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INTRODUCTION

The purpose of this paper is to advocate the use of what has become known as

logratio analysis as a meaningful, interpretable methodology for all problems

involving  compositional data, and to encourage archaeometricians to take account of

underlying and necessary principles of compositional data analysis. As a step towards

this and the rejection of the use of ‘standard multivariate analysis’ we place an

emphasis on exposing  the substantial fallacies in the Tangri and Wright (1993)

attempt to dismiss this logratio methodology.
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    It is only recently that we have become aware of the interest of archaeologists in

compositional data analysis, in particular their analysis of ceramic and glass artefacts.

Like any statistical methodology, the analysis of this type of data is founded on solid

theoretical developments naturally associated with the algebraic-geometric properties

of the sample space. Those developments have led to the realisation that so-called

standard multivariate analysis designed for unconstrained multivariate data is entirely

inappropriate for the statistical analysis of compositional data. Geometrically this is

not difficult to comprehend, since the sample space of compositions is a simplex, a

generalisation of a triangle and tetrahedron, a radically different space from real

Euclidean space, the space for representing unconstrained vector data. The

differences, and therefore the need for different methodologies, has been expressed

almost ad nauseam for over a century, for example by Pearson (1897), Chayes

(1949,1960,1962, 1971), Sarmanov and Vistelius (1959), Krumbein (1962),

Mosimann (1962, 1963), Chayes and Kruskal (1966), Aitchison (1981, 1982, 1983,

1986, 1992, 1994, 1997), Le Maitre (1982), Davis (1986), Pawlowsky (1984), Rock

(1988), Woronow (1987), Woronow and Love (1990), Reyment and Savazzi (1999),

and variously referred to as the spurious correlation problem, the constant-sum

problem, the negative-bias problem, the null-correlation problem, the closure

problem, in a variety of disciplines. In particular, these theoretical and practical

studies all point to an inevitable truth about compositional data analysis: product-

moment correlation of raw components is a meaningless descriptive and analytical

tool in the study of compositional variability. What Tangri and Wright (1993) term

standard PCA is based on such product moment correlations, and therefore suffers

from these criticisms of inappropriate analysis. Attempts to solve this statistical

problem up to 1980 were mainly pathological in nature, attempting to analyse what
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goes wrong when standard multivariate analysis is wrongly applied to compositional

data, presumably in the hope that some corrective inference might be made as a result.

A similar sequence of applied statistical events took place in the analysis of

directional data, but fortunately was quickly resolved by taking account of the special

algebraic-geometric nature of the spherical sample space.

OVERVIEW OF THE COMPOSITIONAL PROBLEM

What has come to be known as logratio analysis (Aitchison, 1982, 1983, 1986, 1997)

was based on simple intuitive ideas, namely that compositions provide information on

relative rather than absolute values of the components of compositions, that relative

values are characterised by ratios and that logarithms of ratios are simpler to handle

mathematically and interpret statistically than ratios. Since there is a one-to-one

correspondence between a composition and a complete set of ratios or logratios,

information is neither lost nor gained in the process of transformation. This intuition

is strongly supported by a series of logical necessities which any compositional data

methodology must satisfy, for example, scale invariance, subcompositional

coherence, meaningful groups of operations of change such as perturbation and

power, meaningful measures of distance between compositions; see Aitchison (1997,

2001) for a detailed account of these. Later we shall use the compositional principle

of subcompositional coherence to illustrate the nature of these necessities, since it has

a particular bearing on archaeological compositional analysis and the Tangri and

Wright fallacies.
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     In the light of the preceding comments, let us examine the argument of Tangri and

Wright. Put bluntly, it is wonderfully illogical. We have two methods A (standard

PCA) and B (Aitchison’s new method). A is known by us to be faulty (since we quote

Chayes and others who have pointed this out clearly). What about B? Let us distort

some data sets and see which method seems to change least, according to our criteria

of success. We find that A distorts least, according to our criteria. Therefore, despite

the fact that we know it to be faulty, A must be better, and our analysis of distorted

data allows us to state categorically that (Tangri and Wright, 1993, p.104)

‘Aitchison’s method is dangerous surgery, whatever the demerits of standard PCA.’

     The Tangri and Wright argument depends on three assumptions:

(a) In comparing methodologies we can ignore theoretical considerations.

(b) We can judge different methodologies objectively by considering what

happens to distorted data sets.

(c) Our criteria of comparison are sensible in the compositional context.

Baxter (1993) has already commented on the Tangri-Wright approach and pointed out

a number of doubtful arguments, even fallacies, in their comparison. What appears to

us to be missing, however, from most of the archaeometric papers we have seen, is a

clear understanding of the basic nature of compositional problems and the logical

necessities required by any methodology which purports to be appropriate for the

study and interpretation of compositional variability.
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A SIMPLE PRINCIPLE OF COMPOSITIONAL DATA ANALYSIS:

SUBCOMPOSITIONAL COHERENCE

By assumption (a) Tangri and Wright seem to dismiss theoretical considerations

almost as irrelevant. This is in line with the history of compositional data analysis,

where the wishful thinking that there is little different about compositional data has

led to a century of suspect analysis. Clear thinking about the nature of a compositional

problem leads to certain logical necessities, which a meaningful analysis must take

into account.

     It is clear from the major oxide and trace elements in the data sets BAXTER1

(with parts MgO, Al2O3, P2O5, K2O, CaO, MnO, FeO, Cu, Zn, Pb) and BAXTER2

(with parts SiO2, Al2O3, FeO, MgO, CaO, Na2O, K2O, TiO2, P2O5, MnO, Sb) that

different parts of a composition may be regarded as important for different analytical

purposes and by different investigators. In particular the suppression of the ubiquitous

SiO2 from BAXTER1 but not from BAXTER2 indicates that there are occasions

when two archaeologists may, for the same data set, be concerned with different parts.

This raises the important principle of subcompositional coherence in compositional

data analysis, most simply explained in terms of a concrete example.

     Formally the subcomposition based on parts (1, 2, . . ., C) of a D-part composition

(x1 , ... , xD ) is the (1, 2, . . . ,C)-subcomposition (s1, . . . , sC ) defined by

 (s1, ... , sC ) = (x1 , ... , xC ) / (x1 + ... + xC).              (1)

Now consider two scientists A and B interested in soil samples, which have been

divided into aliquots. For each aliquot A records a 4-part composition (animal,
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vegetable, mineral, water); scientist B first dries each aliquot without recording the

water content and arrives at a 3-part composition (animal, vegetable, mineral). Let us

further assume for simplicity the ideal situation where the aliquots in each pair are

identical and where the two scientists are accurate in their determinations. Then

clearly B's 3-part composition (s1, s2, s3) for an aliquot will be a subcomposition of

A's 4-part composition (x1, x2 , x3, x4) for the corresponding aliquot related as in (1)

above with C = 3, D = 4. It is then obvious that any compositional statements that A

and B make about the common parts – animal, vegetable and mineral – must agree.

This is the nature of subcompositional coherence.

The ignoring of this principle of subcompositional coherence has been a source of

great confusion in compositional data analysis. The literature, even currently, is full of

attempts to explain the dependence of components of compositions in terms of

product moment correlation of raw components. Consider the simple data set:

Full compositions (x1, x2 , x3, x4) Subcompositions (s1, s2 , s3)

(0.1, 0.2, 0.1, 0.6) (0.25, 0.50, 0.25)

(0.2, 0.1, 0.1, 0.6) (0.50, 0.25, 0.25)

(0.3, 0.3, 0.2, 0.2) (0.375, 0.375, 0.25)

Scientist A would report the correlation between animal and vegetable as corr(x1, x2 )

= 0.5, whereas B would report corr(s1 , s2 ) = -1. There is thus incoherence of the

product-moment correlation between raw components as a measure of dependence.

     Note, however, that the ratio of two components remains unchanged when we

move from full composition to subcomposition: si / sj =  xi / xj . Thus as long as we

work with scale invariant functions, or equivalently express all our statements about
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compositions in terms of ratios, we shall be subcompositionally coherent.

     In the choice of their distortion technique Tangri and Wright are indeed hoist with

their own petard, since they simply place the original compositions in the role of

subcompositions of their extended compositions. Their so-called random addition of

three parts to the original composition has the effect of distorting only the correlations

in the crude PCA analysis. What they are doing therefore is subcompositionally

incoherent. The subcompositional coherence of logratio analysis ensures that the

submatrix associated with the parts of the original composition of the logratio

covariance matrix of the extended composition remains unaltered. These features can

be illustrated by a simple example.

      Suppose that the original compositional data set is formed by eight samples of 4-

part compositions:

Sample        Part 1      Part 2     Part 3      Part 4

    1 0.0716    0.2499    0.3702    0.3083

    2 0.0045    0.0644    0.7744    0.1567

    3    0.1951    0.1861    0.2914    0.3274

    4 0.2093    0.4571    0.0667    0.2669

    5 0.0092    0.0282    0.8306    0.1320

    6 0.2046    0.7376    0.0010    0.0568

    7 0.6185    0.1605    0.0488    0.1722

    8 0.1395    0.2305    0.3220    0.3080

According to the same partial randomisation procedure proposed by Tangri and

Wright (1993), suppose that the selected ‘random parts’ to be added to the original
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data set are parts 2 and 3. Also suppose that the randomisation of the order of the

values of these two added parts is given by

Randomized part 2: 0.1605 [7];  0.4571 [4];  0.2305 [8];  0.0282 [5];  0.0644 [2];

0.7376 [6];  0.1861 [3];  and 0.2499 [1];

Randomized part 3:  0.0010 [6];  0.7744 [2];  0.8306 [5];  0.3702 [1];  0.0667 [4];

0.3220 [8];  0.2914 [3];  and 0.0488 [7],

where the brackets refer to the position in the original data sample set. These

randomised parts constitute the new parts 5 and 6 in the extended data set. Thus the

Tangri-Wright extended composition is the closure of the data set

Sample        Part 1      Part 2      Part 3     Part 4      Part 5      Part 6

    1 0.0716    0.2499    0.3702    0.3083    0.1605    0.0010

    2 0.0045    0.0644    0.7744    0.1567    0.4571    0.7744

    3 0.1951    0.1861    0.2914    0.3274    0.2305    0.8306

    4 0.2093    0.4571    0.0667    0.2669    0.0282    0.3702

    5 0.0092    0.0282    0.8306    0.1320    0.0644    0.0667

    6 0.2046    0.7376    0.0010    0.0568    0.7376    0.3220

    7 0.6185    0.1605    0.0488    0.1722    0.1861    0.2914

    8 0.1395    0.2305    0.3220    0.3080    0.2499    0.0488

which is given by
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Sample        Part 1      Part 2      Part 3     Part 4      Part 5      Part 6

    1 0.0616    0.2152    0.3187    0.2654    0.1382    0.0009

    2 0.0020    0.0289    0.3470    0.0702    0.2048    0.3470

    3 0.0947    0.0903    0.1414    0.1588    0.1118    0.4030

    4 0.1497    0.3269    0.0477    0.1909    0.0202    0.2647

    5 0.0081    0.0249    0.7343    0.1167    0.0569    0.0590

    6 0.0993    0.3581    0.0005    0.0276    0.3581    0.1563

    7  0.4186    0.1086    0.0330    0.1165    0.1260    0.1972

    8 0.1074    0.1775    0.2479    0.2372    0.1924    0.0376

     The product-moment correlation matrix of the original compositional data set is

j

corr(xi, xj)            1             2            3           4

1 1.0000 0.1545 -0.7067 -0.0653

2 0.1545 1.0000 -0.7408 -0.2623

3 -0.7067 -0.7408 1.0000 -0.0830i

4 -0.0653 -0.2623 -0.0830 1.0000

whereas the product-moment correlation matrix of the extended data set is
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j

corr(xi, xj)         1         2         3         4         5         6

1 1.0000 0.1243 -0.5970 -0.0161 -0.1070 0.0635

2 0.1241 1.0000 -0.6422 0.0916 0.3119 -0.1908

3 -0.5970 -0.6422 1.0000 0.0887 -0.3228 -0.3732

4 -0.0161 0.0916 0.0887 1.0000 -0.4940 -0.4118

5 -0.1070 0.3119 -0.3228 -0.4940 1.0000 -0.0779

i

6 0.0635 -0.1908 -0.3732 -0.4118 -0.0779 1.0000

with the (1,2,3,4) submatrix substantially different from the original compositional

product moment correlations, illustrating the subcompositional incoherence involved

in the Tangri-Wright application of what they term standard PCA analysis. In

contrast, since ratios and a fortiori logratios are preserved in the formation of

subcompositions, the logratio variation matrix of the extended compositions  –

consisting of the variances of each possible logratio and summarising the logratio

covariance structure – is



11

j

var(log (xi /xj))         1         2         3         4         5         6

1 0.0000 1.3459 12.1220 2.9296 4.0652 7.3446

2 1.3459 0.0000 9.4185 1.4944 1.7932 6.0357

3 12.1220 9.4185 0.0000 3.5120 7.5541 12.2099

4 2.9296 1.4944 3.5120 0.0000 1.9797 6.0410

5 4.0652 1.7932 7.5541 1.9797 0.0000 5.2862

i

6 7.3446 6.0357 12.2099 6.0410 5.2862 0.0000

with the (1,2,3,4) submatrix identical to the logratio variation matrix of the original

compositional data set.

     To sum up, the Tangri-Wright investigation of standard PCA and Aitchison’s

logratio method, in so far as inferences of the original compositions (contained as

subcompositions of the extended compositions) are concerned, certainly distorts

standard PCA analysis, whereas, since subcompositional ratios and extended

compositional ratios are the same, any sensible logratio subcompositional analysis

will be unaffected.

THE NATURE OF THE DISTORTED COMPOSITIONAL DATA SETS

In regard to assumption (b) we have already pointed out the fallacy of Tangri and

Wright’s general argument that comparing the performance of methodologies on

distorted data sets on unsubstantiated criteria can reinstate a discredited methodology

if compositional principles such as discussed above are ignored. Advances in science
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usually proceed by a repetitive cycle of observation suggesting theory or hypothesis,

which in turn is tested by further observation. We know of no substantial advance that

has emerged from creating or distorting data. Certainly there is some merit in

simulation of data to illustrate some feature but there must be correct and solid

reasoning behind the conclusion which the data analysis illustrates. Because of the

relationship (1) the subcomposition (corresponding to the original parts) of the

distorted data set will always have the invariant ratio and logratio properties

illustrated by the example.

THE FALLACIES IN THE TANGRI AND WRIGHT CRITERIA

Before considering assumption (c) and discussing the irrelevance of the criteria of

success adopted by Tangri and Wright it is necessary to summarise the effects of

distorting the compositional data set of interest on both crude analysis and logratio

analysis. First we have seen that a closure operation is required to arrive at the

extended composition and that this, as has been known for the last fifty years (Chayes,

1949), alters the product-moment correlations between the original parts. Tangri and

Wright claim that this effect is not serious, but from our simple example above we see

that it certainly can be sizeable. In contrast, because of the subcompositional

coherence property of the logratio method, the logratio covariance structure of the

original composition remains unchanged within the relevant subcomposition in the

extended data set. But there is another unjustified statement in the Tangri and Wright

argument. As Baxter (1993) has already pointed out, they are mistaken in their

statement that lack of correlation of a ‘variable’ with principal components is

characterised by coincidence with the centroid: this is simply not true. Principal

component plots and the relative variation biplot (Aitchison, 1990) – a useful
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representation of the complete data set ignored by Tangri and Wright  – differ only in

their scaling of the axes, but the relative variation diagram provides a more reliable

picture of the covariance structure and the relation of the compositions to parts of the

composition; see also Aitchison and Greenacre (2001), which provides substantial

ideas of how to interpret biplots of compositional data. In biplots correlations between

‘variables’ are associated with angles between ‘rays’, not lengths of rays. Lack of

correlation between ‘variables’ in such principal component and relative variation

diagrams is associated with orthogonality of rays from the centroid to variable apexes,

not closeness to the centroid. Indeed, the lengths of the rays to the new variables, and

hence their distance from the centroid, are likely to be very similar to rays associated

with the original composition since they have been selected simply as a random

ordering of original components.

     In short, principal component diagrams and biplots of the distorted compositional

data set will attempt to capture an overall picture of the distorted data set. Since in this

process the additional parts may well demand as much attention as the original parts

and so fail to capture an authentic picture of the original composition, there seems to

be no validity in comparing changes between original and distorted as a means of

choosing between methodologies.

DISCUSSION AND CONCLUSIONS

    Our purpose in writing this short note has been to refute the Tangri-Wright claim

that logratio analysis is dangerous surgery, with an implication that archaeometrists

may as well continue with the old standard PCA techniques, which are known to be

compositionally unsound. In their paper they criticise Aitchison’s approach to

compositional principal component analysis as emphasising theoretical aspects rather
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than facing empirical tests. Of course, it is initially theoretical principles of analysis

that are important if fundamental errors such as appear in the Tangri-Wright approach

are to be avoided; they also seem to overlook the substantial set of post-monograph

problems and data analysed with interpretation in Aitchison (1990).  There the biplot

technique of Gabriel (1971) is developed and in our view gives a much more

satisfactory view of compositional variability than principal component diagrams. See

also Aitchison and Greenacre (2001) for a more comprehensive set of interpretative

tools of such diagrams in the compositional context.

     In all statistical inference recognition of the underlying sample space is a first

requirement. In compositional data analysis the special nature of the simplex sample

space and its algebraic-geometric structure has to be taken into account in the

development of any sensible methodology. This can be done – see, for example,

Aitchison (2001), Aitchison et al. (2000), Barceló-Vidal et al. (2001), and

Pawlowsky-Glahn and Egozcue (2001a, 2001b) - recognising the basic operations of

perturbation and powering and the associated metric. The metric is important, as the

methodology has to acknowledge the implications of considering whether proportions

like 0.1 and 0.2 are as different as 0.5 and 0.6 or not. Standard PCA considers them to

be equally distinct, whereas logratio analysis considers 0.2 to be two times 0.1 and 0.6

to be 1.2 times 0.5, recognising that compositional problems are concerned with

relative magnitudes. Recognition of the metric vector space structure of the simplex

assures the overall coherence of the logratio approach to statistical analysis of

compositional data. It is encouraging to see in Buxeda (1999) the first recognition of

perturbation as a description of how archaeological compositions change, and we look

forward to seeing developments of this approach.
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    Resistance to the use of logratio analysis takes many forms; see Aitchison (1997)

for a detailed account of these. Here we may first pinpoint the leaving-some-out

argument, which claims that if the total proportions in the composition sum to less

than 100 per cent there is surely no problem. In such a situation the problem still

remains compositional and essentially what the investigator is concerned with is

subcompositions of some not fully determined compositions. All the principles of

compositional data analysis still apply. In an extreme case of this, where only trace

elements are involved, the problem is still compositional so that again all principles

should be adhered to. The good news for past analyses here is that the common

practice of working with logs of the trace elements can be fully justified. Suppose that

x1, . . . , xD are trace elements (ppm). These are essentially components of a full

composition containing the major oxides, whose amalgamation X say in parts per

million will be almost 1 as a ppm ratio. Thus forming logratios, with X as the divisor

leads to a logratio vector (log (x1/X), . . . , log (xD /X)), which because of the fact that

X is approximately 1, gives a logratio vector of (log x1, . . . , log xD).

    A number of investigators choose to work with ratios. This is sound on the basis of

scale invariance and subcompositional coherence but does not fully exploit the

mathematical and statistical advantages of going further to logratios. For example,

there is a substantial difficulty in that the ratio variance-covariance structure is so

complex with, for example, no simple, exact relationship between var(xi /xj) and

var(xj / xi). The use of logratios simplifies all this with, for example, var(log (xi /xj)) =

var(log(xj/ xi)) and with other operations such as perturbations also much simpler,
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   A further argument for the dismissal of logratio analysis seems to be that numerical

results from the use of ‘standard unconstrained multivariate analysis (SUMA)’ such

as ‘standard PCA’ may turn out to be similar to those from logratio analysis. Such

serendipity is rather akin to insistence on a normal distribution assumption and the use

of (mean – 2 x standard deviation, mean + 2 x standard deviation) as a 95 per cent

prediction interval. On many occasions this will be satisfactory, but if, for example

the distribution is skew, disaster may strike with such ridiculous results as suggesting

that a urinary excretion rate of a steroid metabolite may be negative with a non-

negligible probability. Similarly application of SUMA to compositional data can

produce equal disaster; see, for example, Aitchison (1986, 1997, 1999). Furthermore,

interpretation of results based on absolute difference between observations rather then

relative difference can be quite different. Loosing two pounds of weight might be a

reason for celebration for an adult, a reason of concern for a child, and a matter of life

and death for a new born. Certainly, in these cases common sense will avoid disasters

and will lead to ‘reasonable’ limits between the different situations, but common

sense is not a quantitative measure and a lot of experience is required to gain it. Why

not stand on the safe side and use relative differences right from the beginning? Since

logratio analysis is no more difficult to compute or interpret than SUMA there seems

every reason for adopting this compositionally valid form of statistical analysis.

    Another range of compositional problems is where interest is in convex linear

mixtures of so-called endmember D-part compositions, say e1, . . . , eC , and where a

typical mixture x is formed as λ1e1 + . . . + λC eC , where λ1, . . . , λC are the mixing

proportions. Although the mixing operation here in its assumption of conservation of

matter does not involve logratios, compositional principles still apply to the observed
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compositional data, namely the observed mixtures, in the search for hypothesized

endmembers.

Finally we point out that all that the logratio technique is achieving is to allow the

analyst to avoid the unfamiliarity of the simplex and move out to the more familiar

Euclidean space to perform and interpret the statistical analysis. Whether we stay in

the simplex or logratio to another space does not matter. The inferences will be

identical.
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