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Abstract

This study analyzes the optimal selective logging regime of a size-distributed forest where individual
trees compete for scarce resources such as space, light, and nutrients. The decision problem of the forest
manager is formulated as a distributed optimal control problem. The interpretation of the first-order
conditions allows a generalization of the Faustmann formula. In an empirical part, this article numeri-
cally determines the optimal management regime of a size-structured forest and shows that the optimal
selective logging regime is associated with a normal forest under a wider variety of situations than stated
in the previous literature.
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1 Introduction

Frequently, forest management is based on the Faustmannxonuoma sustained yield rules, which deter-
mine the optimal cutting age of the trees. Since these @aiteg based on the assumption that all trees have
the same age, their application leads to the clear cuttingeo&ntire stand. This management regime has
been criticized because it pays no attention to the ecolbgidae, in the form of biological diversity in for-
est land (Doyon et al., 2005; Sawadogo et al., 2005), andcoemnecreational values (Scarpa et al., 2000).
Since trees in a forest provide food, shelter and substratetiier life forms, maintaining a rich variety of
trees conserves biodiversity in a forest ecosystem (Lin ar@hBiorno, 1998) and improves forest attributes
associated with scenic and recreational values of the ftaedt For example, a complex tree and canopy

structure helps to provide preferable habitat for wildlifuater, 1990; Whittam et al. 2002).

To overcome the negative effects of the clear cutting regtree, selection silviculture (uneven-aged man-
agement), for which there is a very strong interest in tenipesa well as in tropical regions, has been
proposed (Vanclay, 1995). Managers of public forests amyliko have a mandate to consider not only
the monetary benefits to be obtained from timber productidralao the benefits to be gained from bio-
diversity conservation, and from maintenance of forest lafttl high scenic and recreational values. In
contrast, private landowners and timber companies mighitiori, be less interested in adopting a selective
logging regime since they are more inclined to focus exchlgion the monetary benefits of timber pro-
duction. However, the fact that an increasing number of pFieavners and timber companies certify their
private forest holdings by using standards developed, &iante, by the Forest Stewardship Council, the
Canada Standard Association or the Pan European Foredsiicaddn Council makes it more likely that
private owners and timber companies will also adopt a sekeldgging regime. Despite these concerns, the

economic literature has described the characteristicseodptimal selective logging regime only in part.

The previous literature emphasizes the introduction of alitiadal independent variable of the choice

functions. Besides calendar time, a structuring variablbetrees, either age or diameter, was considered.
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Several empirical studies have introduced the structuring variable diameter of the tree to resolve the problem
of optimal management of the uneven-aged forest. Initiligams and Ek (1974) determined only the
optimal long-run allocation of all trees among the differtee vintages, but not the optimal replacement
periods. Haight et al. (1985) and Lin and Buongiorno (1998)esbsimultaneously for the optimal long-run
allocation of all trees among the different tree vintages, the optimal replacement periods. These studies
were formulated in a discrete framework, i. e., time and diamean only take on certain values, and,
consequently, they cannot provide an analytical formutatibthe optimal selective logging rule. Although

later studies by Adams et al. (1996), and Sedjo and Lyon (1@8ied discrete time and a continuous
structuring variable for their policy analysis, they did establish an analytical formulation for the optimal

logging pattern.

Moreover, several quite remarkable theoretical studiegpoigtide a rule for the optimal selective logging
regime by analyzing the properties of the transient path &ttteesteady state (Mitra and Wan, 1985; Mitra
and Wan, 1986; Wan, 1994; Salo and Tahvonen, 2002; UusivmoriKaiuluvainen, 2005; Cunha e Sa
et al., 2007). However, these articles are based on a styiratytical model where the growth process
of the biomass is not modeled explicitly. Every year trees fasm the current to the sequent age class.
As each age class is associated with a particular biomasstinatses with age, trees “grow” as they get
older. Hence, the current theoretical models do not estaalfsinctional relationship between biomass and
age, but rather form a tuple of different pairs of biomass ayel dn this respect, their analytical results
are limited to certain points of combinations of age and bssnaut do not fully describe the underlying

biophysical processes proposed in the literature of bioldgnathematics (Keyfitz, 1968; Keyfitz, 1977).

The previous theoretical literature did not explicitly mbdempetition between individuals belonging to the
same population. Individuals compete for space or light artdemts. In the absence of predators, the life
cycle of a single individual is mainly influenced by the othedividuals of the population. Thus, in order

to model biological growth, mortality and reproduction peses correctly, one does not only have to take
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into account individual characteristics such as age but also the distribution of the individual characteristics
over the entire population. Given the same initial amountioimass, the growth rate of the forest will be
higher as more young individuals form part of it. In other wgrthe more young trees there are, the less
competition individual trees face and therefore the growtk of the entire forest increases with the share

of young trees.

The reason why growth processes based on continuous time eodtiauous structuring variable have
not been considered may reside in the fact that they lead tabdi®d optimal control problems where
the law of motion is given by partial differential equatiof®E), or partial integrodifferential equatidns

if density effects are considered. The previous theoretoa empirical literature usually describes the
evolution of an age (size) distributed forest by a set of téifiee equations in time for a number of age (size)
cohorts. These difference equations are an approximatiserédization over time and age (cohorts)) of the
continuous evolution of the forest over time and age. Theipusly employed discretization procedure
seems reasonable and has been practiced widely; howevemat known whether the set of difference
equations describes the evolution correctly. The set adidiffce equations is set up ad hoc and is not derived
from the underlying partial differential equation. Notider, instance, that the set of difference equations in
the paper by Haight (1987) is identical for an age and sizetstred population. However, the PDEs for
age or size-structured populations are not identical. ThE Ba size-structure population incorporates a
function that relates time and size and therefore is not ptés¢he PDE for an age-structured populatfon.
On the other hand, partial differential or integrodiffei@héquations allow not only the age but also the size
of the trees to be considered. In fact, the size of the treesrdetes their economic value. As discussed
below, age can only be considered as a poor proxy for the siadref, and therefore, any analysis based
on age instead of size may be misleading. Moreover, PDEs p#renprice of timber to be formulated as

a function of tree size, and to incorporate density effecisngéquently, considering competition between

1The unknown function of the PDE is a function of time and age (size). In cases where an integral over the unknown function
forms part of a partial differential equation, the PDE becomes a partial integrodifferential equation.

2To be more precise this function is equal to one for an age-structured population since time and age move with the same speed.
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individuals, continuous time, and a continuous structuring variable allows the definition of an analytical

formulation of the optimal harvesting rule for selective doty, and its comparison with the Faustmann

rule, which is based on continuous time.

Unfortunately, if the forest dynamics are governed by a ghiritegrodifferential equation it is not possible
to obtain a complete analytical solution of the optimal foresnagement regime and one has to resort to
numerical techniques. In contrast to the existing liteatwhere distributed control problems are solved
numerically by a gradient projection method (Feichtingealet2004) or Markov decision process models
(Lin and Buongiorno, 1998), we employ a different technigunewn as the “Escalator Boxcar Train”. This
technique has the advantage of not requiring programminggriaai algorithms since it can be implemented
with standard optimization packages such as GAMS. Moreaveimplifies the estimation of biological
equations used in the model as it will be shown in the empistadly. A presentation of the numerical

method used in this article can be found in Goetz et al. (2008).

This article presents a theoretical model that describestibeacteristics of the optimal selective-logging
regime of a size-distributed forest that maximizes timbdremefits. The law of motion of the economic
model is governed by a partial integrodifferential equatioat describes the evolution of the forest stock
over time. This formulation allows size dependent econoraitables and modeling biophysical processes
to be taken into account more realistically. As an extensiothe literature this article provides an ana-
Iytical formulation of the optimal selective-logging rulehase interpretation allows generalization of the
Faustmann formula. In an empirical part the article deteesithe optimal selective-logging regime of a
size-distributed forest from a private perspective, andloots a sensitivity analysis. It shows that the cycli-
cal evolution of the variables vanishes along the optimah gating rise to a non-cyclical logging pattern
and a fairly uniform diameter distribution of the trees. Tthistribution provides a constant flow of income
and is known as a normal forest. In comparison with the previbeoretical literature where a normal forest

only emerged under special conditions, we find that the stdnggult is the emergence of a normal forest.
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The article is organized as follows. Section 2 describes the features of the model. As such it is divided into

one subsection that describes the underlying biologicatgases and another that outlines the economic
decision problem in the form of a distributed optimal conjpobblem. Section 3 shows that the optimal
selective cutting rule for a size-distributed forest canrberpreted as a generalization of the Faustmann for-
mula for even-sized forests, and analyzes the implicatibasteady-state on the optimal forest distribution.
The next section determines the optimal selective cuttiggre in an empirical setting, and analyzes the
changes in the long run outcome as a result of a change inatiffearameters. Finally, section 5 presents

the conclusions.

2 The model

Before presenting the complete economic model that willaalle to determine the optimal selective logging

regime, we have characterized the underlying biologicalehttdit describes the growth process of the trees.

2.1 The growth process of the trees

In previous theoretical economic literature the age of the ts regarded as the structuring variable of the
biological population (Salo and Tahvonen, 2002; Wan, 1994)biological science, however, it is usu-
ally not the age but physiological or behavioral charadiedsfor instance, size, life cycle stages, gender
or genetic differences, or behavioral activities, that detee the biological life cycle of the individual
(Cushing, 1988). Likewise, from an economic point of viewsitniot the age but the size of the tree that
is important. The price of lumber changes with the size of the but not with age. And, as established
by forest scientists, the age of a tree is not very closelyeélt its size (Bjorklund, 1999). Large genetic
variety between the trees, and between the different logalitions of each tree makes it difficult to estab-
lish a functional relationship between size and age. Comsdtyl the age-size relationship resulting from

an econometric estimation is very poor (Seymour and Kenedi@8)l In forestry, the size of a tree, and
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consequently the size of a forest, is usually measured by the diameter at breast height, i. e., the diameter of
the trunk at a height of 1.30 m above the ground. We denote #mealer of a tree by Q, Q = [lo, ),

wherely andl,, indicate the biological minimum and maximum size of a treee €rogenous variable
together with calendar timeform the domain of the control and state variables. We assume that a diameter-
distributed forest can be fully characterized by the numlbérees and by the distribution of the diameter

of the trees. In other words, space and the local environrheatalitions of the trees are not taken into
account. Given that the diameter value of a tree lies in thexvat|[ly, /,,,), and that the number of trees is

large by assumption, the distribution of the trees can beesemted by a density function, denotedxdy, ),

which indicates the population density with respect to thecstiring variable/, at timet. Therefore, the

number of trees in the forest at timés given by
l’HL
X(t) = / 2(t,1)dl. )
!

The forest dynamic is driven by the processes of reproductioowth, and mortality, which in turn are
influenced by environmental conditions. Let us defjiGE(t), () the rate of change in the diameter of a tree,
as a function of its current diametewhereE(t) presents a collection of environmental characteristics that
affect the growth rate of the individual tree. In the abserfqgaredators, these environmental characteristics
are given by the local conditions where the tree is growingl, lanthe neighboring trees. The local con-
ditions and the competition between individual trees forcspdight, and nutrients affect the life cycle of
each tree. Since our model does not consider space, theleaki@t) presents exclusively the competition
between individualé. Environmental characteristidg(¢) can be expressed by the total number of trees, or
the basal area of the stand. A large basal area of the starifiesigmhigh competition pressure on the life

cycle of an individual tree that decreases the diameter gréWiasobares et al., 2004). Therefore, we use

3Although the literature on forest economics contains complex optimization models where space is considered explicitly, their
solutions are based on heuristic approaches and not on efficient optimization techniques (Weintraub et al., 2007).
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the stand basal area to take account of the competition between individbatss,

E(t) = /l " Pt dl. @)

0

Hence, the change in the diameter over time of a single treigan py

En :g(E(t),l), (3)

The instantaneous death rate is denoted(dy(¢),1). It describes the rate at which the probability of

survival of a tree, given the environmental characterisii¢s), decreases with time.

The reproduction of the forest can be modeled as internabdeigtion or planting. In the former case we
would obtain a boundary condition for the partial integréetiéntial equation that reflects the reproduction
process. Since seed production by individual trees is vegly tKarlsson andrlander, 2000), it is space,
light, and nutrients that are the limiting factors for the tggth of young trees, and not the reproduction
process itself. For this reason we can assume that the nurhdeeds that turn into seedlings is sufficiently
large. This allows the forest manager to choose the numbeeed tvith a diameter d@f by removing any
additional trees. The number of upgrowing trees chosen istddrbyp(t,ly). In the case of planting, we
are dealing with a forest that is completely managed, whenagdrees with a diameter f are planted and
no biological reproduction takes place. Hence, for bothaepction systems the control variables for the
management of the forest are giveniby, /) andp(t, ly), denoting cutting density at timewith diameter

[, and the flux of the trees with diametirrespectively. Young trees are either grown up to diamigtesr
planted with diametely, at timet¢. Thus, the optimal forest management problem is a distributed optimal
control problem where the time dependent control varialiiel) is distributed overl (Feichtinger and

Hartl, 1986). In contrast, the time dependent boundary obrtriable p(t,ly) refers only to the initial

“We assume that the trees with different sizes are distributed evenly over the stand. If this is not the case, other intra-specific
competition indices that are distance dependent, such as the Lorimer area index (Garcia-Abril et al., 2007), are more appropriate.
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diameterl, of the tree. Although our modelling approach allows consitien of both planting and natural
reproduction, we frame our analysis in the context of natuatoduction since employed selective logging
regimes frequently rest on natural reproduction. Based el known McKendrick equation for age
structured populations (McKendrick, 1926), the dynamiahefdiameter-distributed forest can be described
by the following partial integrodifferential equation dissed by de Roos (1997), or by Metz and Diekmann

(1986)

0x(t,1) n dg(E(t),1) z(t,1)
ot ol

= —0(E(t), 1) x(t,1) — u(t,1) 4)

subject to the boundary conditigf{ £(t),lo) z(t,lo) = p(t,lp). The two terms on the left-hand side of
equation 4 present the change in the tree density over timdianmkter; the second term not only considers
the diameter but also takes the interdependence betweepteiaamd time%’—x =g 5+ az 4 into account,
i.e., it presents the temporal change in diameter multigligthe change in tree density over diameter plus
the temporal change in diameter over diameter multipliedhieyttee density. Hence, the flux of the tree
density with respect to diameter and time has to equal thestefrthe right-hand side of equation 4, given

by the product of the mortality rate and the tree density, Aepdiensity of the logged trees.

2.2 The distributed optimal control problem

We assume that the forest is privately owned and managed @lanaing horizon ot;. Using the defini-

tions given in the preceding section, the formal decisiorbi@m of the forest owner can be stated as:

t1 lm t1
max / / z(t, 1), u(t,))e " dldt — | C(p(t,lo))e " dt
(tl ,p(t lo 0

(D)
Im
+/ Stl(x(tlvl))e_rtl dl‘|‘/ Slm(ﬂi(t,lm))e—rt dt,

lo 0

subject to the constraints

5If the structuring variable was age, the functigmvould be constant and equal to 1 since the aging of the individual by one
year corresponds to calendar time. In this case the Qégﬁf} would simply yield%
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dx(t,l) _ A(g(E®),]) x(t,1))
= o — 8(B(t), 1) z(t,1) — u(t, 1),

x(to, 1) = zo(l), g(E(t),lo)x(t,lo) = p(t,lo), p(t,lp) >0, <u(tl) >0,

where E(t) is given by equation (2), and denotes the discount rate. The twice-differentiable function
B(z,u)e”" presents the discounted net benefits of the timber. It depestdmly on the number of logged
trees but also on the number of standing trees since it incatgm the maintenance cost of the forest. It
is assumed that the maintenance cost function is concavehasdB, < 0, B,, < 0. Itis also assumed
that the net benefit function is strictly concaveudn The twice-differentiable and strictly convex func-
tion C(p)e "t expresses the discounted cost of nursing trees up to diafgetae differentiable function
St (z)e~" the discounted value of the standing trees at the final poitie of the planning horizon, and
the differentiable functio’™ (z)e~"* expresses the discounted value of the standing trees tratéwmshed
the maximum diametel;,,.5 The terma (1) denotes the initial diameter distribution of the trees, and the
restrictiong(E(t),lo) z(t,lo) = p(t,lp) requires that the flux of the change in diameter at dianigterl-
tiplied by the tree density coincides with the total flux of thiameter of trees with diametéy. Finally, the

control variables must be nonnegative.

Let the costate variable related with the dynamics of thestdve denoted b¥(¢,), and the Lagrange mul-
tiplier related with the restriction(E(t), lo) z(t, lo) = p(t, lo) by Ao(t). Utilizing Theorem 2 of Hritonenko

et al. (2008) the following necessary conditions can be nbthi

®In the case of planting, the functia@i(p) expresses the cost of planting trees with diamitand obviously has to be specified
differently to how it is expressed in the case of natural reproduction.
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e "By — A(t,1) + i (t,1) =0, Vt, VI (5)

e (p(t, 1)) + Aot) + n(t) = 0, Vit (6)
p(t7l0) _g(E(t)JO)x(tle) = 07 vt (7)
mg;, Dy aE), Z)GAg; D 4 0B, D) ML) — B,
lm xr
- % 12 ) A(t,l)(w +opatl)dl, (8)
ox(t,l) 8(g(E(t),l) x(t, l)) -
= - 3 —8(B@), 1) x(t,1) —u(t,l), x(0,1) = zo(l), ©)

wherep, andn are Kuhn-Tucker multipliers related to the non-negativity constraints of the decision vari-

ablesu and p, respectively. For an interior solution the first necessary condition, equation (5) states that

along the optimal path the discounted marginal net benefitisntfer should equal the shadow prig€in
situ value) of the forest stock for everyand/. In contrast to lumped optimal control, distributed opti-
mal control requires that this equation holds along the cgitipath not only with respect to time, but also
with respect to diameter. Thus, the forest manager maxinmigéiser benefits not only over time but also
with respect to diameter at every instant of time. In otherdspthe forest manager practices selective
logging. Equation (6) states that the discounted marginsl cbnursing trees up to diametgr should
equal, at every moment of time the future marginal benefithisf‘tree”, i.e. the marginal net benefits
that accrue from time to t;. Hence, corresponding with the first necessary conditioa,félhest man-
ager to some extent also practices selective nursing by itfgptise time and the number of trees to be
grown, but not their diameter. Equation (7) reproduces threstraint associated withy(¢) and reflects
the fact that the increase in diameter of the trees has toideirwith the flux of ingrowing trees with
diameterly. Necessary condition (8) shows that the marginal changeeiintisitu value over time and
diameter has to equal the sum of the forgone interest in ¢dpithe form of trees, the monetary value

of the lost trees due to natural mortality and the marginalnteaince cost plus the sum of the monetary

10



211 values of the direct and indirect changes in growth and mortality of the standing trees. The last neces-
212 Sary condition is just a restatement of the law of motion, dredefore, it will not be discussed here. Fi-

213 hally, following Sage (1968) the following necessary trarsality conditions have to be taken into account.

[

Jo(t) = Altlo), (10)

A = D) a1)
lm

9B ) A1 1) = ) (12)

215 The first transversality condition, equation (10), requatesvery moment that the shadow cost for nursing
216 trees has to equal the shadow price of the stock evaluatee didmeter,. This transversality condition
217 IS a result of the link between the distributed and the boundantrol formed by their common stock
218 variable. The transversality condition (11) states thatstedow price of the trees has to equal the value
210 Of an additional standing “tree” at the end of the planningizwor. Finally, transversality condition (12)
20 Yields that the shadow price of the trees has to be equal toalhe wf an additional standing tree with the

21 Mmaximum diameter.

22 3 Considerations in the long-run

223 In this section we analyze to what extend the first order camdit(5) — (9) relate to the first order conditions
224 Of an even-aged forest, commonly expressed by the Faustroamnla. Moreover, we describe the optimal

225 Size distribution of the forest in the steady state, i.e. thady state distribution of the forest.

26 3.1 Comparison with the Faustmann formula

227 From equation (5) we know for an interior solution that B, (u,z) = A(t,1), i.e., at every moment of

28 time it is optimal to cut the number of trees in such a way thadiscounted marginal net benefits of timber

11



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

are equal to the situvalue of the standing trees. Hence, we can rewrite equation (8) to obtain a generalized

Faustmann equation.

Proposition 1 (Generalized Faustmann Equation

The change in the in situ value of the stock density

ML) | ML)
ot ol

T [ A(“)(W +opa(t,D) dl = rAtD). (13)

g(E(t),l) + B, — 6(E(t),)A(t, 1) +
lo

can be interpreted as a generalization of the Faustmann ftamu

Demonstration: The right-hand side of equation (13) reflects the interest forgone on the capital tied up
in the standing trees. The first two terms of the left-hand sidkect the change in thian situ value of

the timber growing for an additional period of time and an @ase in diameter by one unit. Given that

B, < 0, the marginal maintenance cost for the stock not being cut down and the monetary loss due to
natural mortality must be subtracted. Moreover, the mogetalue of the direct and indirect changes of
growth and mortality processes resulting from a change inémsity have to be taken into account. Since
these density dependent changes in growth and mortality altephed by thein situ value, the last term of

the left-hand side provides a monetary value for these clsaride right-hand side and left-hand side have

to be identical along the optimal path. To see that equatiBhréflects the Faustmann formula as a special
case let us restate the Faustmann formula given by

Pw f(T) B CerT)

P /(1) = 1P f(1) 4 "L LT 20T

(14)

whereT indicates the age when the entire even-aged stand i®gus, the market price of the wood(T")
the merchantable volume of wood that a stand of @garoduces. The parameterpresents transaction

(logging, processing, transport) and nursing costs.

12
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The left-hand sides of the Faustmann formula and of equation (13) reflect the changaisithgalue of
the forest over time. However, since equation (14) has to teegreted differently from equation (13), we
demonstrate in the appendix that in the case of an even-aged, $he change in the in situ value over time
- the equivalent of equation (13) - provides the FaustmanmEkta. However, the traditional formula does
not take into account the changes in maintenance costs anetanpivalues from changes in growth and
mortality as a result of a change in the diameter of the stanées. The tern®, f(T) — ce’” reflects the
net value of the standing trees in the marketplace and camelsgoX (¢ = 0,1) if 1 is identical toT". Ast;
increases, future rotations of the forest stand are incatedrinto the value o%(¢,) as it denotes thim situ

value fromt to ¢;. Specifically, it holds ag; tends to infinity and we obtain that the valueXdt, /) is given

CerT+ow(T)_CerT

byP’LUf(T)_ e7~t_1

, Where the second term reflects the opportunity cost of the land for

an infinite stand rotation. Hence, the change in the in situew@\ /dT is given byP,, f'(T) — rce™ and

reflects the left-hand side of equation (14), and= r(P, f(T) — ce'’ + w) the right-hand

erT—1

side of equation (14) taking into account that the teree™” cancels out on both sides, i. e.,

_ rT
P (D) =Py () + "L ) (15)

Thus, based on the concept of the in situ value, equation @8pe interpreted as a generalization of the
traditional Faustmann formula, where the forest is distatwver the diameter of the trees. The interpre-
tation of equation (13) collapses to the traditional Faustmf@rmula if/ and £’ are considered constants,

i.e., all derivatives with respect {aand E are zero.

In practical terms, it is not possible to determine whetherdptimal rotation age for most trees is lower
or higher under a selective cutting regime than under a cleting regime. The precise determination of
the optimal rotation age for the trees under a selectivengutigime depends, in particular, on the density
effect, on the development of the size of the trees over time oam the price of timber as a function of the

size of the tree.
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3.2 Implications of a Steady state on the optimal long-run distribution.

The first order conditions of problem (D) do not permit an atiedy solution. To take the analysis further

we consider the case where the forest has reached the statgy.€.0\ /0t = 0 anddz /0t = 0.

The optimal steady state problem is a lumped optimal contablpm defined over diametére [ly, [,;,]
where the density of trees with diameters the control variable. This problem can be thought of as a
situation where the private owner chooses the optimal dnwstribution of the trees in the steady state
resulting from an exogenous shock. Thus, the optimal patheo$tock variable: (1) traces out the optimal
steady state distribution. The assumption of an steadg-diatribution implies that’(¢) is constant, i.e.
the density effect is constant aft{t) = E. In this way, the integrodifferential equations (8) and (9) are

ordinary differential equations and are mathematicallgtable.

By suppressing, equation (9) can be written as:

o5 == (04 50)) )~ uld, 2(0.) = a0t (16)

In the case where the benefit function is lineaw(#), the system leads to a corner solution, that is, there

exists d € (o, l,,) whereu(l) = z(I), andz(l) = 0,VI > I. Thus, equation (9), far < [ can be written as

o " (dg(dEl’l) +8(E, z>> z(1)

dl 9(E,1)

Solving this equation yields

/l _dg(E,s)/ds+(s) ds
exp”lo 9(E;s) a7

where we made use of the boundary condig¢B, ly)z(ly) = p(lp). Thus, the optimal long-run distribution
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(£,1)

will be increasing (decreasing) over the diamétiérthe absolute value omd% is greater (lower) than

5(0).

For the case of a low mortality rate and fast growing treesptienal steady state distribution is increasing
in diameter, i.e., the proportion of large trees is relagidgh. On the contrary, when the mortality is high
and the growth rate is low, the optimal steady state disidhus decreasing in diameter, i.e., the proportion

of large trees is relatively low.

4 Empirical study

In practice the necessary conditions (three equations agstens of partial integrodifferential equations)
can only be solved analytically under severe restrictiorik reispect to the specification of the mathematical
problem (Muzicant, 1980). Thus, one has to resort to nunedcaniques to solve the distributed control
problem. Available techniques such as the method of finiferdifices, the Galerkin method or that of fi-
nite elements may be appropriate choices (Calvo and Goddi) 28lowever, all of these methods require
the programming of algorithms that are mostly unknown to eausts. Therefore we propose a different
method called the Escalator Boxcar Train (de Roos, 1988) soriee the evolution of physiologically-
structured populations. De Roos (1988) has shown that ttiimigue is an efficient integration technique
for structured population models. More details about thebegue and how this approach can be extended
to account for the incorporation of decision variables carfdo@d in Goetz et al. (2008). The Escalator
Boxcar Train (EBT) is based on converting the structuringalde into a state variable of the system by
transforming the partial integrodifferential equationoirdrdinary differential equations over time. More-
over, EBT allows the density effect of the biological proesst be considered. In contrast to the other
available methods, it can be implemented with standard ctengoftware used to solve mathematical pro-

gramming problems.
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The purpose of the empirical analysis is to determine the optimal selective-logging regime of a diameter-
distributed forest, i.e., the selective logging regime thakimizes the discounted private net benefits from
timber production of a stand &finus sylvestri§Scots pine) over a time horizon of 300 yearsn this way

it is possible to provide guidance for forest practitionerhwespect to the optimal logging pattern, and the

optimal long-run diameter distribution of the stand.

4.1 Data and specification of functions

In order to solve the decision problem (D) it needs to be t@nstd into a problem which can be solved
numerically. For this purpose we define= 0,--- ,n cohorts over the diametér i.e., the trees whose
diameters fall within the limitg; andi;;, are grouped in the cohoit Hence we can defin&;(¢) as the
number of trees[;(¢) as the average diameter, abig(t) as the number of cut trees within the cohartX,

L, andU denote the vector® = (Xo,--- ,X,), L = (Lo, -+, Ly), andU = (Uy, - - - , U,), respectively.
The vectorX® denotes the initial density of each cohort. As demonstrate@adetz et al. (2008), the

decision problem (D) can be approximated to the decisionl@nol§D’) given by

pmax /O B(X(t),L(t),T(t))e " dt — /O C(P(t))e dt

©)
LS (h), L(t))e T + /0 S X (1), L ())e ™ dt,

subject to the constraints

’In countries at higher latitudes the species Pinus sylvestris is often considered as shade intolerant, and consequently not suitable
for a selective logging regime. However, in countries at mid-range latitudes like Spain natural reproduction requires that older trees
protect young trees against heat and water stress in the summer (personal communication by C. Gracia, University of Barcelona,
Department of Ecology and CREAF, the Centre for Ecological Research and Forestry Applications). This finding is supported by
field experiments reported by Clapham et al. (2002) and Sanchez-Gomez et al. (2006).
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dX;(t) . dL;(t) -

dt = _5(E(t)7Li)Xi(t) - Ui(t)7 d = g(E(t),Li)
% = —0(E(t),l0)Xo(t) — %5(1@@), lo)Lo(t) + P(t)
% = g(E(t),l0)Xo(t) + %Q(E(t),lo)llo(t) — 8(E(t),1o) Lo(t)

Xi(0) = X° g(E(t).lo)x(t,lo) = P(t), Ui(t),P(t) 20 Ui(t) < Xi(t),

wherep(t, ly) is now written asP(t) to unify the notation. The term environmeA(t) is determined by
. Li\2
E(t) = 77(—) Xi(). (18)

For given specifications of the economic and biophysicaltfons of the model, and a given initial diameter
distribution of the treesX?, a numerical solution of the decision problem (D’) can be wiatd. To analyze
the sensitivity of the optimal logging regime with respecatchange in the initial diameter distribution, we
consider different initial diameter distributions. Theyreespecified as a transformed beta density function
6(1) with shape parametersand¢ (Mendenhall et al., 1990). The initial forest consists of a population of
trees with diameters within the interval 0 cmnl < 50 cm. The distribution of the diameter of the trees is

given by:

Ly +¢) (L=t Lot
00 . ¢) = 4 O T(IL(9) (50) ( 50> (19)

0, elsewhere

whered(l; v, ¢) denotes the density function of the diameter of trees. Thus, the intﬁig*rhv(l;fy, ¢)dl
gives the proportion of trees lying within the rande;1). The beta density function is used because it is
defined over a closed interval and allows a great variety ¢ihditsshapes of the initial diameter distributions

of the trees to be defined. We defirlgd= 0 andl,,, = 80. Within this interval we concentrate on the interval
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[0, 50] and divide it into 10 initial subintervals of identical length. In this way, each cohort comprises trees
that differ in their diameter by a maximum of 5 cm, and can tfueeebe considered as homogeneous. The
initial number of trees in each coho’X;(0), i = 1,--- ,n, is calculated in such a way that the basal area
of the stand is constant (25%ha) in order to allow for comparisons between the resulthefdifferent

optimization outcomes.

The function B(X (¢), L(t), U(t)) accounts for the net benefits of the timber at titnend is defined as:
Do o(p(Li(t)) — wve) to(Li(t)) mo(Li(t)) Us(t)] — [me(X(t))], where X (t) = >, Xi(t). The first
term in square brackets denotes the sum of the revenue ointbertisale minus the cutting cost of each
cohorti, and the second ternmc(X (¢)), accounts for the maintenance cost. The paramgier) denotes
the timber price per cubic meter of wood as a function of thenéier,tv(L;) is the total volume of a tree
as a function of its diametemuv(L;) is the part of the total volume of the tree that is marketablearid

the variable cutting cost.

Timber price per cubic meter was taken from a study by PalafliRukkala (2003), who analyzed the
optimal management of Binus sylvestridorest in a clear-cutting regime. They estimated a polynomial
function given byp(L) = Min[—23.24 + 13.63v/L, 86.65], which is an increasing and strictly convex
function, for a diameter lower than 65cm. At = 65 the price reaches its maximum value, thus, it is
considered constant fdr > 65. Data about costs were provided by the consulting firm Tecnosylva, which
elaborates forest management plans throughout Spain. Ghindp cost comprises logging, delimbing,
and collecting and removing the residues, and it is givervby= 15 euros per cubic meter of logged
timber. The maintenance cost is an increasing function ohtimeber of stems per hectare, and is given by
me(X) = 10 + 0.0159X + 0.0000186.X2. The nursing cost is linear in the amount of ingrowing trees an

is given byC(P) = 0.73 P.

The value of the parameters of tree volung,L;), and the marketable part of the tree volumey(L;),

are estimated using information provided by a study by Gasiadt al. (2000). The tree volume follows
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the allometric relatiortv(L) = 0.00157387L' 75087 "and the marketable part of the volume of timber of
each tree is an increasing function of the diameter, givembyL) = 0.699 + 0.0004311L. The thinning
and nursing period/t, is set equal to 10 years, which is a common practice Bmas sylvestrigorest

(Caiiellas et al., 2000).

To determine the dynamics of the forest the growth of a diartBstributed stand dPinus sylvestrisvith-
out thinning was simulated with the bio-physical simulatiadel GOTILWA (Growth Of Trees Is Limited
by Watef). About 100 different simulation runs were conducted by iraryhe initial diameter distribution.
The results of the simulation were used to estimate the fomgtiF, L; ), which describes the rate of diame-
ter change. It was specified as a von Bertalanffy growth cuwwe Bertalanffy, 1957), generalized by Millar
and Myers (1990) which allows the rate of growth of the diam&ievary with environmental conditions.
Thus, the functiory(E, L;) = (L, — L;) (8o — 1 BA) was estimated by the method©@f_.S, whereg, and
(1 are proportionality constants, a4 is the sum of the basal area of all trees. The estimation yielded
the growth function:g(E, L;) = (80 — L;)(0.0070177 — 0.000043079 BA). Other functional forms of

g(E, L;) were evaluated as well, but they explained the observed variables to a lesser’degree.

As GOTILWA only allows the survival or death of an entire cahior be simulated but not the survival or
death of an individual tree, it was not possible to obtain aggadte estimation of the functioi{ £, L;)
describing the mortality of the forest. Nevertheless, thierination provided by Tecnosylva suggests that
in a managed forest, the mortality rate can be consideredsticonstant over time and independent of the

diameter. Thus, according to the data supplied by Tecnosyl¥a L;) was chosen to be constant over time

8This program has been developed by C. Gracia and S. Sabaté, University of Barcelona, Department of Ecology and CREAF
(Centre de Recerca Ecologica i Aplicacions Forestals), Autonomous University of Barcelona, respectively. It simulates growth and
mortality and allows one to explore how the life cycle of an individual tree is influenced by the climate, the characteristics of the
tree itself and environmental conditions given by the total basal area of the trees. The model is defined by 11 input files specifying
more than 90 parameters related to site, soil composition, tree species, photosynthesis, stomatal conductance, forest composition,
canopy hydrology, and climate.

®The discretization scheme employed has the advantage that the set of ordinary difference equations is derived from the un-
derlying partial integro-differential equation, whereas in previous literature, for example (Haight et al., 1985), the set of ordinary
difference equations was set up ad hoc. Moreover, the EBT method requires only the differential edjydtios g(-) to be
estimated, whereas the approach followed in the previous literature would require a complex system of difference equations to be
estimated simultaneously.
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and equal to 0.01 for each cohort.

4.2 Optimization results

The mathematical optimization problem (D’) was programmme@AMS (General Algebraic Modeling Sys-
tem) (Brooke et al., 1992). For the numerical solution of ghisblem the Conopt3 solver, available within
GAMS, was employed. For a given initial distribution, the remoal solution of the problem determines
for every 10—year period the optimal loggirg;, and planting,P; the optimal values of the state variables,
X, and L;; and consequently, economic variables, such as the revemmetimber sales and the cutting,
planting, and maintenance costs. Optimizations with difitrandom initializations of the control variables
were carried out to assure that the numerical method progidlesions that are independent of the initially
chosen values for the numerical optimization technigue oplimizations were carried out on a per-hectare

basis.

Selective Logging Regime

Forest managers who want to maximize net timber benefits loatedide on the intensity of cutting, that
is, how many trees of diametér, have to be cut at each moment of time. To calculate the optimgalithg
regime we assume that the initial diameter distribution efttiees is given by a beta density function with
parametersy = 0.8 and¢ = 0.2, corresponding to a young forest distribution. Table 1 summarizes the
results of the optimization where a discount rate of 2% wasrasd. It can be observed that all economic
and biophysical variables show a cyclical pattern over timehich the phase of the pattern is maintained
over time, but the amplitude decreases. In the long-run,diest consists of approximately 927 trees, and
approximately 123 of these trees are logged each 10—yeadpdrhe volume of the logged trees is 73.64
m3, of which 52.43 m is marketable timber. The current-value revenue from the shthis amount of
timber minus the logging cost is approximately 1900 europetare. The current-value net benefits of the

forest in the long run are nearly 1000 euros. Following thigme, the total sum of discounted net benefits
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of the forest over 300 years is 7794.27 euros per hectare.

Table 1

To illustrate the optimal evolution of the forest, Figure 1ta)f) depicts the change in the histogram of
the forest distribution over the planning horizon. It mustno¢éed that the width of the diameter intervals
is only homogeneous at the initial point in time, but the widfhthe different cohorts changes with the
evolution of the forest over time. Thus, the size of the bar p&dicular cohort is chosen so that its area
corresponds to the number of trees in that cohort. The sjfigihthded bars indicate the number of trees that
should be logged within each 10—year period, while the hgabihded bars stand for the number of trees
that should remain in the stand. Figure 1 shows that the ligiskewed diameter distribution is gradually
flattened over time. However, during this process the digioh varies in the form of a wave leading to an
almost u-shaped distribution after 50 years. Figure 1 alewslthat it takes more than 100 years to reach a

diameter distribution of the trees which is relatively sl

Figure 1

Effects of a Change in the Initial Diameter Distribution on the Optimal Selective-Logging Regime

To illustrate how the initial diameter distribution of theedts alters the optimal selective logging regime,
problem (D’) has also been solved for an old forest distrioutyy = 2, ¢ = 0.8), a bell shaped distribution

(v = ¢ = 2), a U-shaped distributiomy(= ¢ = 0.5), a uniform distribution { = ¢ = 1) and a non-
structured forest (even-sizeg,= ¢ = o). Figure 2 depicts the optimal evolution of the weighted average

(2a) and standard deviation (2b) of the diameter distriluticer time for the analyzed initial distributiohs.

19please note that the average diameter of the bars (cohorts) is not constant over time. This is explained by the fact that the trees
of a cohort always stay together and do not move from one cohort to another. However, since the trees grow the average diameter
of the cohort increases as the cohort moves along the time axis.

1Figure 2 shows the development of the average and standard deviation of the diameter distribution of three different initial
diameter distributions. The remaining three initial diameter distributions are not depicted because they follow the same pattern, and
their graphical representation would obstruct the interpretation of Figure 2.
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It shows that the average diameter of the different distributions tends to converge after approximately 200
years, as the amplitude and phase of the cyclical behavieshes Additionally, Figure 2 shows that the
standard deviation of the distributions is governed by theesayclical pattern. When the mean diameter

and standard deviation of the initial diameter distributaze close to that of the steady state (young forest
with v = 0.8, ¢ = 2), the cyclical evolution of these variables is less pronounced, implying that the benefits
will be more stable over time. In general, it can be observatlttie long-run mean and standard deviation
tend to the values of 17 and 9, respectively, for all consili@aameter values of and¢ of the diameter
distribution. Hence, the steady-state distribution of tharebter of the trees is independent of the initial
distribution of the trees. This result confirms the supremaicthe normal forest as the optimal forest

management objective.

Figure 2

Moreover, we conducted a sensitivity analysis to deternfieeeffect of a change in the initial basal area on
the steady-state distribution. Figure 3 illustrates thénogitevolution of the weighted average diameter (3a)
and the standard deviation (3b) of the diameter over time jaueg forest, given the initial basal areas of
15, 25 and 35 ffha. One can see from Figure 3 that the long-run mean and stadewiation tend to the

same values as in Figure 2 (17 and 9, respectively). Thistrasoilvs that the steady-state distribution is not

only independent from the initial diameter distribution Bialso independent from the initial basal area.

Figure 3

We also conducted a sensitivity analysis to evaluate howyitimal management regime of a forest changes
as a result of a variation in the discount rate. Thus, we sgivetllem (D’) for a young forest distribution,
given discount rates of 3% and 4%. Figure 4 depicts the optawalution of the mean diameter (4a) and
standard deviation (4b) over time resulting from the optatians. Figure 4 shows that the discount rate has

a significant influence on the optimal selective logging regirn increase in the discount rate produces,
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in the long run, a decrease in the average diameter at which the trees are cut, that is, the trees are cut earlier.
However, it can be observed in Figure 4b that the initial di@mdistributions stabilize in the long run,
independently of the chosen discount rate, i.e., the steadly distribution is independent of the discount

rate.

Figure 3

At the end of section 3.2 we stated that the shape of the ditiibat the steady state depends on growth
and mortality rates. To illustrate this point, the optimdkséve logging regime in the case of an initial
diameter distribution of trees corresponding to a youngstoi® calculated for a higher mortality rate of

0 = 0.1 compared to the previously chosen mortality rate of 0.01. The histogram of the resulting long-run
distribution is depicted in Figure 5. It shows that an incesiasthe mortality rate causes the optimal steady-

state distribution to be decreasing in diameter.

Figure 5

Our results show that in the presence of density effects Haglgtstate distribution tends to a normal forest
and is independent of the initial distribution of trees. Faramparison of our results with the previous
results in the literature we refer primarily to the article $glo and Tahvonen (2002) since the employed
model is still the up-to-date cornerstone for other workghresults of their work the optimal long-run age
distribution is non cyclical only when the length of the ditety measured time period converges towards
zero, when the discount rate is zero or when the Faustmartiorota not unique. Under these conditions
a normal forest may result. Otherwise many other outcome&hndo not correspond to a normal forest
are possible. Salo and Tahvonen (2002) observe that thetisahfyamework of a time discrete model is
the principal cause for the emergence of logging cycles. Todeinpresented in this article is based on
a different analytical framework, which allows relaxing @sgptions made by Salo and Tahvonen (2002):

the stand is structured with respect to diameter, the ecaadyimore relevant variable, and not age; the
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cleared land does not have to be replanted immediately; the forest manager can vary the number of planted
trees per hectare; and it allows partial harvesting of a aoldusivuori and Kuuluvainen (2005) used an
analytical framework very similar to Salo and Tahvonen (3002 allowed also for partial harvesting of

the different age classes, leading to long-run distribgtibaing either cyclical or not. According to their
findings the noncyclical forest is typically not a normal feireHowever, the authors assume in contrast,

to this study, and to the article by Salo and Tahvonen (2002}, the price for one cubic feet of timber is
independent of the age of the trees. As mentioned above tte girtimber per cubic feet usually increases

with the diameter (age) of the trees since the wood can be ovsddef production of more valuable goods.

One would expect this assumption to affect the optimal logigégime. For this reason, and due to the fact

that trees in the model of Uusivuori and Kuuluvainen (2005ndbonly provide timber but also amenity

values, it is not possible to compare their results with tiselts of the cited literature.

5 Conclusions

This article presents a theoretical model that allows us terdene the optimal management of a diameter-
distributed forest where the growth process of the treesndkprot only on their individual sizes but also
on the size distribution of the trees within the entire staFlis modeling framework allows us to take into
account the fact that the life cycle of each individual treaffected by the other trees since they compete
for light, nutrients, and space. The density dependent flation of the biological growth process leads
to a partial integrodifferential equation. To determine tptimal forest management, the corresponding
economic decision problem can be formulated as a distribopgichal control problem where the control

variables and the state variable depend on both time andaheetiér of the trees.

The resulting necessary conditions of this problem allowdbevation of an analytical expression which
can be interpreted as a generalization of the Faustmann farn8ince the necessary conditions of this

problem include a system of partial integrodifferential &ipns, it usually cannot be solved analytically.
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Thus, the Escalator Boxcar Train method is proposed to solve the problem numerically. The method allows
the partial integrodifferential equation to be transformettd a set of ordinary differential equations and
thereby approximate the distributed optimal control probley a standard optimal control problem. In con-
trast to the existing literature, the resulting optimizatfgoblem can be solved numerically using standard

mathematical programming techniques and does not requigggmming complex numerical algorithms.

To determine the optimal selective logging regime of a di@mdistributed and privately owned forest
where individual trees compete for scarce resources, arrieainalysis is conducted. It shows that the
long-run mean and variance of the diameter distribution tierdifferent types of analyzed forests consid-
ered tend to a common value, giving rise to a normal foreshigh the diameter distribution of the forests
in the steady-state is independent of the initial distriytithe competition between individuals belonging
to the same population affects the transition paths to tredgtstate distribution, and therefore the opti-
mal selective-logging regimes in the first periods differ giderably depending on the distribution of the

individual characteristics over the entire population.
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Appendix

In the case of an even-aged stand decision problem and artérianning horizon, problem (D) can be

simplified, and is given by

x s —rt
121(22)/0 B(z(t),u(t)) e " dt, (DE)

subject to the constraints

z(t) = g(z(t)) —u(t), =(0) =z, wu(t)>0.
The state and control variables do not depend anymore ondheetierl and since all trees are planted at the
same time, the planting costs can be incorporated into thisemefit function of the timbei3 (z(t), u(t)).
Moreover, the residual value of the stand approaches zetaaggroaches infinity, ang(z(t)) denotes
the growth of the biomass. With these provisions the currafuevHamiltonian;#PZ, yields HPE =

B(z,u) + A(g(x) — u) and the first order conditions are given by

HPE — B, — A4 =0, (A.1)
A = rA—B,, limyooA(t) =0 (A.2)
&z = g(z)—u, x(0) = zo. (A.3)

Unfortunately, this formulation does not allow the Faustm&srmula to be derived. Yet, a redefinition of
the variables yields an equivalent model that in turn pravithe Faustmann formula. Let
z(t) = T(t), and therefore: = T,

A(t) = ¢(t), wherey is the new costate variable,

g
—~
~
~—
I

1 — I(t), where0 < I < 1 indicates the share of trees that is invested, i.e. not cut,
i=g(x)—u=1-(1-1I)=1I, wherej(z) = 1, and given the previous definitions we obt&in= I,
B(x,u) = rF(t)(1—1), whereF(T) = P,, f(T)—ce"" 4+-v. The parametes denotes the land expectation

or site value.
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Thus, the new decision problem formulated originally by Weitzman (2003) yields
max / r(F(T(t)(1 —I(t)e " dt, (DF)
t) Jo
subject to the constraints

T(t)=1I(t), T(0)=0, 0<I(t)<1.

The current value Hamiltoniartt?%, yields HPF = rF(T)(1 — I) + ¢I and the first order conditions

result in

HPE = rF(T)— o+ pp =0, (A.4)
¢ = ro—rF(T)1-1), (A.5)
T = I (A.6)

Utilizing the substitution we made for the formulation of tdecision problem (DE) in the first order
conditions of problem (DE) shows that equations (A. 1) — (AaB) identical to the first order conditions
(A.4) — (A.6) of problem (DF). Hence, their solutions are ideml. Utilizing equation (A.4) we see that
© = rF(T) + pup. Hence,p = rF'(T)T + p. Substituting this expression in equation (A.5) and using
equation (A. 6) yields

rF' (T + fig = r*F(T) 4 pg — rF'(T)(1 — I). (A.7)

Thus,

fio = r2F(T) + pg — rF'(T). (A.8)

As long asl > 0, i.e., we do not cutys will be zero and we obtain

_F(T)  P,f(T)—rcet
"TFT) T Puf(T) —ceT o (A-9)

27



552

553

554

555

556

557

As shown by Weitzman (2003), equation (A.9) is identical to the reformulation of the Faustmann formula

given by

Po f(T) = 1Py £(T) + =

Pw f(T) _CerT)

er'T —1

)

(A.10)

. : T)— .
wherev has been replaced by the maximum site vaﬁife_{;#lc. Hence we can conclude that given the
e J—

optimal value off, equation (A. 2), which is equivalent to equation (A.5), provides the Faustmann formula

for an even-aged stand.

28



References

Adams, D., Alig, R., McCarl, J., Callaway, J. and Winnett, 296). An analysis of the impacts of public
timber harvest policies on the private forest management in the United Jlattest, Sciencd?2: 343—
358.

Adams, D. and Ek, A. (1974). Optimizing the management of uneven-aged forest €andsjan Journal
of Forest Researcht: 274-287.

Bjorklund, L. (1999). Identifying heartwood-rich stands or stems of Pinus Sylvestris by using inventory
data,Sylva Fennica83: 119-129.

Brooke, A., Kendrick, D. and Meeraus, A. (1992BAMS: A User’s Guide, release 2.2bhe Scientific
Press, San Francisco.

Canellas, I., Martinez Garcia, F. and Montero, G. (2000). Silviculture and dynamics of Pinus Sylvestris L.
stands in Spairinvestigacbn Agraria: Sistemas y Recursos Foresté8e233-254.

Calvo, E. and Goetz, R. (2001). Using distributed optimal control in economics: A numerical approach
based on the finite element meth@ptimal Control Applications and Metho@2(5/6): 231-249.

Clapham, D.H., Ekberg, I., Eriksson, G., Norell, L. and Vince-Prue, D. (2002). Requirement for far-red
light to maintain secondary needle extension growth in northern but not southern populatinssof
sylvestris(Scots pine)Physiologia Plantarunil4 207-212.

Cunha e Sa, M., Costa-Duarte, S. and Rosa, R. (2007). Forest vintages and carbon sequestration, manuscript,
Faculdade de Economia, Universidade Nova de Lisboa, Portugal.

Cushing, J. (1988)An Introduction to Structured Population Dynami&ociety for Industrial and Applied
Mathematics, Philadelphia.

de Roos, A. (1988). Numerical methods for structured population models: The Escalator Boxcar Train,
Numerical Methods for Partial Differential Equatiods 173—195.

de Roos, A. (1997). A gentle introduction to physiologically structured population maaé&sTuljapurkar
and H. Caswell (edsfstructured Population Models in Marine, Terrestrial and Freshwater Systems
Chapman and Hall, New York, chapter 5, pp. 119-204.

Doyon, F., Gagnon, D. and Giroux, J. (2005). Effects of strip and single-tree selection cutting on birds and
their habitat in a southwestern Quebec northern hardwood fdfestst Ecology and Management
2091-2): 101-116.

Feichtinger, G. and Hartl, R. (1988pptimale Kontrollebkonomischer Prozessé/alter de Gruyter, Berlin.

Feichtinger, G., Prskawetz, A. and Veliov, V. (2004). Age-structured optimal control in population eco-
nomics,Theoretical Population Biologg5: 373—-387.

29



Garcia-Abril, A., Martin-Fernandez, S., Grande, M. and Manzanera, J. (2007). Stand structure, competition
and growth of Scots pine (Pinus Silvestris L. in a Mediterranean mountainous envirodmeats of
Forest Sciencé4: 825-830.

Goetz, R., Hritonenko, N., Xabadia, A. and Yatsenko, Y. (2008). Using the Escalator Boxcar Train to
determine the optimal management of a size-distributed forest when carbon sequestration is taken into
account,n I. Lirkov (ed.), Lecture Notes in Computer Science, Proceedings of the Sixth International
Conference on “Large Scale Scientific Computatigri8pringer, Berlin, pp. 334-341.

Haight, R. (1987). Evaluating the efficiency of even-aged and uneven-aged stand managenesnt,
Science33: 116-134.

Haight, R., Brodie, J. and Adams, D. (1985). Optimizing the sequence of diameter distributions and selection
harvests for uneven-aged stand managenfe@ntst Scienc81: 451-462.

Hritonenko, N., Yatsenko, Y., Goetz, R. and Xabadia, A. (2008). Maximum principle for a size-structured
model of forest and carbon sequestration managemgnpljed Mathematics Lette&l: 1090-1094.

Hunter, M. (1990).Wildlife, Forests, and Forestry: Principles of Managing Forest for Biodivergtyentice
Hall, Englewood, NJ.

Karlsson, C. andrlander, G. (2000). Soil scarification shortly before a rich seed-fall improves seedling
establishment in seed tree stands of Pinus sylveSendinavian Journal of Forest Resealdh 256-
266.

Keyfitz, N. (1968).Introduction to the mathematics of populatjighddison-Wesley, New York.
Keyfitz, N. (1977).Applied Mathematical DemographWiley.

Lin, C. and Buongiorno, J. (1998). Tree diversity, landscape diversity, and economics of maple-birch forests:
Implications of Markovian modeldlanagement Sciene&)(10): 1351-1366.

McKendrick, A. (1926). Application of mathematics to medical probleRP®ceedings of the Edinburgh
Mathematical Societg4: 98—130.

Mendenhall, W., Wackerly, D. and Scheaffer, R. (199Wathematical Statistics with Applicationd edn,
PWS-Kent, Boston.

Metz, J. and Diekmann, O. (1986)he dynamics of physiologically structured populatioBpringer Lec-
ture Notes in Biomathematics, Springer-Verlag, Heidelberg.

Millar, R. and Myers, R. (1990). Modelling environmentally induced change in growth for Atlantic Canada
cod stocks|nternational Council Exploration Sea C.M./G24

Mitra, T. and Wan, H. (1985). Some theoretical results on the economics of forf@singw of Economic
Studied Il : 263-282.

Mitra, T. and Wan, H. (1986). On the Faustmann solution to the forest management préblemal of
Economic TheoryQ: 229-249.

30



Muzicant, J. (1980) Systeme mit verteilten Parametern in der@onomie Dissertation, Technische Uni-
versitat Wien.

Palahi, M. and Pukkala, T. (2003). Optimising the management of Scotsfimes (sylvestris L).stands in
Spain based on individual-tree modeiginals of Forest Sciend&0: 105-114.

Sage, A. (1968)Optimum Systems Contrdtrentice Hall, New York.

Salo, S. and Tahvonen, O. (2002). On equilibrium cycles and normal forests in optimal harvesting of tree
vintages,Journal of Environmental Economics and Managen#htl—22.

Sanchez-Gomez, D., Zavala, M.A. and Valladares, F. (2006). Seedling survival responses to irradiance are
differentially influenced by low-water availability in four tree species of the iberian cool temperate-
Mediterranean ecoton@cta Oecologica880. 322-332.

Sawadogo, L., Tiveau, D. and Nygard, R. (2005). Influence of selective tree cutting, livestock and prescribed
fire on herbaceous biomass in the savannah woodlands of BurkinaAgsmylture, Ecosystems and
Environmentl051-2): 335—-345.

Scarpa, R., Hutchinson, W., Chilton, S. and Buongiorno, J. (2000). Importance of forest attributes in the
willingness to pay for recreation: a contingent valuation study of Irish foréstest Policy and Eco-
nomicsl: 315-329.

Sedjo, M. and Lyon, K. (1990). The long-term adequacy of world timber supply, Working paper Resources
for the Future, Washington, DC.

Seymour, R. and Kenefic, L. (1998). Balance and sustainability in multiaged stands: a northern conifer case
study,Journal of Forestry96(7): 12—-17.

Trasobares, A., Tomé, M. and Pukkala, T. (2004). Growth and yield model for Pinus halepensis Mill. in
Catalonia, north-east Spaifmrest Ecology and Managemez3 49-62.

Uusivuori, J. and Kuuluvainen, J. (2005). The harvesting decision when a standing forest with multiple
age-classes has valusmerican Journal of Agricultural Economi&¥(1): 61-76.

Vanclay, J. (1995). Growth models for tropical forests: a synthesis of models and mdtiest, Science
41 7-42.

von Bertalanffy, L. (1957). Quantitative laws in metabolism and grov@barterly Review of Biology
32 217-231.

Wan, H. (1994). Revisiting the Mitra-Wan tree farimternational Economic Revie@b: 193-198.

Weintraub, A., Romero, C., Bjgrndal, T. and Epstein, R. (200Mandbook of Operations Research in
Natural ResourcesSpringer, NY, pp.315-544.

Weitzman, M. (2003)Income, Wealth, and the Maximum Principléarvard University Press, Cambridge,
MA.

31



Whittam, R., McCracken, J., Francis, C. and Gartshore, M. (2002). The effects of selective logging on nest-
site selection and productivity of hooded warblers (Wilsonia citrina) in Car2daadian Journal of
Zoology80(4): 644—654.

32



€€

Table 1: Optimal Selective-Logging Regime (where the initial diameter distribution is determingek-liy8 and¢ = 2)

Logging Maintenance| Planting Net Discounted

Number | Planted|| Logged BA Volume | Timber Revenue - log- cost cost benefit net benefit

Year || of tree$® trees trees | (m*/ha) | (m%/ha) | (m*/ha) | ging cost (Euros/hél)) (Euros/ha) | (Euros/ha)| (Euros/ha)| (Euros/ha)
0 820 202 115 12.43 | 98.78 | 70.66 3211.29 -355.74 -121.19 | 2734.36 | 2734.36
10 947 107 67 5.05 42.19 | 30.05 1127.83 -417.68 -64.33 645.81 529.79
20 959 119 85 5.89 49.74 | 3541 1274.32 -424.12 -71.48 778.71 524.05
30 964 132 105 6.79 57.78 | 41.11 1430.57 -426.60 -79.13 924.85 510.58
40 958 144 129 7.94 68.06 | 48.40 1642.03 -423.27 -86.52 1132.23 512.78
50 939 137 154 9.19 79.06 | 56.20 1874.82 -413.53 -82.11 1379.18 512.40
60 929 133 137 8.16 70.17 | 49.88 1662.47 -408.81 -79.52 1174.14 357.86
70 935 163 118 8.50 71.39 | 50.83 1872.41 -411.57 -97.50 1363.34 340.87
80 909 121 179 12.94 | 108.66| 77.37 2850.05 -398.61 -72.45 2378.99 487.95
90 921 129 100 7.18 60.31 | 42.94 1576.15 -404.48 -77.07 1094.59 184.18
100 929 136 111 7.93 66.69 | 47.49 1738.22 -408.63 -81.17 1248.42 172.32

| 200 || 928 | 136 || 128 | 9.08 | 76.41 | 54.40 | 1986.89 || -408.15 | -81.22 | 1497.52 | 28.53 |

| 300 || 927 | 136 || 123 | 8.75 | 73.64 | 52.43 | 1914.72 || -407.72 | -81.48 | 1425.52 | 3.75

(@) The number of trees in the forest is calculated just afterrdestare planted, and before the thinning takes place.
(®) All monetary values apart from the discounted net benefiténait column of the table are expressed as current values.
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Figure 1: Evolution of the Optimal Diameter Distribution
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