain [α]1,0/[α]0,1 =3.6 ,  [β]1,0/[β]0,1 = 7.1,  and [γ]1,0/[γ]0,1 = -5.7. Thus, for NH2-

(CH=CH)3-NO2 the electrical anharmonicity is considerably more important. It remains to be 

seen whether this feature persists when correlation is included and, if so, whether it is generally 

true for push-pull  molecules.  

 

V. Conclusions and future work 

The first-order ZPVA correction to the (hyper)polarizability is the sum of  two terms,  

one due to mechanical anharmonicity, i.e. [P]0,1, and the other to electrical anharmonicity, i.e. 

[P]1,0. We have shown that [P]1,0 may be written as an nth-order derivative of Ezp with respect to 

an electric field, whereas [P]0,1 depends upon first derivatives of Ezp with respect to vibrational 
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coordinates. By using FICs rather than normal coordinates the sum over normal modes in the 

expression for [P]0,1 can be reduced to a single term thereby reducing the computational effort so 

that calculations can be done on large molecules. Given a method of determining the first-order 

ZPVA correction one can, then, use the finite field approach of KLB to obtain a first estimate of 

higher-order vibrational contributions, Pc-zpva, not included in the nuclear relaxation term, Pnr. 

Contributions to both static and dynamic (in the ω→∞  approximation)  NLO processes are 

obtained in this manner.    

            Hartree-Fock first-order ZPVA calculations have been carried out on the model push-pull 

molecule NH2-(CH=CH)3-NO2 using GAUSSIAN98 to analytically determine the field-

dependent Hessian. An MP2 treatment is feasible as well but awaits successful implementation 

of the analogous analytical procedure. Starting with the Hessian all subsequent differentiations 

were done numerically. For comparison purposes the NR vibrational contribution was also 

computed at both the Hartree-Fock and MP2 levels by means of the FIC procedure that we 

recently described [15]. In addition to 6-31G several basis sets with optimized polarization 

functions were also employed.       

For NH2-(CH=CH)3-NO2 it was found as expected that Pnr is often greater than, or 

roughly the same as, the corresponding static electronic property. Likewise, Pc-zpva is often 

comparable to, or exceeds, Pzpva. On the other hand, one can logically partition the entire set of 

electronic and vibrational terms that contribute to the (hyper)polarizability into two different 

sequences each of which shows rapid initial convergence. Finally, it turns out that electrical 

anharmonicity is much more important than mechanical anharmonicity for Pzpva of the molecule 

studied here.        

           The treatment we have presented pertains to the static ZPVA correction. One simple 

method for estimating the frequency-dependence is to assume that the correction scales 

(multiplicatively) with frequency in exactly the same manner as the (field-free) equilibrium value 
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of the electronic property. The limited data available for small molecules [16,19,20,41,42]  yields 

mixed results with dispersion errors at optical frequencies typically, but not always, less than 

10%. Further tests of this approximation should be carried out for larger molecules. 

Although Eq. (6) cannot be employed to obtain the frequency-dependent [P]1,0, Eq. (8) 

can be utilized for the frequency-dependent [P]0,1. If the latter term makes the dominant 

contribution to the ZPVA correction this immediately gives a good estimate for the frequency 

dispersion. Although the opposite is true for the molecule studied here the dispersion of [P]0,1 

might mimic the frequency-dependence of Pzpva  more accurately than the electronic property 

does so. This possibility remains to be investigated. 

         The only correlation method discussed in this paper is MP2. We avoided the more efficient 

DFT approach because common exchange-correlation functionals do not correctly describe [43] 

the electric field polarization of  quasilinear π-conjugated systems like NH2-(CH=CH)3-NO2. On 

the other hand, DFT does appear to give an accurate Hessian for such molecules. This suggests 

that a simplification might be achieved by using the DFT Ezp in Eq. (8) for [P]0,1. 
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Table I. RHF calculations of the electronic, ZPVA, NR and C-ZPVA contributions to the 
polarizability and hyperpolarizabilities (in a.u.) of NH2-(CH=CH)3-NO2.  

Property 6-31G 6-31G+p 6-31G+sp 6-31G+pd 
     P = α     

)0;0(α e  2.39x102 2.57x102 2.58x102 2.64x102 

)0;0(α zpva  3.2x100 3.7x100 4.0x100 4.8x100 

)0;0(α nr  6.54x101 7.39x101 7.43x101 7.32x101 

)0;0(α zpvac−  7.2x100 7.3x100 - - 
     

P = β     
)0,0;0(β e  4.28x103 4.97x103 4.99x103 4.62x103 

)0,0;0(β zpva  -2.4x102 -3.1x102 -3.8x102 -2.1x102 

)0,0;0(β nr  1.30x104 1.62x104 1.64x104 1.59x104 

)0,0;0(β zpvac−  -4.6x101 3.8x102 - - 

∞→− ωωωβ )0,;(nr  2.99x103 3.64x103 3.54x103 3.66x103 

∞→
− − ωωωβ )0,;(zpvac  1.5x102 1.9x102 - - 

     
P = γ     

)0,0,0;0(γ e  3.45x105 4.47x105 4.50x105 4.31x105 

)0,0,0;0(γ zpva  -2.1x104 -3.2x104 -3.1x104 -2.8x104 

)0,0,0;0(γ nr a) 2.74x106 3.85x106 3.74x106 3.89x106 

)0,0,0;0(γ zpvac−  3.1x105 3.0x105 - - 

∞→− ωωωγ )0,0,;(nr  5.84x105 7.89x105 7.93x105 7.51x105 

∞→
− − ωωωγ )0,0,;(zpvac  -2.1x103 -3.1x103 - - 

 nr
∞→− ωωωωγ )0,,;2(  9.07x104 1.23x105 1.24x105 1.11x105 

 zpvac
∞→

− − ωωωωγ )0,,;2(  -6.8x103 -1.2x104 - - 
     a) Based on the 6-31G results for NH2-(CH=CH)3-NO2 in Ref. [15] these values were obtained 

using 1χ  and har,2χ  instead of 1χ  and 2χ . The high accuracy of this procedure was verified for 
the 6-31G+p basis  by carrying out a finite field BHK calculation. 
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Table II. MP2 calculation of the electronic and NR contributions to the polarizability and 
hyperpolarizabilities (in a.u.) of NH2-(CH=CH)3-NO2. 

Property 6-31G 6-31G+p 
   P = α   

)0;0(α e  2.72x102 3.09x102 

)0;0(α nr  3.53x101 4.46x101 

   
P = β   

)0,0;0(β el  1.26x104   1.57x104 

)0,0;0(β nr  9.02x103 1.35x104 

∞→− ωωωβ )0,;(nr    2.72x103 3.98x103 
   

P = γ   
)0,0,0;0(γ e  1.26x106 1.69x106 

)0,0,0;0(γ nr  a) 2.59x106 4.30x106 

∞→− ωωωγ )0,0,;(nr  8.83x105 1.39x106 

 nr
∞→− ωωωωγ )0,,;2(  2.14x105 3.28x105 

   a) Based on the 6-31G results for NH2-(CH=CH)3-NO2 in Ref. [15] these values were obtained 
using 1χ  and har,2χ  instead of 1χ  and 2χ . The high accuracy of this procedure was verified for 
the 6-31G basis  by carrying out a finite field BHK calculation. 
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