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Abstract

This study analyzes the optimal selective logging regime of a size-distributed forest where individual

trees compete for scarce resources such as space, light, and nutrients. The decision problem of the forest

manager is formulated as a distributed optimal control problem. The interpretation of the first-order

conditions allows a generalization of the Faustmann formula. In an empirical part, this article numeri-

cally determines the optimal management regime of a size-structured forest and shows that the optimal

selective logging regime is associated with a normal forest under a wider variety of situations than stated

in the previous literature.
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1 Introduction1

Frequently, forest management is based on the Faustmann or maximum sustained yield rules, which deter-2

mine the optimal cutting age of the trees. Since these criteria are based on the assumption that all trees have3

the same age, their application leads to the clear cutting of the entire stand. This management regime has4

been criticized because it pays no attention to the ecological value, in the form of biological diversity in for-5

est land (Doyon et al., 2005; Sawadogo et al., 2005), and scenic or recreational values (Scarpa et al., 2000).6

Since trees in a forest provide food, shelter and substrate for other life forms, maintaining a rich variety of7

trees conserves biodiversity in a forest ecosystem (Lin and Buongiorno, 1998) and improves forest attributes8

associated with scenic and recreational values of the forestland. For example, a complex tree and canopy9

structure helps to provide preferable habitat for wildlife (Hunter, 1990; Whittam et al. 2002).10

To overcome the negative effects of the clear cutting regime,tree selection silviculture (uneven-aged man-11

agement), for which there is a very strong interest in temperate as well as in tropical regions, has been12

proposed (Vanclay, 1995). Managers of public forests are likely to have a mandate to consider not only13

the monetary benefits to be obtained from timber production but also the benefits to be gained from bio-14

diversity conservation, and from maintenance of forest landwith high scenic and recreational values. In15

contrast, private landowners and timber companies might,a priori , be less interested in adopting a selective16

logging regime since they are more inclined to focus exclusively on the monetary benefits of timber pro-17

duction. However, the fact that an increasing number of private owners and timber companies certify their18

private forest holdings by using standards developed, for instance, by the Forest Stewardship Council, the19

Canada Standard Association or the Pan European Forest Certification Council makes it more likely that20

private owners and timber companies will also adopt a selective logging regime. Despite these concerns, the21

economic literature has described the characteristics of the optimal selective logging regime only in part.22

The previous literature emphasizes the introduction of an additional independent variable of the choice23

functions. Besides calendar time, a structuring variable ofthe trees, either age or diameter, was considered.24
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Several empirical studies have introduced the structuring variable diameter of the tree to resolve the problem25

of optimal management of the uneven-aged forest. Initially,Adams and Ek (1974) determined only the26

optimal long-run allocation of all trees among the differenttree vintages, but not the optimal replacement27

periods. Haight et al. (1985) and Lin and Buongiorno (1998) solved simultaneously for the optimal long-run28

allocation of all trees among the different tree vintages, and the optimal replacement periods. These studies29

were formulated in a discrete framework, i. e., time and diameter can only take on certain values, and,30

consequently, they cannot provide an analytical formulation of the optimal selective logging rule. Although31

later studies by Adams et al. (1996), and Sedjo and Lyon (1990)utilized discrete time and a continuous32

structuring variable for their policy analysis, they did notestablish an analytical formulation for the optimal33

logging pattern.34

Moreover, several quite remarkable theoretical studies didprovide a rule for the optimal selective logging35

regime by analyzing the properties of the transient path and of the steady state (Mitra and Wan, 1985; Mitra36

and Wan, 1986; Wan, 1994; Salo and Tahvonen, 2002; Uusivuori and Kuuluvainen, 2005; Cunha e Sa37

et al., 2007). However, these articles are based on a stylizedanalytical model where the growth process38

of the biomass is not modeled explicitly. Every year trees pass from the current to the sequent age class.39

As each age class is associated with a particular biomass thatincreases with age, trees “grow” as they get40

older. Hence, the current theoretical models do not establish a functional relationship between biomass and41

age, but rather form a tuple of different pairs of biomass and age. In this respect, their analytical results42

are limited to certain points of combinations of age and biomass, but do not fully describe the underlying43

biophysical processes proposed in the literature of biological mathematics (Keyfitz, 1968; Keyfitz, 1977).44

The previous theoretical literature did not explicitly model competition between individuals belonging to the45

same population. Individuals compete for space or light and nutrients. In the absence of predators, the life46

cycle of a single individual is mainly influenced by the other individuals of the population. Thus, in order47

to model biological growth, mortality and reproduction processes correctly, one does not only have to take48
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into account individual characteristics such as age but also the distribution of the individual characteristics49

over the entire population. Given the same initial amount of biomass, the growth rate of the forest will be50

higher as more young individuals form part of it. In other words, the more young trees there are, the less51

competition individual trees face and therefore the growth rate of the entire forest increases with the share52

of young trees.53

The reason why growth processes based on continuous time and acontinuous structuring variable have54

not been considered may reside in the fact that they lead to distributed optimal control problems where55

the law of motion is given by partial differential equations (PDE), or partial integrodifferential equations1
56

if density effects are considered. The previous theoreticaland empirical literature usually describes the57

evolution of an age (size) distributed forest by a set of difference equations in time for a number of age (size)58

cohorts. These difference equations are an approximation (discretization over time and age (cohorts)) of the59

continuous evolution of the forest over time and age. The previously employed discretization procedure60

seems reasonable and has been practiced widely; however, it is not known whether the set of difference61

equations describes the evolution correctly. The set of difference equations is set up ad hoc and is not derived62

from the underlying partial differential equation. Notice,for instance, that the set of difference equations in63

the paper by Haight (1987) is identical for an age and size structured population. However, the PDEs for64

age or size-structured populations are not identical. The PDE of a size-structure population incorporates a65

function that relates time and size and therefore is not present in the PDE for an age-structured population.2
66

On the other hand, partial differential or integrodifferential equations allow not only the age but also the size67

of the trees to be considered. In fact, the size of the trees determines their economic value. As discussed68

below, age can only be considered as a poor proxy for the size ofa tree, and therefore, any analysis based69

on age instead of size may be misleading. Moreover, PDEs permit the price of timber to be formulated as70

a function of tree size, and to incorporate density effects. Consequently, considering competition between71

1The unknown function of the PDE is a function of time and age (size). In cases where an integral over the unknown function
forms part of a partial differential equation, the PDE becomes a partial integrodifferential equation.

2To be more precise this function is equal to one for an age-structured population since time and age move with the same speed.
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individuals, continuous time, and a continuous structuring variable allows the definition of an analytical72

formulation of the optimal harvesting rule for selective logging, and its comparison with the Faustmann73

rule, which is based on continuous time.74

Unfortunately, if the forest dynamics are governed by a partial integrodifferential equation it is not possible75

to obtain a complete analytical solution of the optimal forest management regime and one has to resort to76

numerical techniques. In contrast to the existing literature where distributed control problems are solved77

numerically by a gradient projection method (Feichtinger etal., 2004) or Markov decision process models78

(Lin and Buongiorno, 1998), we employ a different technique known as the “Escalator Boxcar Train”. This79

technique has the advantage of not requiring programming numerical algorithms since it can be implemented80

with standard optimization packages such as GAMS. Moreover,it simplifies the estimation of biological81

equations used in the model as it will be shown in the empiricalstudy. A presentation of the numerical82

method used in this article can be found in Goetz et al. (2008).83

This article presents a theoretical model that describes thecharacteristics of the optimal selective-logging84

regime of a size-distributed forest that maximizes timber net benefits. The law of motion of the economic85

model is governed by a partial integrodifferential equationthat describes the evolution of the forest stock86

over time. This formulation allows size dependent economic variables and modeling biophysical processes87

to be taken into account more realistically. As an extension of the literature this article provides an ana-88

lytical formulation of the optimal selective-logging rule whose interpretation allows generalization of the89

Faustmann formula. In an empirical part the article determines the optimal selective-logging regime of a90

size-distributed forest from a private perspective, and conducts a sensitivity analysis. It shows that the cycli-91

cal evolution of the variables vanishes along the optimal path giving rise to a non-cyclical logging pattern92

and a fairly uniform diameter distribution of the trees. Thisdistribution provides a constant flow of income93

and is known as a normal forest. In comparison with the previous theoretical literature where a normal forest94

only emerged under special conditions, we find that the standard result is the emergence of a normal forest.95
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The article is organized as follows. Section 2 describes the features of the model. As such it is divided into96

one subsection that describes the underlying biological processes and another that outlines the economic97

decision problem in the form of a distributed optimal controlproblem. Section 3 shows that the optimal98

selective cutting rule for a size-distributed forest can be interpreted as a generalization of the Faustmann for-99

mula for even-sized forests, and analyzes the implications of a steady-state on the optimal forest distribution.100

The next section determines the optimal selective cutting regime in an empirical setting, and analyzes the101

changes in the long run outcome as a result of a change in different parameters. Finally, section 5 presents102

the conclusions.103

2 The model104

Before presenting the complete economic model that will allow us to determine the optimal selective logging105

regime, we have characterized the underlying biological model that describes the growth process of the trees.106

2.1 The growth process of the trees107

In previous theoretical economic literature the age of the tree is regarded as the structuring variable of the108

biological population (Salo and Tahvonen, 2002; Wan, 1994).In biological science, however, it is usu-109

ally not the age but physiological or behavioral characteristics, for instance, size, life cycle stages, gender110

or genetic differences, or behavioral activities, that determine the biological life cycle of the individual111

(Cushing, 1988). Likewise, from an economic point of view it is not the age but the size of the tree that112

is important. The price of lumber changes with the size of the tree but not with age. And, as established113

by forest scientists, the age of a tree is not very closely related to its size (Björklund, 1999). Large genetic114

variety between the trees, and between the different local conditions of each tree makes it difficult to estab-115

lish a functional relationship between size and age. Consequently, the age-size relationship resulting from116

an econometric estimation is very poor (Seymour and Kenefic, 1998). In forestry, the size of a tree, and117
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consequently the size of a forest, is usually measured by the diameter at breast height, i. e., the diameter of118

the trunk at a height of 1.30 m above the ground. We denote the diameter of a tree byl ∈ Ω, Ω ≡ [l0, lm),119

wherel0 and lm indicate the biological minimum and maximum size of a tree. The exogenous variablel120

together with calendar timet form the domain of the control and state variables. We assume that a diameter-121

distributed forest can be fully characterized by the number of trees and by the distribution of the diameter122

of the trees. In other words, space and the local environmental conditions of the trees are not taken into123

account. Given that the diameter value of a tree lies in the interval [l0, lm), and that the number of trees is124

large by assumption, the distribution of the trees can be represented by a density function, denoted byx(t, l),125

which indicates the population density with respect to the structuring variable,l, at timet. Therefore, the126

number of trees in the forest at timet is given by127

X(t) =

∫ lm

l0

x(t, l) dl. (1)128

The forest dynamic is driven by the processes of reproduction, growth, and mortality, which in turn are129

influenced by environmental conditions. Let us defineg(E(t), l) the rate of change in the diameter of a tree,130

as a function of its current diameterl, whereE(t) presents a collection of environmental characteristics that131

affect the growth rate of the individual tree. In the absence of predators, these environmental characteristics132

are given by the local conditions where the tree is growing, and by the neighboring trees. The local con-133

ditions and the competition between individual trees for space, light, and nutrients affect the life cycle of134

each tree. Since our model does not consider space, the variable E(t) presents exclusively the competition135

between individuals.3 Environmental characteristicsE(t) can be expressed by the total number of trees, or136

the basal area of the stand. A large basal area of the stand signifies a high competition pressure on the life137

cycle of an individual tree that decreases the diameter growth (Trasobares et al., 2004). Therefore, we use138

3Although the literature on forest economics contains complex optimization models where space is considered explicitly, their
solutions are based on heuristic approaches and not on efficient optimization techniques (Weintraub et al., 2007).
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the stand basal area to take account of the competition between individuals,4 that is,139

E(t) =

∫ lm

l0

π

4
l2 x(t, l) d l. (2)140

Hence, the change in the diameter over time of a single tree is given by141

dl

dt
= g(E(t), l), (3)142

The instantaneous death rate is denoted byδ(E(t), l). It describes the rate at which the probability of143

survival of a tree, given the environmental characteristicsE(t), decreases with time.144

The reproduction of the forest can be modeled as internal reproduction or planting. In the former case we145

would obtain a boundary condition for the partial integrodifferential equation that reflects the reproduction146

process. Since seed production by individual trees is very high (Karlsson and̈Orlander, 2000), it is space,147

light, and nutrients that are the limiting factors for the upgrowth of young trees, and not the reproduction148

process itself. For this reason we can assume that the number of seeds that turn into seedlings is sufficiently149

large. This allows the forest manager to choose the number of trees with a diameter ofl0 by removing any150

additional trees. The number of upgrowing trees chosen is denoted byp(t, l0). In the case of planting, we151

are dealing with a forest that is completely managed, where young trees with a diameter ofl0 are planted and152

no biological reproduction takes place. Hence, for both reproduction systems the control variables for the153

management of the forest are given byu(t, l) andp(t, l0), denoting cutting density at timet with diameter154

l, and the flux of the trees with diameterl0 respectively. Young trees are either grown up to diameterl0, or155

planted with diameterl0, at timet. Thus, the optimal forest management problem is a distributed optimal156

control problem where the time dependent control variableu(t, l) is distributed overl (Feichtinger and157

Hartl, 1986). In contrast, the time dependent boundary control variablep(t, l0) refers only to the initial158

4We assume that the trees with different sizes are distributed evenly over the stand. If this is not the case, other intra-specific
competition indices that are distance dependent, such as the Lorimer area index (Garcı́a-Abril et al., 2007), are more appropriate.
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diameterl0 of the tree. Although our modelling approach allows consideration of both planting and natural159

reproduction, we frame our analysis in the context of naturalreproduction since employed selective logging160

regimes frequently rest on natural reproduction. Based on the well known McKendrick equation for age161

structured populations (McKendrick, 1926), the dynamics ofthe diameter-distributed forest can be described162

by the following partial integrodifferential equation discussed by de Roos (1997), or by Metz and Diekmann163

(1986)164

∂x(t, l)

∂t
+

∂g(E(t), l)x(t, l)

∂l
= −δ(E(t), l)x(t, l) − u(t, l) (4)165

subject to the boundary conditiong(E(t), l0)x(t, l0) = p(t, l0). The two terms on the left-hand side of166

equation 4 present the change in the tree density over time anddiameter; the second term not only considers167

the diameter but also takes the interdependence between diameter and time∂(gx)
∂l

= g ∂x
∂l

+ ∂g
∂l

x into account,168

i.e., it presents the temporal change in diameter multipliedby the change in tree density over diameter plus169

the temporal change in diameter over diameter multiplied by the tree density.5 Hence, the flux of the tree170

density with respect to diameter and time has to equal the terms of the right-hand side of equation 4, given171

by the product of the mortality rate and the tree density, and the density of the logged trees.172

2.2 The distributed optimal control problem173

We assume that the forest is privately owned and managed over aplanning horizon oft1. Using the defini-174

tions given in the preceding section, the formal decision problem of the forest owner can be stated as:175

max
u(t,l),p(t,l0)

∫ t1

0

∫ lm

l0

B(x(t, l), u(t, l))e−rt dl dt −
∫ t1

0
C(p(t, l0))e

−rt dt

+

∫ lm

l0

St1(x(t1, l))e
−rt1 dl +

∫ t1

0
Slm(x(t, lm))e−rt dt,

(D)176

subject to the constraints177

5If the structuring variable was age, the functiong would be constant and equal to 1 since the aging of the individual by one
year corresponds to calendar time. In this case the term∂(gx)

∂l
would simply yield∂x

∂l
.
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∂x(t, l)

∂t
≡ −∂(g(E(t), l)x(t, l))

∂l
− δ(E(t), l)x(t, l) − u(t, l),

x(t0, l) = x0(l), g(E(t), l0)x(t, l0) = p(t, l0), p(t, l0) ≥ 0, ≤ u(t, l) ≥ 0,

178

whereE(t) is given by equation (2), andr denotes the discount rate. The twice-differentiable function179

B(x, u)e−rt presents the discounted net benefits of the timber. It dependsnot only on the number of logged180

trees but also on the number of standing trees since it incorporates the maintenance cost of the forest. It181

is assumed that the maintenance cost function is concave, andthus Bx < 0, Bxx < 0. It is also assumed182

that the net benefit function is strictly concave inu. The twice-differentiable and strictly convex func-183

tion C(p)e−rt expresses the discounted cost of nursing trees up to diameterl0, the differentiable function184

St1(x)e−rt1 the discounted value of the standing trees at the final point intime of the planning horizon, and185

the differentiable functionSlm(x)e−rt expresses the discounted value of the standing trees that have reached186

the maximum diameterlm.6 The termx0(l) denotes the initial diameter distribution of the trees, and the187

restrictiong(E(t), l0)x(t, l0) = p(t, l0) requires that the flux of the change in diameter at diameterl0 mul-188

tiplied by the tree density coincides with the total flux of thediameter of trees with diameterl0. Finally, the189

control variables must be nonnegative.190

Let the costate variable related with the dynamics of the forest be denoted byλ(t, l), and the Lagrange mul-191

tiplier related with the restrictiong(E(t), l0)x(t, l0) = p(t, l0) by λ0(t). Utilizing Theorem 2 of Hritonenko192

et al. (2008) the following necessary conditions can be obtained:193

6In the case of planting, the functionC(p) expresses the cost of planting trees with diameterl0 and obviously has to be specified
differently to how it is expressed in the case of natural reproduction.
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e−rtBu − λ(t, l) + µ1(t, l) = 0, ∀t, ∀l (5)

−e−rtC ′(p(t, l0)) + λ0(t) + η(t) = 0, ∀t (6)

p(t, l0) − g(E(t), l0)x(t, l0) = 0, ∀t (7)

∂λ(t, l)

∂t
+ g(E(t), l)

∂λ(t, l)

∂l
= + (r + δ(E(t), l)) λ(t, l) − Bx

− π

4
l2

∫ lm

l0

λ(t, l)
(∂(gE x(t, l))

∂l
+ δE x(t, l)

)

d l , (8)

∂x(t, l)

∂t
= −

∂
(

g(E(t), l)x(t, l)
)

∂l
− δ(E(t), l)x(t, l) − u(t, l), x(0, l) = x0(l), (9)

194

whereµ1 andη are Kuhn-Tucker multipliers related to the non-negativity constraints of the decision vari-195

ablesu and p, respectively. For an interior solution the first necessary condition, equation (5) states that196

along the optimal path the discounted marginal net benefits oftimber should equal the shadow priceλ (in197

situ value) of the forest stock for everyt and l. In contrast to lumped optimal control, distributed opti-198

mal control requires that this equation holds along the optimal path not only with respect to time, but also199

with respect to diameter. Thus, the forest manager maximizeshis/her benefits not only over time but also200

with respect to diameter at every instant of time. In other words, the forest manager practices selective201

logging. Equation (6) states that the discounted marginal cost of nursing trees up to diameterl0 should202

equal, at every moment of time the future marginal benefits of this “tree”, i.e. the marginal net benefits203

that accrue from timet to t1. Hence, corresponding with the first necessary condition, the forest man-204

ager to some extent also practices selective nursing by choosing the time and the number of trees to be205

grown, but not their diameter. Equation (7) reproduces the constraint associated withλ0(t) and reflects206

the fact that the increase in diameter of the trees has to coincide with the flux of ingrowing trees with207

diameterl0. Necessary condition (8) shows that the marginal change in the in situ value over time and208

diameter has to equal the sum of the forgone interest in capital in the form of trees, the monetary value209

of the lost trees due to natural mortality and the marginal maintenance cost plus the sum of the monetary210
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values of the direct and indirect changes in growth and mortality of the standing trees. The last neces-211

sary condition is just a restatement of the law of motion, and therefore, it will not be discussed here. Fi-212

nally, following Sage (1968) the following necessary transversality conditions have to be taken into account.213

λ0(t) = λ(t, l0), (10)

λ(t1, l) =
dSt1(x(t1, l))

dx
, (11)

g(E(t, lm), lm)λ(t, lm) =
dSlm(x(t, lm))

dx
. (12)

214

The first transversality condition, equation (10), requiresat every moment that the shadow cost for nursing215

trees has to equal the shadow price of the stock evaluated at the diameterl0. This transversality condition216

is a result of the link between the distributed and the boundary control formed by their common stock217

variable. The transversality condition (11) states that theshadow price of the trees has to equal the value218

of an additional standing “tree” at the end of the planning horizon. Finally, transversality condition (12)219

yields that the shadow price of the trees has to be equal to the value of an additional standing tree with the220

maximum diameter.221

3 Considerations in the long-run222

In this section we analyze to what extend the first order conditions (5) – (9) relate to the first order conditions223

of an even-aged forest, commonly expressed by the Faustmann formula. Moreover, we describe the optimal224

size distribution of the forest in the steady state, i.e. the steady state distribution of the forest.225

3.1 Comparison with the Faustmann formula226

From equation (5) we know for an interior solution thate−rtBu(u, x) = λ(t, l), i.e., at every moment of227

time it is optimal to cut the number of trees in such a way that the discounted marginal net benefits of timber228
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are equal to thein situvalue of the standing trees. Hence, we can rewrite equation (8) to obtain a generalized229

Faustmann equation.230

Proposition 1 (Generalized Faustmann Equation)231

The change in the in situ value of the stock density232

∂λ(t, l)

∂t
+

∂λ(t, l)

∂l
g(E(t), l) + Bx − δ(E(t), l)λ(t, l) +233

π

4
l2

∫ lm

l0

λ(t, l)
(∂(gE x(t, l))

∂l
+ δE x(t, l)

)

d l = rλ(t, l). (13)234

can be interpreted as a generalization of the Faustmann formula.235

Demonstration: The right-hand side of equation (13) reflects the interest forgone on the capital tied up236

in the standing trees. The first two terms of the left-hand sidereflect the change in thein situ value of237

the timber growing for an additional period of time and an increase in diameter by one unit. Given that238

Bx < 0, the marginal maintenance cost for the stock not being cut down and the monetary loss due to239

natural mortality must be subtracted. Moreover, the monetary value of the direct and indirect changes of240

growth and mortality processes resulting from a change in thedensity have to be taken into account. Since241

these density dependent changes in growth and mortality are multiplied by thein situvalue, the last term of242

the left-hand side provides a monetary value for these changes. The right-hand side and left-hand side have243

to be identical along the optimal path. To see that equation (13) reflects the Faustmann formula as a special244

case let us restate the Faustmann formula given by245

Pw f ′(T ) = r Pw f(T ) +
r(Pw f(T ) − c erT )

erT − 1
, (14)246

whereT indicates the age when the entire even-aged stand is cut,Pw is the market price of the wood,f(T )247

the merchantable volume of wood that a stand of ageT produces. The parameterc presents transaction248

(logging, processing, transport) and nursing costs.249
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The left-hand sides of the Faustmann formula and of equation (13) reflect the change in thein situ value of250

the forest over time. However, since equation (14) has to be interpreted differently from equation (13), we251

demonstrate in the appendix that in the case of an even-aged stand, the change in the in situ value over time252

- the equivalent of equation (13) - provides the Faustmann Formula. However, the traditional formula does253

not take into account the changes in maintenance costs and monetary values from changes in growth and254

mortality as a result of a change in the diameter of the standing trees. The termPw f(T )− c erT reflects the255

net value of the standing trees in the marketplace and corresponds toλ(t = 0, l) if t1 is identical toT . As t1256

increases, future rotations of the forest stand are incorporated into the value ofλ(t, l) as it denotes thein situ257

value fromt to t1. Specifically, it holds ast1 tends to infinity and we obtain that the value ofλ(t, l) is given258

by Pw f(T ) − c erT +
Pw f(T ) − c erT

ert − 1
, where the second term reflects the opportunity cost of the land for259

an infinite stand rotation. Hence, the change in the in situ valuedλ/dT is given byPw f ′(T ) − r c erT and260

reflects the left-hand side of equation (14), andrλ = r(Pw f(T ) − c erT + Pw f(T )−c erT

erT
−1

) the right-hand261

side of equation (14) taking into account that the termr c erT cancels out on both sides, i. e.,262

Pw f ′(T ) = rPw f(T ) +
r(Pw f(T ) − c erT )

ert − 1
= rλ. � (15)263

Thus, based on the concept of the in situ value, equation (13) can be interpreted as a generalization of the264

traditional Faustmann formula, where the forest is distributed over the diameter of the trees. The interpre-265

tation of equation (13) collapses to the traditional Faustmann formula if l andE are considered constants,266

i.e., all derivatives with respect tol andE are zero.267

In practical terms, it is not possible to determine whether the optimal rotation age for most trees is lower268

or higher under a selective cutting regime than under a clear cutting regime. The precise determination of269

the optimal rotation age for the trees under a selective cutting regime depends, in particular, on the density270

effect, on the development of the size of the trees over time, and on the price of timber as a function of the271

size of the tree.272
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3.2 Implications of a Steady state on the optimal long-run distribution.273

The first order conditions of problem (D) do not permit an analytical solution. To take the analysis further274

we consider the case where the forest has reached the steady state, i. e.∂λ/∂t = 0 and∂x/∂t = 0.275

The optimal steady state problem is a lumped optimal control problem defined over diameterl ∈ [l0, lm]276

where the density of trees with diameterl is the control variable. This problem can be thought of as a277

situation where the private owner chooses the optimal diameter distribution of the trees in the steady state278

resulting from an exogenous shock. Thus, the optimal path of the stock variablex(l) traces out the optimal279

steady state distribution. The assumption of an steady-state distribution implies thatE(t) is constant, i.e.280

the density effect is constant andE(t) = E. In this way, the integrodifferential equations (8) and (9) are281

ordinary differential equations and are mathematically tractable.282

By suppressingt, equation (9) can be written as:283

g(E, l)
dx

dl
= −

(

d g(E, l)

d l
+ δ(l)

)

x(l) − u(l), x(0, l) = x0(l) (16)284

In the case where the benefit function is linear inu(l), the system leads to a corner solution, that is, there285

exists ãl ∈ (l0, lm) whereu(l̃) = x(l̃), andx(l) = 0,∀l > l̃. Thus, equation (9), forl < l̃ can be written as286

dx

dl
=

−
(

dg(E, l)

d l
+ δ(E, l)

)

x(l)

g(E, l)
.287

Solving this equation yields288

x(l) =
p(l0)

g(E, l)
exp

∫ l

l0

−dg(E, s)/d s + δ(s)

g(E, s)
ds

, (17)289

where we made use of the boundary conditiong(E, l0)x(l0) = p(l0). Thus, the optimal long-run distribution290
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will be increasing (decreasing) over the diameterl if the absolute value of
dg(E, l)

d l
is greater (lower) than291

δ(l).292

For the case of a low mortality rate and fast growing trees, theoptimal steady state distribution is increasing293

in diameter, i.e., the proportion of large trees is relatively high. On the contrary, when the mortality is high294

and the growth rate is low, the optimal steady state distribution is decreasing in diameter, i.e., the proportion295

of large trees is relatively low.296

4 Empirical study297

In practice the necessary conditions (three equations and a system of partial integrodifferential equations)298

can only be solved analytically under severe restrictions with respect to the specification of the mathematical299

problem (Muzicant, 1980). Thus, one has to resort to numerical techniques to solve the distributed control300

problem. Available techniques such as the method of finite differences, the Galerkin method or that of fi-301

nite elements may be appropriate choices (Calvo and Goetz, 2001). However, all of these methods require302

the programming of algorithms that are mostly unknown to economists. Therefore we propose a different303

method called the Escalator Boxcar Train (de Roos, 1988) to describe the evolution of physiologically-304

structured populations. De Roos (1988) has shown that this technique is an efficient integration technique305

for structured population models. More details about this technique and how this approach can be extended306

to account for the incorporation of decision variables can befound in Goetz et al. (2008). The Escalator307

Boxcar Train (EBT) is based on converting the structuring variable into a state variable of the system by308

transforming the partial integrodifferential equation into ordinary differential equations over time. More-309

over, EBT allows the density effect of the biological processes to be considered. In contrast to the other310

available methods, it can be implemented with standard computer software used to solve mathematical pro-311

gramming problems.312
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The purpose of the empirical analysis is to determine the optimal selective-logging regime of a diameter-313

distributed forest, i.e., the selective logging regime thatmaximizes the discounted private net benefits from314

timber production of a stand ofPinus sylvestris(Scots pine) over a time horizon of 300 years.7 In this way315

it is possible to provide guidance for forest practitioners with respect to the optimal logging pattern, and the316

optimal long-run diameter distribution of the stand.317

4.1 Data and specification of functions318

In order to solve the decision problem (D) it needs to be transformed into a problem which can be solved319

numerically. For this purpose we definei = 0, · · · , n cohorts over the diameterl, i.e., the trees whose320

diameters fall within the limitsli and li+1 are grouped in the cohorti. Hence we can defineXi(t) as the321

number of trees,Li(t) as the average diameter, andUi(t) as the number of cut trees within the cohorti. X̄ ,322

L̄, andŪ denote the vectors̄X = (X0, · · · ,Xn), L̄ = (L0, · · · , Ln), andŪ = (U0, · · · , Un), respectively.323

The vectorX̄0 denotes the initial density of each cohort. As demonstrated in Goetz et al. (2008), the324

decision problem (D) can be approximated to the decision problem (D’) given by325

max
Ū(t),P (t)

∫ t1

0
B(X̄(t), L̄(t), Ū (t))e−rt dt −

∫ t1

0
C(P (t))e−rt dt

+ St1(X̄(t1), L̄(t1))e
−rt1 +

∫ t1

0
Sl(Xn(t), Ln(t))e−rt dt,

(D’)326

subject to the constraints327

7In countries at higher latitudes the species Pinus sylvestris is often considered as shade intolerant, and consequently not suitable
for a selective logging regime. However, in countries at mid-range latitudes like Spain natural reproduction requires that older trees
protect young trees against heat and water stress in the summer (personal communication by C. Gracia, University of Barcelona,
Department of Ecology and CREAF, the Centre for Ecological Research and Forestry Applications). This finding is supported by
field experiments reported by Clapham et al. (2002) and Sanchez-Gomez et al. (2006).
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dXi(t)

dt
= −δ(Ẽ(t), Li)Xi(t) − Ui(t),

dLi(t)

dt
= g(Ẽ(t), Li)

dX0

dt
= −δ(Ẽ(t), l0)X0(t) −

d

dl
δ(Ẽ(t), l0)L0(t) + P (t)

dL0

dt
= g(Ẽ(t), l0)X0(t) +

d

dl
g(Ẽ(t), l0)L0(t) − δ(Ẽ(t), l0)L0(t)

Xi(0) = X̄0, g(Ẽ(t), l0)x(t, l0) = P (t), Ui(t), P (t) ≥ 0 Ui(t) ≤ Xi(t),

328

wherep(t, l0) is now written asP (t) to unify the notation. The term environmentẼ(t) is determined by329

Ẽ(t) =

n
∑

i=0

π
(Li

2

)2
Xi(t). (18)330

For given specifications of the economic and biophysical functions of the model, and a given initial diameter331

distribution of the trees,̄X0, a numerical solution of the decision problem (D’) can be obtained. To analyze332

the sensitivity of the optimal logging regime with respect toa change in the initial diameter distribution, we333

consider different initial diameter distributions. They were specified as a transformed beta density function334

θ(l) with shape parametersγ andφ (Mendenhall et al., 1990). The initial forest consists of a population of335

trees with diameters within the interval 0 cm≤ l ≤ 50 cm. The distribution of the diameter of the trees is336

given by:337

θ(l; γ, φ) =























1

50

Γ(γ + φ)

Γ(γ)Γ(φ)

( l

50

)γ−1(

1 − l

50

)φ−1
, γ, φ > 0; 0 ≤ l ≤ 50,

0, elsewhere,

(19)338

whereθ(l; γ, φ) denotes the density function of the diameter of trees. Thus, the integral
∫ li+1

li
θ(l; γ, φ) dl339

gives the proportion of trees lying within the range[li, li+1). The beta density function is used because it is340

defined over a closed interval and allows a great variety of distinct shapes of the initial diameter distributions341

of the trees to be defined. We definedl0 = 0 and lm = 80. Within this interval we concentrate on the interval342
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[0, 50] and divide it into 10 initial subintervals of identical length. In this way, each cohort comprises trees343

that differ in their diameter by a maximum of 5 cm, and can therefore be considered as homogeneous. The344

initial number of trees in each cohort,Xi(0), i = 1, · · · , n, is calculated in such a way that the basal area345

of the stand is constant (25 m2/ha) in order to allow for comparisons between the results of the different346

optimization outcomes.347

The functionB(X̄(t), L̄(t), Ū (t)) accounts for the net benefits of the timber at timet and is defined as:348

[
∑n

i=0(ρ(Li(t)) − vc) tv(Li(t))mv(Li(t))Ui(t)] − [mc(X(t))], whereX(t) =
∑n

i=0 Xi(t). The first349

term in square brackets denotes the sum of the revenue of the timber sale minus the cutting cost of each350

cohorti, and the second term,mc(X(t)), accounts for the maintenance cost. The parameterρ(Li) denotes351

the timber price per cubic meter of wood as a function of the diameter,tv(Li) is the total volume of a tree352

as a function of its diameter,mv(Li) is the part of the total volume of the tree that is marketable andvc is353

the variable cutting cost.354

Timber price per cubic meter was taken from a study by Palahı́ and Pukkala (2003), who analyzed the355

optimal management of aPinus sylvestrisforest in a clear-cutting regime. They estimated a polynomial356

function given byρ(L) = Min[−23.24 + 13.63
√

L, 86.65], which is an increasing and strictly convex357

function, for a diameter lower than 65cm. AtL = 65 the price reaches its maximum value, thus, it is358

considered constant forL > 65. Data about costs were provided by the consulting firm Tecnosylva, which359

elaborates forest management plans throughout Spain. The logging cost comprises logging, delimbing,360

and collecting and removing the residues, and it is given byvc = 15 euros per cubic meter of logged361

timber. The maintenance cost is an increasing function of thenumber of stems per hectare, and is given by362

mc(X) = 10 + 0.0159X + 0.0000186X2 . The nursing cost is linear in the amount of ingrowing trees and363

is given byC(P ) = 0.73P .364

The value of the parameters of tree volume,tv(Li), and the marketable part of the tree volume,mv(Li),365

are estimated using information provided by a study by Cañellas et al. (2000). The tree volume follows366
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the allometric relationtv(L) = 0.00157387L1.745087 , and the marketable part of the volume of timber of367

each tree is an increasing function of the diameter, given bymv(L) = 0.699 + 0.0004311L. The thinning368

and nursing period,△t, is set equal to 10 years, which is a common practice for aPinus sylvestrisforest369

(Cañellas et al., 2000).370

To determine the dynamics of the forest the growth of a diameter-distributed stand ofPinus sylvestriswith-371

out thinning was simulated with the bio-physical simulationmodel GOTILWA (Growth Of Trees Is Limited372

by Water8). About 100 different simulation runs were conducted by varying the initial diameter distribution.373

The results of the simulation were used to estimate the functiong(E,Li), which describes the rate of diame-374

ter change. It was specified as a von Bertalanffy growth curve (von Bertalanffy, 1957), generalized by Millar375

and Myers (1990) which allows the rate of growth of the diameter to vary with environmental conditions.376

Thus, the functiong(E,Li) = (lm −Li)(β0 −β1 BA) was estimated by the method ofOLS, whereβ0 and377

β1 are proportionality constants, andBA is the sum of the basal area of all trees. The estimation yielded378

the growth function:g(E,Li) = (80 − Li)(0.0070177 − 0.000043079BA). Other functional forms of379

g(E,Li) were evaluated as well, but they explained the observed variables to a lesser degree.9
380

As GOTILWA only allows the survival or death of an entire cohort to be simulated but not the survival or381

death of an individual tree, it was not possible to obtain an adequate estimation of the functionδ(E,Li)382

describing the mortality of the forest. Nevertheless, the information provided by Tecnosylva suggests that383

in a managed forest, the mortality rate can be considered almost constant over time and independent of the384

diameter. Thus, according to the data supplied by Tecnosylva, δ(E,Li) was chosen to be constant over time385

8This program has been developed by C. Gracia and S. Sabaté, University of Barcelona, Department of Ecology and CREAF
(Centre de Recerca Ecològica i Aplicacions Forestals), Autonomous University of Barcelona, respectively. It simulates growth and
mortality and allows one to explore how the life cycle of an individual tree is influenced by the climate, the characteristics of the
tree itself and environmental conditions given by the total basal area of the trees. The model is defined by 11 input files specifying
more than 90 parameters related to site, soil composition, tree species, photosynthesis, stomatal conductance, forest composition,
canopy hydrology, and climate.

9The discretization scheme employed has the advantage that the set of ordinary difference equations is derived from the un-
derlying partial integro-differential equation, whereas in previous literature, for example (Haight et al., 1985), the set of ordinary
difference equations was set up ad hoc. Moreover, the EBT method requires only the differential equationdl/dt = g(·) to be
estimated, whereas the approach followed in the previous literature would require a complex system of difference equations to be
estimated simultaneously.
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and equal to 0.01 for each cohort.386

4.2 Optimization results387

The mathematical optimization problem (D’) was programmed in GAMS (General Algebraic Modeling Sys-388

tem) (Brooke et al., 1992). For the numerical solution of thisproblem the Conopt3 solver, available within389

GAMS, was employed. For a given initial distribution, the numerical solution of the problem determines390

for every 10–year period the optimal logging,Ui, and planting,P ; the optimal values of the state variables,391

Xi andLi; and consequently, economic variables, such as the revenue from timber sales and the cutting,392

planting, and maintenance costs. Optimizations with different random initializations of the control variables393

were carried out to assure that the numerical method providessolutions that are independent of the initially394

chosen values for the numerical optimization technique. Alloptimizations were carried out on a per-hectare395

basis.396

Selective Logging Regime397

Forest managers who want to maximize net timber benefits have to decide on the intensity of cutting, that398

is, how many trees of diameterLi have to be cut at each moment of time. To calculate the optimal logging399

regime we assume that the initial diameter distribution of the trees is given by a beta density function with400

parametersγ = 0.8 andφ = 0.2, corresponding to a young forest distribution. Table 1 summarizes the401

results of the optimization where a discount rate of 2% was assumed. It can be observed that all economic402

and biophysical variables show a cyclical pattern over time in which the phase of the pattern is maintained403

over time, but the amplitude decreases. In the long-run, the forest consists of approximately 927 trees, and404

approximately 123 of these trees are logged each 10–year period. The volume of the logged trees is 73.64405

m3, of which 52.43 m3 is marketable timber. The current-value revenue from the sale of this amount of406

timber minus the logging cost is approximately 1900 euros perhectare. The current-value net benefits of the407

forest in the long run are nearly 1000 euros. Following this regime, the total sum of discounted net benefits408
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of the forest over 300 years is 7794.27 euros per hectare.409

Table 1410

To illustrate the optimal evolution of the forest, Figure 1 a)to f) depicts the change in the histogram of411

the forest distribution over the planning horizon. It must benoted that the width of the diameter intervals412

is only homogeneous at the initial point in time, but the widthof the different cohorts changes with the413

evolution of the forest over time. Thus, the size of the bar of aparticular cohort is chosen so that its area414

corresponds to the number of trees in that cohort. The slightly shaded bars indicate the number of trees that415

should be logged within each 10–year period, while the heavily shaded bars stand for the number of trees416

that should remain in the stand. Figure 1 shows that the initially skewed diameter distribution is gradually417

flattened over time. However, during this process the distribution varies in the form of a wave leading to an418

almost u-shaped distribution after 50 years. Figure 1 also shows that it takes more than 100 years to reach a419

diameter distribution of the trees which is relatively stable.10
420

Figure 1421

Effects of a Change in the Initial Diameter Distribution on the Optimal Selective-Logging Regime422

To illustrate how the initial diameter distribution of the trees alters the optimal selective logging regime,423

problem (D’) has also been solved for an old forest distribution (γ = 2, φ = 0.8), a bell shaped distribution424

(γ = φ = 2), a U-shaped distribution (γ = φ = 0.5), a uniform distribution (γ = φ = 1) and a non-425

structured forest (even-sized,γ = φ = ∞). Figure 2 depicts the optimal evolution of the weighted average426

(2a) and standard deviation (2b) of the diameter distribution over time for the analyzed initial distributions.11
427

10Please note that the average diameter of the bars (cohorts) is not constant over time. This is explained by the fact that the trees
of a cohort always stay together and do not move from one cohort to another. However, since the trees grow the average diameter
of the cohort increases as the cohort moves along the time axis.

11Figure 2 shows the development of the average and standard deviation of the diameter distribution of three different initial
diameter distributions. The remaining three initial diameter distributions are not depicted because they follow the same pattern, and
their graphical representation would obstruct the interpretation of Figure 2.
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It shows that the average diameter of the different distributions tends to converge after approximately 200428

years, as the amplitude and phase of the cyclical behavior vanishes. Additionally, Figure 2 shows that the429

standard deviation of the distributions is governed by the same cyclical pattern. When the mean diameter430

and standard deviation of the initial diameter distributionare close to that of the steady state (young forest431

with γ = 0.8, φ = 2), the cyclical evolution of these variables is less pronounced, implying that the benefits432

will be more stable over time. In general, it can be observed that the long-run mean and standard deviation433

tend to the values of 17 and 9, respectively, for all considered parameter values ofγ andφ of the diameter434

distribution. Hence, the steady-state distribution of the diameter of the trees is independent of the initial435

distribution of the trees. This result confirms the supremacyof the normal forest as the optimal forest436

management objective.437

Figure 2438

Moreover, we conducted a sensitivity analysis to determine the effect of a change in the initial basal area on439

the steady-state distribution. Figure 3 illustrates the optimal evolution of the weighted average diameter (3a)440

and the standard deviation (3b) of the diameter over time for ayoung forest, given the initial basal areas of441

15, 25 and 35 m2/ha. One can see from Figure 3 that the long-run mean and standard deviation tend to the442

same values as in Figure 2 (17 and 9, respectively). This result shows that the steady-state distribution is not443

only independent from the initial diameter distribution butis also independent from the initial basal area.444

Figure 3445

We also conducted a sensitivity analysis to evaluate how the optimal management regime of a forest changes446

as a result of a variation in the discount rate. Thus, we solvedproblem (D’) for a young forest distribution,447

given discount rates of 3% and 4%. Figure 4 depicts the optimalevolution of the mean diameter (4a) and448

standard deviation (4b) over time resulting from the optimizations. Figure 4 shows that the discount rate has449

a significant influence on the optimal selective logging regime. An increase in the discount rate produces,450
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in the long run, a decrease in the average diameter at which the trees are cut, that is, the trees are cut earlier.451

However, it can be observed in Figure 4b that the initial diameter distributions stabilize in the long run,452

independently of the chosen discount rate, i.e., the steady state distribution is independent of the discount453

rate.454

Figure 3455

At the end of section 3.2 we stated that the shape of the distribution at the steady state depends on growth456

and mortality rates. To illustrate this point, the optimal selective logging regime in the case of an initial457

diameter distribution of trees corresponding to a young forest is calculated for a higher mortality rate of458

δ = 0.1 compared to the previously chosen mortality rate of 0.01. The histogram of the resulting long-run459

distribution is depicted in Figure 5. It shows that an increase in the mortality rate causes the optimal steady-460

state distribution to be decreasing in diameter.461

Figure 5462

Our results show that in the presence of density effects the steady state distribution tends to a normal forest463

and is independent of the initial distribution of trees. For acomparison of our results with the previous464

results in the literature we refer primarily to the article bySalo and Tahvonen (2002) since the employed465

model is still the up-to-date cornerstone for other works. Inthe results of their work the optimal long-run age466

distribution is non cyclical only when the length of the discretely measured time period converges towards467

zero, when the discount rate is zero or when the Faustmann rotation is not unique. Under these conditions468

a normal forest may result. Otherwise many other outcomes, which do not correspond to a normal forest469

are possible. Salo and Tahvonen (2002) observe that the analytical framework of a time discrete model is470

the principal cause for the emergence of logging cycles. The model presented in this article is based on471

a different analytical framework, which allows relaxing assumptions made by Salo and Tahvonen (2002):472

the stand is structured with respect to diameter, the economically more relevant variable, and not age; the473

23



cleared land does not have to be replanted immediately; the forest manager can vary the number of planted474

trees per hectare; and it allows partial harvesting of a cohort. Uusivuori and Kuuluvainen (2005) used an475

analytical framework very similar to Salo and Tahvonen (2002) but allowed also for partial harvesting of476

the different age classes, leading to long-run distributions being either cyclical or not. According to their477

findings the noncyclical forest is typically not a normal forest. However, the authors assume in contrast,478

to this study, and to the article by Salo and Tahvonen (2002), that the price for one cubic feet of timber is479

independent of the age of the trees. As mentioned above the price of timber per cubic feet usually increases480

with the diameter (age) of the trees since the wood can be used for the production of more valuable goods.481

One would expect this assumption to affect the optimal logging regime. For this reason, and due to the fact482

that trees in the model of Uusivuori and Kuuluvainen (2005) donot only provide timber but also amenity483

values, it is not possible to compare their results with the results of the cited literature.484

5 Conclusions485

This article presents a theoretical model that allows us to determine the optimal management of a diameter-486

distributed forest where the growth process of the trees depends not only on their individual sizes but also487

on the size distribution of the trees within the entire stand.This modeling framework allows us to take into488

account the fact that the life cycle of each individual tree isaffected by the other trees since they compete489

for light, nutrients, and space. The density dependent formulation of the biological growth process leads490

to a partial integrodifferential equation. To determine theoptimal forest management, the corresponding491

economic decision problem can be formulated as a distributedoptimal control problem where the control492

variables and the state variable depend on both time and the diameter of the trees.493

The resulting necessary conditions of this problem allow thederivation of an analytical expression which494

can be interpreted as a generalization of the Faustmann formula. Since the necessary conditions of this495

problem include a system of partial integrodifferential equations, it usually cannot be solved analytically.496
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Thus, the Escalator Boxcar Train method is proposed to solve the problem numerically. The method allows497

the partial integrodifferential equation to be transformedinto a set of ordinary differential equations and498

thereby approximate the distributed optimal control problem by a standard optimal control problem. In con-499

trast to the existing literature, the resulting optimization problem can be solved numerically using standard500

mathematical programming techniques and does not require programming complex numerical algorithms.501

To determine the optimal selective logging regime of a diameter-distributed and privately owned forest502

where individual trees compete for scarce resources, an empirical analysis is conducted. It shows that the503

long-run mean and variance of the diameter distribution for the different types of analyzed forests consid-504

ered tend to a common value, giving rise to a normal forest. Although the diameter distribution of the forests505

in the steady-state is independent of the initial distribution, the competition between individuals belonging506

to the same population affects the transition paths to the steady-state distribution, and therefore the opti-507

mal selective-logging regimes in the first periods differ considerably depending on the distribution of the508

individual characteristics over the entire population.509
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Appendix510

In the case of an even-aged stand decision problem and an infinite planning horizon, problem (D) can be511

simplified, and is given by512

max
u(t)

∫

∞

0
B̃(x(t), u(t)) e−rt dt, (DE)513

subject to the constraints514

ẋ(t) = g̃(x(t)) − u(t), x(0) = x0, u(t) ≥ 0.515

The state and control variables do not depend anymore on the diameterl and since all trees are planted at the516

same time, the planting costs can be incorporated into the netbenefit function of the timber,̃B(x(t), u(t)).517

Moreover, the residual value of the stand approaches zero ast approaches infinity, and̃g(x(t)) denotes518

the growth of the biomass. With these provisions the current value Hamiltonian,HDE, yields HDE =519

B̃(x, u) + λ(g̃(x) − u) and the first order conditions are given by520

HDE
u = B̃u − λ + µ1 = 0, (A. 1)521

λ̇ = rλ − B̃x, limt→∞λ(t) = 0 (A. 2)522

ẋ = g̃(x) − u, x(0) = x0. (A. 3)523

Unfortunately, this formulation does not allow the Faustmann formula to be derived. Yet, a redefinition of524

the variables yields an equivalent model that in turn provides the Faustmann formula. Let525

x(t) = T (t), and thereforėx = Ṫ ,526

λ(t) = ϕ(t), whereϕ is the new costate variable,527

u(t) = 1 − I(t), where0 ≤ I ≤ 1 indicates the share of trees that is invested, i.e. not cut,528

ẋ = g̃(x) − u = 1 − (1 − I) = I, whereg̃(x) ≡ 1, and given the previous definitions we obtainṪ = I,529

B̃(x, u) = rF (t)(1−I), whereF (T ) = Pw f(T )−c erT +v. The parameterv denotes the land expectation530

or site value.531
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Thus, the new decision problem formulated originally by Weitzman (2003) yields532

max
I(t)

∫

∞

0
r(F (T (t))(1 − I(t))e−rt dt, (DF)533

subject to the constraints534

Ṫ (t) = I(t), T (0) = 0, 0 ≤ I(t) ≤ 1.535

The current value Hamiltonian,HDF , yieldsHDF = rF (T )(1 − I) + ϕI and the first order conditions536

result in537

HDF
I = rF (T ) − ϕ + µ2 = 0, (A. 4)538

ϕ̇ = rϕ − rF ′(T )(1 − I), (A. 5)539

Ṫ = I. (A. 6)540

Utilizing the substitution we made for the formulation of thedecision problem (DE) in the first order541

conditions of problem (DE) shows that equations (A. 1) – (A. 3)are identical to the first order conditions542

(A. 4) – (A. 6) of problem (DF). Hence, their solutions are identical. Utilizing equation (A. 4) we see that543

ϕ = rF (T ) + µ2. Hence,ϕ̇ = rF ′(T )Ṫ + µ2. Substituting this expression in equation (A. 5) and using544

equation (A. 6) yields545

rF ′(T )I + µ̇2 = r2F (T ) + µ2 − rF ′(T )(1 − I). (A. 7)546

Thus,547

µ̇2 = r2F (T ) + µ2 − rF ′(T ). (A. 8)548

549

As long asI > 0, i.e., we do not cut,µ2 will be zero and we obtain550

r =
F ′(T )

F (T )
=

Pw f ′(T ) − r c erT

Pw f(T ) − c erT + v
. (A. 9)551
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As shown by Weitzman (2003), equation (A. 9) is identical to the reformulation of the Faustmann formula552

given by553

Pw f ′(T ) = rPw f(T ) +
r(Pw f(T ) − c erT )

erT − 1
, (A. 10)554

wherev has been replaced by the maximum site value
Pw f(T ) − c

e−rT − 1
. Hence we can conclude that given the555

optimal value ofI, equation (A. 2), which is equivalent to equation (A. 5), provides the Faustmann formula556

for an even-aged stand.557

28



References

Adams, D., Alig, R., McCarl, J., Callaway, J. and Winnett, S. (1996). An analysis of the impacts of public

timber harvest policies on the private forest management in the United States,Forest Science42: 343–

358.

Adams, D. and Ek, A. (1974). Optimizing the management of uneven-aged forest stands,Canadian Journal

of Forest Research4: 274–287.

Björklund, L. (1999). Identifying heartwood-rich stands or stems of Pinus Sylvestris by using inventory

data,Sylva Fennica33: 119–129.

Brooke, A., Kendrick, D. and Meeraus, A. (1992).GAMS: A User’s Guide, release 2.25, The Scientific

Press, San Francisco.
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Table 1: Optimal Selective-Logging Regime (where the initial diameter distribution is determined byγ = 0.8 andφ = 2)

Logging Maintenance Planting Net Discounted
Number Planted Logged BA Volume Timber Revenue - log- cost cost benefit net benefit

Year of trees(a) trees trees (m2/ha) (m3/ha) (m3/ha) ging cost (Euros/ha)(b) (Euros/ha) (Euros/ha) (Euros/ha) (Euros/ha)

0 820 202 115 12.43 98.78 70.66 3211.29 -355.74 -121.19 2734.36 2734.36
10 947 107 67 5.05 42.19 30.05 1127.83 -417.68 -64.33 645.81 529.79
20 959 119 85 5.89 49.74 35.41 1274.32 -424.12 -71.48 778.71 524.05
30 964 132 105 6.79 57.78 41.11 1430.57 -426.60 -79.13 924.85 510.58
40 958 144 129 7.94 68.06 48.40 1642.03 -423.27 -86.52 1132.23 512.78
50 939 137 154 9.19 79.06 56.20 1874.82 -413.53 -82.11 1379.18 512.40
60 929 133 137 8.16 70.17 49.88 1662.47 -408.81 -79.52 1174.14 357.86
70 935 163 118 8.50 71.39 50.83 1872.41 -411.57 -97.50 1363.34 340.87
80 909 121 179 12.94 108.66 77.37 2850.05 -398.61 -72.45 2378.99 487.95
90 921 129 100 7.18 60.31 42.94 1576.15 -404.48 -77.07 1094.59 184.18
100 929 136 111 7.93 66.69 47.49 1738.22 -408.63 -81.17 1248.42 172.32

...
...

...
...

...
...

...
...

...
...

...
...

200 928 136 128 9.08 76.41 54.40 1986.89 -408.15 -81.22 1497.52 28.53

300 927 136 123 8.75 73.64 52.43 1914.72 -407.72 -81.48 1425.52 3.75

(a) The number of trees in the forest is calculated just after the trees are planted, and before the thinning takes place.
(b) All monetary values apart from the discounted net benefit in the last column of the table are expressed as current values.
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Figure 1: Evolution of the Optimal Diameter Distribution
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Figure 2: Evolution of the Optimal Diameter Distribution for Different Initial Distributions
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Figure 3: Evolution of the Optimal Diameter Distribution for Different Initial Basal Areas
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Figure 4: Evolution of the Optimal Diameter Distribution for Different Different Levels of the Discount
Rate
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Figure 5: ”Long-Run” Diameter Distribution of the Trees Given a Mortality Rate of 0.1
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