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Abstract

The relationship between the basic reproduction number R0 and the exponential
growth rate, specific to pair approximation models, is derived for the SIS, SIR and
SEIR deterministic models without demography. These models are extended by
including a random rewiring of susceptible individuals from infectious (and exposed)
neighbours. The derived relationship between the intrinsic growth rate and R0

appears as formally consistent with those derived from homogeneous mixing models,
enabling us to measure the transmission potential using the early growth rate of
cases. On the other hand, the algebraic expression of R0 for the SEIR pairwise
model shows that its value is affected by the average duration of the latent period,
in contrast to what happens for the homogeneous mixing SEIR model. Numerical
simulations on complex contact networks are performed to check the analytical
assumptions and predictions.

Key words: pairwise epidemic models, basic reproduction number, initial epi-
demic growth rate, SEIR model.

1 Introduction

The success of invasion processes governed by short-range interactions crucially depends
on the early development of local densities around the invading individuals, which con-
stitute the so-called invading clusters [3]. These local spatial patterns of individual states
define the environmental conditions experienced by the invaders, so determining their
final fate. Invading clusters have been observed in lattice models in Ecology [10, 14, 16]
as well as in simple epidemic network models [3, 17, 18] where invaders correspond to
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infectious individuals introduced into a totally susceptible population. In both settings,
pairwise models offer a useful approach to the study of their dynamics. In such models,
local densities are described by either the conditional probabilities that an invader has a
neighbour in a particular state [14, 16], or the mean fraction of neighbours of a given type
around an infectious individual [3, 18, 40], or by the average number of neighbours of a
given type per infectious individual [17]. In [3, 18, 40] correlations among infection states
are defined in terms of local densities and are used to describe the early development of
spatial patterns.

The early dynamics of local densities around infectious individuals have been studied
from their limit equations [3, 17, 18] for the susceptible-infected-susceptible (SIS) and
susceptible-infectious-recovered (SIR) models. These equations are derived by assuming
that the expected number of susceptible individuals, [S], and of susceptible-susceptible
links, [SS], are approximated to the total number of individuals (nodes), N , and to the to-
tal number of links (non-ordered pairs), L, respectively. Under these assumptions, the ex-
pected number of susceptible-infectious pairs (infectious links), [SI], infectious-recovered
pairs, [IR], and infectious-infectious pairs, [II], become zero. However, this behaviour is
not necessarily true for the local densities [SI]/[I], [RI]/[I], and 2[II]/[I], i.e., the mean
number of susceptible, recovered, and infectious individuals around an infectious individ-
ual, respectively. Conversely, the so-called mean-field models, like the deterministic SIS,
SIR, and SEIR (E for Exposed) models or unstructured competition models in Ecology,
cannot capture such an important feature of the early dynamics of a spatially extended
system. All these models assume fully homogeneous mixing of individuals or, when deal-
ing with populations of sessile organisms, long-range interactions. So, their predictions
about the early dynamics are quite different from those obtained from pairwise models.

The aim of this paper is to analyse the early dynamics of an epidemic by using a
pair-approximation model. We will compute the expression of the basic reproduction
number, R0, from the equilibrium of the limit equation for the local density [SI]/[I]
at the early phase of an epidemic outbreak. Moreover, we will obtain the relationship
between R0 so derived and the largest eigenvalue, λ1, of the Jacobian matrix of the full
pairwise model around the disease-free equilibrium at the beginning of an epidemic. As
we will see, when it is positive, λ1 corresponds to the exponential growth rate of the
cumulative number of cases during the early stages of an epidemic outbreak, once local
correlations around initially infected individuals (primary cases) have been developed.
This interpretation of the early dynamics given by linearisation of deterministic pairwise
models is in agreement with previous descriptions given in terms of the development
of invading epidemic clusters around primary cases [3, 18]. From the point of view of
public health management, it could help to obtain more accurate early estimates of R0,
which are needed to evaluate the transmission potential of a new disease and assess the
impact of different intervention strategies [5]. With this respect, it is interesting to note
that the same relationships between R0 and the initial growth rate, r, of an epidemic
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have been derived from homogeneous mixing models, and have been used to compute R0

by estimating first r for the cumulative number of cases during the exponential-growth
phase of an epidemic outbreak [5, 22, 29, 44, 45]. Even though, for populations with
heterogeneous mixing, the description of the initial epidemic phase as well as the estimate
of r offered by these models can greatly differ from the ones given by pairwise and network
models [27].

The SIS, SIR, and SEIR deterministic models assume that the infectious and latent
periods are exponentially distributed and populations are homogeneously mixed. For
these models, the algebraic expression of R0 is the same, namely, βN/γ with β being the
transmission rate across an infectious contact, N is the population size, and γ the recovery
rate [6]. The same expression of R0 with a general mean duration of the infectious period
instead of 1/γ follows for the age-of-infection models, in which infected individuals are
classified according to the time since infection (age of infection) [46]. On the other hand,
the initial exponential growth rate r of an epidemic varies from one model to another and,
consequently, so does the relationship between R0 and r [33, 44, 45]. In particular, it is
known that the latent period affects the growth rate of the epidemics but, by contrast,
it plays no role in R0 [6], even in age-of-infection models [45, 46]. Precisely, for the SIS
and SIR deterministic models, R0 = 1 + r/γ with r = β − γ, whereas, for the SEIR
deterministic model, R0 = (1 + r/θ)(1 + r/γ) where r now also depends on θ, the rate of
leaving the exposed class [5, 22]. The same quadratic relationship between R0 and r has
been obtained from the so-called Euler-Lotka equation for the SEIR model in [33, 44].
Here we prove that, although the same linear and quadratic relationships hold if one
formally replaces r by λ1, for pairwise models the algebraic expression of R0 differs from
one model to another. The latter implies that different R0 estimates will be obtained by
using methods based on algebraic expressions of R0 [5].

This study is carried out for an extension of the SIS, SIR, and SEIR pairwise models
that includes random rewiring of susceptible individuals. It is assumed that each sus-
ceptible individual breaks off a connection to one of its infectious/exposed neighbours
at given rates, and reconnects to a randomly chosen susceptible or recovered individual.
An SIS pairwise model with such a rewiring was introduced for the first time by Gross
et al. in [13], as a way to include behavioural responses to epidemics, a key ingredient
to understand the effects of individual behaviour on epidemic dynamics [9]. A detailed
analysis of the impact of rewiring in the early dynamics of such an SIS pairwise model
under different types of network topologies has been recently done in [17]. Other re-
connection mechanisms have been recently proposed in the literature (see, for instance,
[20, 32, 34, 35, 41, 42, 43, 47]).
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2 The SIS-ω and SIR-ω pairwise models

To simplify the presentation of the results, we start this section considering a unique
system of equations that encompasses both the SIS and the SIR pairwise models with
rewiring, henceforth referred as SIS-SIR-ω model. Later on, when dealing with the early
dynamics, we will treat each of them separately.

Let β be the transmission rate across an infectious contact, and let γ and µ be the rates
of recovery with and without immnunity of an infectious individual, respectively. Finally,
let ω be the rewiring rate of susceptible individuals as described in the Introduction.

Using expected numbers as state variables and according to the previously introduced
notation, let [S], [I], and [R] be the expected number of susceptible, infectious, and
recovered individuals, respectively, which satisfies [S] + [I] + [R] = N . Analogously,
[ij] stands for the expected number of (non-ordered) pairs of connected individuals in
states i and j, respectively, and [ij l] for the expected number of (non-oriented) triples
whose individuals are in states i, j, and l (i, j, l ∈ {S, I, R}). Using these definitions, the
differential equation for the number of infectious individuals can be written as

d

dt
[I] =

(
β

[SI]

[I]
− (µ + γ)

)
[I], (1)

where [SI]/[I] is the mean number of susceptible neighbours per infectious individual,
and taking µ = 0 for the SIR model and γ = 0 for the SIS model.

Now, let us compute the mean number of neighbours in state i (i-neighours) around
a j-individual that already has at least one l-neighbour, that is, that belongs to a (j, l)-
pair, averaging over all the (j, l)-pairs. Denote this number by Q(i|jl). If l ̸= i, each
triple of type (i, j, l) contributes with one i-neighbour of a j-individual that already has
an l-neighbour. Then, Q(i|jl) = [ijl]/[jl]. When l = i, then each triple of type (i, j, i)
contains two (i, j)-pairs and it is counted twice when we average over all the (i, j)-pairs.
Therefore, the mean number of i-neighbours of j-individuals in (i, j)-pairs is

Q(i|ji) = 1 +
2[iji]

[ij]
, (2)

where it is used that a j-individual that belongs to an (i, j)-pair has one i-neighbour
for certain, in addition to the mean contribution to i-neighbours from (i, j, i)-triples per
(i, j)-pair. The factor 2 comes from the fact that the triples are not oriented (cf. [3, 39]
for the oriented case).

Taking these averages into account, the system of differential equations governing the
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dynamics of the SIS-SIR-ω model reads

d

dt
[S] = −β[SI] + µ[I],

d

dt
[I] = β[SI] − (µ + γ)[I],

d

dt
[SI] = β ([SSI] − 2[ISI]) − (β + µ + γ + ω)[SI] + 2µ[II],

d

dt
[SS] =

(
µ + ω

[S]

N − [I]

)
[SI] − β[SSI], (3)

d

dt
[II] = β([SI] + 2[ISI]) − 2(µ + γ)[II],

d

dt
[SR] =

(
γ + ω

N − [S] − [I]

N − [I]

)
[SI] + µ[IR] − β[ISR],

d

dt
[IR] = 2γ[II] − 2(µ + γ)[IR] + β[ISR],

where [S] + [I] + [R] = N and [SS] + [SI] + [SR] + [II] + [IR] + [RR] = L. The factor
2 multiplying [ISI] in the third and fifth equations comes from the expression of Q(i|ji),
and takes into account that the total number of non-ordered (S, I)-pairs decreases by
two when the infection reaches the central S of an (I, S, I)-triple as well as that the
number of (I, I)-pairs increases by two. Remarkably, this factor is missing in the previous
formulations of the SIS-ω model [7, 12, 13, 17, 32, 47].

For any rewiring rate w ≥ 0, the mean degree of the network, k = 2L/N , is constant
over time because rewiring keeps constant the total number of links L. However, the nodal
degree distribution, pk, does change with time due to the rewiring of susceptible nodes.
This means that the mean degree of susceptible (kS), infectious (kI), and recovered nodes
(kR) will also change over time. Therefore, the number of equations in system (3) cannot
be reduced by using constraints on the total number of links leaving nodes that are in a
given state like, for instance, 2[SS]+[SI]+[SR] = kS[S], because kS = kS(t) is unknown.

As usual in pair approximation, we close this system by assuming the statistical
independence at the level of pairs. This implies that the expected number of (i, j, l)-
triples is approximately equal to the number of neighbours of those j-nodes in (i, j)-pairs,
(q − 1) [ij], times the conditional probability that a j-node has a neighbour in state l. In
uncorrelated heterogeneous networks and in absence of clustering, this amounts to the
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following closure for the expected number of non-oriented (i, j, l)-triples:

[ijl] ≈





(q − 1) [ij]
[jl]

k[j]
, i ̸= l, j, j ̸= l

(q − 1) [ij]
2[jj]

k[j]
, j = l, i ̸= l

1

2
(q − 1)

[ij]2

k[j]
, i = l ̸= j

(q − 1)
[jj]2

k[j]
, i = j = l

(4)

where q = k2/k is the expected degree of an individual reached by following a randomly
chosen link. Similarly to what we observed in (2), the factor 1/2 in the third expression
of (4) appears because, when we count (non-oriented) triples that run through a given
pair, those triples with endpoints having the same state are counted twice. In particular,
[SSI] ≈ (q − 1)[SI]2[SS]/(k[S]) and [ISI] ≈ 1/2 · (q − 1)[SI]2/(k[S]).

This triple closure in terms of q is the natural generalization of the one used in regular
networks, where all the nodes have the same degree, to networks with heterogeneous
degree distributions. Since the probability that a randomly chosen link points to a node
with degree k is proportional to k, the expected degree of a neighbour in uncorrelated
networks is q =

∑
k kqk with qk = kpk/k [6]. Note that q = k for regular networks, which

leads to the triple closure usually assumed in pair approximation [19, 30]. For uncorrelated
networks with Poisson degree distribution, q = k + 1 and, hence, (q − 1)/k = 1, which
is the value used in the closure (4) in [13]. For uncorrelated networks with exponential
degree distribution with k ≥ 0, q = 2k which amounts to (q − 1)/k = 2 − 1/k.

A further refinement of the closure (4) should take into account that the degree distri-
butions pS

k , pI
k, and pR

k of susceptible, infectious, and removed nodes, respectively, change
over time [2] and noticeable differences between these distributions arise when the vari-
ance of pk is high enough. For instance, it is known that, even for networks with a low
variance in their initial degree distribution, pI

k and pS
k become broadened at the endemic

equilibrium with the mean degree of susceptible nodes, kS :=
∑

k kpS
k , being greater than

k, whereas the mean degree of infectious nodes, kI :=
∑

k kpI
k, is less than k [13]. There-

fore, the precise form of the triple closure will depend on the state of the central node
because it determines the degree distribution that must be used to compute q and k.
However, we will assume that the degree distribution has been changed by neither the
epidemic progress nor rewiring because we will restrict our analysis to the initial stages
of the epidemic dynamics.
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On the other hand, if the initial network configuration has no clustering, as it is the
case for networks generated with the configuration model, the random disconnection of
susceptible nodes from infectious ones and their uniform rewiring to susceptible (and
removed) nodes are not expected to generate clustering in the network architecture. So,
the correction term accounting for clustering will not be taken into account [15, 18, 19, 39].

Upon introducing the triple closure (4) into system (3) and neglecting the last two
equations, the SIS-SIR-ω model becomes

d

dt
[S] = −β[SI] + µ[I],

d

dt
[I] = β[SI] − (µ + γ)[I],

d

dt
[SI] =

(
βz

(
2[SS]

[S]
− [SI]

[S]

)
− β − µ − γ − ω

)
[SI] + 2µ[II], (5)

d

dt
[II] = β

(
1 + z

[SI]

[S]

)
[SI] − 2(µ + γ)[II],

d

dt
[SS] = (µ + ω)[SI] − 2βz

[SI]

[S]
[SS],

where z := (q − 1)/k. Note that these equations depend on neither [SR] nor [IR] which
allowed us to neglect the last two equations in (3). Moreover, when γ = 0 (SIS-ω model)
the first and last equations in (5) are redundant and this system is reduced to only three
equations.

Remark : Note that, when (2) and (4)3 are introduced into the equations, the factors 2
and 1/2 compensate each other and, so, they do not appear in the final formulation of
the pairwise model. This explains why previous works dealing with the SIS-ω model and
using non-oriented triples, arrive at the equations given by (5) with γ = 0, although both
factors are missing in their derivation [7, 12, 13, 17].

2.1 The early epidemic dynamics

From Eq. (1), it is clear that the value of [SI]/[I] at the beginning of an epidemic outbreak
determines the expected number of new infections produced by an average infectious
individual in an almost completely susceptible population. Notice that the equation
for the dynamics of [SI] depends on q, that is, it contains the information about the
expected degree of the initially infectious individuals, called secondary cases. For this
reason, we talk about average infectious individuals or average secondary cases. For
highly heterogeneous degree distributions and low rewiring rates, these individuals will
have degrees higher than the mean degree k in the population. Moreover, it is known
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that early spatial correlations between the infection states of neighbouring individuals
(invading clusters) are formed within a couple of generations [8, 17].

This expected number of newly produced infections (secondary cases) generated by a
single infectious individual once local correlations are established is, indeed, the definition
of the basic reproductive number R0 given for network models [8, 18]. We adopt the
average duration of an infectious period, (µ + γ)−1, as a measure of one generation time
[38] for the SIS-SIR-ω model. If, under certain conditions on the parameters, [SI]/[I]
reaches a stationary value ([SI]/[I])∗ within the two first generations, then

R0 :=
β

µ + γ

(
[SI]

[I]

)∗
. (6)

In this sense, note that very high rewiring rates will produce a lot of isolated infectious
individuals which will lead to ([SI]/[I])∗ ≈ 0. On the other hand, without rewiring, the
rate of creation of (S, I)-pairs must be the same as the rate of appearance on new infec-
tious individuals at the beginning of the epidemic. So, one should expect that the local
density [SI]/[I] remains approximately constant during the exponential-growth phase of
the epidemic.

To analyze the early dynamics of [SI]/[I], we will consider the limit equations for the
dynamics of the local densities [SI]/[I] and 2[II]/[I] derived from the model equations
by assuming that the system-level quantities like [S], [I], [R], and the network degree
distribution pk do not change in a noticeable manner at the beginning of the epidemic.
In particular, this means that z will be computed from the initial degree distribution of
the network, and that [S] ≈ N , [SI] ≈ 0, and [SS] ≈ L.

The equations governing the dynamics of [SI]/[I] and 2[II]/[I] are derived from the
SIS-SIR-ω model using the standard rules of differentiation which amount to

d

dt

(
[SI]

[I]

)
= −

(
β + ω + βz

(
[SI]

[S]
− 2[SS]

[S]

)
+ β

[SI]

[I]

)
[SI]

[I]
+ µ

2[II]

[I]
,

(7)

d

dt

(
2[II]

[I]

)
= 2β

(
1 + z

[SI]

[S]

)
[SI]

[I]
−

(
µ + γ + β

[SI]

[I]

)
2[II]

[I]
.

Just after the introduction of the first infectious individuals, one has [S] → N , [SS] → L,
[I] → 0, [SI] → 0, [II] → 0, and the corresponding limit system is

d

dt

(
[SI]

[I]

)
= −

(
ω − β(q − 2) + β

[SI]

[I]

)
[SI]

[I]
+ µ

2[II]

[I]
,

(8)

d

dt

(
2[II]

[I]

)
= 2β

[SI]

[I]
−

(
µ + γ + β

[SI]

[I]

)
2[II]

[I]
,

where q = k2/k is computed from the degree distribution at time t = 0.
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2.1.1 Early dynamics of the SIR-ω model: µ = 0

Introducing µ = 0 into system (7), it follows that the dynamics of [SI]/[I] is always
decoupled from that of 2[II]/[I]. In particular, the dynamics of x := [SI]/[I] at the
beginning of the epidemic is described by

dx

dt
= (β(q − 2) − ω − βx) x,

which has a unique strictly positive equilibrium x∗ = q − 2−ω/β whenever β(q − 2) > ω.
In this case, x∗ is globally asymptotically stable and, substituting it into Eq. (6), we have

R0 =
β(q − 2) − ω

γ
. (9)

For regular networks (q = k0) and no rewiring (ω = 0), this expression of the basic
reproductive number reduces to the one given in [18].

From the conditions x∗ > 0 and R0 < 1, it follows that the relationship ω < β(q−2) <
γ +ω guarantees both the epidemic extinction and a positive mean number of susceptible
individuals surrounding the initially infectious individuals as the epidemic dies out (i.e.,
0 < R0 < 1). Following [17], we call this situation “transmission-dominated scenario” of
the epidemic extinction. Conversely, for high-enough rewiring rates, x∗ = 0 is the only
nonnegative equilibrium. This means that the number of susceptible neighbours goes to
0 faster than the total number of infectious individuals in the population. This situation
corresponds to the so-called “rewiring-dominated scenario” of the extinction and implies
R0 = 0.

2.1.2 Early dynamics of the SIS-ω model: γ = 0

For the sake of completeness, in this section we present some results for SIS-ω model which
have been obtained in [17]. In this model, both equations in (8) are coupled and two phase
portraits are possible depending on whether the nullclines intersect to each other in the
first quadrant or not. Let us denote the solution to system (8) by (x, y). If β q ≤ ω, there
is no such intersection and the only nonnegative equilibrium is the origin, which is globally
asymptotically stable. When β q > ω, (0, 0) is unstable and a positive equilibrium (x∗, y∗)
appears at the intersection point of the nullclines. From the phase portrait if follows that
this equilibrium is globally asymptotically stable [17]. In particular, from the expression
of the nullcline y′ = 0, we obtain y∗ < 2. Moreover, introducing the expression of y∗

obtained from the nullcline y′ = 0 into the equation of the nullcline x′ = 0, if follows that
x∗ is the positive solution of the equation (1 + βx/µ)(ω + βx − β(q − 2)) = 2β. Note that
the strict positivity of both terms in the left-hand side (lhs) implies that x∗ > q−2−ω/β.
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Therefore, the value of ([SI]/[I])∗ for the SIR-ω model is always less than the one for the
SIS-ω model, which implies a lower value of R0.

For β q > ω, introducing the expression of the unique positive solution x∗ of previous
equation into Eq. (6) with γ = 0, we obtain the basic reproduction number for the SIS-ω
model, namely,

R0 =
β(q − 2) − µ − ω +

√
(β(q − 2) − µ − w)2 + 4µ(β q − ω)

2µ
. (10)

Note that the condition R0 ≥ 1 for an initial spread of an epidemic can be rewritten as

β(q − 1) − ω

µ
≥ 1, (11)

which, for ω = 0 and q = k0, corresponds to the well-known expression of the epidemic
threshold in lattices and regular random networks.

As before, imposing that x∗ > 0 and R0 < 1, we obtain the condition for a transmission-
dominated scenario of the epidemic extinction (0 < R0 < 1), namely, ω − β < β(q − 1) <
ω + µ. Conversely, if β q ≤ ω then R0 = 0 because x∗ = 0 (cf. Eq. (6)) and [I] → 0 in
a rewiring-dominated scenario. In such a scenario, infectious individuals become isolated
because there are not recovered neighbours surrounding them, as it is the case in the
SIR-ω model.

2.2 R0 and the local stability analysis of an epidemic outbreak

Once the description of the early dynamics of the epidemics is given in terms of the
mean number of susceptible neighbours per infectious individual, we want to relate these
results to the behaviour of the absolute numbers around the disease-free equilibrium
(DFE) of system (5), i.e., around the equilibrium [S]∗ = N , [I]∗ = 0, [SS]∗ = 2L, and
[SI]∗ = [II]∗ = 0. Linearizing system (5) about the DFE, it follows that the equations for
the initial growth of [I], [SI], and [II] are independent of the rest of variables. Precisely,
the restricted Jacobian matrix obtained from the full Jacobian matrix of the SIS-SIR-ω
model by deleting rows and columns corresponding to [S] and [SS] reads

JDF =




−µ − γ β 0
0 β(q − 2) − µ − γ − ω 2µ
0 β −2(µ + γ)


 . (12)

The eigenvalues of this matrix are real. One of them is −(µ + γ) < 0. The other two,
λ1 and λ2, are the eigenvalues of J0

DF , the 2 × 2 submatrix obtained by deleting the first
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column and the first row of JDF . They satisfy λ2 < 0 and λ1 > λ2. So, the largest
eigenvalue of JDF will be greater than or equal to 0 if and only if λ1 ≥ 0, that is

γ(β(q − 2) − µ − γ − ω) + µ(β(q − 1) − µ − γ − ω) ≥ 0. (13)

As expected, the conditions for the epidemic spread obtained from (9) and (11) for both
the SIR-ω and the SIS-ω models are special cases of (13). Therefore, for these models
the linear approximation of system (5) leads to the same epidemic threshold that the
limit system (8) for the local densities. However, one thing that is missing is the precise
relationship between R0 obtained from the limit system (8) and λ1.

Instead of working with the cumbersome expressions of R0 and λ1, an easy way to
find this relationship is to compute the ratio of [SI] to [I] during the initial exponential
growth of the epidemic spread given by system (5) and, then, see if this ratio reaches a
stationary value in this early stage. From the linear approximation of system (5) around
the DFE, it follows that the linear dynamics of [SI] and [II] are only determined by J0

DF

which means that, at the early stage of the epidemic,

[SI](t) = K1e
λ1t + K2e

λ2t

with Ki being constants depending on the initial condition and on the eigenvectors asso-
ciated with λ1 and λ2. Upon introducing this expression for [SI] into Eq. (5)2, we obtain
a non-homogenous linear differential equation whose general solution is

[I](t) =





K1βeλ1t

µ + γ + λ1

+
K2βeλ2t

µ + γ + λ2

+ K3e
−(µ+γ)t if λ1 ̸= −(µ + γ),

K2βeλ2t

µ + γ + λ2

+ (K1βt + K3)e
−(µ+γ)t if λ1 = −(µ + γ),

with K3 being an integration constant. Finally, from these expressions we get

[SI](t)

[I](t)
→





µ + γ + λ1

β
=:

(
[SI]

[I]

)∗
if λ1 > −(µ + γ),

0 otherwise,

as t → ∞. This convergence is exponentially fast for all λ1 ̸= −(µ + γ), or proportional
to t−1 otherwise. From this limit and the definition of R0 given by (6), we arrive at the
expression

R0 =





1 +
λ1

µ + γ
if λ1 > −(µ + γ),

0 otherwise,

(14)
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which can be algebraically checked for λ1 > −(µ+γ) with µ = 0 (SIR-ω model) and γ = 0
(SIS-ω model) using (9) and (10), respectively. This relationship implies that the threshold
condition R0 = 0 for a rewiring-dominated scenario is equivalent to λ1 = −(µ + γ).

This simple result tell us how we must understand the linearisation of deterministic
pairwise epidemic models around the DFE. In particular, it says that the initial growth
rate of the epidemic spread given by the largest eigenvalue of the Jacobian matrix JDF

measures the growth of the infected population once the local densities around infectious
individuals are established.

3 SEIR-(ω1, ω2) model

Let us now consider a situation where the dynamics at the early stage of the epidemic and
the relationship between R0 and the largest eigenvalue of the linearization around the DFE
are a little bit more complex. The reason is the existence of another class of individuals,
the Exposed (E) ones, who are infected but not yet able to transmit the infection. After a
latent period, exposed individuals become infectious at a rate θ. The relationship between
the average duration of the latent period, 1/θ, and that of the infectious period, 1/γ, will
define two different initial scenarios for the evolution of [SI]/[I].

Assuming that some symptoms of the disease can be present in exposed individuals,
we allow S-individuals to disconnect from one of their E-neighbours and reconnect to a
randomly chosen S or R at a rewiring rate ω2 ≥ 0 (ω2 = 0 if exposed individuals are
asymptomatic). As with the SIR-ω model, S-individuals also disconnect from one of their
infected neighbours and reconnect to an S or R at a rate ω1. According to these rewiring
processes, once the triple closure (4) is introduced into the equations of the SEIR-ω model,
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the system reads

d

dt
[S] = −β[SI],

d

dt
[E] = β[SI] − θ[E],

d

dt
[I] = θ[E] − γ[I],

d

dt
[SI] =

(
−βz

[SI]

[S]
− β − γ − ω1

)
[SI] + θ[SE],

d

dt
[SE] = βz

(
2[SS]

[S]
− [SE]

[S]

)
[SI] − (θ + ω2) [SE],

d

dt
[SS] =

(
−βz

2[SS]

[S]
+ ω1

[S]

[S] + [R]

)
[SI] + ω2

[S]

[S] + [R]
[SE],

d

dt
[SR] =

(
−βz

[SR]

[S]
+ γ + ω1

[R]

[S] + [R]

)
[SI] + ω2

[R]

[S] + [R]
[SE], (15)

d

dt
[EI] = β

(
z
[SI]

[S]
+ 1

)
[SI] − (θ + γ) [EI] + 2θ[EE],

d

dt
[EE] = βz

[SE]

[S]
[SI] − 2θ[EE],

d

dt
[ER] = βz

[SR]

[S]
[SI] + γ[EI] − θ[ER],

d

dt
[II] = θ[EI] − 2γ[II],

d

dt
[IR] = θ[ER] + γ (2[II] − [IR]) ,

with [S] + [E] + [I] + [R] = N , [SS] + [SE] + [SI] + [SR] + [EE] + [EI] + [ER] + [II] +
[IR] + [RR] = L, and z := (q − 1)/k where q and k are computed from the initial degree
distribution of the contact network.

3.1 The early epidemic dynamics

As in the analysis of the SIS-SIR-ω model, we wish to obtain the initial dynamics of the
local density [SI]/[I]. So we need to derive the equation for the initial time evolution of
[SI]/[I] as well as for the rest of variables involved in this equation. After applying the
standard rules of differentiation, the limit equations at the beginning of an epidemic are
obtained from system (15) assuming that [S] → N , [E], [I], [R] → 0, [SS] → L, and that
the number of the rest of pairs also becomes 0. The result is that the initial dynamics
of [SI]/[I] is coupled with those of [SE]/[I] and [E]/[I] according to the following limit
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system

d

dt

(
[SI]

[I]

)
= −

(
β + ω1 + θ

[E]

[I]

)
[SI]

[I]
+ θ

[SE]

[I]
,

d

dt

(
[SE]

[I]

)
= β(q − 1)

[SI]

[I]
− (θ + ω2 − γ)

[SE]

[I]
− θ

[E]

[I]

[SE]

[I]
, (16)

d

dt

(
[E]

[I]

)
= (γ − θ)

[E]

[I]
+ β

[SI]

[I]
− θ

(
[E]

[I]

)2

.

3.1.1 Equilibria of the limit system.

Denoting by ζ∗ the equilibrium value of the ratio [E]/[I] and replacing it into (16), we
obtain the following equilibrium values

x∗ =

(
[SI]

[I]

)∗
=

θ

β
ζ∗

(
ζ∗ −

(γ

θ
− 1

))
,

(17)

y∗ =

(
[SE]

[I]

)∗
=

1

β
ζ∗(β + ω1 + θζ∗)

(
ζ∗ −

(γ

θ
− 1

))
,

where ζ∗ satisfies

ζ∗
(
ζ∗ −

(γ

θ
− 1

)) (
θ (q − 1) − 1

β
(θ + ω2 + θζ∗ − γ) (β + ω1 + θζ∗)

)
= 0.

Therefore, there are four possible equilibrium values ζ∗, namely, ζ∗
1 = 0, ζ∗

2 = γ/θ − 1,
and the solutions ζ∗

3 and ζ∗
4 to

βθ(q − 1) − (θ + ω2 + θζ∗ − γ)(β + ω1 + θζ∗) = 0,

and the equilibria of system (16) are

P1 = (0, 0, 0), P2 =
(
0, 0,

γ

θ
− 1

)
, P3 = (x∗

3, y
∗
3, ζ

∗
3 ), P4 = (x∗

4, y
∗
4, ζ

∗
4 ).

Since we are only interested in nonnegative equilibria, two classes of phase portraits are
possible. For γ < θ, we have ζ∗

2 < 0 and P1 is the only equilibrium on the boundary of
R3

+. For γ > θ, there are two equilibria on the boundary of R3
+, P1 and P2.

To find the conditions for the existence of positive P3 and P4, it will be convenient
to compute the Jacobian matrices of system (16) around P1 and P2. If Ji denotes the
Jacobian matrix at Pi, then

J1 =




−β − ω1 θ 0
β(q − 1) γ − θ − ω2 0

β 0 γ − θ
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and

J2 =




θ − γ − β − ω1 θ 0
β(q − 1) −ω2 0

β 0 θ − γ


 .

Using the expression of J1, it is easy to see that ζ∗
3 and ζ∗

4 correspond to the eigenvalues
of J1 that are not λ3 = γ − θ divided by θ, that is,

ζ∗
3 =

tr(J0
1 ) +

√
(tr(J0

1 ))2 − 4|J0
1 |

2θ
, ζ∗

4 =
tr(J0

1 ) −
√

(tr(J0
1 ))2 − 4|J0

1 |
2θ

where tr(J0
i ) and |J0

i | denote, respectively, the trace and the determinant of the 2 × 2
submatrix obtained by the intersection of the two first rows and the two first columns of
Ji. From these expressions and those of J0

i , it follows that:

• If γ < θ, then tr(J0
1 ) < 0. Hence ζ∗

4 < 0 and ζ∗
3 > 0 if |J0

1 | < 0. This means that P3

is the only positive interior equilibrium and that it bifurcates from P1 when the latter
becomes unstable (|J0

1 | = 0).

• If γ > θ, P1 is unstable (λ3 > 0) and we need ζ∗ > γ/θ − 1 in order to have x∗, y∗ > 0.
However, it is easy to see that ζ∗

4 < γ/θ−1 and, moreover, that ζ∗
3 > γ/θ−1 ⇐⇒ |J0

2 | < 0.
This implies that P3 is the only positive interior equilibrium and that it bifurcates from
P2 when the latter becomes unstable (|J0

2 | = 0).

Note that having P3 > 0 means ([SI]/[I])∗ > 0 and, hence, R0 > 0. Precisely, in this
case, from Eq. (6) we have

R0 :=
β

γ
x∗

3 =
θ

γ
ζ∗
3

(
ζ∗
3 −

(γ

θ
− 1

))
, (18)

with

ζ∗
3 =

1

2θ

(
γ − β − θ − ω1 − ω2 +

√
(γ + β − θ + ω1 − ω2)2 + 4θβ(q − 1)

)
.

So, there are two possible ways for a transition between a transmission-dominated scenario
and a rewiring-dominated scenario depending on the equilibrium from which P3 bifurcates:
P1 if γ < θ, and P2 if γ > θ.

3.2 R0 and the local stability analysis of an epidemic outbreak

Proceeding along the same lines as in the SIR-SIS-ω model, now we want to derive a
relationship between R0 obtained from the limit system (16) and the linear stability
analysis of the full system (15).
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Linearizing (15) about the DFE, it follows that the eigenvalues of the Jacobian matrix
are 0 (with multiplicity 3), −2θ (with multiplicity 2), −θ (with multiplicity 2), −γ (with
multiplicity 2), −θ − γ, and those of the 2 × 2 submatrix obtained by the intersection of
the rows and columns corresponding to [SI] and [SE], which is given by

J0 =

(
−β − γ − ω1 θ

β(q − 1) −θ − ω2

)
.

Denoting the largest eigenvalue of J0 by λ1 and the other one by λ2, it follows, first, that
λ2 < 0 and, second, that λ1 > 0 if and only if

β(q − 2) − γ − ω1 >
ω2

θ
(β + γ + ω1). (19)

This condition shows that if ω2 = 0 (no rewiring of susceptible individuals from their
exposed neighbours) or θ → ∞, i.e., when the average duration of the latent period tends
to 0, we recover the condition for the instability of the DFE in the SIR-ω model. In
general, taking β as a tuning parameter, this condition says that the epidemic threshold
given by the value of β such that λ1(β) = 0 is higher in the SEIR-(ω1, ω2) model than in
the SIR-ω model.

From the Jacobian matrix of system (15) around the DFE, it follows that the growth
of [SI] during the initial exponential phase is only determined by the eigenvalues of J0,
that is, [SI](t) = K1e

λ1t + K2e
λ2t. For the sake of simplicity, we shall assume that

λ1 ̸= {−θ, −γ} and θ ̸= γ. Introducing [SI](t) into the second equation of (15), this
becomes a non-homogeneous linear differential equation for [E](t) whose general solution
is

[E](t) =
2∑

i=1

βKi

λi + θ
eλit + K3e

−θt . (20)

Then, upon introducing this expression into the third equation of (15) and solving the
resulting non-homogeneous differential equation for [I](t), we have

[I](t) =
2∑

i=1

θβKi

(λi + θ)(λi + γ)
eλit + K3

θ

γ − θ
e−θt + K4e

−γt , (21)

where K3 and K4 are integration constants.

Now, using the previous expressions of [SI](t) and [I](t), the mean number of suscep-
tible individuals surrounding an infected one at the early stage of the epidemic is given
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by:

[SI](t)

[I](t)
=

K1e
λ1t + K2e

λ2t

θK3

γ − θ
e−θt + K4e

−γt + θβ
2∑

i=1

Kie
λit

(λi + θ)(λi + γ)

→





(λ1 + θ)(λ1 + γ)

θβ
if λ1 > max{−θ,−γ},

0 otherwise,

(22)

as t → ∞. Note that this convergence is exponential because we are assuming λ1 ̸=
{−θ, −γ}. For the limit case λ1 = max{−θ,−γ}, one can see that the convergence to
0 is proportional to t−1 if θ ̸= γ, or proportional to t−2 if θ = γ. Finally, recalling the
definition of R0 given by (6), we obtain

R0 =





(
1 +

λ1

θ

)(
1 +

λ1

γ

)
if λ1 > max{−θ, −γ},

0 otherwise.

(23)

As with the SIR-ω model, this equality can be algebraically checked for λ1 > max{−θ, −γ}
using the expression (18) obtained from the equilibrium of the limit system for [SI]/[I].

From the expression of λ1 (see Appendix) and taking now θ as a tuning parameter,
it follows that λ1(θ) → β(q − 2) − γ − ω1 =: λSIR

1 , the largest eigenvalue of the matrix
J0

DF obtained from (12), as θ → ∞. Moreover, since λ1(θ)/θ → 0 as θ → ∞, we
also have that R0 → RSIR

0 := 1 + λSIR
1 /γ, the value of R0 for the SIR-ω model, when

θ → ∞ (see Appendix for details). Interestingly, (23) remains true even without rewiring
(ω1 = ω2 = 0), which implies that the difference in the value of R0 between the SIR and
SEIR pairwise models arises because of the time evolution of the local densities around
infected individuals. In this special case of no rewiring, however, the epidemic threshold
R0 = 1 is the same for both models.

Finally, from (23) we also recover the two possibilities for reaching a rewiring-dominated
scenario (R0 = 0) from a transmission-dominated one, namely, λ1 = −γ when γ < θ, and
λ1 = −θ when γ > θ. In the first case, this condition is equivalent to |J0

1 | = 0 whereas,
in the second one, it leads to |J0

2 | = 0. In particular, using θ as a tuning parameter, the
value θ0 given by the unique solution of λ1(θ) = −θ defines the transition point if γ > θ0,
whereas the transition occurs at θ = θ1 with λ1(θ1) = −γ if γ < θ0. In Figure 1 we show
these two possibilities by only changing the value of ω2.
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4 Simulations

To show the accuracy of the analytical predictions about the initial spread of an SEIR
epidemic and how they depend on the network architecture, we performed stochastic
simulations on networks of size N = 10000 with Poisson, exponential, and power-law
degree distributions, the latter with exponent 3 (pk ∼ k−3). Given a mean degree k,
Poisson networks were generated by connecting, with probability p = k/N , every pair of
nodes in the network. Exponential and power-law networks were generated from random
sequences of N degrees drawn from the corresponding probability distributions. Each
node was given a degree ki from the sequence and, then, was randomly connected to
ki nodes (configuration model). Power-law degree sequences where generated having
minimum degree k0 = 5 and maximum degree (cut-off) kc = k0N

1/2 = 500, which avoids
the presence of degree-degree correlations [4] and allows to compute the value of q for this
kind of degree distribution. For these values of k0 and kc, the mean degree is 9.86. The
mean degree of Poisson and exponential distributions is 10.

On these networks, the stochastic time evolution of the infection spread is simulated
by means of the Gillespie algorithm [11]. The initial number of infected nodes is 10
(0.1% of the population size) which are drawn from the whole set of nodes with the
same probability p = 1/N . For each network and parameters combination, we run 100
simulations with different initial sets of infected nodes in order to average the outputs.

The main output of the simulations will be the time evolution of the effective repro-
ductive number Rt := β/γ · [SI](t)/[I](t), which gives the mean number of infections
produced by a single infectious individual during the course of an epidemic. Comparing
both panels in Figure 2, one can clearly see the existence of a stationary value of Rt,
predicted from the limit equation for the dynamics of [SI]/[I], as long as the growth of
[E] and [I] is in its initial exponential phase and the depletion of susceptible individuals is
negligible. In particular, the right panel depicts how Rt fluctuates around R0, the value of
Rt for [SI]/[I] given by (17)1, the first component of the equilibrium of the limit system
(16). This figure also shows that, as expected, I(t) attains its maximum, the epidemic
peak, when Rt = 1. From this moment onwards, each infectious individual produces, on
average, less than one infection (Rt < 1) and the epidemic declines.

When positive rewiring rates are considered, the number of susceptible neighbours per
infected individual is necessarily lower than without rewiring. This implies that Rt will
fluctuate at lower values and, if rewiring is large enough, its expected initial increase will
not happen. Figure 3 illustrates how, for the same rewiring rates, the initial behaviour of
Rt for a Poisson network differs from the one in the other two types of networks. This
figure also shows how the amplitude of the fluctuations increases with the variance of the
degree distribution, being the prediction for the Poisson network the most accurate (a
similar accuracy is observed for other values of the parameters). Finally, differences in
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the early time evolution of Rt are clearly noticeable when simulations are performed on
different networks generated according to the same degree distribution, except in networks
generated from a Poisson degree distribution due to its low variance.

Stochastic simulations on heterogeneous networks show an initial increase of Rt from
the value kβ/γ for the randomly-chosen primary cases to values close to R0 predicted from
the expression of [SI]/[I] given by (17)1, followed by a decrease of Rt (middle and bottom
panels in Figure 3). This behaviour reflects the impact of highly connected individuals
during the initial exponential-growth phase, and agrees with what was actually seen in
the early growth of SARS in Hong Kong in 2003, where two clusters of cases generated by
”super-spread” events were reported [31]. It also agrees with the transmission of influenza
A (H1N1) in Japan, with a first phase corresponding to the outbreak of May 2009, where
infections were mainly confined to school settings, i.e., to closed clusters with very high
average contact rates and high values of Rt. The second phase occurred from May 29 to
July 14. It consisted of the secondary cases generated by school clusters which lead to
lower estimates of Rt [28].

5 Discussion

Using the pair approximation with the triple closure introduced in [17], we have analysed
and compared the early dynamics of the SIS, SIR, and SEIR epidemic models defined
on adaptive networks where connections between infected, exposed and susceptible indi-
viduals are broken off by the latter through a rewiring mechanism. Following [13, 17],
for the SIS and SIR models it is assumed that each susceptible individual that looses a
connection with an infectious neighbour establishes a new one with another susceptible or
recovered individual chosen at random. For the SEIR model, it is allowed that susceptible
individuals also break off links with exposed neighbours. The used triple closure allows
to deal with networks with different architectures and to study the corresponding initial
behaviour of the epidemic spreading. In particular, Poisson, exponential and power-law
degree distributions have been considered for numerical simulations. This choice of net-
work topologies accounts for the variability of contact patterns found in several social
networks, which ranges from the homogeneous mixing in Poisson networks to the high
contact heterogeneity in networks with power-law degree distributions [2].

For these pairwise models, R0 has been computed from the equations for the early
dynamics of the average number of susceptible neighbours of an infectious individual,
[SI]/[I] (see Eqs. (9), (10), (18)). Its expression includes components of the natural
history of the disease (mean duration of the latent and infectious periods, transmission
and recovery rates) as well as summary statistics of the contact network and the rewiring
rates. Even without rewiring, the expressions of R0 for the SIR and SEIR models are
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different from each other, in contrast to what happens to their homogeneous mixing
versions for which R0 = βN/γ [6, 23, 46]. Only when rewiring does not affect exposed
individuals, the epidemic threshold given by the equation R0 = 1 coincides in both models.
However, even in this case (ω2 = 0), the values of R0 are different to each other under
any other choice of the parameters values.

The importance of contact heterogeneity has been long recognized in the epidemiology
of sexually transmitted infections [1], for which contact tracing is a useful control measure
[25]. Information about contact patterns is also relevant for the control of infectious
diseases passed by casual social contact, as it was shown for respiratory-spread infectious
diseases like SARS [27] and influenza A (H1N1) 2009 in [28]. For these illnesses, initial
estimates of R0 were based on models that assume fully mixing and, some of them, on
transmission data from crowded settings, like hospitals, schools, and apartment buildings,
with unusually high contact rates. Consequently, extrapolating these R0 estimates to
the population at large overestimated the infectiousness of the disease because common
contact rates are much lower outside these closed settings [28]. Therefore, caution must
be exercised in the use of very early parameter estimates due to their inherent high
uncertainty. For the 1918 influenza pandemic, for example, a significant reduction in
the width of the confidence interval for R0 was achieved in [5] by increasing the length
of the fit during the exponential-growth phase. Other estimates can be obtained by
fitting more sophisticated models as, for instance, the sort of pairwise models we have
considered or structured models based on the so-called next generation matrix [6, 28]. In
this sense, although the population contact structure is unknown for commonly gathered
epidemiological data, the parametrization of models involving this kind of information
can be feasible by collecting the required data by means of survey-based or device-based
techniques. An alternative consists of inferring the contact heterogeneity at the population
level from commonly gathered data. This approach has been recently considered in [37]
for different types of contact networks.

The second contribution of the paper is the relationship between R0 and the largest
(non-zero) eigenvalue, λ1, of the Jacobian matrix of the pairwise model around the disease-
free equilibrium with the proviso that λ1 > min{−θ, −γ} (see Eqs. (14) and (23)). In
[8], working with a generalization of pairwise models, R0 is expressed in terms of the
dominant eigenvalue of a matrix that contains all of the information about the types of
partnerships present in the network (see [15, 21, 26] for similar models). In that work,
Eames and Keeling comment that ”In practice R0 is calculated from the initial growth
rate of an infinitesimal infection in an otherwise susceptible population. However, when
the population is structured, the growth rate may depend on which class of individual is
infected. We therefore allow the level of infection to equilibrate between the classes (such
that high-risk individuals are more likely to be infected), before calculating the number
of secondary cases. Correspondingly, for network models, R0 should be calculated only
once the early spatial correlations (which develop within a couple of generations) have
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formed”. What we have shown is that this information about the early epidemic growth
contained in R0 computed in this non-trivial way is already included in the Jacobian
matrix of pairwise models around the disease-free equilibrium. In other words, this result
tells us how we must understand the linearization of deterministic pairwise models around
a disease-free equilibrium.

Interestingly, replacing λ1 by the early epidemic growth rate r in Eqs. (14) and (23)
leads to the same linear and quadratic relationships between R0 and r than those derived
for homogeneous mixing SIS, SIR, and SEIR models [22, 23, 29, 33, 45]. However, one
must be careful about how to apply these relationships when they are used to estimate R0,
especially in populations with different levels of mixing, because greatly differing estimates
of the initial epidemic growth rate can be obtained from the cumulative number of initial
cases [5, 27, 28]. This typically happens when the primary cases are not representative of
the population of interest because, for instance, they belong to close settings like hospitals
or schools with very high contact rates [28, 36].

When initial infections (primary cases) occur at random in a network model, the
variability in the number of secondary cases produced by primary cases is expected to be
higher than in the next generations of cases, i.e., once invading clusters have been built
up. After the second generation of cases, individuals with the highest degree are very
likely to be infected, and it is then when the estimates of λ1 should be computed from the
cumulative number of cases. This heterogeneity in the degree of the infected individuals
is reflected in the time evolution of the effective reproduction number, Rt, during an
outbreak. The stochastic simulations of the evolution of Rt during the exponential-growth
phase of the epidemic for the SEIR model with rewiring show a very good agreement
with the predicted value of R0 for Poisson networks (see top panels in Figure 3). This
good agreement is consistent with the one observed for the SIS model with rewiring in
[17] for the same type of networks. For initial degree distributions with higher variance
(exponential and scale-free contact networks), the accuracy of the R0 estimates is not
so good. However, for these networks and low rewiring rates, the stochastic simulations
depict an initial increase of Rt towards values close to (but lower than) the predicted R0,
which is due to the infection of highly connected individuals, followed by a decrease of
Rt corresponding to the secondary infections caused by the latter. This behaviour was
observed in the SARS and influenza A (H1N1) epidemics, where ”super-spreading” events
were reported [24, 27, 28].
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Appendix A: Limit of R0 as θ → ∞

The expression of the eigenvalue λ1 of the Jacobian matrix of system (15) around the
disease-free equilibrium that determines the initial growth of the epidemic is

λSEIR
1 =

1

2
(
√

A2 + 4θ(β(q − 2) − γ − ω1) − 4ω2(β + γ + ω1) − A)

where A = β + γ + θ + ω1 + ω2. Note that λ1 is the largest non-zero eigenvalue of the
Jacobian matrix with the proviso that λ1 > min{−θ, −γ}.

To avoid an indeterminate form as θ → ∞, we can rewrite λSEIR
1 as

λSEIR
1 =

2θ(β(q − 2) − γ − ω1) − 2ω2(β + γ + ω1)

A +
√

A2 + 4θ(β(q − 2) − γ − ω1) − 4ω2(β + γ + ω1)
.

Recalling the definition of A, it immediately follows that λSEIR
1 → β(q − 2) − γ − ω1

as θ → ∞. Note that this limit is just λSIR
1 , the largest eigenvalue of the 2 × 2 matrix

obtained by deleting the first column and the first row from (12).

Finally, we have that RSEIR
0 =

(
1 +

λSEIR
1

θ

)(
1 +

λSEIR
1

γ

)
tends to RSIR

0 = 1 +
λSIR
1

γ
as

θ → ∞ because, in that case,

λSEIR
1

θ
=

2(β(q − 2) − γ − ω1) − 2ω2(β + γ + ω1)/θ

A +
√

A2 + 4θ(β(q − 2) − γ − ω1) − 4ω2(β + γ + ω1)
→ 0

and λSEIR
1 → λSIR

1 .
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Figure captions

Figure 1. R0 against θ for the SEIR-ω model. Left panel: the transition to a transmission-
dominated scenario (R0 > 0) occurs at θ0 = 0.05 with θ0 < γ being the solution of
λ1(θ) = −θ. Right panel: the transition occurs at θ1 = 0.98 > γ which satisfies λ1(θ1) =
−γ. Parameters: β = 0.05, γ = 1/7, q = 16, ω1 = 0.5, ω2 = 0.06 (left panel), and
ω1 = ω2 = 0.5 (right panel). In each panel, the dashed line shows the value of R0 for the
SIR-ω model with the same parameter values. The values of R0 for each model coincide
as θ → ∞.

Figure 2. Time evolution of S(t), E(t), I(t), and R(t) (left) and Rt = β/γ · [SI](t)/[I](t)
(right) averaged over 100 realizations on a Poisson network of size N = 10000 and mean
degree k = 13 using different sets of 10 initially infected individuals selected uniformly
at random from the population. Right panel: dashed line corresponds to the value of R0

predicted by (18), and the time window [0, tmax] = [0, 84.5] ends at the time at which
Rt = 1, i.e., at the epidemic peak time (I(tmax) = 984). Parameters: β = 0.05, θ = 3/5,
γ = 1/7, ω1 = ω2 = 0.2.

Figure 3. Time evolution of the effective reproductive number Rt = β/γ · [SI](t)/[I](t)
averaged over 100 realizations on Poisson (top), exponential (middle) and power-law (bot-
tom) networks of size N = 10000 and mean degree 10, 10, and 9.86, respectively. In each
realization, the epidemic starts by infecting 10 individuals selected uniformly at random.
Results for two different networks are shown in all panels. Dashed line corresponds to the
value of R0 predicted by (18). Parameters: β = 0.05, γ = 1/7, θ = 3/5, ω1 = ω2 = 0 (left
panels), and ω1 = ω2 = 0.1 (right panels).
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