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Abstract

The chemical formation process from the study of radial intracule densities by con-

structing the relaxation holes, ∆h(u), resulting from the difference between the actual

radial intracule density and the nonrelaxed one, which is obtained from atomic radial

intracule densities and the pair density constructed from the overlap of the atomic

densities has been studied. Our results show that the internal reorganization of elec-

tron pairs prior to bond formation and the covalent bond formation from electrons in

separate atoms are completely recognizable processes from the shape of the relaxation

hole, ∆h(u). The magnitude of ∆h(u), the shape of ∆h(u) ∀u < Req and the distance

between the minimum and the maximum in ∆h(u) provide further information about

the nature of the chemical bond formed.

A computational affordable approach to calculate the radial intracule density from

approximate pair densities has been also suggested, paving the way to study electron-

pair distributions in larger systems.
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Graphical Abstract
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Figure 1: Relaxed and nonrelaxed radial intracule probability densities of Li2 at different
bond lengths. All R and u in Å.
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1 Introduction

Understanding chemical processes requires a proper characterization of bond formation. The

formation of bonds is usually analyzed from the energy gain or loss, through the study of

potential energy surfaces,1 suggested by René Marcelin in 1913. Since the advent of quan-

tum mechanics, the chemical bond has been also investigated from descriptors based on

the electron density.2–4 Many tools have been designed to this aim, the Quantum Theory

of Atoms In Molecules5 (QTAIM) of Bader probably being the most popular one. Another

avenue consists in the study of electron pair formation in chemical bond, as pionnered by the

classical work of Lewis in 1916.6 Since the landmark paper of Lewis, there have been many

attemps to fit the classic idea of electron pairs in the chemical bond within the framework of

quantum mechanics, mostly using electron-pair distributions.7–21 The electron-pair distribu-

tion or pair density provides a quantum-mechanical description of the distribution of electron

pairs in the space.22,23 Although the pair density has a simple probabilistic interpretation,

it is a complicated six-coordinate function that is not easy to analyze. Most analysis of

the pair density employ transformations that reduce the dimensionality,10,24,25 use statistical

quantities such the average number of pairs,7–9,11–14,16,18,26,27 or employ two-electron expec-

tation values such as the energy28–35 or the square of the total spin angular momentum.36–39

One of the most convenient transformations of the pair density is the so-called intracule

density, which results from the integration of the pair density over the extracule coordinate.

The radial or isotropic intracule density depends only on one coordinate, the interelectronic

distance, but it still retains information about the electron-pair distribution and it is also

the simplest quantity in terms of which an explicit expression of the electron-electron energy

is known. Interestingly, the intracule density is related to an experimental observable, as

it can be obtained from X-ray scattering techniques.40–42 The intracule density has been

previously used to analyze the electronic structure and electron correlation of some molec-

ular systems24,43–59 but very few studies of the intracule density have been devoted to the

investigation of bond formation.60–62
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The aim of this paper is to understand the changes occurring in the intracule density during

the chemical bond formation. To this aim, we have chosen three simple molecules: (i) H2

and (ii) HeH+, which have a chemical bond consisting of a single electron pair, and (iii) BH,

which contains several electron pairs, only one of which is involved in the chemical bond.

The study is complemented with molecules presenting more complicated bonding situations

such as CO, Li2, F2 or the ground and first excited states of LiH. Finally, we consider the cost

of the intracule density plots and suggest a means to obtain it at a reduced computational

overhead.

2 Methodology

The pair probability density or simply pair density 25,63 (2-PD) is defined as

ρ2(r1, r2) =
N(N − 1)

2

∫
|Ψ(r1, r2, r3, ..., rN)|2dr3...drN , (1)

for any electronic wavefunction Ψ of a N -electron system. It is proportional to the probability

of finding a pair of electrons at r1 and at r2, regardless the position of the other N − 2

electrons. Among all electron-pair distributions, we may select the ones that satisfy u =

r2 − r1 for a fixed u,

I(u) =

∫
ρ2(r1, r2)δ(u− r1 + r2)dr1dr2 , (2)

which is known as the intracule probability density or simply intracule density. Upon inte-

gration over the solid angle Ωu we obtain the radial or isotropic intracule density,

I(u) = u2

∫
I(u)dΩu . (3)

This function only depends on the interelectronic distance and, therefore, it provides a simple

visualization of the distribution of electron-electron separations. By monitoring the changes

of this distribution as we stretch a chemical bond, we should observe the formation and

5



breaking of electron pairs and the electron reorganization in the molecule. Unfortunately,

the radial intracule density contains all the information of the N(N −1) electron pairs in the

molecule, most of which is superflous to explain the chemical bond formation. In order to

select the chemical important information within the radial intracule density, some of us62

defined the relaxation hole,

∆h(u) ≡ ∆hrel(u) = I(u) − Inrel(u) , (4)

as the difference between the actual radial intracule density and the nonrelaxed one,

Inrel(u) =
∑

A

IA(u) +
∑
A>B

IAB(u) . (5)

where the first term at the r.h.s. accounts for the atomic contribution and is computed from

isolated atoms and the second term involves the summation of all interatomic contributions

computed using nonrelaxed densities,

IAB(u) = u2

∫
ρA(r1)ρB(r2)δ(u− r1 + r2)dr1dr2dΩu. (6)

where ρA(r1) is the density of the isolated atom A. The nonrelaxed density is thus the

intracule density that can be obtained using atomic information only. Notice that the

nonrelaxed density considers the distribution of electron pairs within the atoms but also

the electron pairs generated from the two individual atomic densities, ρAρB. Inrel(u) was

proven to be a “poor man’s approach to the real I(u)”62 and insufficient to characterize van

der Waals interactions.54,62 However, the structure of hrel(u) was shown to provide valuable

information about the bonding nature of small few-electron systems.62 In this work we are

concerned with the bond formation process in species with larger number of electrons, which

we will study through the analysis of hrel(u) at different bond lengths for various diatomic

molecules.
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The computational cost of the intracule density is quite high because it involves the calcu-

lation of the second-order reduced density matrix (2-RDM) from a highly-accurate wave-

function (typically a full-configuration interaction, FCI) and the numerical integration with

a Gauss-Hermite quadrature of Eq. 2 and a surface integration using a Lebedev quadrature

(Eq. 3). In this paper we will consider two different approximations that can reduce the

computational cost. First of all, we will substitute the FCI calculation with a sufficiently

accurate wavefunction. Namely, we will consider coupled-cluster single and doubles (CCSD)

and complete active space self-consistent field (CASSCF) wavefunctions as substitutes of

the FCI calculation in the presence of dynamic and nondynamic correlation effects, respec-

tively.64,65 Second, we will use an approximation of the 2-RDM that only includes two-index

elements66,67 and, therefore, reduces the 2-RDM from the exact four-index quantity to an

approximate two-index one.

CCSD wavefunctions do not satisfy the Hellmann-Feynman theorem and usually expen-

sive energy-derivative 2-RDM are employed.35,68–70 In order to reduce the cost, several au-

thors14,20,71–73 have used 2-PD approximations extracted from the reduced density matrix

functional theory (RDMFT).53,74–76 In this paper we opt for the same solution to avoid

the cost of CASSCF and CCSD 2-RDM. Among the different RDMFT approximations, we

have chosen the simple Müller approximation66 (also known as Baerends-Buijse approxi-

mation67,77) that provides reliable results in the calculation of chemical bonding descrip-

tors.14,20,53

FCI calculations of the potential energy curves (PECs) have been performed for H2, HeH+,

BH, Li2 and LiH (for LiH both ground and first excited states are considered) with a mod-

ified version of the code developed by Knowles and Handy.78,79 For F2 and CO, CASSCF

calculations of the PEC were performed using Gaussian 0980 code taking ten electrons in six

orbitals for F2 and six electrons in six orbitals, including a state average of six energy levels,

for CO. Gaussian 09 package was employed to perform CCSD calculations for all diatomics

but CO and two-electron molecules. The computation of approximate ∆h(u) using CCSD
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wavefunctions employed the unrestricted formalism in order to compute the total radial in-

tracule density and the nonrelaxed ones (which often involve open-shell species) in the same

grounds. All CCSD calculations included the correlation of all the electrons except for F2,

for which we performed frozen-core calculations in order to produce a meaningful comparison

between CCSD and CASSCF results. In all cases the aug-cc-pVDZ basis was used. PECs of

all the studied systems are collected in Fig. S1. 2-RDM were produced from the expansion

coefficients of CASSCF and FCI wave functions using the in-house DMN code.81,82 Intracule

densities were computed with RHO2 OPS 83 code using the algorithm of Cioslowski and

Liu.84

3 Results

3.1 H2, HeH+ and BH

All the equilibrium distances at the corresponding level of theory are collected in Table 1. The

formation of the covalent bond in H2 is due to a partial deformation of the electron density

of the two isolated atoms, which is relocated in between them. The same phenomenon can

be studied in terms of the pair density, by comparing the radial intracule density of H2 to the

nonrelaxed radial intracule density described in the previous section. The formation of an

electron pair between the two atoms is evident from the plots in Fig. 2, where we observe that

∆h(u) peaks at the bond length or at shorter distances and is negative at larger distances.

In other words, the electron-pair distance shrinks upon the formation of the chemical bond.

The distance between the maximum and minimum of ∆h(u) provides information about

the deformation of the electron-pairs length (see Table 1). In H2, this length systematically

reduces as the molecule is formed, increasing the probability of having the electron pair at

shorter distances.
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Figure 2: ∆h(u) of H2 (left) and HeH+ (right) at different bond lengths. All R and u in Å.

HeH+ is formed from He and H+ and, therefore, the nonrelaxed intracule density of this

diatomic molecule is rather simple because H+ does not contribute to atomic or diatomic

components of the nonrelaxed intracule density (the density and the pair density of H+ are

zero). Hence, ∆h(u) only has contributions from the atomic He component and it consists

in the difference of the radial intracule density of HeH+ and He. The redistribution of the

electron-pair probability density upon bond formation is less important than in the hydrogen

molecule, as the values of ∆h(u) are one order of magnitude smaller. The formation of the

covalent bond in this molecule is actually completely opposite to the latter case as we can

see in Fig. 2. First, as the helium atom approaches the proton, the electron pair within He

stretches, reducing the probability of having the electrons separated ca. 0.5Å and increasing

it around the bond length. Only at the equilibrium, R = 0.8Å, the electron-pair density at

larger distances is reduced. The fact that the pair-density is dragged from short distances

always around the same position (around 0.3 − 0.5Å) is in accord with the fact that this

molecule is just experiencing an internal pair reorganization of the electrons within He.

The formation of BH from B and H is an intermediate case where a bonding electron pair

is formed from two electrons that come one from each atom, and there is simultaneously an

internal reorganization of the electron pairs in B. At large atomic separations, as a result
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of the deformation of the electron density within B atom, electrons move towards H and,

hence, the electron-pair distribution shifts to larger distances (see Fig. 3). Eventually, the

two atoms get quite close and the profile of ∆h(u) reverses: the electron-pair distribution

increases around the bond length by reducing the density of electron pairs at shorter and

longer distances. Finally, the bond is completely formed and the peak of ∆h(u) is entirely due

to the reduction of the distance of electron pairs. As we can see, the internal reorganization

of electron pairs prior to bond formation and the covalent bond formation from electrons in

separate atoms are completely recognizable processes from the shape of the relaxation hole.
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Figure 3: ∆h(u) of BH along the bond formation process. All R and u in Å.

3.2 Li2, CO, F2 and LiH

In this section we analyze the intracule densities during the bond formation of Li2, CO, F2 and

LiH from the neutral atoms in gas phase. In the latter case we study both the ground and the

first excited states, X1Σ+ and A1Σ+, respectively. All these diatomic molecules dissociate

into neutral atoms in gas phase and there is, at least, some partial covalent character in the

bonds of these molecules at equilibrium.85
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Table 1: First maximum (M) and minimum (m) of ∆h(u) for all the systems studied. u and
Req, the equilibrium distance, in Å.

Molecule Req uM um ∆h(uM) ∆h(um)

H2 0.7 0.76 1.86 0.113 -0.071

HeH+ 0.8 0.84 0.31 0.026 -0.014

BH 1.3 1.16 2.17 0.192 -0.067

Li2 2.7 2.02 4.08 0.344 -0.239

CO 1.1 0.69 1.19 1.287 -1.038

F2 1.5 0.77 1.32 0.516 -0.903

LiH (X1Σ+) 1.6 1.37 3.04 0.322 -0.185

LiH (A1Σ+) 2.6 6.05 2.21 0.263 -0.409

In F2 the reorganization of electron pairs occurs faster than in BH (see Fig. 4). Indeed, the

first appreciable variation of the electron pair distribution does not occur until the atoms

are separated 2.5Å, i.e. at 1.2Å from the equilibrium distance. The first significant values of

∆h(u) occur at R = 2.1Å, where the electron-pair distribution is shifted to shorter distances,

augmenting the probability of finding electron pairs between the F atoms. Unlike H2 or BH,

the maximum of the relaxation hole, ∆h(u), occurs at values of u significantly shorter than

the equilibrium distance (see Table 1), suggesting that two bonding electrons lie in the

bonding region as opposed to the situation in which the electrons of the bonding pair are

sitting close to the nuclei. The same situation is reproduced in Li2 and CO and, therefore,

we are deemed to conclude that this profile is typical in covalent bonds. Obviously, H2

constitutes an exception because there are no core electrons in this molecule and, therefore,

the electrons in the bonding pair are highly attracted towards the closest nucleus.

Let us now examine Li2, which presents a non-nuclear attraction (NNA) in the middle of

the bond at various bond lengths (RLiLi ∈ [2.7 − 3.3]Å)86 and it is the smallest electride

documented thus far.87 At the equilibrium, we find that ∆h(u) > 0 for all u < Req and

significant large ∆h(u) at u = Req/2, indicating the additional formation of electron pairs
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between the electrons at the NNA and the ones at each Li atom. In this case, the formation

of the molecule occurs less abruptly that in F2 and involves the reorganization of electron

pairs at larger distances.

The ∆h(u) evolution with the bond length in CO also has some resemblance with the latter

two cases. There are, however, three important differences. The first one is that the CO

bond formation takes place in a shorter span than Li2 but larger than in F2, the first impor-

tant electron-pair redistribution occurring only at about 1Å from the equilibrium distance.

The second one is the long-range peaks of ∆h(u), showing at distances larger than the bond

length, suggesting a non-negligible reorganization of the lone pairs prior to bond formation.

Finally, we find that ∆h(u) is systematically larger than in Li2 and F2, as it corresponds

to the formation of three electron pairs in CO. Interestingly, CO and F2 have the short-

est distance between the maximum and the minimum of ∆h(u) (see Table 1), indicating

that these molecules experience a less drastic deformation of the electron-pair length upon

bond formation. This fact is in agreement with the more electronegative character of the

composing atoms, conferring them a lower capacity to be deformed.

A most interesting electron reorganization occurs in LiH ground and first excited states.85

The X1Σ+ and A1Σ+ states dissociate into H(2S)+Li(2S) and H(2S)+Li(2P ), respectively.

The adiabatic ground state, X1Σ+, is dominated by a diabatic ionic state at the equilib-

rium but, as the molecule stretches, the PEC passes through an avoided crossing and the

state is predominantly covalent in nature. In this sense, the character of the bond in LiH

changes from covalent to ionic as the molecule is formed. This change of bond character is

accompanied by an electron transfer from hydrogen to lithium, which is commonly known

as the harpoon mechanism. This peculiar mechanism is given by the crossing between two

diabatic states, the ionic and the lowest-lying covalent ones, around 3Å. The A1Σ+ state

is even more complicated because it results from the crossing of three diabatic states, the

ionic and the two lowest-lying covalent diabatic states, giving rise to two avoided crossings

(the first of which obviously is shared with the ground state). Hence, when the molecule is
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formed, the bonding character of A1Σ+ LiH changes from covalent to ionic and, then, back

to covalent. The second avoided crossing takes places when Li and H are separated about

6Å. The electron transfers occur in the regions close to the avoided crossings and were fully

characterized in our previous work.85

The profile of ∆h(u) for X1Σ+ at equilibrium resembles BH, peaking not far from the equilib-

rium distance. However, as we stretch the bond, one does not observe electron-pair depletion

at short distances. In fact, it is only after we have passed the avoided crossing that we start

to observe an increase of the probability at short electron-electron distances. In other words,

the typical profile of covalent bond dissociation is only reproduced when we are in the part

of the potential energy surface that is purely covalent. Although the profile of ∆h(u) for

large R is very similar for the ground and excited states, the situation at short bond lengths

is reversed for the A1Σ+ state. As we approach the equilibrium distance, the profile does

not reverse and we barely observe the formation of short-range electron pairs. This plot puts

forward the rather polarized character of this bond, which is characterized by significant

electron-pair stretching upon bond formation, i.e., completely opposite to all the molecules

studied in this work. Even HeH+ is a quite different case because in this molecule there was

only internal reorganization of the electron pairs, which were never shifted to distances much

larger than the bond length.
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Figure 4: Relaxation holes for Li2, CO, F2 and LiH at different bond lengths (R). The
ground (X1Σ+) and excited (A1Σ+) states of LiH were analyzed. The minimal bond length
corresponds to the equilibrium geometry in all cases. All R and u in Å.
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4 Approximate Radial Intracule Densities

In this section we assess the performance of approximate radial intracule densities in repro-

ducing the plots of the previous sections. Thus far, we have employed CASSCF wavefunc-

tions for F2 and CO, and FCI for H2, HeH+, BH, Li2 and LiH (both states). Both FCI and

CASSCF yield N -representable 2-RDMs.

First of all, we replace the FCI/CASSCF calculation by CCSD for all the systems, except

CO, for which a multideterminant calculation is mandatory. Second, we use an approximate

2-RDM calculated from CCSD natural orbital occupancies. Namely, we apply the Müller

approximation66,67,77 using the energy-derivative CCSD 1-RDMs obtained from Gaussian.

The latter are not N -representable and, thus, might present natural occupancies outside the

physical range [0,1]. However, in the present cases, only a few populations did not meet

this condition and the deviations from the occupation boundaries were small, producing no

quantitative effect on the results presented.

We did not include H2 and HeH+ because for these two-electron systems the CCSD wave

functions actually correspond to the exact solution and, therefore, only the 2-RDM could

be approximated. In addition, as we have just recently proven, the Müller approximation

performs quite accurately in a weakly-correlated regime.53 Accordingly, our calculations on

these systems confirm this finding, producing intracule plots that are indistinguishable from

the exact ones and, therefore, we have omitted them in the manuscript. We have also omitted

the excited state of LiH. The approximate ∆h(u) plots for the rest of the molecules are plotted

in Fig. 5. In all cases there is a very good agreement between the original calculations using

FCI/CASSCF and the exact 2-RDM and these approximate wavefunctions using CCSD and

Müller’s approximation. The small difference occurs for the short-range part of ∆h(u) of

F2, which can be attributed to the fact that CASSCF calculations did not include the 2σ
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orbital in the active space whereas the CCSD wavefunction takes the correlation effects of

this orbital into account. We also collect the information of the minima and the maxima of

∆h(u) in Table 2. Comparsion with the numbers in Table 1 reveals very small differences

between the original and the approximate ∆h(u), validiting the use of the approximations

to retrieve information about the electron pairing in electronic structures.

Table 2: First maximum (M) and minimum (m) of ∆h(u) for the systems analyzed with the
approximate relaxation hole at the equilibrium distance (see Table 1). u in Å.

Molecule uM um ∆h(uM) ∆h(um)

BH 1.15 2.08 0.207 -0.076

Li2 2.04 4.10 0.353 -0.241

CO 0.70 1.19 1.322 -1.000

F2 0.80 1.35 0.657 -0.970

LiH (X1Σ+) 1.36 3.03 0.325 -0.184
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Conclusions

In this paper we have studied the chemical formation process from the study of radial intrac-

ule densities. We have analyzed the relaxation holes, ∆h(u), resulting from the difference

between the actual radial intracule density and the nonrelaxed one —constructed from atomic

radial intracule densities and the pair density obtained from the overlap of the atomic densi-

ties. Our results show that the mechanism of electron-pair formation is contained in ∆h(u).

In particular, the internal reorganization of electron pairs prior to bond formation and the

covalent bond formation from electrons in separate atoms are completely recognizable pro-

cesses from the shape of the relaxation hole, ∆h(u). The magnitude of ∆h(u), the shape

of ∆h(u) ∀u < Req and the distance between the minimum and the maximum in ∆h(u)

provides information about the nature of the chemical bond formed.

We have also suggested a computational affordable approach to calculate the radial intrac-

ule density from approximate pair densities and adequate wavefunctions such as CCSD or

CASSCF as replacements of FCI in regimes of dynamic and nondynamic correlation, respec-

tively. In all cases, there is a qualitative agreement with the reference calculation and, quite

often, the relaxation holes produced from both methodologies are barely distinguishable.

This approach paves the way to study electron-pair distributions in larger systems.
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