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Abstract

Vibrational motions can play an important role in determining electrical, magnetic, and
spectroscopic properties through so-called nuclear relaxation, zero-point vibrational averaging,
or a combination of the two. Recent advances in the analysis and computational treatment of
these phenomena include the finite field/nuclear relaxation technique and field-induced
coordinates. These methodologies, which were originally developed for non-resonant electric
dipole (hyper)polarizabilities, are reviewed and extended to magnetic properties as well as
properties involving simultaneous electric and magnetic fields. In addition, spectroscopic
applications such as two-photon absorption, circular dichroism, and infrared/Raman vibrational
intensities are considered. With the finite field/nuclear relaxation technique and field-induced

coordinates computations are now feasible for much larger molecules than before.



l. Introduction

The effect of vibrations on electric dipole polarizabilities and hyperpolarizabilities has
been under detailed study for some time now as discussed in several recent reviews. [1-4] As a
result of such investigations it has been established that the vibrational contribution to these
properties can be of major significance, especially in the case of large conjugated organic
molecules which are of interest for nonlinear optical (NLO) applications [3]. In the course of this
work there have been, and continue to be, important theoretical advances in the understanding
and treatment of the vibronic coupling that leads to the vibrational contribution. The purpose of
this article is to present some of these advances and, in addition, to show how they can be
extended to: (1) magnetic properties as well as properties involving a combination of magnetic
and electric response; (2) spectroscopic, or resonant, processes; and (3) infrared and Raman
intensities. Thus, about half of the text will constitute a review of our own work, but there will be
substantial new material as well. Since the developments discussed here are quite recent we have
chosen to focus on the computational methodology rather than on numerical results.

Two closely intertwined, though somewhat different, methods for determining vibrational
effects will be described in Sec. I1. One of these is based on a perturbation theory (PT) treatment
of the fields [5-7] and the other involves a finite field/nuclear relaxation (FF/NR) approach [8,9].
Despite the name the latter may be applied either in a numerical or an analytical mode. However,
in its most common form, at least one of the fields must be static whereas the PT method is
purely analytical and can be used with fields of arbitrary frequency. The treatments developed
thus far have focused on the non-resonant regime where the frequencies of the applied fields are
assumed to lie well below the first electronic transition. A canonical approximation is, then,
applied which treats the action of the fields on the electronic and vibrational motions

sequentially, rather than simultaneously [10]. Finally, the vibrational terms that emerge are



determined by considering mechanical and electrical anharmonicity as a perturbation of a double
harmonic initial approximation.

There is a general FF/NR scheme that is applicable at arbitrary frequencies [11], but the
most convenient form (as noted above) is limited to properties involving at least one static field.
In addition, for the remaining optical fields, we assume the infinite optical frequency
approximation (i.e. (a/@)?> << 1 where o is a field frequency and @i a vibrational frequency).
These mild limitations may be balanced against computational efficiency and the fact that the
FF/NR method leads to a division of the total vibrational contribution that is both physically and
quantitatively meaningful. Each of the terms in this division can be systematically related to a
set of terms in the perturbation treatment of the mechanical and electrical anharmonicity. All of
these aspects are explored in Sec. Il where we describe how the FF/NR and PT formalisms can
be adapted to accommodate properties involving a combination of electric and magnetic fields.
NMR/ESR properties are also discussed and the extension to optical absorption is treated in a
preliminary way.

The FF/NR procedure affords substantial computational advantages over a
straightforward application of PT in treating nuclear relaxation effects in large molecules,
especially — but not only — when anharmonicity is important. A second major advance which
leads to further computational efficiencies, with regard to zero-point vibrational averaging
(ZPVA) as well as nuclear relaxation, concerns the choice of vibrational coordinates. In the past,
the evaluation of vibrational contributions has always been carried out in terms of normal modes.
Recently, it has been discovered that, for any given property, all relevant information is
completely contained in a much smaller set of so-called field-induced coordinates (FICs) [12]. A
rigorous definition of these FICs is presented in Sec. Il along with an analysis of their
characteristics. The properties considered here include static/dynamic dipole polarizabilities and
hyperpolarizabilities; NMR/ESR parameters; the Cotton-Mouton constant; and infrared and
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Raman vibrational intensities as well as their optical rotation counterparts. It turns out that the
number of FICs necessary to determine each property remains the same regardless of the size of
the molecule. As a result calculations are feasible for much larger molecules than could
previously be handled. In Sec. IV we discuss general computational considerations and, finally,

Sec. V contains the conclusions and some of our plans for further development.

1. General Perturbation Treatment and Finite Field/Nuclear Relaxation Approach

In this paper we limit ourselves, for sake of convenience, to properties associated with
electric and magnetic dipoles. There are, of course, many interesting multipolar properties that,
we note, can be treated by a similar formalism. In fact, electric quadrupoles and magnetic dipoles
are often considered together since they have many aspects in common [13]. Our starting point,
then, is the perturbation equations for the electric dipole polarization properties of a molecule in

a set of spatially uniform oscillating electric fields [14] generalized to include vibronic states:
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In Egs. (1)-(3) wk ex =| K,k > is a vibronic wavefunction where K and k refer to the electronic
and vibrational states respectively; haxk is the energy of the state | K,k > relative to the ground

state; 7k« is the damping factor associated with the transition from [0,0> to |Kk>;

~

a =i, ~(00

i, 0,0> with £ being a cartesian direction; the sum over permutations indicated by
2. P123, for example, refers to the pairs (@/up), ( @e /) and (@ /us); ws = Y i ; and the
prime on the sum over vibronic states means that |0,0 > is omitted.

In the non-resonant regime the damping factor can be neglected and Egs. (1)-(3) simplify

to: [5]
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Note that in the permutations P.s1, etc. the pair involving a.s is (-as/ ). The quantities usually
referred to as the vibrational (hyper)polarizabilities correspond to the set of terms in Egs. (4)-(6)
in which at least one of the intermediate electronic states is the ground state. Then, in evaluating
the contribution that arises from excited electronic states, we assume that vibrational energy
differences are negligible compared to electronic energy differences so that axx is independent
of k. Both a theoretical and computational justification of this assumption has been given [10].

Using these approximations one can write the vibrational (hyper)polarizabilities in the general

form:
ayy (o, o) =[1’] (7)
By, (0,0, 0,) =[pal+ 4] (8)
Vg (0,500, 0y, 03) = [@®1+[uf]+ [P a] +[u'] (9)

where the “square bracket” [ua], for example, is given by —
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Expressions for the other square bracket quantities are presented in Table 1l of Ref. [5]. These
are readily extended [15] to include magnetic dipole polarization properties as well. The
vibrational matrix elements of the electronic properties u¢, acy , etc. and the vibrational
frequencies, ax, can be obtained by expanding the properties and the vibrational potential as a
power series in the normal coordinates, Qi. In the double harmonic approximation only linear
terms are considered in the property expansion and only quadratic terms in the vibrational
potential. Starting with this approximation one can obtain the corrections due to electrical and
mechanical anharmonicity by means of double perturbation theory, which yields a series of the

general form:

[ua] = [ual® +[ual® +[ual™ +[ual™® +...
=[ual’ +[ual" +...

(11)
in the case of [ua]. In the first line of Eq. (11) the first superscript refers to the order in
electrical anharmonicity and the second to the order in mechanical anharmonicity; the Roman
superscripts in the second line give the total order. Note that only terms of even total order
appear in the expression for [ua]. The same is true for other square bracket expressions in
which the electronic properties occur to an even (total) power. (For [£/] the term zeroth-order in
anharmonicity also vanishes.) In contrast [¢Z] and [¢Z¢] contain only terms of odd (total) order
in anharmonicity.

Analytical expressions for all the square bracket quantities through order Il have been
derived [7] as a function of the anharmonic mechanical and electrical parameters as well as the
optical and harmonic vibrational frequencies. The case where at least one field is static, and the
harmonic vibrational frequencies are assumed to be negligible compared with the optical

frequencies for all other fields, can be singled out for special attention. This assumption

regarding the optical frequencies is known as the infinite optical frequency approximation [8].



The special case just described applies not only to static (hyper)polarizabilities but, at ordinary
experimental frequencies, it is a good approximation [16,17] for the hyperpolarizabilities that
govern several important nonlinear optical (NLO) processes including the electro-optic Pockels
effect (EOPE) p(-w;w,0), the electro-optic Kerr effect (EOKE) y(-w;®,0,0), the degenerate
four-wave mixing (DFWM), y(-w;w,—®,») and dc-second harmonic generation (dc-SHG)
y(—2w;w,®,0) .

In the infinite optical frequency approximation we may use a finite field/nuclear
relaxation (FF/NR) procedure to evaluate the PT sum-over-modes formulas for the low-order
square bracket terms [8]. The major step in the FF/NR method is determining the nuclear
relaxation, i.e. the change in optimum molecular geometry Rr — Ro, induced by a finite static
applied field. This must be done with due care to satisfy the Eckart conditions so that the
molecule does not re-orient with respect to the field during optimization [9]. Then, the
difference between a molecular electronic property evaluated in the presence of the field and at
the field-dependent equilibrium geometry, i.e. AP® = P*[F, Re] - P°[0, Ro] , may be written as a
power series in the field. The coefficients in this expansion yield nuclear relaxation static and

infinite optical frequency (hyper)polarizabilities depending upon the property that is being

expanded:
bl,e gl,e
e e (7 afys
Al =akF, + 2’” F,F, + g FyF Fs+... (12)
92,9
e _ e afyd
Aaj, =bi F, + Zﬂy FFs+... (13)
ABy =055 sF +... (14)
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8 = a.,(0,0)+a;(0,0) (15)



bi{,‘?y = ﬂaﬁy (O 0 O) + aﬂ}/ (0 O 0) (16)

Gupro =7 (070,0,0)+ 73,5 (0;0,0,0) (17)

by, = Bas, (0:0,0)+ B, (-0;0,0),,.,., (18)
Oz = Vg (0:0,0,0)+ 755 (-0;@,0,0),,.,., (19)
Outrs = Vepo(0:0,0,0)+ 755 (200;0,0,0),,,., (20)

In Egs. (18)-(20) the subscript ew—co refers to the infinite optical frequency limit. By comparing
the analytical expressions for the nuclear relaxation quantities (symbolized by the superscript
nr) with the corresponding perturbation formulas [18] it is easy to verify that the coefficient of
the linear field term gives the zeroth-order (i.e.. double harmonic) approximation and the
coefficient of the quadratic field term gives the hyperpolarizability through order 1. The
coefficient of the cubic field term - like the linear and quadratic field terms - contains the
lowest-order square bracket contribution of each type [cf. Eq. (9)].

If P¢ is taken to be the electronic energy, E®, then the (hyper)polarizabilities obtained are
exactly the same as those derived from ¢ = —0E®/6F,, . The FF/NR method cannot be applied
to degenerate four-wave mixing (DFWM), y(-w;w,—o,®) - or, equivalently, the intensity-
dependent refractive index. However, in the infinite optical frequency approximation only the
[¢?] survives. Since nuclear relaxation includes just the lowest order term of each square
bracket type [see Egs. (21)-(27) below] the double harmonic approximation is sufficient to
provide the complete nuclear relaxation effect for DFWM. Finally, the infinite optical
frequency nuclear relaxation hyperpolarizabilities can be written as simple linear combinations

of the static square bracket quantities (designated by the subscript @ = 0):

0,5(0:0) =1 T (21)
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Note that Eqs. (24)-(27) pertain specifically to the diagonal elements. The same relations also
hold for the average property values.

It is possible to extend the FF/NR approach so as to calculate hyperpolarizabilities at an
arbitrary frequency [11]. In order to do so one must add the corresponding nuclear relaxation
property to the lhs of Egs. (13) and (14) and compute both terms at the desired frequency. This
calculation of the nuclear relaxation property requires evaluation of the appropriate PT
expression.

The vibrational (hyper)polarizabilities as defined above do not include the ZPVA
corrections. These corrections may also be evaluated as a double perturbation series in
mechanical and electrical anharmonicity. For the ZPVA only terms of odd (total) order are non-

vanishing:
pzPva = [P]+[P]"+... (28)

Ordinarily, only the first-order term —
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is considered. Here Fjj; is a cubic vibrational force constant and w, =./F; is a harmonic

vibrational frequency. Given the vibrational potential V(Q), then % may be evaluated as

ANV /A% . In Eq. (29) this derivative is determined at Ro (or, equivalently, Q = 0) but, in

general, it may be considered a function of Q. Thus, if the zero-point energy is defined by:

3N-6 1/2 3N-6
E? Q=12 Y|F@] =#2) 0,Q (30)
then the two terms that make up the first-order ZPVA can be written —
3N-6 éEZp 0’Pe/éQ.
P 0.1 - _ i
[l Z ( X, j wiz (D)
and
W& 1 O"F, O"E®
P 1,0 —__" - [T
[P] 42[@ O,Fnj o (32)

where n =1 for 1£#;n=2for & ;n=3for #¢;and n =4 for y°.

There are higher-order vibrational (hyper)polarizability terms that are not included in the
FF/NR treatment as described thus far. That is because we have considered the effect of nuclear
relaxation on the pure electronic properties but not on the ZPVA. The remaining (infinite
frequency approximation) terms may be obtained simply by replacing P in Egs. (12)-(14) with
P?Va  This leads to [19]:

1,zpva 1,zpva

zpva zpva [ g"‘
AP =l Fﬂ+% F,F, + 275 F,FFs+... (33)
92,2[2/a
AaB® =bZPeF + % FFs+.. (34)
ABER = g3PRF 4. (35)

in which
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Here ai’;.”va is the exact analogue of aflﬁ, etc., and the superscript c-zpva refers to the fact that

a7, by, and g;* are determined by the shape, or curvature, of the field-dependent

vibrational potential (evaluated at Rg). (Specifically, the notation c-zpva refers to the fact that
the zpva term plus the c-zpva term add up to the total curvature effect [20].) If the first-order
P?Va js used in Egs. (33)-(35), then the C-ZPVA properties (in the infinite frequency

approximation) may be expressed in terms of square brackets as [20]:

2" (0,0) =4 ], (42)
Bis(0,0,0) = [ual,, +[1° ], (43)
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7/aaaa (-a)’w’_a)’w)waw - g[a ]a):O (48)
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Again, as in the case of ordinary nuclear relaxation, Egs. (45)-(48) hold for the average value of
the properties as well as the diagonal elements. Higher-order P?*'2 terms will yield square
bracket corrections of higher-order. The form of the latter should be obvious from Egs. (42)-
(48). Finally, the complete set of electronic and vibrational contributions to the property P may
be divided into the following two sequences —

(A) P, [P [Pl

(B) pnr Pc—zpva(l)’ PC'vaa(“l), (49)

in which P¢?a (1), for example, represents the C-ZPVA term derived from [P?'4]' using the
FF/NR procedure. In monitoring the convergence of the perturbation series in electrical and
mechanical anharmonicity it turns out to be preferable to examine these two sequences
separately since P""is, in many instances, larger than P® and we expect that the same will prove
true of PS?Y3(1) versus [P?'2]'. Except, perhaps, for some instances where "floppy" motions are
involved one expects rapid convergence for sequence (A). On the other hand, for sequence (B),
the convergence has been checked only for one large molecule. [20]

All of the above pertains to the non-resonant regime. The intensity of a resonant process
is proportional to the imaginary part of Egs. (1)-(3), which will be non-negligible only when the
difference between an optical frequency and the transition energy to an excited state is small. In
order to derive the appropriate formulas for near-resonant conditions it is very important to use
correct signs for the damping factors [21].

The intensity of linear absorption is proportional to the imaginary part of Eqg. (1).
Assuming that under near-resonant conditions the second term on the rhs of this equation is
negligible compared to the first one, and that only one electronic excited state |[K> is close to the

optical frequency, the imaginary part of Eq. (1) can be simplified to:
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For a resonant process such as linear absorption it is clear from Eq. (50) that the vibrational
energy differences cannot be neglected, as they are in the non-resonant regime, because the
difference between the pure electronic contribution to exxk and  is close to zero. Thus, the
vibrational contribution from both the numerator and the denominator must be considered.

Two-photon absorption (TPA) is given by the imaginary part of Eq. (3) with @ = o1 =
-a» = an. It is harmful for optical switching processes, leading to strong alteration of the signal
and damage to the samples due to severe heating. On the other hand, TPA may be useful in two-
photon fluorescence microscopy [22], optical limiting [23,24], three dimensional optical memory
[25] and two-photon-induced biological caging [26]. The potentially important role of vibrations,
however, has yet to be investigated [27]. Using the same general procedure as for linear
absorption, and assuming that 2 coincides exactly with the electronic transition frequency a,

in Eq. (3) we have (o =ano /2):

w, O w, O o, — @, +Iil,
Imya (_ oL , oL — oL ’ OLj: Imh{)’ P 1 ' IL oL IL
" 22 22 Z MKVk Zr:n Zll(ﬁf)u_ _a)OL)Z +Tt

(0,02, K, k)(k,K|2,|L, |>(ka —“)zot—irk,(j 1.4z, M, m)(m,M|z, 0,O>(a)mM —%+ ir j
(ka _“)Zj L1z, X (co —“;j +TZ, (51)
(002, K. k)(k.K|z, L, |>[ka —%+ irkKj (1., M, m)m, M2, o,o>(me —%+ T, j

If the sum over states |k,K > is treated in the same manner as we have done previously for the

non-resonant regime, then —
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where

(07K (K2 L)
g — o /2

ayy =2y (53)
K

Of the two terms in square brackets on the rhs of Eq. (52) the first is due to zero-point vibrations.
The second is the analogue of the non-resonant nuclear relaxation contribution to DFWM given
by Eq. (27) - both arise from the set of terms containing pure vibrational energy denominators
and both consist solely of an ¢ “square bracket”. However, for TPA it is the transition
polarizability defined by equation (53) that occurs, rather then the ground state polarizability,
and there are also damping factors involved.

Eg. (52) may be evaluated by expanding in orders of electrical and mechanical
anharmonicity. The validity of taking ax << ax - @./2 and neglecting the damping factors 7ix
(as we have done) should be examined. In fact, a more rigorous formulation including these
vibrational contributions is currently under investigation [27].

Let us turn now to properties involving magnetic dipoles. There are three distinct
contributions to the molecular magnetic dipole operator arising from the angular momentum
associated with electronic orbital motion, electron spin, and nuclear spin. These three types of
magnetic moment can interact with an external magnetic field and with each other leading to a
variety of terms in the effective Hamiltonian. In one sense the treatment of vibrational motions
is simpler than for electric dipole properties because one is normally interested only in those
terms that arise through the second-order of perturbation theory.

It turns out that the properties measured in nuclear magnetic resonance (NMR) and

electron spin resonance (ESR) spectroscopy do not contain a nuclear relaxation contribution, at
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least in orbitally non-degenerate states, as we now show. In NMR spectroscopy the key
parameters are nuclear shielding and nuclear spin-spin coupling. The spin-spin coupling
constant is the sum of a direct (first-order PT) contribution plus an indirect (second-order PT)
contribution, which arises primarily through the Fermi contact interaction between nuclear and
electron spins. This contact interaction connects electronic states of different spin multiplicity.
Since the vibrational nuclear relaxation effect requires the intermediate electronic state to be the
ground state there is no such effect associated with the contact interaction. The nuclear spins
can also be coupled indirectly by the interaction between nuclear spin and electronic orbital
angular momentum (L el). This, too will be unaffected by vibrational nuclear relaxation, in this
case because of the quenching of orbital angular momentum. For nuclear shielding the second-
order PT contribution is due to a cross-term involving, on the one hand, the nuclear
spin/electronic orbital angular momentum interaction and, on the other, the Zeeman interaction
between the external field and the electronic angular momentum. Once more the quenching of
orbital angular momentum precludes a vibrational nuclear relaxation effect. Nonetheless, all the
NMR properties mentioned here will be influenced by vibration through the ZPVA correction
as we discuss later.

In ESR spectroscopy the key parameters are the magnetic hyperfine coupling (a first-
order effect), the electronic g-tensor (first and second-order) and the electron spin-spin
coupling. The second-order contribution to the g-tensor arises from the cross-term between the
spin-orbit interaction and the LeB Zeeman interaction between the external field (B) and the
electronic orbital angular momentum. As in the case of the analogous NMR property, i.e.
nuclear shielding, there will be a ZPVA correction but no effect due to vibrational nuclear
relaxation because of orbital quenching. The same result holds for the electron spin-spin

coupling, which is due to the quadratic L S interaction (cf. indirect nuclear spin-spin coupling),
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and for the same reason. In paramagnetic transition metal complexes with weak crystal fields
the Jahn-Teller effect may play a substantial role in lifting the orbital degeneracy. For such
cases there can be a nuclear relaxation effect associated with the Jahn-Teller distortion modes.
However, we leave that possibility, as well as the study of rare earth complexes, for future
work.

The nuclear (electron) spin-spin coupling and magnetic hyperfine coupling are both zeroth-
order in the external magnetic field whereas the nuclear shielding and electronic g-tensor terms
are first-order. Finally, we come to terms that are second-order (in the field), i.e. the
magnetizability or magnetic susceptibility, . For diamagnetic or paramagnetic molecules in
orbitally non-degenerate states the second-order term in the spin Hamiltonian [28] arises from
the quadratic (LeB) interaction which, again, means that the effect of vibrations will be felt only
through the ZPVA.

In addition to pure magnetic properties we may also consider properties that depend
simultaneously on electric, F, and magnetic fields. The relevant cross-terms in the general
energy expression are given, through second-order in B and fourth-order in total, by [29] —

V(F, B) = _5a,ﬁFa Bﬁ _%gaﬂ,y Fa FﬂBy _%fa.ﬂy Fa Bﬁ87 _%O-aﬂwf Fa FﬁF7 85

~17,5,5F.F,B,B; —...

a’ BTy

(54)

Since each of the fields may have both static and frequency-dependent components Eq. (54) is,
in fact, a short-hand that is useful for cataloguing purposes. The bilinear term, for example, is
associated with (natural) optical activity when both fields are frequency-dependent. On the other
hand, magnetic field-induced optical activity - or the Faraday effect — corresponds to the FoFsBy
term where the electric fields are frequency-dependent but the magnetic field is static. This
contrasts with the magnetic dipole-induced second-order susceptibility [30], in which case the
magnetic field is also frequency-dependent. Finally, we mention the Cotton-Mouton effect
(CME) - or linear birefringence. This process is second-order in the frequency-dependent
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electric field and second-order in the static magnetic field. The molar Cotton-Mouton constant
(mC) is proportional to the anisotropy of the refractive index when the static magnetic field is

applied perpendicular to the direction of propagation of the light beam [31,32]. This constant is

given by [33]:
27N
wC =57 (An+Q(M) (55)
where
1 XY,z
A E = (377aﬁ' af naa BB ) (56)
1 Y,z
Q(T) - T Z(gaaﬂZaﬂ aaalﬁﬂ) (57)
ap
0%V (B)
Hap = _[OB oB } (58)
a”=F /=0

and Na, k and T are Avogadro’s number, Boltzman’s constant and the temperature, respectively.
One can easily envision experiments that involve the two remaining terms of Eq. (54),
such as electric field-induced magnetizability (order FB?), although such possibilities have not
been exploited to our knowledge. Those terms that are linear in B are not subject to a vibrational
nuclear relaxation effect because of orbital quenching (for orbitally non-degenerate molecules
and ignoring nuclear spin) but that is not true for the quadratic terms. In fact, by generalizing the
BHK treatment [8,18] to magnetic fields it is easy to show that the nuclear relaxation

contribution to 7 in Eq. (56) is given by —

h26
2. af,yd
Aatiy =€l B+ BB, +. (59)
where
2. e . nr .
haﬁ 70 770:,8,75 (O/O/O’O) + naﬁ,yb‘ (“Cl), a)’O’O)w%oo (60)
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In Eg. (60) we have explicitly indicated the frequency-dependence of 7, ;(-w;®,0,0)

Q >0

which was suppressed in Eq. (56). By comparing with the analytical perturbation formula

Nop.s(-0;0,0,0),,_,.. can be written as:

772;,% ("0), a)/o’o)a)aoo = [aZ]S;:o (61)

This relation is simpler than the formula for the hyperpolarizability y;, ;(-@;®,0,0) because

the analogues of the second and third terms on the rhs of Eqg. (25) vanish due to the orbital
quenching. Eg. (61) has also been derived by Ruud, et al. [15]

Near a resonance even the linear B terms in Eqg. (54) may exhibit strong vibronic effects
akin to nuclear relaxation because one is dealing with a transition between different electronic
states and, thus, the orbital angular momentum is not quenched. For example, circular dichroism
(bilinear term in Eq. (54)) is analogous to linear absorption with the major difference being that
<k,K | mp | 0,0> in Eq. (50) is replaced by <k,K | mg| 0,0> where m is the magnetic dipole
operator. As in the case of linear absorption there is a vibrational contribution that arises from
the dependence of the transition electric dipole moment on the normal coordinates and another
from the vibrational energy included in axk. For circular dichroism one must also take into
account the fact that the transition magnetic dipole is a function of normal coordinates. An
analogous situation occurs in the case of magnetic circular dichroism.

The first implementation of the general FF/NR procedure, which requires rigorous
enforcement of the field-free Eckart conditions, was presented only quite recently. However,
additional applications have begun to appear. They include a treatment of the static linear
polarizability of infinite polymers [34] as well as second hyperpolarizability calculations for
eight different homologous series of conjugated oligomers, each containing up to twelve heavy

atoms along the backbone [35]. In the latter study, carried out at the RHF/6-31G level, the
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magnitude of the static vibrational second hyperpolarizability due to the Raman term (i.e.

[a®]?_,) varied between 0.64 and 6.80 times the static ;2. As a result there is typically a large

nuclear relaxation contribution to the DFWM and EOKE processes. On the other hand, the

magnitude of the nuclear relaxation dc-SHG was smaller than 20% of the static * for polysilane

and much less in all other cases. This is due to the fact that the hyperRaman term (i.e. [f]_,)

is quite small for undoped n-conjugated oligomers and, in addition, is multiplied by a factor of
1/4 in the infinite frequency approximation [cf. Eq. (26)]. For the molecules investigated thus far
it appears that anharmonicity is relatively unimportant for planar n-conjugated oligomers
whereas it is quite significant for polysilanes [35] and even more so for push-pull ©-conjugated
molecules [12].

The work described above was carried out prior to the introduction of field-induced
coordinates. These coordinates provide important simplifications and new insights that will be

discussed in the following section.

I11.  Field-Induced Coordinates (FICs)

Thus far we have used ordinary normal coordinates, either explicitly or implicitly, to
describe the vibrational motions. It turns out, however, that it is more efficient to employ what
we have called field-induced coordinates (FICs). Such coordinates were first defined in the
context of the FF/NR method. In fact, they were obtained from the shift in the equilibrium
geometry caused by a static external field, which is the primary step in an FF/NR calculation. In
order to relate this numerical procedure to an analytical formulation we begin by writing the

molecular potential energy in the presence of the field in terms of the 3N-6 normal coordinates:
3N-6 3N-6 XY,z XY,z

VQFR)=> Y. > > . aya"Q .QF,.F, (62)

n=0 i=1 i,=1 m=0 =l an=1
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where

(63)

ai,j,‘.,oz,ﬂ,...= 1 a(n+m)v( 1""’Q3N—6 :vaFy:Fz)
& nim! 0Q,0Q,..0F,0F 4...

Q=0F=0
In Eq. (62)-(63) n is the order of differentiation with respect to normal coordinates, while m is
the order of differentiation with respect to the field. Derivatives with m > 0, n > 1 are electrical
anharmonicity parameters; derivatives with m = 0, n > 2 determine the mechanical
anharmonicity. For F = 0 the terms in Eq. (62) that are linear in Q, i.e. aio' Qi must vanish by

virtue of the field-free equilibrium condition. However for F = 0 there will be non-vanishing
terms such as a;;"Q,F, that will cause the equilibrium geometry to relax from Ro to Rr. The new

equilibrium geometry may be calculated by means of a conventional finite field geometry
optimization provided that, in practice, the field-free Eckart conditions are rigorously enforced so
that the orientation of the molecule with respect to the field does not change [9]. This is the key
step in the numerical application of the FF/NR method. Alternatively, the same treatment can be

carried out analytically by applying the condition:

oV :
— 1 =0 Wi
(GQJ : ¢4
Q
to the expression in Eq. (62). Here QF is the value of the field-free normal coordinate
displacement vector at R = RF. The solution of the nonlinear set of equations (64) may be found

as a power series in the field by iteratively taking into account successive higher-order

anharmonicity terms [18,36]. This yields —

. XY,z : X,y,Z » 3N-6 ag,la g 3N-6 3aglé i kp
Qr=-2 4 Fam 2 o - 2 Ay + 3 " 0y [FuF e (65)
a a,p j=1 a20 j.k=14 a20
where
gy =22 (66)

2 aZO
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i,af
i, a
6" =0 (67)
axo

It is straightforward to obtain expressions for the (field-dependent) properties £, of, and

[ at the field-dependent equilibrium geometry by evaluating:

X,Y,Z 3N-6 F XY,z 2
/’la(RF’F):ua(RO’O)+Z %-FZ%@i Fﬂ+lz %
B éFﬂ i=1 éQi éFﬂ 2 By O’Fﬂﬁy

3N-6 2~ F 2 F\ 3N-6 o2 F F
+z(0”laa é,QI +2 0’)#(1 O’Qi ]_I_z 0’)#0{ O’Qi O’QJ }FﬂF}/

A, dFydk, Rk, F, | (TR, dFy &,

X,Y,Z 3 3N-6 3\ F 2 2~ F

+1 %_’_Z ﬁ/ua ﬁQl +3 a:ua an
6 5| oF ,0F oF, &, FydF,F; ~ RQF, o oF; (68)

2w, ao.f +33§6 u, RF Q7 Fu, R X}
T RAQ, F, FF, QRF, F, F,

+3Nf Tu, R Q&Y F,F Fy+.
|jk1@@dgk0’F éF O’F

xy.2l A 3N-— F Y
aaﬂ(RF’F)zaaﬂ(RO’o)+ ZI: il Zl: dg 0;3: :| Z;|:
3N-6 2AF 3N -6 A2 (69)
+Z{aa“ﬂ aQ +2 » R J Oy Qf R }F F,+...
O’Qi élzydzﬁ @ éF I]—l@éQ éF él: 4
X,Y,Z 5 3N-— 65
B, (Re.F) =B, (Ry,0) + Z{ i‘ﬂy + Z fQ ﬁ }F +.. (70)

and thereby obtain analytical formulas for the quantities that appear on the rhs of Egs. (12)-(14),
which yield the square brackets in Eqgs. (21)-(26). The square bracket formulas obtained by the
analytical FF/NR approach must, of course, be identical to those given by time-dependent PT in
the infinite frequency approximation. Using either method the result may be written as a sum
over 3N-6 normal modes. The simplest case is the static nuclear relaxation polarizability [cf.

Egs. (12),(15),(21)] given by:
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3N-6 3N-6

a5 00= ?gﬁ' Z ,alf g’ (72)

From now on, for the sake of simplicity, we will often provide just the diagonal tensor
elements. The extension to off-diagonal elements will be obvious. It turns out that the sum in Eq.
(71) can be reduced to a single term by transforming to an alternative set of coordinates which

may be defined in the following manner [12]. Let
3N-6

4= MQ (72)

j=1

where M is an orthogonal transformation matrix. At Rr the value of & is—

3N-6 3N-6 F
opF R,
M; i 73
Swer ( S, % ©
If we take —
8Q-F | o
My = o =0 (74)
then, since

o, X0 0m, 08 _XFou,

ij 75
an i=1 a¢| aQJ i=1 a¢| ) ( )
it follows from the orthogonality of M that
N6 5 O'Q!: N6 5 Au 3N=8 Au. bF
aea (0;0) = Z Pa 51 o Z K MMy = Fa lezi: He T (76)

TR F, o ap, = o, o,

Hence, all the information required to calculate 4", (0;0) is contained in the single coordinate ¢.
If one is interested in the complete « tensor instead of only one component, then three FICs are
necessary. At this point it’s interesting to remark that, on one hand, the derivation doesn’t require

the orthogonalization of the three FICs, and on the other hand, it is not necessary to specify the

remaining ¢ except for the orthogonality property. The contribution of Qi to ¢ is determined by
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the change in Qi induced by the field, which explains why we call ¢ a field-induced coordinate

(FIC). Exactly the same procedure can be employed with Egs. (13) and (14) to obtain:

or oo Op"
ﬂaaa (_0), a)vo)a)—>00 = &gaﬁ. (77)
1 a
and
nr o) o o F
Y acaa (_260’ , a)io)(oam = g¢$ (78)
1 a

In addition to the above there are higher-order (in the field and/or anharmonicity) FICs, and also
various closely related coordinates, that provide a similar simplification for other properties.

An example of a closely related set of coordinates is the intensity-carrying modes
introduced by Torii and co-workers [37] in their recent treatment of infrared intensities. They
showed that three vibrational degrees of freedom carry the entire IR intensity. Likewise, as

shown in Table Il of Ref. [12], the three FICs of Eq. (74) are sufficient to obtain all the

components of ,(0;0). In fact, the intensity-carrying modes are the same as these FICs but

with the denominator in qu’“ set equal to unity rather than the harmonic force constant, i.e.

My; =—a}" (79)
M,, —ay (80)
M; =-aj’ (81)

There are two alternative expressions for the total infrared intensity that can be derived starting
with the three coordinates defined by Egs. (79)-(81). Following the approach of Torii, et al. [37]

one may carry out an initial orthogonalization to the set {&’, &’, ¢’} which yields:
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3N-6X,y,Z a 2 3 X,y,Z a 2
8% 23 .

i=Zl a i a 6¢1'
If the original non-orthogonal coordinates are used instead then, as in Eq. (75)

> (01, /0Q; ) = (0, /04, )" where it is understood that the partial derivative with respect to ¢ is

evaluated while holding constant a set of 3N-5 coordinates orthogonal to ¢. With that

understanding the expression for I can be written as the sum of just 3 terms -

JXe o, ) _(ow ) (0w (oY
3 g(aq} _(a@j +[6¢2j +£6¢J (&)

Moving on to second-order in the field it can be seen from Eq. (65) that 6°Q} /oF}

contains both harmonic and anharmonic contributions. Thus, two different second-order FICs

can be defined by setting szz(ﬁfo/aFj)har =-qJ“* or by using the entire expression in
square brackets of Eq. (65), ie. M,,=8°Qf /oF?. The former choice yields the harmonic

second-order FIC while the latter choice yields the complete second-order coordinate. Although

it might initially be thought that the complete coordinate would be necessary to determine

both g"

" (0;,0,0) and 5" (-;®,0,0) that turns out not to be so. Utilizing the same overall

@—>0

procedure that was employed above in connection with Eqg. (12), and some additional

manipulations, one can write S (0;0,0) solely in terms of the first-order ¢ [cf. Eq. (68)]:

F 2 F\? F\®
B (0:0,0)=3 % i, 3C ”;(%1 ] oV (%1 J (84)
a¢l é':a a¢1 éFa §¢1 é':a

On the other hand, the expression for " (-w;®,0,0) obtained from Eqg. (13) requires the

aaaa W—>0

first-order ¢ and either the harmonic second-order FIC or the complete second-order FIC. As we

25



will see later, the latter can be particularly useful for computational purposes and the former for

interpretation. The expression for the Kerr effect in terms of the FICs is given by:

 0000), .= z[ o W, 2 74 ]

i=1

i[ng §¢F ﬂ¢F 42 0”2#0‘ §¢iF {a2¢21FJ } (85)
0”¢0”¢ 01: éF 0”¢ié’¢j éFa 01:0‘ har

22: N ap" A (T
L ohopi o F, F,\ F;

or

Voo C0000), ==Y 2% s e T S )

i=1

[ Prua O 0ty 9 ]+ 2 P, opF )

Eq. (86) can be derived from Eqg. (85) by recombining the terms that contain (8 ¢ /aF ) .In

har
either relation we can use the harmonic or the complete second-order FIC and exactly the same
value for the second hyperpolarizability will be obtained [12]. Note that we do not insist here on

¢ being orthogonal to ¢ but only that both of these coordinates are orthogonal to all others.

At this point it is convenient to consider y! (-w;0,~o,®) although the latter does

not emerge directly from the FF/NR treatment. However, we have seen that PT gives a simple

square bracket expression for this quantity, i.e. 2/3[a*]°_,. Comparing to [z*]°_, one might

0=0" =0

surmise that both quantities could be written in the same form if the first-order FIC in Eq. (76) is

replaced by the harmonic second-order FIC and, indeed, that turns out to be the case —

7&0{&0{

(~w0-0,0),,, = 2%(?; j (87)

Coordinates simply related to the harmonic second-order FICs can be used to extend the

treatment of Torii, et al. to Raman scattering intensities. Both the isotropic and anisotropic

Raman intensities [38] depend on the first derivative of the polarizability tensor with respect to
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normal coordinates. Thus, we may employ for this purpose the set of modified harmonic second-

order coordinates determined by —
M, =—a,” 1<i<6 (88)

where 1= 1,2, ...6 correspond to the six unique af pairs and the harmonic force constant has
been set equal to unity (just like in the treatment of infrared intensities). As in the case of the IR
intensity, alternative formulas can be developed depending upon whether the individual coordinates

are orthogonalized or not. Using the set of three orthogonalized coordinates derived from

M, =—

,=—a*, M, =—a}” and M,; =—a};” the isotropic intensity expression is -

SR 0y 0% | 5 RE| 0ty 0y
lebl{aQ aQ j—Z [ ] (®)

i-L ab 8¢ 8¢

For the anisotropic Raman intensity all six orthogonalized coordinates must be utilized:

W da,, da, Oa, O &R 0, 0a,, Oa,, Ox
B b R
i=1l a,p aQi aQi 8Qi aQi i=l a.p 8¢i a¢i a¢i 8¢i

If one is interested in only the isotropic Raman intensity, then a single second- order harmonic

coordinate will suffice. This follows from the fact that the isotropic term can be written as:

S8 dar ’ o ?
=35 ) 5 .

where
1 XY,z
@ =32 % (92)
and ¢, in this case, is defined by:
oa
M, =
1j aQJ (93)
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It should be noted that this same treatment applies to the (da,,/6Q, )(aaﬁﬁ /aQi) term in the
anisotropic formula of Eq. (90). The remaining (aaaﬂ /oQ, )(aaaﬁ /aQi) term can be evaluated using

the coordinates in Eg. (88) without orthogonalization:

3N—6X'i'z 8aaﬁ 80{043 _ oa,, ? o (30( ? 80[ +2 oa,, ? L9 00( ? oa,, (94)
7 ap\ 0Q 0Q; 09, 5¢2 5¢3 09, 54155 5¢6

The combination of Egs. (91) and (94) constitute an alternative to Eqgs. (89) and (90). Torii

et al. used infrared intensity-carrying modes to simplify the study of the IR spectra of radical
cations of polycyclic aromatic hydrocarbons. The Raman intensity-carrying modes defined here
can be applied in an analogous fashion to Raman spectra.

Beyond ordinary infrared and Raman spectra the same formalism can be extended to
hyperRaman spectra as well as infrared and Raman vibrational optical activity (VOA). For
infrared VOA the dipole strength (8./AQi)? in Eq. (82) is replaced by the rotational strength [39]
Im (Guad Qi)(And AQi). Although the magnetic dipole derivative is very small, and was
previously neglected in calculating the nuclear relaxation contribution to magnetic properties,
this factor must be considered here since the entire effect would vanish if it were zero. The
derivative (dna/ Qi) is the sum of an electronic term, which is non-zero due to breakdown of the
Born-Oppenheimer approximation, and a nuclear term [40]. Regardless of the origin of

(And ARQi), we can write the intensity in terms of non-orthogonalized coordinates, as —

B N 0y om, du, om, O, om, O, om,
e lm 2 g(aq Q J mﬂaqﬁl o, Haqﬁz o4, H% o6, H )

The coordinates {¢#1, ¢, ¢} may be based either on the electric dipole derivatives [cf. Egs. (79)-

(81)] or the magnetic dipole derivatives, i.e.

om,
Mlj = aQ (96)
j
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om

M=o (97)
om,
M3j - aQJ (98)

If electric dipole derivatives are chosen, then the intensity carrying modes are identical to those
used for ordinary infrared spectroscopy. Of course, the infrared VOA (rotational) intensity will
be exactly the same in either event. Once again, an alternative expression can be developed in
terms of orthogonal coordinates although, in the interest of brevity, we do not present it here.
The Raman VOA intensities may be treated in a similar fashion. In this case one of the linear
polarizability derivatives in each term of Eqg. (89)-(90) is replaced by a derivative of the
corresponding component of the quantity odup in Eq. (54) [41]. (There is also a second
contribution to the Raman VOA due to the quadrupole moment which may be treated in the same
fashion as dqp.) In analogy with the analysis of infrared VOA given above one can choose the
same six coordinates to carry both the ordinary Raman intensity and the Raman VOA intensity.
However, if coordinates based on the derivatives of dupare used to express the Raman VOA
intensity, then, the number necessary increases to nine since dus # dpe.

Of all the electric dipole nuclear relaxation properties only the static second
hyperpolarizability requires the complete second-order FIC. After some manipulation, the

procedure that leads to Eq. (12) yields —

F 2 F
7/ (0 O 0 O) = 212 1 ﬁﬂaaa ¢ 1 ﬁam V2 ¢|2
aaaa 3 é’¢ éF 4 0”¢| éFa

a¢a¢ d: d: a¢a¢ ﬁ ﬁz

i,j=1

(99)

_ i A Pu. T A 3 N A apf I
4,0, 0p, F, &F, F, 434,0p,0p F, F, F}

ijk=1

S I A W
S\ B b F, F, F,, F,
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The two (non-orthogonal) FICs ¢ and ¢ (defined by M,;=0Q{ /oF, and M,;=5°Qf /oF})

are sufficient to determine »" (0;0,0,0) regardless of the size of the molecule.

The formalism we have presented is readily extended to include electric/magnetic field
interactions represented by the cross-terms in Eq. (54). Because of the quenching of orbital
angular momentum, nuclear relaxation effects will occur only for those properties that are
quadratic in the magnetic field - i.e. the coefficients £u.py and 74555 In order to deduce the NR

contribution to these properties we begin with the complete expression for the molecular

potential energy:

x
<

Y.z X, ¥,z XY,z

VQFB)=> >..>

n=0 i,=1 i,=1 m=0¢

...a;lr',;',i" b Qi1 -"Qin Fal "'Fam Bﬂ1 "'Bﬂl (100)

3N-6 3N-6 XY,z

1 ap=11=0 g=1 pg=1

in which

v b = L [0""V(QurQuus FisFy F2iBrBy By) (101)
m nim! ! 0Q;-0Q; 0Fs - OF 4, 0By--0By )

Then the field-free normal coordinate displacement vector, Q"8 at the field-dependent

equilibrium geometry RFB may be found in exactly the same manner as Q" was determined

earlier. Taking into account orbital quenching (qio’f =0; no terms linear in B) one obtains:

- XY,z XY,z - 3N-6 agloé 5 3N-6 3&250 j kg
Qi=- 2O Fe= 2 Qo — 2 (Pt 2 " 't |FuF
a a,p j=1 A200 jk=1 200 (102)
XY,z
~> 05 BBy~
ab
where
o=t (103)
a200
i,apf
i a
O =5 (104)
a2o00
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i,ap
i ai
O =1 (105)

ii
2 a200

The nuclear relaxation contribution to 7445 - which is associated with the Cotton-Mouton effect
— can be obtained from the expansion of electric polarizability at the magnetic field-dependent

equilibrium geometry given by:

XY.Z Sy 1% 0”20( 3N-6 S é’zQ
&,(Rg,B) =, (R, 0) + y — LB, += D EsC BB, + . (106
aﬁ( B ) aﬁ( 0 ) ; éBy 7 2720 O’B},O’Bg ; O‘Q O’BO’B ( )

From the above equation it is straightforward to obtain (cf. Egs. (13), (19)) the following sum-

over- normal modes expression for the quantity that appears on the rhs of Eq. (61) —

2 FB
3N60’7aaﬁ0') 3N-6

o (C0;0,0,0),,,,, = o os’ 107
7713,;/5( ) lzl: Q, éBéB Izl:aizo Uo2 (107)

The above equation can be simplified by defining a second-order FIC, i.e.

M,;=0°Q} ® /oB,oB; = —2q4;”, which leads to:

aaaﬂ a 2¢1F ,B

" s(w;0,00), ="
naﬂ,yb( )a) §¢1 O’B;,O’B(S

(108)

As seen above there is an analogue of ordinary nuclear relaxation for resonant processes
involving transition, rather than ground state, properties. This suggests the possibility of
obtaining analogues of the FICS that have been defined here for non-resonant properties - a
possibility which remains to be explored.

The FICs employed for nuclear relaxation can also be used to beneficial effect in
calculating ZPVA’s. Returning to Eq. (31) one can readily see that, for electric dipole properties,

the desired definition is [20]:

o"Qf _
M .= .S B :_n! Jo...ap
! (6 Fuyed F] o (109)
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where n = 1 refers to £, n = 2 refers to ¢, etc. and the superscript a1...an denotes the particular

component. It follows immediately that -

éEZp an¢F
[PT" =~ ; 110
o, \ OF 0 OF s, ) (110)

Calculation of [P]%! from Eq. (110) requires the evaluation of just one mechanical anharmonicity
parameter, i.e. (0"”¢1F/6 Fo, -0 Fan)har’ as opposed to 3N-6 in Eg. (31). The remaining
contribution to the first-order ZPVA, namely [P]*®, can be determined from Eq. (32). Since there
are no derivatives of E* with respect to vibrational coordinates this relation is already in its

simplest form. Even though compact expressions for the two terms that enter into the ZPVA

have been obtained using E? it is important to recognize that one must still compute the

complete Hessian because > o, => .[F = D F,

The FIC treatment can also be applied to the ZPVA contributions to magnetic properties.

For pure magnetic (hyper)magnetizabilities the mechanical first-order correction term is given

by:

éEZp §n¢B
[P]O,l — 1 111
o\ 28.,-08,. ), —

in which n is the order of the (hyper)magnetizability and

anQF,B -
M .= -~y :_n! Jo...an
! (a B0 Ba, ]har on (112)

Furthermore, for cross-terms involving both electric and magnetic fields:

éEZp aner F.B
[P]* = - 1 (113)
0’7¢1 aFal...aFanaBﬂl---aB/}m har

where ¢ defined by:
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an+mQF,B )
M = J — n|m! r:rxnal---anvﬂl---ﬂm 114
1j (SF%'“aF“naBﬁl"'ﬁBﬂmlar q (114)

The parameters involved in NMR/ESR occur as the coefficients of the nuclear and/or
electron spin (or, equivalently, the magnetic moment associated with that spin) as well as the
applied magnetic field (in most but not all cases). One can formally take derivatives with respect
to the magnetic moments in the same way that derivatives are taken with respect to the magnetic
field and, then, FICs can be utilized in a straightforward manner [42]. For instance the nuclear
shielding tensor of a nucleus K with a nuclear spin magnetic moment Ix might be expressed as

[43]:

oV (B,I

Thus, the first-order ZPVA contribution due to mechanical anharmonicity is given by:

OfEZp §2¢B,I
[P =- [ : J (116)
op \ 0Bl ).
where the FIC ¢ is defined by:
M, = R
U (aBal, ), (117)

Similarly, the nuclear spin-spin coupling tensor can be defined as a second derivative of the

potential energy with respect to the magnetic moments of the two coupled nuclei [44] —

h oV (1)
J = L S
Kaa =75 nn[ a,. alwl_o (118)

where j is the dimensionless gyromagnetic ratio of the nucleus K. At this point, it can be readily
seen that the mechanical ZPVA term for nuclear spin-spin coupling depends on the single FIC

defined by:
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The electronic g-tensor is completely parallel to nuclear shielding except that the electron
spin magnetic moment replaces the nuclear spin magnetic moment. Similarly, the magnetic
hyperfine interaction is analogous to nuclear spin-spin coupling except that one of the nuclear
spin magnetic moments is replaced by an electron spin magnetic moment. Thus, the ZPVA
contribution to ESR properties arising from mechanical anharmonicity is also given in terms of a
single FIC for each tensor component.

The discovery of FICs is very recent. Nonetheless, Hartree-Fock (split valence)
calculations have already been carried out on electric dipole properties for a representative set of
push-pull compounds, as well as hexasilane and hexatriene, with interesting results [12]. (At the
same time it has been demonstrated [19] that MP2 calculations including the C-ZPVA
contribution are also feasible.) Not only are the nuclear relaxation hyperpolarizabilities often as
large as the corresponding static electronic properties in these calculations, but for the Kerr effect
and for the first and second static hyperpolarizabilities the anharmonic terms often make a very
important contribution to the total value. On the other hand, the initial convergence within the
two perturbation sequences shown in Eg. (49) was determined to be rapid, although this
evaluation was done for only one molecule [NH2-(CH=CH)3-NOz2] and for just the static ZPVA
correction. [20] There is evidence from a methane calculation [44] that the ZPVA correction may
become more significant at optical frequencies. Of course, other large molecules and other
properties remain to be considered.

By analogy with ordinary nuclear relaxation, we expect that the effect of nuclear relaxation
on the ZPVA correction to any electronic property (i.e. the C-ZPVA term) will often be
comparable to, or substantially larger than, the ZPVA term itself. Indeed, for NH2-(CH=CH)s-
NO2, y**"¥4(0; 0, 0, 0) is of the same size as the electronic y(0; 0, 0, 0) [46].
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Finally, from the standpoint of interpretation, it is important to mention that FICs can also
be utilized to distinguish anharmonic from harmonic contributions to nuclear relaxation and, in
addition, to separate mechanical from electrical anharmonicity [12]. For the static § and for the
EOKE this result can be obtained directly from Eqgs. (84) and (85) respectively because each
individual term can be associated with a particular term in the PT expression. In the case of the
static y an additional calculation must be made where the harmonic second-order FIC is
substituted for the complete FIC in Eq. (99). We note further that the division between harmonic
and anharmonic contributions to the nuclear relaxation properties cannot be made when the

FF/NR method is applied using ordinary normal coordinates rather than FICs.

IV.  General computational considerations

It has now been shown how the effect of vibrations on a variety of electrical, magnetic
and spectroscopic properties can be described entirely in terms of field-induced coordinates, or
FICs. The key point is that the number of FICs involved remains the same regardless of the size
of the molecule. As a result, the computer time required to calculate the anharmonicity
parameters needed for determining vibrational effects in large molecules is considerably reduced
in comparison with using normal coordinates for the same problem.

From a computational perspective our treatment is carried out in two distinct steps. The
first step is to find the FICs. In general, for the harmonic FICs one must obtain the quadratic
vibrational force constant matrix, (i.e. the Hessian) and first derivatives of the electronic property
with respect to normal coordinates. These quantities may or may not be available analytically
depending upon the computational method and the property. If analytical higher-order property
derivatives are not available one may obtain them numerically from lower-order derivatives

using finite fields. The complete FICs, including both harmonic and anharmonic terms, are most
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conveniently calculated by finite field geometry optimization. This avoids explicit computation
of any anharmonicity parameters; not even the Hessian is required. Since only low-order (in the
field) FICs are needed, a few small fields are sufficient for this purpose. For the first-order (in

the field) FIC there is no anharmonic contribution, which means that either the analytical or

numerical method can be employed. In cases where there is a choice, e.g. Vr;m (-0;®,0,0), . ,
geometry optimization may be preferable for computational purposes.

The second step in our treatment is to evaluate the nuclear relaxation, ZPVA,
and C-ZPVA terms. For this purpose it is convenient to transform the Hessian to the reduced FIC
basis and diagonalize, if necessary, to find the associated vibrational frequencies and
orthogonalized FICs. Then, P™ and P?*' are given by the usual formulas in terms of normal
coordinates except that the normal coordinates are replaced by FICs. Closed form expressions for
the resulting nuclear relaxation contribution to electric dipole properties have been presented
elsewhere [12] and the corresponding expression for 74p,s 1S given by Eq. (108).

The [P]%* contribution to P?2 is given in terms of FICs by Egs. (110), (111), (113) and
(116) while the [P]*° term remains exactly as shown on the rhs of Eq. (32) (or the obvious
analogue of this equation for the other properties discussed in this paper) since the latter does not

explicitly contain derivatives with respect to normal coordinates or vibrational frequencies.

Finally, in order to obtain the C-ZPVA contribution it is necessary evaluate the ZPVA term at

several field-dependent equilibrium geometries. With the exception of »;%"(0;0,0,0) a few

small fields will, again, suffice. A larger field or two may be required for the latter property since

it is third-order in the field.
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V. Conclusions and future work

Vibrational motions play a role that ranges from negligible to major in various molecular
properties associated with field-induced (or internal) electric and/or magnetic dipoles. These
dipoles may be oscillating at frequencies that are either on resonance for a vibronic transition or
far away from resonance. The vibrational effects can be ascribed to nuclear relaxation (NR),
zero-point vibrational averaging (ZPVA), or a combination of the two (C-ZPVA). A
comprehensive theoretical/computational treatment recently developed specifically for non-
resonant electric dipole properties has been reviewed here and extended to cover all of these
properties. We refer to our treatment as the finite field/nuclear relaxation (FF/NR) method
although, in fact, it can be applied in an analytical mode and it owes much to the earlier (PT)
method.

Computations on large molecules, taking into account harmonic and anharmonic
contributions, are facilitated by the introduction of field-induced coordinates (FICs). All
information required to carry out the computations can be obtained in terms of these coordinates,
the number of which is the regardless of molecular size. Extending the work of Torii, et al. we
have also shown that a set of closely related coordinates can be used to provide a compact
description of infrared and Raman intensities with or without optical activity. Initial calculations
of electric dipole hyperpolarizabilities, reported elsewhere, confirm the efficiency of the FF/NR
approach as well as the importance of both harmonic and anharmonic vibrational contributions in
a number of instances.

Although significant progress has been made much remains to be done. It can be
anticipated that there will be an increasing number of applications to diverse properties. More
needs to be learned about how the relative magnitude of the vibrational contribution varies for
different electronic properties depending upon the chemical system. One can also imagine that

the treatment presented here may eventually prove useful in understanding the role of vibrations
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in dynamical processes such as electron transfer. Our formalism can certainly provide an
interpretive framework for vibrational spectroscopies as already shown in the case of infrared
spectroscopy by Torii, et al. [37]

Further methodological advances also are desired, especially for the treatment of
frequency-dependence and of resonant phenomena. These subjects are currently under
investigation. On the computational side the possibility of combining semiempirical force
constants with ab initio properties has shown some initial promise that calls for further

exploration.
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