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Abstract: In this paper we present two new algorithms to study the extended nature of the crossing 

seam. The first algorithm is designed to optimize conical intersection geometries: both minima and 

saddle points along the crossing seam. In addition, this method can be employed to carry out conical 

intersection optimization with geometrical constraints. We demonstrate the potentialities of such 

algorithm on different crossing seams of benzene, z-penta-3,5-diemminium and 1,3-butadiene. The 

second algorithm has instead been designed to explicitly compute the intersection-space minimum 

energy coordinate. Our computations show how an intersection seam and the energy along it can 

unambiguously defined. A finite region of the S0/S1 1,3-butadiene crossing seam has been mapped out, 

showing the connectivity amongst three conical intersection structures, of which two never reported 

previously. 
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1. Introduction 

 

In the past two decades conical intersection geometries have been proven to play a 

central role in our understanding of photochemical reactions (see for instance Refs. 1-4). 

These structures take part in phochemical processes in a similar manner as the transition 

state geometries are involved in a thermochemical reaction 2. Up to date, numerous 

conical intersection structures have been located and shown to be involved in several 

non-radiative processes (see for instance Refs. 1-5). 

 

Conical intersections are not isolated points, but rather are connected along an (n-2)-

dimensional hyperline, where n is the number of internal degrees of freedom. Recent 

studies have showed that decay can also occur at a higher energy point along the crossing 

hyperline (see for example Refs. 6, 7). Thus, an accurate investigation of intersection space 

8, which is the space where the two electronic states are degenerate, becomes crucial. 

 

In this spirit, we recently developed a new methodology to compute the curvature of 

the crossing seam energy, such that saddle points could be distinguished from minima 

point within the intersection space 9-11. In addition, from these frequency calculations we 

could compute the motions corresponding to the imaginary frequencies. These 

intersection-space vibrational modes 10 were then used to suggest connections amongst 

several conical intersection points belonging to the same intersection space. In this paper, 

we describe two complementary tools to study the intersection space. The first algorithm 

is designed to optimize conical intersection structures using realistic second derivatives 
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and updating. The second method is instead capable to compute the minimum energy 

path connecting three conical intersection structures, e.g. two minima and a saddle point 

along the crossing seam. Thus, with the algorithms described in this paper we present a 

complete series of tools capable of investigating the energy within the intersection space 

in the same way that one would study a single Born-Oppenheimer potential energy 

surface (see for instance 12). 

 

Over the years, many different approaches have been proposed to optimize structures 

where two electronic states become degenerate. The algorithms currently available are 

based upon either Lagrange-Newton methods (see for example Refs. 13, 14) or projection 

methods (see for instance Refs. 15, 16). The algorithms belonging to the first class have the 

common feature of using variations of the classical Lagrangian multipliers method 17, 18. 

In contrast, the projection methods are designed to reach the energy degeneracy, by 

means of a displacement within the branching space 8, and to optimize simultaneously the 

energy of the excited state within the intersection space 8.  

 

A typical algorithm, based on the projection matrices, uses a gradient composed of two 

distinct parts 15. The first part consists of the normalized gradient difference vector, which 

is one of the two first-order degeneracy lifting directions 1, weighted by twice the energy 

gap. This term is responsible of minimizing the energy difference between the two 

crossing states. The second part of the gradient optimizes the excited state energy within 

the intersection space. Thus a critical point on the intersection hyper-line can be located.  
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The use of projection matrix ensures the orthogonality between the two parts of the 

composite gradient. However, such orthogonality may be lost in computing a quasi-

Newton-Raphson displacement, as consequence of an ill-conditioned approximate 

Hessian. In other words, the displacement computed may have components in both 

branching and intersection space. This problem becomes troublesome in the region where 

the two electronic states become almost degenerate. Here, the displacement components 

within the branching plane will lift the degeneracy. The algorithm described in this paper 

therefore uses a combination of displacements taken within the two orthogonal spaces 

rather than two gradients. Although this idea is related to the theoretical development 

originally proposed by Anglada et al. 19 and recently reviewed and extended by De Vico 

et al. 20, the actual implementation of the proposed algorithm is substantially different, as 

we will discuss in the next section.  

 

In the present algorithm, as the energy difference drops below a set threshold, a 

Newton-Raphson displacement, taken within the intersection space, is combined with a 

step along the gradient difference vector. When the energy is above the given threshold, a 

standard projection method 15 is used. As we will discuss in Section 4, the proposed 

algorithm shows a faster and smoother overall convergence to the minimum conical 

intersection geometry when compared with two previously reported algorithms 15, 19. In 

addition, our implementation enables one to optimize conical intersection geometries 

along a given constrained redundant coordinate 21-23. Finally, this algorithm and the 

possibility of computing analytically an intersection-space Hessian 10 can be combined 

with the transition state search algorithm (for a recent review see Ref. 12) implemented in 



 6 

Gaussian package 24. To summarize, the algorithm proposed in this paper is capable of 

locating both minima and saddle points within the intersection space, as well as of 

optimizing conical intersection points along a given constrained geometrical variable.  

 

Using two independent displacements, one within the intersection space and one along 

the gradient difference vector, we have also designed a method to compute a coordinate 

analogous to the intrinsic reaction coordinate 25-27, but confined to the intersection space. 

Although such coordinate may be not physically meaningful (see for example 28 and 

following comments), it represents a unique way to define the intersection space. In 

Section 4, we will present the study carried out to link a new saddle point found on the 

S0/S1 crossing seam of 1,3-butadiene with two low lying conical intersections.  
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2. Theory 

 

In this section we will present two different algorithms. The first method is designed to 

improve the existent conical intersection optimization algorithms. The second allows the 

computation of an intersection space coordinate analogous to the intrinsic reaction 

coordinate 25-27. In what follows, we will assume that the two crossing states intersect 

along a (n-2) hyperline, where n is the number of internal coordinates. In other words, the 

two electronic states cross each other at all the nuclear configurations belonging to an (n-

2)-dimensional intersection space, where n is the number of internal coordinates of the 

molecular system 29.  

 

2.1 Optimization of stationary points along a crossing seam. 

 

At a conical intersection point, a displacement along two directions is capable of lifting 

the degeneracy at first order: the gradient difference [Eq.(1a)] and the interstate coupling 

[Eq.(1b)] (see for example Refs. 1, 4, 13, 30, 31).  
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In Eq.(1), C1 and C2 are the CI eigenvectors in the MC-SCF problem. The vectors x1 and 

x2 span the branching plane 8, also referred to as the g-h plane 4. In the orthogonal (n-2) 

subspace, the intersection space 8, the degeneracy is retained at the first order 10, 30, 32, 33. 

The adiabatic energies of the two electronic states are indicated by E1 and E2, whereas H 



 8 

and q represent the electronic potential energy matrix and the nuclear coordinates, 

respectively. 

 

In the direct algorithm proposed by Bearpark et al. 15, the gradient used in the 

optimization is the following:  
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g = f + gp  (2a) 
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In Eq.(2), 
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"#  is the length of the gradient difference vector, i.e. 
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The “hat” notation indicates a normalized vector. For what follows, it is worth noting that 

the projected gradient of the excited state energy is the same vector as that obtained by 

projecting the average of the two state gradients (for the proof see Appendix). This 

equivalence will be crucial in defining the second-derivative matrix of the seam energy. 

 

The updated Hessian can become ill-conditioned in certain regions of the potential 

energy surface, if the composite gradient [Eq.(2)] is used throughout the optimization. 
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When the energy difference is large, for instance, the Hessian is dominated by 

contributions arising from the branching plane 17, 34, 35. As a result, the degeneracy region 

is rapidly reached. However, when the seam is located, contributions from the branching 

plane to the approximate Hessian may not vanish and therefore the degeneracy be lifted. 

 

To improve the convergence of this algorithm we then propose to project both gradient 

and Hessian when the seam region is approached, so that the possible branching-space 

contamination is avoided. When the energy difference is below a certain threshold, we 

will combine an intersection-space displacement with a step taken along the gradient 

difference. 

 

The potential energy within the intersection space can be can be described by a Taylor 

expansion truncated at the second-order: 
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Notice that 

! 

"q
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0 = q
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#q

IS
0  is an n-dimensional vector. The zero-order term is taken as 

the reference point and set to zero. The seam energy gradient within the intersection 

space, 

! 

g
IS

, is computed as the projected average gradient (see Appendix). This gradient 

allows us to introduce the intersection-space Hessian, recently proposed elsewhere 9-11, as 

the second-derivatives matrix of the seam energy. Defining the intersection-space 

Hessian of the seam energy as the projected “derivative” of the seam energy gradient, we 

obtain: 
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In the differentiation we have used the definition of projection matrix reported in Eq.(2d). 

We have also introduced 

! 

"
x
1 2( )

to indicate the components of the average gradient along 

the unit gradient difference (non adiabatic interstate coupling vector) and 

! 

"
12

 for the 

length of the non-adiabatic interstate coupling vector.  

 

To compute the Newton-Raphson displacement, the inverse of this Hessian matrix is 

required. However due to the projection, 

! 

W
IS   has two zero eigenvalues corresponding to 

the branching plane directions and therefore its inverse is not defined. However, using the 

idea of Peng et al. 36, one can use instead the following matrix: 

! 

H
IS

=W
IS

+ 1"P( )A 1"P( )  (3c) 

where A is diagonal matrix whose elements are set to a large constant (e.g. 1000) and P is 

the usual projection matrix defined in Eq.(2d). Consequently, using the Newton-Raphson 

method, the intersection-space displacement can be computed as: 
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Although the displacement is an m-dimensional vector, the possible contributions from 

the branching plane have been projected out.  

 

To guarantee the degeneracy, the following step along the gradient difference: 
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is added to 

! 

"q
IS
0 , so that the total displacement is given by: 



 11 

! 

"q
0

= "q
IS
0 + "q

BS
0

 
(4c) 

 

Although in principle the Hessian matrix, 

! 

W
IS

, could be analytically computed 9-11, an 

approximated Hessian is used in practise. Using the Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) scheme, this matrix is calculated as: 
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Here, 

! 

"h
0
 is computed as the difference between the projected average gradients 

[Eq.(2c)] evaluated at 

! 

q (current iteration) and at 

! 

q
0
 (previous iteration). 

! 

"q
0
 represents 

instead the difference between the current and previous geometry. 

 

Table 1 – Relevant quantities used in the presented conical intersection optimization 
algorithm. 
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a The default cutoff has been set to 5milliHartrees; b this gradient is used to both update 

the Hessian matrix and to compute the displacement; c as defined in Eq.(2); d F is the 

updated Hessian defined in Eq.(5) 

 

In Table 1, we have reported the main features of the algorithm discussed in this paper. 

The reader may recognize some similarities between the proposed algorithm and the 

results obtained by Anglada et al. 19, 20, who have suggested applying the Han-Powell 
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method 17, 18, 34, 37 to optimize conical intersection geometries. In proximity of the crossing 

seam, the two methodologies, for instance, use the same gradient (see Appendix) to 

update the Hessian matrix, 

! 

F  [Eq.(5)]. Moreover, the intersection-space Hessian 

! 

W
IS

, 

used here, is similar to the reduced Hessian reported by Anglada et al.  

 

Although the various similarities, the proposed algorithm differs from the one reported 

by Anglada et al. in several crucial points. Firstly, their method uses the Hessian only to 

compute the intersection space displacement throughout the optimization. Consequently, 

the method is known (see for example Refs. 17, 20, 34) to have a fairly slow convergence (or 

sometimes even no convergence at all) when one starts from a point too far away from 

the solution. In our algorithm, a composite gradient [Eq.(2)] is used to compute both the 

displacement and to update the Hessian in regions far away from the degeneracy. Some 

differences arise also in the proximity of the degeneracy region. In the seam region, the 

two proposed displacements differ in the form of the gradient used: we use the projected 

gradient [Eq.(2c)], whereas Anglada et al. propose using the reduced gradient. However, 

as theoretically outlined by Nocedal et al. 34 and based on our own experience, the 

additional term present in reduced gradient does not provide any benefit to the overall 

convergence, once the crossing region is reached. Finally, the intersection-space Hessian, 

! 

W
IS

, shown in Eq.(3b) is a symmetric m by m matrix, whereas the reduced Hessian used 

by Anglada et al. has dimension (m-2) by (m-2). Nevertheless, it should be remarked that 

both matrices have the same (m-2) rank, i.e. both matrices have (m-2) non-zero 

eigenvalues. 
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Along with minimum energy crossing points, the proposed algorithm is also capable to 

optimize different conical intersection structures along a constrained coordinate. We have 

recently proposed an implementation to carry out this type of optimization 21, which 

prevents the possible occurrence of cancellation errors 21-23. In that study, we suggested to 

apply first the constraints and subsequently to project out the branching space directions 

from the gradient. This procedure allowed us to map out successfully a region of S0/S1 

fulvene crossing seam. Nevertheless in that study, we explicitly applied symmetry 

considerations to carried out the calculations. Here the procedure has been instead 

generalized and implemented in a development version of Gaussian software 24. In 

Section 4, we will show an example of this type of computations. 

 

Finally, we have explored the possibility of combining this new algorithm with the 

methodology implemented in Gaussian package to find transition state structures [see for 

example 12 and references therein]. Routinely to compute a transition structure, one must 

compute the Hessian at a point located close enough to the quadratic region of the first-

order saddle point. This matrix must have one negative eigenvalue, and the corresponding 

eigenvector should be a suitable guess for the initial optimization direction. In this work, 

we follow the same procedure but limited to the intersection-space. Consequently, we 

begin computing the intersection-space Hessian 9-11 at an initial conical intersection 

geometry. During the rest of the optimization, the intersection-space Hessian, WIS, is 

instead updated using the Bofill’s scheme 38 implemented in Gaussian, and then used as 

described above. In Section 4, we will report the results of a saddle point optimization 

onto the intersection hyperline of butadiene. 
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2.2 Computation of the minimum energy path within the intersection space. 

 

We now move to discuss the second algorithm proposed in this paper. This method 

enables one to compute a coordinate analogous to the intrinsic reaction coordinate (IRC), 

but confined to the intersection space (IS-IRC). Although several methods have been 

proposed to compute a segment of the intersection space [see for example 7, 20, 22, 28, 39 and 

references therein], the algorithm that we have implemented is based upon the one 

proposed by Gonzalez et al. 27. Thus, we will briefly present the ideas behind the original 

IRC algorithm; and we then will move to describe the few modifications required to 

compute directly the IS-IRC. 

 

 

Figure 1 – A graphical representation of the vectors used in the original IRC 

algorithm27 is shown.  

 

As shown in Figure 1, the original IRC algorithm 26, 27 was designed such that starting 

from a point q0, a ½ s displacement along the gradient Gg0 is taken to locate 

! 

q
0
*  point, 
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defined as the pivot point. From this pivot point, a constrained optimization is carried out 

on a surface of a hypershere of radius ½ s and centered at 

! 

q
0
* . Thus, in Figure 1, q0, 

! 

q'  

and q are three points on the hypersphere and 

! 

q
0
*  the centre of it. Along the reaction path, 

at every q the residual gradient is, by construction, parallel to the p vector. Using this 

observation and the fact that the radius of the hypersphere must equal ½ s, one obtains the 

following set of equations: 
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Where the scalar 

! 

"  is the Lagrange multiplier, I is the identity matrix and the remaining 

quantities are defined in Table 2.  

 

Table 2 – In the left column, the definition of the terms used in the original minimum energy 

path algorithm [Eq.(7)] are reported. On the right column are instead shown the definitions of 

the corresponding quantities used in the proposed algorithm. G is the Wilson matrix 40; g, H 

and Δq indicate the gradient, the Hessian and the displacement, respectively . 

Original Algorithm 27 Proposed Algorithm 
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In order to compute the intersection space path, we follow the same derivation. 

However, all the quantities previously introduced are now projected onto the intersection 

space using the P matrix defined in Eq.(2d). Thus, replacing the various terms in Eq.(7) 

accordingly with Table 2, the intersection-space displacement, 

! 

"q
IS

, can be computed. 

However, due to the curved nature of the intersection space (see for instance Refs.1, 9-11, 33, 

41), this displacement will make the two crossing surfaces to split apart. To restore the 

degeneracy, an additional displacement within the branching space is finally added, in the 

spirit of the algorithm described above and in the way has been defined in Eq.(4c). As we 

will discuss in the next section, we have imposed convergence criteria on both gradient 

and displacement computed. Consequently, the degeneracy condition is implicitly 

required from Eq.(4c), since a large displacement would correspond to a large energy 

gap. 
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3. Computational Details 

 

The two algorithms described in the previous section have been implemented in a 

development version of Gaussian package 24 and at two averaged states complete active 

space self consistent field level of theory (2-SA-CASSCF). Nevertheless, they can be 

easily implemented at any other level of theory, provided that analytical gradients are 

available 42. The overall convergence of the algorithm to optimize conical intersections 

has been tested on the S0/S1 crossing seam of benzene. The calculations have been carried 

out at the 2-SA-CASSCF level of theory, with a six 

! 

"  electrons and six 

! 

"  orbitals active-

space and a STO-3G basis set. An active space of (6π, 6π) and one of (4π, 4π) were 

instead used to investigate the S0/S1 crossing seams of z-penta-3,5-diennium and 1,3-

butadiene, respectively. Also in these examples we have used the 2-SA-CASSCF level of 

theory, but with a 6-31G* basis set. In all the examples presented, the two crossing 

electronic states were equally weighted and the coupled perturbative MCSCF (CP-

MCSCF) equations solved to evaluate the gradients (see for instance 43). However, tests 

have been also carried using approximated gradients, i.e. obtained without solving the 

CP-MCSCF equations, to guarantee the efficiency of the code implementation for 

molecules with either a big active space or with a large number of atoms. In these tests, 

the same structures (within 0.5 Kcal/Mol) were optimized with and without computing 

the corrections for the gradients. Nevertheless, we have noticed that away from the seam 

region the two optimizations may differ significantly. Here, the displacement computed 

with the approximated gradient leads to higher energy geometries. Therefore, in general 
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the two gradients may access the crossing seam in different areas and, consequently, lead 

to different optimized stationary points.  

 

In the examples considered in the next section, a conical intersection geometry is 

considered converged when the largest component of the intersection-space gradient, or 

of 

! 

ISgM
'  (Table 1) for the second algorithm, is smaller than 4.5 x 10-4 a.u. and with RMS 

below 3.0 x 10-4 a.u. In addition to the gradient, also the maximum component of the total 

displacement is checked, 

! 

"q
0
 in Eq.(4c). A geometry is thus considered converged when 

the largest component of such a displacement is smaller than 1.8 x 10-3 a.u. with RMS 1.2 

x 10-3 a.u.  

 

 



 

19 

4. Results and Discussions 

 

The purpose of this section is to illustrate the potentialities of the two algorithms described in Section 

2. We will begin comparing the performance of the proposed conical intersection algorithm using the 

S0/S1 and S0/T1 crossing seams of benzene. The z-penta-3,5-diennium crossing seam will be used to 

present an example of constrained optimization. The S0/S1 crossing seam of butadiene is examined with 

the aim of optimizing a saddle point onto this hyperline. We indeed optimized and characterized a new 

saddle point along this crossing seam. The potentialities and performance of the algorithm devised to 

compute the intersection-space path are finally showed on the S0/S1 crossing seam of butadiene. 

 

(a) (b) 

Figure 2 – Starting benzene geometry (a) and optimized S0/S1 conical intersection geometry (b) at SA-

CASSCF(6,6)/STO-3G level. All the angles (italic) are reported in degrees, while the C-H (underlined) 

and C-C bonds are reported in Angstrom. 

 

4.1 Conical Intersection algorithm: To evaluate the overall efficiency of the conical intersection 

algorithm, the S0/S1 conical intersection seam of benzene (see for example Refs. 44, 45) has been used. We 

compare here the global convergence of the benzene S0/S1 conical intersection optimization computed 
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by using the algorithm of Bearpark et al. 15, the one proposed by Anglada et al. 19 and the one proposed 

in this paper. All the conical intersection optimizations were started from a no-planar benzene structure 

obtained by distorting the minimum geometry (Figure 2a) on the S1 potential energy surface 44.  

 

The same conical intersection geometry was optimized by the three different algorithms (Figure 2b), 

which is that previously reported by Bearpark et al. 15. As noted in that study, a bigger basis set would, 

on one hand, provide a more accurate description of the molecular geometry. On the other hand, a 

bigger basis would not invalidate the results obtained regarding the convergence behavior. The objective 

of the test presented here is to discuss the total convergence of the new algorithm, so we used a 

relatively small basis set to speed up the tests.  

 

 

Figure 3 – Global convergence of an S0/S1 conical intersection optimization of benzene molecule: 

comparison between the energy profiles obtained by the algorithm of Bearpark et al. (open circles) and 

the proposed algorithm (filled circles). The energy changes of the two states during the optimization 

are reported. 

 

In Figure 3 and Figure 4 we show the energies changes of the two S0 and S1 crossing states for 
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benzene computed with the three algorithms during the optimization. As discussed in Section 2, the 

algorithm of Bearpark et al. (open circles in Figure 3) promptly reaches the crossing seam. However, 

once in that region, an ill-conditioned Hessian may slow the overall convergence. On the other hand, the 

algorithm proposed by Anglada et al. has a slower convergence towards the crossing seam (open circles 

in Figure 4) but it gives rise to a much smoother profile in the degeneracy region. In addition to the low 

rate of convergence to the degeneracy region, this latter algorithm tends to take steps in high-energy 

regions, where the molecule may, for example, dissociate and therefore be channeled towards high 

energetic portions of the intersection seam. 

 

 

Figure 4 – Global convergence of an S0/S1 conical intersection optimization of benzene molecule: 

comparison between the method introduced by Anglada et al. (open circles) and the proposed algorithm 

(filled circles). The energy changes of the two states during the optimization are reported. 

 

It is easily appreciated that the new algorithm (filled circles and solid line in both Figure 3 and Figure 

4) has a faster convergence, when compared with both the other methods (open circles and dashed line 

in Figure 3 and Figure 4). In addition, it is clear that the implemented algorithm is capable to exploit the 

strength of the two methods in different regions of the optimization. It has the wanted convergence rate 
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in the first part of the optimization, but it is also capable to maintained the degeneracy between the two 

crossing electronic states once the crossing seam is reached.  

To summarize, we have noticed that the implemented algorithm is the fastest algorithm to converge 

(filled circles in Figure 3 and Figure 4) and is also capable to better retain the degeneracy between the 

two crossing states. To emphasize this last point, in Figure 5, the difference of the energies of the S0 and 

S1 states of benzene is shown.  

 

 

Figure 5 – Energy Difference (expressed in Kcal/Mol) between S0 and S1 electronic states in benzene 

during the conical intersection optimization. The results obtained with method of Anglada et al. (solid 

line and open circles) and the algorithm implemented by Bearpark et al.’ (dash line and open squares) 

and the proposed algorithm (solid line and filled circles) are reported. 

 

In Figure 5, it should be noted that the starting geometry is very poor, since the initial energy gap 

between the two states is of over 100 Kcal/Mol. Such a difficult test demonstrates the robust global 

convergence of all the three algorithms. Nevertheless, the presented algorithm is the only one that keeps 

diminishing the energy gap between the two states constantly as the optimization proceeds. In addition, 

it shows fewer oscillations of the energy difference values. This result is consistent with having obtained 
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a more accurate intersection-space Hessian with the update procedure.  

 

 

Figure 6 – Global convergence of an optimization of an S0/T1 crossing geometry of benzene. Geometries 

for selected points (1, 11, 21, 31) along the optimization path are shown at the bottom of the figure. 

 

In Section 2, we have presented an algorithm to optimize conical intersections. However the same 

algorithm is also capable to optimize crossing points along (n-1)-dimensional crossing seams. In Figure 

6, we show, as an example, the energy separation and the geometrical changes during the optimization 

of a crossing point along the T1/S0 crossing seam of benzene. As initial geometry (at iteration 1 in Figure 

6), we have used boat-like structure, resembling the transition state connecting benzene to Dewar 

benzene 44, 46. Also in this type of crossing, the algorithm presented in this paper shows a robust overall 

convergence and it is capable to promptly approach the crossing seam. We note that the crossing point 

optimized in this test differs from the geometry obtained in our previous study 15, as a consequence of 

choosing a different starting geometry. 
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Scheme 1 

 

To illustrate the generality of our implementation, we now show a conical intersection constrained 

optimization within the S0/S1 intersection space of z-penta-3,5-dieniminium cation 22, 47. We have carried 

out a relax scan of the central dihedral angle (Scheme 1) and in Figure 7a we report the energy profile 

computed. As previously reported 22, 28, 47, 48, we have found the minimum crossing point being in the 

region of 90º. However, it should be noted that the new algorithm is capable to achieve a high level of 

degeneracy (see for instance Refs.22, 28) at all the optimized structures (Figure 7b).  

 

 

(a) 

 

(b) 

Figure 7 – Energy profile obtained as function of the z-penta-3,5-dieniminium cation central bond 

rotation (a). The degeneracy is reached for all the examined angles as showed in panel (b), where the 

energy difference (in Kcal/Mol) is reported. 
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4.2 Algorithm to compute the intersection-space minimum energy path: To demonstrate the 

generality of the proposed conical intersection algorithm, we have optimized a saddle point along S0/S1 

crossing seam of 1,3-butadiene. Such saddle point will then be linked up with two structures lower in 

energy along an intersection space minimum energy path computed with the second proposed algorithm.  

 

In Section 2, we have mentioned that the presented algorithm can be combined with the algorithm 

implemented in Gaussian package to optimize transition structures. Generally, in order to optimize a 

saddle point structure, one must start from a geometry that is close enough to the quadratic region of 

such a point. In addition, the Hessian at this initial structure must show a negative eigenvalue, and the 

corresponding eigevector must be a suitable approximation for the direction connecting the two valleys. 

When one tries to optimize a saddle point within the intersection space, obviously, the initial geometry 

should also be a point of degeneracy.  

 

In our first study 49 on 1,3-budadiene, we had optimized three stationary point along the S0/S1 crossing 

seam: the cisoidal, the transoidal, and the central structure. In the present study, starting from that 

central geometry we first re-optimized the energy gap between the two states along the gradient 

difference vector. At this conical intersection the intersection-space Hessian was computed and an 

imaginary frequency (with corresponding eigenvector) obtained. Finally, using the new algorithm 

presented in this paper, we have been able to optimize a new saddle point never reported previously 

(SPCI82 in Figure 8). Such structure shows an imaginary frequency of some 639 i cm-1 corresponding to a 

combination of a -CH2 twisting mode and a symmetric rocking mode localized on H5 and H6. The seam 

normal mode corresponding to the imaginary frequency was then used to detect lower energy structures 

on the crossing seam, following a methodology recently proposed elsewhere 11. Thus, we were able to 

locate one of the s-cisoidal conical intersection isomers (CICis in Figure 8) and another new conical 
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intersection saddle point (SPCI66 in Figure 8). 

 

SPCI82 

  

SPCI66 

  

CICis 

  

Figure 8 - Important geometric parameters for the optimized butadiene CI geometries found along the 

S0/S1 1,3-butadiene crossing seam. The bond lengths are expressed in angstroms, while the angles (in 

italic) are presented in degrees. 

 

As pointed out elsewhere 11, displacing along the mode with the imaginary frequency only suggest a 

possible connection between conical intersection structures, if lower energy structures exist. 

Nevertheless, a full reaction path computation restricted to the intersection space is required to infer 

rigorously that two conical intersection geometries are connected along the same seam. In Figure 9, we 

report the results obtained with the algorithm designed to compute the minimum energy path within the 
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intersection space, discussed in Section 2. 

 

 

(a) 

 

(b) 

Figure 9 – Minimum energy path connecting SPCI66 (negative part of the intersection space coordinate in 

panel a) to the CICIS (positive intersection coordinate in panel a) through SPCI82. In panel b, the energy 

difference computed at each point along the intersection space minimum energy coordinate is reported. 

 

The accuracy of the algorithm proposed in this paper can be appreciated from Figure 9b; where the 

energy difference at each optimized structure along the path is reported. It can be seen that the energy 

gap is well below the chemical accuracy (1 Kcal/Mol) and all the structure computed can be indeed be 

thought as points belonging to the same portion of the S0/S1 1,3-btadiene crossing seam.  

 

We have started our computations from the structure SPCI82 (Figure 8) and we have used as initial 

relaxation direction (see for instance Refs 12, 26, 27, 50) the eigenvector corresponding to the imaginary 

frequency. It should be emphasized that the absence of discontinuity in such profile is the evidence of a 

single crossing seam. Thus, we can conclude that the SPCI82 is the highest in energy structure along the 
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portion of intersection space connecting CICis and SPCI66. We conclude noticing that due to the 

complexity morphology of area around the SPCI66, in our calculations the step length was reduced. This 

explains the number of points on the left hand side of the profile in Figure 9a. 
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4. Conclusions 

 

In this paper we have presented two new algorithms to study the extended nature of the crossing 

seam. The first algorithm represents an improvement over the already available algorithms. It combines 

an existing fast convergence in reaching the seam region with an extreme flexibility in the degeneracy 

region itself. We have demonstrated the potentialities of this algorithm on different crossing seams and 

with different scopes. We have optimized both minima and saddle points on crossing seams as well as 

carried out conical intersection optimization along a frozen internal coordinate. In all cases, the results 

obtained show a fast and smooth convergence to an optimized conical intersection. 

 

The second algorithm has instead been designed to compute the intersection-space minimum energy 

path. Adapting one of the available algorithms 27 to compute the reaction path on the entire potential 

energy surface, we have implemented an analogous method limited exclusively to the intersection 

space. We have shown the potentialities by explicitly mapping out a finite region of the S0/S1 1,3-

butadiene crossing seam. 
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Appendix 

 

In this Appendix, we will show the equivalence between the gradient of one of the two crossing states 

energy and the average gradients, once they are both projected onto the first-order intersection space. 

Using the definition of projection matrix given in Eq.(2c), the projected gradient, for instance, of the 

state 2 can be written as: 
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On the other hand the projected average gradient is defined as: 
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Proving their difference zero is equivalent to show that they are the same vector. Thus: 
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(A.3) 

In Eq.(A.3), we have used the definition of the projection matrix P [Eq.(2)] and exploited the fact that 

the gradient difference vector and the non-adiabatic intrastate coupling vectors are chosen to be 

orthonormal to each other.  
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