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Abstract: We consider the problem of a society whose members must choose
from a �nite set of alternatives. After knowing the chosen alternative, members
may reconsider their membership by either staying or exiting. In turn, and as
a consequence of the exit of some of its members, other members might now
�nd undesirable to belong to the society as well. For general exit procedures
we analyze the exit behavior of members after knowing the chosen alternative.
For the case of monotonic preferences we propose, for each chosen alternative,
an unambiguous and meaningful prediction of the subset of members that will
exit.

Journal of Economic Literature Classi�cation Number: D71.
Keywords: Voting, Exit, Subgame Perfect Equilibrium.

1 Introduction

Societies choose alternatives by well-de�ned voting rules. For instance, political
parties and trade unions take up public positions on di¤erent issues; communi-
ties decide on the contribution level of their members needed to �nance common
needs; permanent faculty members select new faculty members; scienti�c soci-
eties, and in general democratic societies, choose their representatives. A vast
literature on social choice theory studies the properties (in terms of e¢ ciency
and incentives, for instance) of alternative voting procedures used to make these
choices. Voting by committees, scoring rules, and generalized median voter
schemes are examples of speci�c voting rules used in di¤erent settings like those
just mentioned.
But societies evolve over time. Often, this evolution is triggered precisely

by the chosen alternative: some members may want to exit, if they feel that
the chosen alternative makes the society undesirable to them. In turn, other
members (although liking the alternative, and even after voting for it) might now
�nd the society undesirable, after some of its members have already abandoned
it, and so on. In this paper we contribute to the study of how the possibility
that members may exit, after choosing an alternative, a¤ects the society.
This problem was �rst studied in Berga, Bergantiños, Massó, and Neme

(2004a). In this previous paper we study the problem of a society choosing a
subset of new members, from a �nite set of candidates (as in Barberà, Son-
nenschein, and Zhou, 1991). We explicitly consider the possibility that initial
members of the society (founders) may want to exit it, if they do not like the
resulting new society. We show that, if founders have separable (or additive)
preferences, the unique strategy-proof and stable social choice function satisfy-
ing founder�s sovereignty (on the set of candidates) is the one where candidates
are chosen unanimously and no founder exits. But, most societies do not use
unanimity, and the members can exit whenever they want. In this paper we
mainly focus on the exit decisions of members, once they have chosen an alter-
native.
As in Berga, Bergantiños, Massó, and Neme (2004a) we assume that mem-

bers have preference orderings on the set of �nal societies, where a �nal society
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consists of an alternative, and a subset of initial members. We consider �nal
societies to be the outcomes of a two-stage game. First, members choose an
alternative x 2 X by a given voting procedure. Second, and after knowing the
chosen alternative, members of the initial society decide whether to stay or exit.
We think that this two-stage game models many real situations. Even though
we mainly focus on the second stage, the last section of the paper is devoted to
some analysis of the two-stage game.
While voting procedures are almost always completely described by means of

a voting rule, exit procedures are, in contrast, much less described by societies.
We illustrate, by means of some examples, that the exit procedure may be very
important, because it may a¤ect the set of members who exit. Nevertheless, it
seems that many societies (for instance scienti�c societies) do not care about
the exit procedure. Are societies wrong or there is some kind of rationality
supporting that? This paper tries to provide an answer to this question.
We �rst model exit procedures by a generic family of games, f� (x)gx2X ,

parametrized by the chosen alternative. Namely, �(x) describes the rules under
which members have to decide their membership, after x has been chosen. Here
we focus on voluntary membership, in the double sense that members can not
be obliged to stay if they do not want to, and members can not be expelled if
they want to stay. Therefore, we require that each member always has available
two strategies, one guaranteeing that he stays, and the other guaranteeing that
he exits.
There are many societies whose members consider undesirable the exit of

other members, independently of the chosen alternative. Preference relations
that satisfy this general condition will be called monotonic. Under this domain
restriction we identify, for each chosen alternative x, a very reasonable �nal
society consisting of x and the complementary set of what we call the exit set
after x is chosen, EA (x). This set is de�ned recursively as follows. At each
step, all members who would like to exit do so, given that x has been chosen, and
the current society is formed by all members who in all previous steps wanted
to stay. EA (x) is de�ned only through the preferences of the members and it
is independent of the exit procedure �(x).
We say that an equilibrium of the exit procedure is a �panic equilibrium�,

if it exhibits the bad coordination feature that some members exit only because
they expect that other members will exit as well, although all of them would be
better of staying.
We prove that, independently of the exit procedure � (x), we have at least

an equilibrium where agents in EA (x) exit and agents in NnEA(x) stay. More-
over, we prove that remaining equilibria of � (x) are panic equilibria, in which
members in EA (x) exit. We argue that EA (x) is a good prediction of exit
because there is a unique plausible equilibrium outcome, which corresponds to
the case where members in EA (x) exit, and members in NnEA (x) stay. Thus,
there is some kind of rationality supporting the fact that many societies do
not care about exit procedures. The reason is that there is a unique plausible
equilibrium outcome, which is independent of the exit procedure.
Many societies do not fully specify the information, that should be pro-
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vided to members, about the exit decision of other members. We study this
issue by comparing the equilibria induced by two exit procedures: simultaneous
and sequential. In simultaneous exit, each member reconsiders, independently
and simultaneously, his membership. In sequential exit members reconsider,
sequentially and knowing the decision already taken by their predecessors, their
membership. Simultaneous exit corresponds to the case where agents have no
information about the exit of the other members. Sequential exit corresponds
to the case where agents are completely informed about the exit decisions of
those members that have already made it.
We prove that in simultaneous exit panic equilibria can exist. If exit is

sequential, for all alternative x 2 X; � (x) has a unique subgame perfect equi-
librium outcome, which corresponds to the unique non-panic equilibrium. More-
over, this outcome is independent of the order in which members reconsider their
membership. Then, providing information about the exit seems to be a way for
avoiding panic equilibria.
In the last section we show that, even when preference pro�les are monotonic,

the two-stage game may not have equilibria. But, for voting by quota, we present
two results guaranteeing the existence of equilibria. However, these results are
not very satisfactory, because the equilibria we �nd are not reasonable. They
are based on a coordination failure of members in the voting stage.
Finally, we exhibit a case with monotonic preferences in which, for all equilib-

ria of the two-stage game, there exists a member playing a dominated strategy.
This means that we can not �nd equilibria, in which agents are voting in a
reasonable way.
Before closing the Introduction we comment on two recent related papers.

Barberà, Maschler, and Shalev (2001) study a society that, during a number of
periods, may admit in each period new members. Our paper di¤ers form theirs
in many things. The most important one is that their voters are not able to
exit.
Granot, Maschler, and Shalev (2002) study a similar model with expulsion;

that is, current members decide in each period, whether to admit new members,
and whether to expel current members for good. In contrast, our focus here is
on voluntary exit because, in some settings, we �nd it to be more relevant than
expulsion.
The paper is organized as follows. We introduce the problem in Section 2.

Section 3 is devoted to the case where members have monotonic preference
pro�les. In Section 4 we study, for monotonic preference pro�les, the case
where exit is simultaneous and the case where exit is sequential. Section 5
concludes by showing the existence of equilibria of the two-stage game, when
the voting procedure is voting by quota, and by showing also the non-existence
of undominated equilibria.
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2 The problem

Let N = f1; :::; ng be the initial set of members of a society that must choose
an alternative from a non-empty set X. We assume that n is �nite and n � 2.
Generic subsets of N are denoted by S and T , elements of N by i and j,
and elements of X by x and y. A �nal society [S; x] consists of the subset of
members S 2 2N that stay in the society and the chosen alternative x 2 X.
Members have preferences over 2N � X, the set of all possible �nal societies.
The preference relation of member i 2 N over 2N � X, denoted by Ri, is a
complete and transitive binary relation. As usual, let Pi and Ii be the strict
and indi¤erence preference relations induced by Ri, respectively. We suppose
that these preference relations satisfy the following conditions:

(C1) Strictness: For all x; y 2 X and S; T 2 2N such that i 2 S \ T and
[S; x] 6= [T; y], either [S; x]Pi [T; y] or [T; y]Pi [S; x].

(C2) Indifference: For all x 2 X and all S 2 2N , i =2 S if and only if
[S; x] Ii [?; x]. Moreover, for all x; y 2 X, [?; x] Ii [?; y].

(C3) Non-initial Exit: If ? 2 X, then [N;?]Pi [Nn fig ;?].

Strictness means that member i�s preference relation over �nal societies
containing himself is strict. Indifference says that member i is indi¤erent
between not belonging to the society, and the situation where the society has
no members (independently of the chosen alternative). Roughly speaking, (C2)
says that if agent i is not included, he is indi¤erent about who is and the
alternative chosen. Finally, theNon-initial Exit condition says that whenever
not choosing an alternative is available to the initial society, no member wants
to exit.
We denote by Ri the set of all such preference relations for member i and by

R the Cartesian product R1��� ��Rn. Notice that conditions (C1), (C2), and
(C3) are member speci�c and therefore Ri 6= Rj for di¤erent members i and j:
A preference pro�le R = (R1; :::; Rn) 2 R is a n-tuple of preference relations.
We focus on situations where �rst, members of N must choose an alternative

fromX: Second, and after the alternative has been chosen (and everybody knows
it), members may exit. We model this situation as a two-stage game

� =
�
(M;v) ; f� (x)gx2X

�
:

In the �rst stage members of the initial society, according to a pre-speci�ed
procedure (M;v), have to choose an alternative in X. Let Mi be the set of
possible messages of member i and de�ne M = M1 � � � � � Mn. A voting
procedure (M;v) is a mapping v : M ! X, where, given the message pro�le
m = (m1; :::;mn) 2M , the selected alternative is v (m) 2 X. To emphasize the
role of member i�s message, we denote a message pro�le m as (mi;m�i).
After the society has chosen x 2 X; each member i 2 N reconsiders his

membership by taking into account the chosen alternative, as well as his expec-
tations concerning whether or not other members will exit. The second stage
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f� (x)gx2X corresponds to the exit procedure, which describes what would hap-
pen if x 2 X were the alternative chosen in the voting stage, and the extensive-
form game � (x) is played among the set N of members. The outcome of each
subgame � (x) is a �nal society; namely, each terminal node of � (x) is a pair
[S; x] where S � N represents the set of members who stay. We make the
following assumptions about the exit procedure f� (x)gx2X .
First, we allow the exit rules to depend on the alternative chosen in the �rst

stage. This means that it is possible, for instance, that if x is chosen, then
members decide simultaneously (and independently) whether they want to stay
or to exit, while if x0 is chosen, then members decide sequentially and publicly,
following some pre-speci�ed order, whether to stay or to exit.
Second, we are implicitly assuming that strategies are stationary in the sense

that, while they do depend on the alternative chosen in the �rst stage, they
are independent of the ballots (or on some partial information contained on
them) submitted in the �rst stage. This means that at the beginning of the
second stage there are #X subgames, and � (x) is indeed a subgame for each
x 2 X: Under this assumption, a strategy of member i 2 N in the game � =�
(M;v) ; f� (x)gx2X

�
can be represented as bi =

�
mi; fbi (x)gx2X

�
; where mi

is the message sent by member i in the voting stage and, for all x 2 X; bi (x) is
the behavioral strategy played by i in the extensive-form � (x).
Third, in order to maintain the ordinal nature of the preference relations

we consider only pure strategies. Let Bi (x) be the set of all pure behavioral
strategies of member i in the subgame � (x) ; and let Bi be the set of all pure
behavioral strategies of member i in �. Then, Bi = Mi � fBi (x)gx2X : Let
B (x) = B1 (x)� � � � �Bn (x) be the set of behavioral strategies in the subgame
�(x); and let B = B1 � � � � � Bn be the set of behavior strategies in the game
�. To emphasize the role of member i�s strategy in the subgame �(x); we write
b(x) = (bi(x); b�i(x)) 2 (Bi(x); B�i(x)). Given x 2 X and b (x) = (bi (x))i2N
2 B (x), [S (b (x)) ; x] is the �nal society corresponding to the terminal node of
� achieved when x was chosen in the �rst stage, and members play b (x) in the
subgame � (x) : De�ne E(b(x)) as the set of members who exit after x is chosen
and strategy b(x) is used; that is, E(b(x)) = NnS(b(x)).
Fourth, to model voluntary exit, the family of extensive-form games f� (x)gx2X

must have the following two properties. First, members can not be forced to
stay if they do not want to. Second, members can not be expelled whenever
they want to stay. Therefore, we assume that each extensive-form game � (x)
has the property that, for all i 2 N , there exist two strategies bsi (x) 2 Bi (x)
and bei (x) 2 Bi (x) such that, for all b�i (x) 2 B�i (x), i 2 S (bsi (x) ; b�i (x))
and i =2 S (bei (x) ; b�i (x)).
We now present two examples of exit procedures: simultaneous exit and

sequential exit.
In simultaneous exit, each member reconsiders, independently and simulta-

neously, his membership. This makes sense when exit is a private decision that
is kept private (for instance, when the membership has to be renewed yearly by
just sending a check to the secretary of the society).
Formally, for all x 2 X; � (x) is the extensive-form game in which members
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select, independently and simultaneously, an element of fe; sg. Of course, e
means exit and s means stay. Therefore, Bi (x) = fe; sg for all i 2 N and
all x 2 X: Moreover, given b (x) 2 B (x) ; S (b (x)) = fi 2 N j bi (x) = sg and
E (b (x)) = fi 2 N j bi (x) = eg :
In sequential exit, members reconsider their membership sequentially, and

knowing the decision taken by their predecessors. This makes sense when mem-
bership is public. For instance, when leader A of a political party announces
publicly that he is exiting the party, due to disagreements with the o¢ cial posi-
tion taken by the party on a particular issue. This in turn may produce further
public announcements of other leaders exiting the party, and so on.
Let � : f1; :::; ng ! N be a one-to-one mapping representing this order;

namely, � (t) = i means that member i is in the tth position according to the
ordering �. Denote by � the set of all n! possible orderings. We denote by
Pre (i; �) the set of predecessors of member i in �; i.e.,

Pre (i; �) =
�
j 2 N j ��1 (j) < ��1 (i)

	
:

Given � 2 �; we consider the exit procedure where for all x 2 X; �� (x) is
the extensive-form game in which each member, sequentially (in the order given
by �) and knowing the decision of his predecessors, selects an element of fe; sg.
If member i chooses e; he is not in the �nal society, whereas if he chooses s he
is.
To describe the set of pure behavioral strategies of members, take i 2 N ,

x 2 X, and � 2 �. When member i must decide, he knows the decisions
already taken by members in Pre (i; �). Thus, we can identify the information
sets of member i with 2Pre(i;�); the family of subsets of Pre (i; �) : In this case,
T 2 2Pre(i;�) represents the subset of members in Pre (i; �) who have already
decided to stay. Thus, we can write the set of pure behavioral strategies of
member i in �� (x) as

B�i (x) = fb�i (x) : 2Pre(i;�) ! fe; sgg:

In contrast with the voting procedure, societies usually specify neither the
rules on how members can exit, nor the information that should be provided to
members, about the exit decision of other members. The next examples show
that this may be a very important issue.
In these examples, as in other examples of the paper, we consider the problem

studied by Barberà, Sonnenschein, and Zhou (1991), where a society has to
choose, from a given set K of candidates, a subset of new members;1 therefore,
X = 2K . Moreover, assume that each member has to vote for a subset of
candidates; namely, for all i 2 N , Mi = 2K . Given an integer 1 � q � n,
vcq :

�
2K
�N ! 2K is voting by quota q if for all (S1; :::; Sn) 2

�
2K
�N

and
k 2 K;

k 2 vcq (S1; :::; Sn) if and only if # fi 2 N j k 2 Sig � q:
1This setting admits alternative interpretations. The set K could be interpreted as the set

of issues from which the society has to choose a particular subset.
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Example 1. Let N = f1; 2; 3g be a society whose members have to decide
whether or not to admit candidate y as a new member (i:e:, X = f?; yg).
Consider the preference pro�le R 2 R, additively representable by the following
table

u1 u2 u3
1 8 �5 1
2 �4 3 2
3 �2 7 3
y �5 �6 100

;

where the number in each cell represents the utility each member i 2 N assigns
to members in N , as well as to candidate y (we normalize by setting ui (?) = 0
for all i 2 N and by saying that if i =2 T then, the utility of [T; x] is 0). That is,
for all i 2 N , all x; x0 2 f?; yg, and all T; T 0 2 2N ; [T; x]Pi [T 0; x0] if and only if8<:

P
j2T

ui (j) + ui (x) >
P
j2T 0

ui (j) + ui (x
0) if i 2 T \ T 0P

j2T
ui (j) + ui (x) > 0 if i 2 T but i =2 T 0:

Notice that, by (C2), if i =2 T and i =2 T 0 then, [T; x] Ii [T 0; x0].
It is easy to see that the extensive-form game � (y) with simultaneous exit has

two Nash Equilibria (NE): b (y) = (e; s; s) ; inducing the �nal society [f2; 3g ; y] ;
and b0 (y) = (s; e; s) ; inducing [f1; 3g; y] :

Example 1 shows that, even if the exit procedure is speci�ed, it is not possible
to uniquely predict the set of members who will stay.

Example 2. Let N = f1; 2; 3g be a society whose members have to decide
whether or not to admit candidate y as a new member (i.e., X = f?; yg).
Assume that the voting procedure is voting by quota 1 and the exit procedure
is sequential. Consider the preference pro�le R 2 R, additively representable
by the following table

u1 u2 u3
1 5 �8 8
2 5 10 �15
3 6 5 10
y �20 �12 2

:

Consider the orderings � and �0, where � (1) = 1, � (2) = 2, � (3) = 3, �0 (1) = 1,
�0 (2) = 3, and �0 (3) = 2.
It is not di¢ cult to prove that the unique Subgame Perfect Nash Equilibrium

(SPNE) of ��
0
(y) is given by

b�
0

1 (y) (?) = e;

b�
0

3 (y) (?) = e; b�
0

3 (y) (f1g) = s;

b�
0

2 (y) (?) = b�
0

2 (y) (f1g) = b�
0

2 (y) (f1; 3g) = e; b�
0

2 (y) (f3g) = s
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where, for instance, in b�
0

1 (y) (?) ; (y) stands for the candidate and (?) stands
for the information set. Moreover, this SPNE satis�es S(b�

0
(y)) = ?:

Similarly, �� (y) has a unique SPNE; which we denote by b� (y). Moreover,
S(b� (y)) = f3g :
We now prove that the game ��

0
= ((f?; ygN ; f��0(x)gx2X) has two SPNE

outcomes: [?; y] and [N;?].
The �nal society [N;?] is obtained with bi = (mi; fb�

0

i (x)gx2f?;yg) for all
i 2 N , where mi = ?;

b�
0

1 (?) (?) = s;

b�
0

3 (?) (?) = e; b�
0

3 (?) (f1g) = s;
b�

0

2 (?) (?) = b�
0

2 (?) (f1g) = b�
0

2 (?) (f3g) = b�
0

2 (?) (f1; 3g) = s;
and (b�

0

i (y))i2N is de�ned as before.
The �nal society [?; y] is obtained with bbi = (bmi; fbb�0i (x)gx2f?;yg) for all

i 2 N , where bmi = y and fbb�0i (x)gx2f?;yg is de�ned as in the case [N;?] :
It is easy to prove that [?; y] and [N;?] are the unique �nal societies asso-

ciated to any SPNE of ��
0
: Yet, [N;?] is the unique reasonable �nal society.

Members 1 and 2 have no incentives to vote for candidate y: Member 3 likes
candidate y: But if he votes for y; y enters and the �nal society is [?; y] ; which
is worse for member 3 than [N;?] :
Using arguments similar to those used with ��

0
; we can prove that �� has

[f3g ; y] as unique SPNE outcome.

These examples suggest that the exit procedure may have very important ef-
fects on the �nal society. The set of members who exit depends on it. Moreover,
members�votes also depend on it (for instance, in Example 2, under � member
3 has an incentive to vote for y; but under �0 his incentive is just the opposite).
Nevertheless, it seems that many societies (for instance scienti�c societies) do
not care about the exit procedure. A natural question that arises is, why? Two
answers are possible. First, societies are making a mistake and they should care
about it. Second, there is some kind of rationality supporting the fact that the
exit procedure is not so important, as the above examples suggest. In the next
section we try to answer this question.

3 Monotonic preferences

There are many societies whose members consider the exit of other members
undesirable, independently of the chosen alternative. For instance, scienti�c
societies want to become larger, political parties do not want to lose a¢ liates,
countries signing international agreements to protect the environment (like the
Kyoto protocol), want to have more countries signing the protocol, and so on.
Preference relations that satisfy this general condition will be called monotonic.
Formally, a preference relation Ri 2 Ri is monotonic if for all x 2 X and all

T ( T 0 � N such that i 2 T;

[T 0; x]Pi [T; x] :

8



A preference pro�le R = (R1; :::; Rn) 2 R is monotonic if, for all i 2 N , the
preference relation Ri is monotonic.
Notice that monotonicity does not impose any condition when comparing two

�nal societies with di¤erent chosen alternatives. In particular, monotonicity ad-
mits the possibility that member i prefers to belong to a smaller society; namely,
the ordering [T; x]Pi [T 0; x0] with i 2 T ( T 0 is compatible with monotonicity,
as long as x 6= x0. But monotonicity also admits that member i prefers to exit
if the chosen alternative is perceived as being very bad; namely, [?; x]Pi [N;x]
is compatible with monotonicity too.
We now de�ne the set EA (x). We will argue that, independently of the exit

procedure � (x), the set EA (x) is a good prediction of the exit after x has been
chosen. The de�nition of EA (x) is recursive and as follows.
First, we de�ne the set EA1 (x) as the set of members who want to exit,

when x is chosen and the other members stay. Formally,

EA1 (x) = fi 2 N : [Nn fig ; x]Pi [N;x]g :

By (C2), EA1 (x) can be rewritten as fi 2 N : [?; x]Pi [N;x]g :
Let t � 1 and assume EAt0 (x) has been de�ned for all t0 such that 1 � t0 � t.

Then,

EAt+1 (x) = fi 2 Nn
tS

t0=1

EAt
0
(x) : [?; x]Pi[Nn

tS
t0=1

EAt
0
(x) ; x]g:

Let tx be either equal to 1 if EA1 (x) = ? or else be the smallest positive
integer satisfying the property that EAtx (x) 6= ? but EAtx+1 (x) = ?: Notice
that tx is well de�ned and tx � n: Then, the exit set after x is chosen is

EA (x) =
txS
t=1
EAt (x) :

Observe that EA (x) depends only on the preference pro�le R; and not on the
exit procedure used in the second stage of �: Note also that we can de�ne EA(x)
for any preference pro�le R 2 R, not necessarily monotonic.
The following example illustrates the de�nition of EA (x).

Example 3. Let N = f1; 2; 3g be a society whose members have to decide
whether or not to admit candidate y as a new member (i:e:, X = f?; yg).
Consider the preference pro�le R 2 R, additively representable by the following
table

u1 u2 u3
1 7 6 1
2 6 2 2
3 15 15 3
y �10 �10 �15

:

It is easy to see that EA1 (y) = f3g, EA2 (y) = f2g, EA3 (y) = f1g, and
EA4 (y) = ?. Thus, EA (y) = f1; 2; 3g. Moreover, EA (?) = ?:
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The next Proposition states that, independently of the exit procedure de�n-
ing the extensive-form game � (x), members in EA (x) always exit at any NE
of � (x). Moreover, for any exit procedure � (x) ; there is a NE strategy b (x)
of � (x) ; such that EA (x) coincides with the set E (b (x)) of members who exit
when b (x) is played.

Proposition 1. Assume preferences are monotonic. Given x 2 X and any
exit procedure � (x),
(a) EA (x) � E (b (x)) for all NE strategy b (x) of � (x) ;
(b) there exists a NE strategy b (x) of � (x) such that E (b (x)) = EA (x).

Proof. (a) Let b (x) be a NE strategy of � (x) : We proceed by induction.
We �rst prove that EA1 (x) � E (b (x)) : Suppose not. Then, there exists

i 2 EA1 (x) such that i =2 E (b (x)) : Since S (b (x)) = N nE (b (x)) ; i 2 S (b (x)).
Assume member i plays bei (x) instead of bi (x) : Since b (x) is a NE of � (x) ;

[S (b (x)) ; x]Ri [S (b
e
i (x) ; b�i (x)) ; x] :

By de�nition of bei (x) ; i =2 S (bei (x) ; b�i (x)) : By (C2),

[S (b (x)) ; x]Pi [?; x] :

Since preferences are monotonic, [N;x]Ri [S (b (x)) ; x], and hence, [N;x]Pi [?; x].
Since i 2 EA1 (x), [?; x]Pi [N;x] ; which is a contradiction. Then, i 2 E (b (x)).
Assume that for all t0 � t < tx, EAt

0
(x) � E (b (x)). We now prove that

EAt+1 (x) � E (b (x)). Suppose not. There exists i 2 EAt+1 (x) such that
i =2 E (b (x)) and hence, i 2 S (b (x)). Since b (x) is a NE of � (x), if member i
plays bei (x) instead of bi (x),

[S (b (x)) ; x]Ri [S (b
e
i (x) ; b�i (x)) ; x] .

By de�nition of bei (x) ; we know that i =2 S (bei (x) ; b�i (x)). By (C2),

[S (b (x)) ; x]Pi [?; x] .

By the induction hypothesis,
tS

t0=1

EAt
0
(x) � E (b (x)). Thus, S (b (x)) = Nn

E (b (x)) � N n
tS

t0=1

EAt
0
(x). Since preferences are monotonic,

[N n
tS

t0=1

EAt
0
(x) ; x]Ri [S (b (x)) ; x] :

Thus,

[N n
tS

t0=1

EAt
0
(x) ; x]Pi [?; x] ;

which contradicts the fact that i 2 EAt+1 (x). Then, for all t0 � tx, EAt
0
(x) �

E (b (x)) :Hence, because EA (x) =
txS
t0=1

EAt
0
(x) we conclude EA (x) � E (b (x)) :

10



(b) Let b (x) 2 B (x) be such that, for all i 2 EA (x), bi (x) = bei (x) and, for
all i 2 N n EA (x), bi (x) = bsi (x) : We prove that b (x) is a NE of � (x) and
E (b (x)) = EA (x).
By de�nition of bei (x) and b

s
i (x), E (b (x)) = EA (x). We now prove that

b (x) is a NE of � (x).
First let i 2 EA (x) and b0i (x) 2 Bi (x). We know that N n EA (x) �

S (b0i (x) ; b�i (x)) and EA (x) n fig � E (b0i (x) ; b�i (x)). If i 2 E (b0i (x) ; b�i (x))
then, [S (b0i (x) ; b�i (x)) ; x] = [S (b (x)) ; x] ; which means that member i cannot
improve.
Assume that i =2 E (b0i (x) ; b�i (x)) : Then, S (b0i (x) ; b�i (x)) = (N n EA (x))[

fig : Since i 2 EA (x) there exists t; 1 � t � tx; such that i 2 EAt (x) : Hence,

[?; x]Pi[Nn
t�1S
t0=1

EAt
0
(x) ; x]:

Since preferences are monotonic,

[Nn
t�1S
t0=1

EAt
0
(x) ; x]Pi [(N n EA (x)) [ fig ; x] :

By (C2), [?; x] Ii [S (b (x)) ; x] : Thus, member i cannot improve either.
Now let i =2 EA (x) and b0i (x) 2 Bi (x). We know that N n (EA (x) [ fig) �

S (b0i (x) ; b�i (x)) and EA (x) � E (b0i (x) ; b�i (x)). If i =2 E (b0i (x) ; b�i (x))
then [S (b0i (x) ; b�i (x)) ; x] = [S (b (x)) ; x] ; which means that member i cannot
improve. Assume that i 2 E (b0i (x) ; b�i (x)) : Then, by (C2),

[S (b0i (x) ; b�i (x)) ; x] Ii [?; x] :

Since i =2 EA (x), then i =2 EAtx+1 (x). By (C2); [NnEA (x) ; x]Pi [?; x]. Since
[S (b (x)) ; x] = [NnEA (x) ; x], member i cannot improve either. �
Remark 1. The conclusions of Proposition 1 do not necessarily hold if

preferences are not monotonic. To see that, consider Example 1 in which
EA1 (y) = f1; 2g and EA2 (y) = ?: Thus, EA (y) = f1; 2g : The extensive-
form game � (y) with simultaneous exit has two NE: b (y) = (e; s; s) ; induc-
ing the �nal society [f2; 3g ; y] ; and b0 (y) = (s; e; s) ; inducing [f1; 3g; y] : Since
EA (y) ) E(b(y)) = f1g and E(b0(y)) = f2g 6= EA (y) = f1; 2g, statements (a)
and (b) in Proposition 1 do not hold.

A natural question that arises is whether or not E (b (x)) = EA (x) holds
for any x 2 X, any exit procedure �(x); and any NE strategy b (x) in �(x).
Example 4 shows that the answer is no.

Example 4. Let N = f1; 2; 3g be a society whose members have to decide
whether or not to admit candidate y as a new member (i:e:, X = f?; yg).
Consider the preference pro�le R 2 R, additively representable by the following
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table
u1 u2 u3

1 7 7 1
2 6 6 2
3 15 15 3
y �10 �10 �15

:

Now, EA1 (y) = f3g and EA2 (y) = ?: Thus, EA (y) = f3g : The extensive-
form game � (y) with simultaneous exit has two NE: b (y) = (s; s; e) ; inducing
the �nal society [f1; 2g ; y] ; and b0 (y) = (e; e; e) ; inducing [?; y] : Member 3
exits because the society becomes unacceptable when candidate y enters. Once
candidate y enters and member 3 exits, member 1 wants to stay if member 2
stays, and exit if member 2 exits. Symmetrically for member 2. The interpre-
tation of b0 (y) is the following: member 1 exits because he thinks that member
2 exits, and member 2 exits because he thinks that member 1 exits.

The equilibrium b0 (y) in � (y) of Example 4 shows that exit procedures may
have NE exhibiting a coordination failure. Namely, there are equilibria in which
members exit only because they think that other members will exit as well, but
all of them would prefer that all stay. We call them panic equilibria.
Formally, b (x) is a panic equilibrium of � (x) if b (x) is a NE of � (x) and

there exists another NE strategy b0 (x) such that S (b0 (x)) ) S (b (x)).
Let b(x) be a panic equilibrium of �(x); and let b0 (x) be a NE such that

S (b0 (x)) ) S (b (x)). Since b0 (x) is aNE, members in T = S (b0 (x))nS (b (x)) 6=
? prefer to stay with members of S (b (x)) ([T [ S (b (x)) ; x]Pi [?; x] for all i 2
T ), and members in E (b0 (x)) exit when members in S (b0 (x)) stay ([?; x]Pi [S (b0 (x)) [ fig ; x]
for all i 2 E (b0 (x))). Since preferences are monotonic, [T [ S (b (x)) ; x]Pi [S (b (x)) ; x]
for all i 2 S (b (x)).
Theorem 1 below states that, provided that preferences are monotonic, for

all x 2 X (and independently of the exit procedure � (x)) the exit induced by
a non-panic equilibrium coincides with EA(x). Hence, there is only one �nal
society induced by all non-panic equilibria, [NnEA (x) ; x] : Moreover, this �nal
society is the unique one that is not Pareto dominated by any other �nal society
induced by other equilibria.

Theorem 1. Assume preferences are monotonic. Given x 2 X and any
exit procedure � (x),
(a) if b (x) is a non-panic equilibrium then, E (b (x)) = EA (x) ;
(b) if b0 (x) is an equilibrium such that E (b0 (x)) 6= EA (x) then, b0 (x) is a

panic equilibrium and [NnEA (x) ; x] Pareto dominates [S (b0 (x)) ; x] :

Proof. (a) It is an immediate consequence of Proposition 1 and the de�n-
ition of panic equilibrium.
(b) By Proposition 1, S (b0 (x))  NnEA (x) : Take i 2 N . We distinguish

three cases:
Case 1: i 2 EA (x). By (C2),

[NnEA (x) ; x] Ii [?; x] Ii [S (b0 (x)) ; x] :

12



Case 2: i 2 S (b0 (x)). Since preferences are monotonic, [NnEA (x) ; x]Pi [S (b0 (x)) ; x].
Case 3: i 2 (N n EA (x)) n S (b0 (x)) : Since i =2 EA (x) ; i =2 EAtx+1 (x) : Hence,
[?; x]Pi [NnEA (x) ; x] does not hold. Since i =2 S (b0 (x)) and (C2),

[NnEA (x) ; x]Pi [?; x] Ii [S (b0 (x)) ; x]

Since (NnEA (x)) n S (b0 (x)) 6= ? we conclude that b0 (x) is a panic equilib-
rium and [NnEA (x) ; x] Pareto dominates [S (b0 (x)) ; x] : �
Remark 2. The conclusions of Theorem 1 do not necessarily hold if pref-

erences are not monotonic. To see that, consider Example 1 in which b(y) is
a non-panic equilibrium that satis�es E(b(y)) = f1g 6= EA(y) = f1; 2g. This
means that statement (a) of Theorem 1 does not hold. Since

[S (b (y)) ; y] = [f2; 3g ; y]P2 [f3g ; y] = [NnEA(y); y] ;

statement (b) of Theorem 1 does not hold either.

Proposition 1 and Theorem 1 are strong arguments supporting the fact that,
independently of the exit procedure � (x), EA (x) is a good prediction of the
exit after x has been chosen. Proposition 1 says that, independently of the exit
procedure � (x), we have at least a NE where agents in EA (x) exit and agents
in NnEA(x) stay. In general, it is possible to �nd other NE of � (x), but in all
of them members in EA (x) exit. Theorem 1 says that in these additional NE
there is necessarily a group of members who coordinate on a bad equilibrium.
These members exit only because they think that other members will exit as
well, but all of them would prefer that all stay. These equilibria are based on a
coordination failure. Hence, we �nd that the set EA (x) is a better prediction
of the set of members who exit, once x is chosen. Thus, [NnEA (x) ; x] seems
to be the most plausible �nal society.
Before we pose the following question: why do many societies seem to not

care about the exit procedure? Proposition 1 and Theorem 1 answer the ques-
tion, provided that members have monotonic preferences and they do not coor-
dinate on a bad equilibrium. For many societies (for instance, scienti�c societies
and political parties), both assumptions seem to be appropriate.

4 Two exit procedures: simultaneous and se-
quential

In this section we study the relationship between EA (x) and plausible outcomes
of the extensive-form game, when preferences are monotonic and exit is either
simultaneous or sequential. We show that if exit is simultaneous, EA (x) co-
incides with the outcome of the process of iterative elimination of dominated
strategies (IEDS). If exit is sequential, for all x 2 X and � 2 �; �� (x) has a
unique SPNE; whose outcome coincides with [NnEA (x) ; x] :
Usually, societies do not fully specify the information that should be provided

to members about the exit decision of other members. In this section we suggest
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that to provide such information has the positive e¤ect of preventing panic
equilibria. We do so by proving that, if members have monotonic preferences
then, panic equilibria may exist with simultaneous exit, whereas with sequential
exit they never exist.

4.1 Simultaneous exit procedure

First, note that panic equilibria can exist with simultaneous exit. In Example
4, (e; e; e) is a panic equilibrium strategy in � (y) :
We now show that EA (x) is related with IEDS: Given x 2 X and i 2 N

we say that b00i (x) is dominated if there exists b
0
i (x) satisfying two conditions.

First, for all b (x) 2 B (x) ;

[S (b0i (x) ; b�i (x)) ; x]Ri [S (b
00
i (x) ; b�i (x)) ; x] :

Second, there exists b� (x) 2 B (x) such that�
S
�
b0i (x) ; b

�
�i (x)

�
; x
�
Pi
�
S
�
b00i (x) ; b

�
�i (x)

�
; x
�
:

Given x 2 X and i 2 N we denote by Bndi (x) the set of strategies of member
i that survive the process of IEDS.2 The next proposition states that, given
x 2 X, the action s of member i 2 EA (x) in the simultaneous game � (x) does
not survive the process of IEDS.

Proposition 2. Assume preferences are monotonic. Then, for all x 2 X;
EA (x) =

�
i 2 N j Bndi (x) = feg

	
:

Proof. We �rst prove that for all i 2 EA1 (x), Bndi (x) = feg : Given
b (x) 2 B (x) and i 2 EA1 (x) ; de�ne b0 (x) = (e; b�i (x)) and b00 (x) = (s; b�i (x)) :
It is easy to see that S (b00 (x)) = S (b0 (x))[fig : Since preferences are monotonic,
i 2 EA1 (x) ; and i =2 S (b0 (x)) ; then

[S (b0 (x)) ; x] Ii [?; x]Pi [N;x]Ri [S (b00 (x)) ; x] :

Then, s is dominated and hence, Bndi (x) = feg.
Assume that the strategy s of member i 2 N is eliminated in the �rst step

of IEDS. We take bj (x) = s for all j 2 N n fig : Then,

[?; x] Ii [N n fig ; x] = [S (e; b�i (x)) ; x]Ri [S (s; b�i (x)) ; x] = [N;x] :

By (C2), [?; x]Pi [N;x] ; which means that i 2 EA1 (x) :
We now prove that for all i 2 EA2 (x), Bndi (x) = feg : Given i 2 EA2 (x)

and b (x) 2 B (x) such that for all j 2 EA1 (x), bj (x) = e, we de�ne b0 (x) =
(e; b�i (x)) and b00 (x) = (s; b�i (x)) : It is easy to see that S (b00 (x)) = S (b0 (x))[
fig and EA1 (x)\S (b0 (x)) = ?: Since preferences are monotonic, i 2 EA2 (x) ;
and i =2 S (b0 (x)), then

[S (b0 (x)) ; x] Ii [?; x]Pi
�
N n EA1 (x) ; x

�
Ri [S (b

00 (x)) ; x] :

2For a formal de�nition of the process of IEDS see, for instance, van Damme (1991).
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Thus; s is dominated, which means that Bndi (x) = feg :
Using arguments similar to those used with EA1 (x) ; we conclude that, if

strategy s of member i 2 N is eliminated in the second step of IEDS, then
i 2 EA2 (x) :
Repeating this argument, we conclude that Bndi (x) = feg for all i 2 EAt (x)

and t = 3; :::; tx: Moreover, if strategy s of member i 2 N is eliminated in the
tth step of IEDS, i 2 EAt (x) : Then,

EA (x) �
�
i 2 N j Bndi (x) = feg

	
:

We only need to prove that if i =2 EA (x) then, s 2 Bndi (x) : We already
know that no strategy s corresponding to some member in N nEA (x) has been
eliminated in the �rst tx steps. We now prove that in step tx + 1 of IEDS, no
strategy s can be eliminated.
Take i =2 EA (x) : If strategy e of member i was eliminated, then s can not be

eliminated in step tx +1: Assume that strategy e was not eliminated. Consider
b (x) such that for all j 2 EA (x), bj (x) = e; and for all j 2 N n (EA (x) [ fig),
bj (x) = s: Notice that all these strategies are available for members in step
tx + 1 of IEDS: Since i =2 EAtx+1 (x),

[S (s; b�i (x)) ; x] = [N n EA (x) ; x]Pi [?; x] Ii [S (e; b�i (x)) ; x] :

Hence, s can not be eliminated.
Using similar arguments to those used for tx + 1; we can prove that no

strategy s can be eliminated in step t (t > tx + 1) of IEDS. �
Remark 3. The conclusion of Proposition 2 does not necessarily hold if

preferences are not monotonic. To see that, consider Example 1 in which 1 2
EA(y) while Bnd1 (y) = fe; sg.

4.2 Sequential exit procedure

We �rst prove that for any preference pro�le (not necessarily monotonic), any
alternative x; and any ordering �, the subgame �� (x) has always a unique
SPNE. This constitutes an obvious advantage of the sequential exit procedure
over the simultaneous one.

Proposition 3. For all x 2 X and all � 2 �; the subgame �� (x) has a
unique SPNE.

Proof. Let x 2 X and assume, without loss of generality, that for all
i 2 N , � (i) = i: Let T 2 2Pre(n;�) be an information set of member n:
If n exits, �� (x) ends in the terminal node [T; x] : If n stays, �� (x) ends
in the terminal node [T [ fng ; x] : By (C2), either [T; x]Pn [T [ fng ; x] or
[T [ fng ; x]Pn [T; x] : Thus, in any SPNE of �� (x) the strategy of member
n is

b�n (x) (T ) =

�
e if [T; x]Pn [T [ fng ; x]
s if [T [ fng ; x]Pn [T; x] :
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Next, let T 2 2Pre(n�1;�) be an information set of member n � 1: If n � 1
exits, �� (x) ends in the terminal node [T 0; x] such that n � 1 =2 T 0: If n � 1
stays, �� (x) ends in the terminal node [T 00; x] where, T 00 = T [ fn� 1g if
b�n (x) (T [ fn� 1g) = e; and T 00 = T [ fn� 1; ng if b�n (x) (T [ fn� 1g) = s:
By (C2), either [T 0; x]Pn�1 [T 00; x] or [T 00; x]Pn�1 [T 0; x] : Thus, in any SPNE
of �� (x) the strategy of member n� 1 is

b�n�1 (x) (T ) =

�
e if [T 0; x]Pn�1 [T 00; x]
s if [T 00; x]Pn�1 [T 0; x] :

Now, and since �� (x) has perfect information, using a conventional back-
wards induction argument together with (C2), the existence of a unique SPNE
strategy b� (x) of �� (x) follows. �
Since for each x 2 X the subgame �� (x) has a unique SPNE strat-

egy b� (x) ; it is not possible to �nd another SPNE strategy b0 (x) such that
S (b0 (x)) ) S (b� (x)). Therefore, there is no panic equilibria with sequential
exit for general preferences (not necessarily monotonic), which is another ad-
vantage of the sequential exit over the simultaneous exit.
We next prove that whenever preferences are monotonic and the exit pro-

cedure is sequential, for all orderings � 2 �, EA (x) coincides with the set of
members who exit in the SPNE of �� (x). Therefore, for all x 2 X, the SPNE
outcome of �� (x) coincides with [NnEA (x) ; x] :
Theorem 2. Assume preferences are monotonic, x 2 X, � 2 �, and b� (x)

is the unique SPNE of �� (x). Then, E (b� (x)) = EA (x) :

Proof. To simplify notation we assume, without loss of generality, that for
all i 2 N , � (i) = i: De�ne recursively the following sets. First, set S1 = ?:
Assume that, for all j < i, Sj has been de�ned. De�ne Si as

Si =

�
Si�1 if b�i�1 (x)

�
Si�1

�
= e

Si�1 [ fi� 1g if b�i�1 (x)
�
Si�1

�
= s:

We must prove that b�i (x)
�
Si
�
= e when i 2 EA (x) ; and b�i (x)

�
Si
�
= s

when i =2 EA (x) :
By Proposition 1, EA (x) � E (b� (x)) : Then, for all i 2 EA (x), b�i (x)

�
Si
�
=

e:
Assume that N nEA (x) = fi1; :::; ilg and ij < ij+1 for all j = 1; :::; l�1:We

now prove that given T l = fi1; :::; il�1g, b�il (x)
�
T l
�
= s: Since fil + 1; :::; ng �

EA (x), using arguments similar to those used in the proof of Proposition
1 we can show that, independently of the action chosen by il, members of
fil + 1; :::; ng will play e in any SPNE. Then, if il chooses s, the �nal soci-
ety is

�
T l [ filg ; x

�
; whereas if il chooses e, the �nal society is

�
T l; x

�
: Since

il =2 EAtx+1 (x), [N n EA (x) ; x]Pil [?; x] : Then,�
T l [ filg ; x

�
= [N n EA (x) ; x]Pil [?; x] Iil

�
T l; x

�
:

Since b� (x) is the SPNE of �� (x), then b�il (x)
�
T l
�
= s .
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We now prove that, given T l�1 = fi1; :::; il�2g, b�il�1 (x)
�
T l�1

�
= s: Using

similar arguments to those used in the proof of Proposition 1 we can show
that, independently of the action chosen by il�1, members of fil�1 + 1; :::; ng \
EA (x) will play e in any SPNE. Then, if il�1 chooses s, the information
set T l of il will be reached. But, since we have already proven that member
il chooses s in T l, the �nal society is [NnEA (x) ; x] : If member il�1 chooses
e; the �nal society will be [T �; x] where T � = T l�1 or T � = T l�1 [ filg : In
any case, by (C2); [?; x] Iil�1 [T �; x] : Since il�1 =2 EAtx+1 (x) we know that
[N n EA (x) ; x]Pil�1 [?; x] : Then,

[NnEA (x) ; x]Pil�1 [T �; x] :

Since b� (x) is the SPNE of �� (x) ; then b�il�1 (x)
�
T il�1

�
= s.

Repeating this argument we obtain that b�ij (x)
�
T j
�
= s for all j = 1; :::; l:

Since T j = Sij whenever ij 2 N n EA (x), the result follows immediately. �
Remark 4. The conclusion of Theorem 2 does not necessarily hold if pref-

erences are not monotonic. We have seen in Example 2 two di¤erent orders
whose SPNE outcomes are di¤erent.

Often, societies do not fully specify the information that should be provided
to members about the exit decision of other members. What is the impact in the
NE outcome of the exit procedure? Since we are considering all possible exit
procedures, this is a di¢ cult question to answer. However, we have speci�cally
analyzed two extreme cases: the case where no information is available, and the
case where all information is available. The �rst one corresponds to simultaneous
exit. As we have seen, panic equilibria can exist in this case. The second one
corresponds to the sequential exit associated to a given order � 2 �: In this
case, when member i takes his decision, he knows exactly the decisions made
by previous members in the order �. We have proved that, independently of
�; there exists a unique SPNE outcome [NnEA (x) ; x] induced by a non-panic
equilibrium strategy. The analysis of these two extreme cases suggests that
providing information about who exits may avoid panic equilibria.

5 The two stage game: some di¢ culties

In this section we show that, even when preferences are monotonic, the two-
stage game � may not have equilibria. But, for voting by quota, we present
two positive results about the existence of equilibria. However, these equilib-
ria do not have much predictive power, since they are based on an arbitrary
coordination of members in the voting stage. Finally, we exhibit an example
with monotonic preferences, in which for all equilibria of �, there exists a mem-
ber playing a dominated strategy. Thus, even when preferences are monotonic,
there may not be equilibria in which all agents vote in a reasonable way.
The next example shows that the set of SPNE of � may be empty, even

when preferences are monotonic.
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Example 5. Let N = f1; 2g be a society choosing one alternative from
the set X = fy; zg. De�ne the voting procedure (M;v) by letting M1 = M2 =
f+;�g, v (+;+) = v (�;�) = y; and v (+;�) = v (�;+) = z. No further
restrictions are made on � (y) and � (z). The monotonic preference relation of
member 1 is

[N; y]P1 [f1g ; y]P1 [N; z]P1 [f1g ; z]P1 [?; y] ;

and, by (C2), the rest of pairs [T; x] with T � N and x 2 X satisfy [T; x] I1 [?; y] :
The monotonic preference relation of member 2 is

[N; z]P2 [f2g ; z]P2 [N; y]P2 [f2g ; y]P2 [?; y] ;

and again, by (C2), the rest of pairs [T; x] with T � N and x 2 X satisfy
[T; x] I2 [?; y] :
Consider �rst the subgame � (y) : There are four possible terminal nodes of

� when � (y) is reached: [?; y] ; [f1g ; y] ; [f2g ; y] ; and [N; y] : Since

[N; y]P1 [f1g ; y]P1 [?; y] I1 [f2g ; y] ;

the existence of the behavioral strategy bsi (y) guarantees that in any SPNE of
�, after y is chosen, only the terminal nodes [N; y] and [f1g ; y] can be reached.
Using a symmetric argument for member 2; we conclude that in any SPNE of
�, after y is chosen, only the terminal nodes [N; y] and [f2g ; y] can be reached.
Then, in any SPNE of �, after y is chosen, the �nal society is [N; y] : Similarly,
we conclude that in any SPNE of �, after z is chosen, the �nal society is [N; z] :
Then, any SPNE of the game � must induce a NE in the following normal-

form game
1n2 + �
+ [N; y] [N; z]
� [N; z] [N; y]

,

which has no NE. Hence, � has no SPNE.

This example shows that the non existence of SPNE of � is a consequence of
the non existence of NE in the voting procedure of the �rst stage. This suggests
the interest of looking for speci�c subclasses of voting procedures generating
games with SPNE. In Proposition 4 and Example 6 we concentrate on voting
by quota.

Proposition 4. (a) Assume that (M;v) is voting by quota q; q � 2; and
� (x) is simultaneous exit for all x 2 2K : Then, the set of SPNE of the two-stage
game � = ((

�
2K
�N
; vcq); f� (x)gx22K ) is non-empty.

(b) Assume that preferences are monotonic, (M;v) is voting by quota q; and
for all x 2 2K ; �� (x) is the sequential exit procedure associated to � 2 �: Then,
the set of SPNE of the two-stage game �� = ((

�
2K
�N
; vcq); f�� (x)gx22K ) is

non-empty.

Proof. (a) Let b = (b1; :::; bn) 2 B be such that for all i 2 N , bi =�
mi; fbi (x)gx2X

�
,mi = ?; bi (x) = e if i 2 EA (x) ; and bi (x) = s if i =2 EA (x) :
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By (C3), EA(?) = ? and thus [S (b (vcq (m))) ; vcq (m)] = [N;?] :Given x 2 X;
we know that b induces a NE in every subgame � (x) : Then, we only need to
prove that b is a NE of �:
Consider any i 2 N and let b0i =

�
m0
i; fb0i (x)gx2X

�
2 Bi be arbitrary. Since

the voting procedure is voting by quota q � 2; and mj = ? for all j 2 N n fig,
vcq (m0

i;m�i) = ?: If b0i (?) = s then

[S (b0i (vc
q (m0

i;m�i)) ; b�i (vc
q (m0

i;m�i))) ; vc
q (m0

i;m�i)] =

= [N;?] = [S (b (vcq (m))) ; vcq (m)] ,
which means that member i does not improve by playing b0i. If b

0
i (?) = e then

[S (b0i (vc
q (m0

i;m�i)) ; b�i (vc
q (m0

i;m�i))) ; vc
q (m0

i;m�i)] = [N n fig ;?] :

By (C3), [N;?]Pi [N n fig ;?] ; which means that member i does not improve
either. Hence, b is a NE of �.
(b) Fix � 2 � and assume that q � 2: Let b� = (b�1; :::; b

�
n) 2 B be

such that for all i 2 N , b�i =
�
m�
i ; fb�i (x)gx22K

�
is such that m�

i = ? and
for all x 2 2K ; b�i (x) is the unique SPNE of the subgame �� (x) given by
Proposition 3. By Theorem 2 and (C3), E(b�(?)) = EA(?) = ?, and thus
[S (b� (vcq (m�))) ; vcq (m�)] = [N;?] : Using arguments similar to those already
used in the proof of (a); we can show that b� is an SPNE of ��:
Assume that q = 1. Let b� = (b�1; :::; b

�
n) 2 B be such that for all i 2 N ,

b�i =
�
m�
i ; fb�i (x)gx2X

�
is such that m�

i = K and for all x 2 2K ; b�i (x) is the
unique SPNE of the subgame �� (x). Then, vc1 (m�) = K:We now prove that
b� is a SPNE of ��. By de�nition of fb�i (x)gx22K , b� induces a SPNE in any
subgame starting at x in the second stage of ��: Then, it only remains to prove
that b� is a NE of ��: Take i 2 N and b0i =

�
m0
i; fb0i (x)gx22K

�
2 Bi: Since

m�
j = K for all j 2 N n fig and q = 1; we conclude that vc1

�
m0
i;m

�
�i
�
= K for

all m0
i: Since vc

1
�
m0
i;m

�
�i
�
= vc1 (m�) = K and b� (K) is an SPNE of �� (K) ;�

S
�
b�
�
vc1 (m�)

��
; vc1 (m�)

�
Ri
�
S
�
b0i
�
vc1

�
m0
i;m

�
�i
��
; b��i

�
vc1

�
m0
i;m

�
�i
���

; vc1
�
m0
i;m

�
�i
��

This means that member i can not improve by playing b0i instead of b
�
i : �

The following example shows that, if (M;v) is voting by quota 1, the set of
NE of � with simultaneous exit may be empty.

Example 6. Let N = f1; 2; 3g be a society whose members have to decide
whether or not to admit candidate y as a new member (i:e:, X = f?; yg). As-
sume that the voting procedure (f?; ygN ; vc1) is voting by quota 1 and the exit
procedure is simultaneous. Consider the preference pro�le R 2 R, additively
representable by the following table

u1 u2 u3
1 1 �2 1
2 2 16 2
3 3 �10 3
y �5 �5 100

:
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First, observe that s is a strictly dominant action for member 3 in � (?) and
� (y) : Thus, in any NE member 3 stays. Assume that b =

�
mi; fbi (x)gx2X

�
i2N

is a NE and vc1 (m) = ?: Consider the strategy b03 = (m0
3; b

0
3 (?) ; b03 (y)) of

member 3 where m0
3 = y and b

0
3 (?) = b03 (y) = s. Then, vc1 (m0

3;m�3) = y and
3 2 S (b03(y); b�3(y)) : Hence,

[S (b03(y); b�3(y)) ; y]P3 [S (b(?)) ;?]

contradicts the assumption that b is a NE of �. Therefore, in any NE of �;
candidate y is admitted and member 3 stays.
Now the simultaneous strategic decisions of members 1 and 2 in the subgame

� (y) can be represented by the following normal form game

1n2 e s
e 0; 0 0; 1
s �1; 0 1;�1

,

which has no NE. Hence, � has no NE:

As we have already argued, the equilibria identi�ed in Proposition 4 do not
have much predictive power, because they are based on an arbitrary coordina-
tion of members in the voting stage. An interesting question is whether or not,
with monotonic preferences, SPNE of � exist in which agents�votes are rea-
sonable (for instance, being undominated). We now show that, unfortunately,
the answer is no.
Assume that in the subgame � (x) members always play a SPNE strategy

b (x) with the property that S (b (x)) = NnEA (x) : As we argued before this is
a natural assumption if preferences are monotonic.
Then, by the backwards induction hypothesis, computing the SPNE of the

two-stage game � =
�
(M;v) ; f� (x)gx2X

�
is the same as computing the NE of

the normal form game � = (N;M;R; o) where o is the outcome function de�ned
as follows: for each m 2M ,

o (m) = [NnEA (v (m)) ; v (m)] :

The next example shows that the set of undominated NE of � may be empty,
even when members have monotonic preferences.

Example 7. Consider a society N = f1; 2; 3; 4g, whose members have to
decide whether or not to admit as new members candidates x and y. Suppose
that the voting procedure (f?; fxg; fyg; fx; yggN ; vc1) is voting by quota one,
and the preference pro�le R 2 R is representable by the following table

u1 u2 u3 u4
1 100 5 1 1
2 5 100 2 2:1
3 1:1 100 1 3
4 100 1:1 4 3
x 2 �1 �10 �5
y �1 2 �20 �5:2

:
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It is straightforward to check that EA (?) = ?; EA (x) = f3g ; EA (y) = f3g ;
and EA (fx; yg) = f3; 4g. Then, for member 1, fyg is dominated by ? and
fx; yg is dominated by fxg : For member 2; fxg is dominated by ? and fx; yg is
dominated by fyg : For members 3 and 4; fxg ; fyg ; and fx; yg are dominated by
?: Therefore, the undominated strategies are fxg and ? for member 1; fyg and
? for member 2; ? for member 3; and ? for member 4: The next table lists all
possible strategy pro�les with undominated strategies, and their corresponding
�nal societies.

Voting Final society
(?;?;?;?) [N;?]
(?; fyg ;?;?) [f1; 2; 4g ; fyg]
(fxg ;?;?;?) [f1; 2; 4g ; fxg]
(fxg ; fyg ;?;?) [f1; 2g ; fx; yg]

We now check that none of the four strategy pro�les are NE of �.

1. (?;?;?;?) is not an equilibrium. Since [f1; 2; 4g ; fxg]P1 [N;?] ; member
1 improves by voting fxg.

2. (?; fyg ;?;?) is not an equilibrium. Since [N;?]P2 [f1; 2; 4g ; fyg] ; mem-
ber 2 improves by voting ?.

3. (fxg ;?;?;?) is not an equilibrium. Since [f1; 2g ; fx; yg]P2 [f1; 2; 4g ; fxg] ;
member 2 improves by voting fyg.

4. (fxg ; fyg ;?;?) is not an equilibrium. Since [f1; 2; 4g ; fyg]P1 [f1; 2g ; fx; yg] ;
member 1 improves by voting ?.

Therefore, the set of undominated NE of � is empty. Moreover, it is easy
to check that the set of NE of � is equal to

fm 2M j # fi 2 N j x 2 mig � 2 and # fi 2 N j y 2 mig � 2g .

Example 7 shows that, in general, there may be no reasonable NE even with
monotonic preferences.
In Berga, Bergantiños, Massó, and Neme (2004b) we make additional as-

sumptions on preferences. We assume that they are additive (instead of sepa-
rable), monotonic, and that each bad candidate (if any) is either extremely bad
(his entrance makes the society, in any circumstance, undesirable for member
i) or mildly bad (his entrance does not a¤ect i�s exit decision). Under these
assumptions we prove that there are reasonable NE of �:
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