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Abstract—Our society nowadays is governed by complex
networks, examples being the power grids, telecommunication
networks, biological networks, and social networks. It has become
of paramount importance to understand and characterize the
dynamic events (e.g. failures) that might happen in these complex
networks. For this reason, in this paper, we propose two measures
to evaluate the vulnerability of complex networks in two different
dynamic multiple failure scenarios: epidemic-like and cascading
failures. Firstly, we present epidemic survivability (ES), a new
network measure that describes the vulnerability of each node
of a network under a specific epidemic intensity. Secondly,
we propose cascading survivability (CS), which characterizes
how potentially injurious a node is according to a cascading
failure scenario. Then, we show that by using the distribution
of values obtained from ES and CS it is possible to describe
the vulnerability of a given network. We consider a set of 17
different complex networks to illustrate the suitability of our
proposals. Lastly, results reveal that distinct types of complex
networks might react differently under the same multiple failure
scenario.

Index Terms—Network Characterization, Epidemics, Cascad-
ing Failures, Multiple Failures, Complex Networks

I. INTRODUCTION

Many different protection and restoration techniques for sin-
gle failures have been extensively analyzed in recent decades
(e.g. see [1]). Furthermore, multiple failures such as natural
disasters or physical attacks have also been studied [2]. Ac-
cording to the taxonomy introduced in [3], there are two types
of multiple failures. While static multiple failures are essen-
tially one-off failures that affect one or more elements (nodes
or links) simultaneously at any given point, dynamic failures
have a temporal dimension. In this paper we consider dynamic
multiple failures, which we implement through epidemic and
cascading failures. On one hand, an epidemic-like failure
propagation occurs when, at a given time, a node or a group
of them start spreading an infection. In this case the failure
(e.g. infection) propagates through physical neighbors. On the
other hand, cascading failures occur when a node (or a group
of them) fails, and as a consequence, other parts in the network
fail as well due to an overloading of the capacity. Cascading
failures do not necessarily propagate through physical contact,
i.e. one node failure can cause a failure to a non-adjacent node
due to the network load balancing.
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In contrast with single failures, in the case of multiple
failures it is nonviable to define proper reactive strategies.
Thus, since the reasonable approach to address such large-
scale failures involves the designing phase of a network, it
has become of paramount importance to define new metrics
able to evaluate the vulnerability of networks in the case
of multiple failure scenarios. Appropriate metrics can help
network engineers and operators to detect the most critical
parts of a network. Although a new generic metric suitable
to accurately evaluate the robustness in static multiple failure
scenarios has been recently presented in [3], to the best of our
knowledge there are no metrics able to evaluate the robustness
under dynamic multiple failure scenarios.

In our previous work [4] we presented a metric called
epidemic survivability. In this paper we go one step further and
we extend the work by considering broader type of failures:
dynamic multiple failures. In addition, we extend the number
of networks considered for testing of the failure scenarios to
17, as compared to 6 in the previous work. Consequently,
here we consider 2 telecommunication networks, 2 Internet
Autonomous Systems (AS) networks, 5 synthetic generated
networks, 1 biological network, 3 social networks and 4 power
grid networks. Our aim is to take into account a wide range of
different types of complex networks, and evaluate them under
dynamic multiple failure scenarios. Within this context, the
main contributions of this paper are:

1) a new network measure called epidemic survivability
(ES). This feature describes the vulnerability of each
node of a network under a specific epidemic scenario.

2) a new network measure called cascading survivability
(CS), which characterizes how potentially injurious a
node is according to a specific cascading failure scenario.

We believe that our proposals can be used by the network
research community to evaluate the criticality of nodes of a
network under failure propagation scenarios. In addition, our
metrics can be used to amplify general recovery metrics such
as [5].

II. NETWORK TOPOLOGIES

In this section we present the set of seventeen network
topologies considered in our work. These networks have been
chosen in order to represent a wide variety of complex network
topology types:

1) abilene93: a small network that has been chosen because
of its underlying AS topology structure.



2) cogentco197: a real telecommunications network that has
been taken from the repository provided in [6].

3) er400: a random network that has been generated using
the Erdős-Rényi model [7].

4) powerlaw400: a power-law network that has been gener-
ated using the Barabási-Albert (BA, preferential attach-
ment mechanism) model [8].

5) homoge400: a homogeneous network (a network where
all the nodes have equal node degree) that has been
generated, being a toroidally-periodic rectangular lattice
of size 20× 20. Although this network is not a complex
network, it has been considered for comparison purposes.

6) bt400: this topology has been obtained by manipulating
a previously generated topology using BRITE.

7) bo1458: a protein interaction network for yeast [9].
8) col4158: a collaboration network of Arxiv’s General

Relativity category [10].
9) col8638: a collaboration network of Arxiv’s High Energy

Physics Theory category [10].
10) cost37: a Pan-european communications reference net-

work.
11) europg1494: an approximated model of the european

power grid network [11].
12) fb4039: this network represents circles or friends list of

the popular social network Facebook [12].
13) wspg4941: a topology of the Western States Power Grid

of the United States [13].
14) pgieee118 and pgieee300: these two topologies are refer-

ence IEEE power grid networks [14].
15) AS25357: an AS network from 2012 [15].
16) AS26475: this network is the largest CAIDA AS con-

nected graph from the network set available in November
2007 [10].

The col4158, col8638, fb4039 and AS26475 networks have
been obtained from the SNAP dataset [16]. All of the networks
are connected and considered as symmetric graphs. It is worth
noting that some of the networks were not connected, and a
post-processing has been done in order to obtain the largest
connected component. Table I shows the networks that have
been post-processed because they were disconnected. Further-
more, Table II and Table III present several characteristics of
this set of networks, some of which are presented with their
standard deviation. As it can be observed, we have considered
a heterogeneous set of networks with respect to the number
of nodes, ranging from 37 to 26475.

The fb4039 network shows the highest average nodal degree
(〈k〉 = 43.69), what means that every person has an average of
about 44 friends in this social network. The two AS networks
(AS25357 and AS26475) present the highest mean degree
of first neighbors (〈d〉) and maximum degree (kmax), i.e. in
AS25357 there is an AS that is connected to other (kmax)
3781 ASes, and some of them have a high node degree as
well. A high kmax is an indicator of vulnerability, depicting
that removal of such a node could seriously damage the
network. Networks with high values of the largest eigenvalue

of the adjacency matrix (or spectral radius, λ1) and algebraic
connectivity (µN−1) are more robust. In this case, the fb4039
network shows the highest spectral radius and the er400
presents the highest algebraic connectivity. For this reason,
these two networks are supposed to be most robust than the
rest of them in the case of failures.

Regarding the average shortest-path length (〈l〉) it is shown
that two power grid networks (europg1494 and wspg4941)
have the higher values and consequently are more vulner-
able. This is due to the fact that, traditionally, power grid
networks have a tree-like structure. Furthermore, the average
node betweenness centrality (〈b〉) of cost37, cogentco197 and
abilene93 shows that these three topologies have an excess
of centrality measures for some nodes, indicating the vulner-
ability of networks under targeted failures. The absence of 3-
cycles in the clustering coefficient (〈C〉) measurements reveal
that the homoge400 and cost37 lack two-hop paths to re-route
the traffic in case of failure of one of its neighbors. Finally,
networks with negative values of assortativity (r) have an
excess of radial links, i.e., links connecting nodes of dissimilar
degrees. Such a property is typical of technological networks
[17].

This initial network analysis of the considered set of topolo-
gies reveals that none of the networks can be considered as the
most robust for all of the metrics. Besides, the vulnerability
of the networks is going to differ depending on the considered
type of multiple failures. As a consequence, it is necessary to
define new metrics able to characterize how robust a network
is in a specific scenario. The following two sections present
two new measures to evaluate network vulnerability in the case
of epidemic-like and cascading failures.

III. EPIDEMIC-LIKE FAILURES

Epidemic models are used to model the spreading of events
(e.g. failures) in several types of complex networks. These
models have been used in a wide variety of research fields. In
this section we review the classical epidemic models and in-
troduce a novel network measure that is suitable for evaluating
the vulnerability under epidemic-like failure scenarios.

A. Epidemic Models

Epidemic dynamics in complex networks have undergone
extensive research [18], [19] [20], [21]. As a consequence,
many epidemic models have been proposed and several fam-
ilies are described in the literature (see Chapter 8 in [22],
Chapter 17 in [23] and Chapter 14 in [24]). The first family,
called Susceptible-Infected (SI) considers individuals as being
either susceptible (S) or infected (I). This family assumes
that the infected individuals will remain infected forever,
and so can be used for worst case propagation (S → I).
Another family is the Susceptible-Infected-Susceptible (SIS)
group, which considers that a susceptible individual can be-
come infected on contact with another infected individual,
then recovers with some probability of becoming susceptible
again. Therefore, individuals will change their state from
susceptible to infected, and vice versa, several times (S � I).



TABLE I
NETWORKS THAT WERE DISCONNECTED AND FOR WHICH A POST-PROCESSING HAS BEEN DONE TO OBTAIN THE LARGEST CONNECTED COMPONENT.

Topology List of |N |× number of components

bo1458 1458× 1; 7× 4; 6× 3; 5× 5; 4× 10; 3× 25; 2× 101; 1× 24
col4158 4158× 1; 14× 1; 12× 1; 10× 1; 9× 2; 8× 6;

7× 8; 6× 12; 5× 17; 4× 30; 3× 98; 2× 177; 1× 1
col8638 8638× 1; 21× 1; 11× 1; 9× 2; 8× 6; 7× 11;

6× 8; 5× 21; 4× 45; 3× 67; 2× 264; 1× 2
europg1494 1494× 1; 1× 19
AS25357 25357× 1; 2× 5

TABLE II
MAIN NETWORK FEATURES. THE TABLE DISPLAYS, FROM LEFT TO RIGHT: TOPOLOGY NAME, NUMBER OF NODES, AVERAGE NODAL DEGREE ± standard
deviation (STDEV), MEAN DEGREE OF FIRST NEIGHBORS ± STDEV, LARGEST EIGENVALUE OF THE ADJACENCY MATRIX, MAXIMUM DEGREE kmax AND

THE SECOND SMALLEST EIGENVALUE OF THE LAPLACIAN MATRIX (THE SO-CALLED algebraic connectivity).

Topology N 〈k〉 ± StDev 〈d〉 ± StDev λ1 kmax µN−1

abilene93 93 2.88 ±2.71 6.76 ±2.76 5.016 12 0.07607
cogentco197 197 2.46 ±1.05 2.91 ±0.92 3.778 9 0.00858
er400 400 7.81 ±2.80 8.89 ±1.01 8.848 15 0.90416
powerlaw400 400 2.00 ±3.25 9.47 ±11.81 7.013 47 0.00463
homoge400 400 4.00 ±0.00 4.00 ±0.00 4.000 4 0.09788
bt400 400 3.74 ±2.17 5.44 ±1.61 5.195 11 0.01013
bo1458 1458 2.67 ±3.45 9.65 ±10.74 7.535 56 0.02126
col4158 4158 6.45 ±8.62 11.60 ±9.02 45.616 81 0.03530
col8638 8638 5.74 ±6.45 11.25 ±6.65 31.034 65 0.02441
cost37 37 3.08 ±0.85 3.31 ±0.45 3.399 5 0.15857
europg1494 1494 2.88 ±1.75 4.17 ±1.58 5.027 13 0.00170
fb4039 4039 43.69 ±52.41 105.55 ±91.30 162.373 1045 0.01812
wspg4941 4941 2.66 ±1.79 3.96 ±1.93 7.483 19 0.00076
pgieee118 118 3.03 ±1.56 3.95 ±1.13 4.105 9 0.02714
pgieee300 300 2.72 ±1.54 3.86 ±1.71 4.126 11 0.00938
AS25357 25357 5.91 ±48.03 659.73 ±827.98 103.361 3781 0.10768
AS26475 26475 4.03 ±33.37 471.27 ±644.72 69.642 2628 0.02043

TABLE III
NETWORK FEATURES. THE TABLE DISPLAYS, FROM LEFT TO RIGHT: TOPOLOGY NAME, AVERAGE SHORTEST PATH LENGTH ± STDEV, NORMALIZED

AVERAGE BETWEENNESS CENTRALITY ± STDEV, AVERAGE CLUSTERING COEFFICIENT ± STDEV, AND ASSORTATIVITY COEFFICIENT |r| ≤ 1.

Topology 〈l〉 ± StDev 〈b〉 ± StDev 〈C〉 ± StDev r

abilene93 3.92 ±1.32 0.0529 ±0.0551 0.51 ±0.48 −0.5130
cogentco197 10.52 ±5.09 0.0585 ±0.0665 0.12 ±0.32 +0.01956
er400 3.13 ±0.73 0.0103 ±0.0037 0.02 ±0.07 −0.07229
powerlaw400 6.01 ±2.16 0.0175 ±0.0594 0.64 ±0.47 −0.16512
homoge400 10.03 ±4.10 0.0276 ±0.0000 0.00 ±0.00 +1.0000
bt400 10.12 ±4.21 0.0202 ±0.0357 0.16 ±0.27 −0.29646
bo1458 6.81 ±2.04 0.0039 ±0.0110 0.56 ±0.47 −0.20954
col4158 6.04 ±1.57 0.0012 ±0.0034 0.71 ±0.35 +0.63919
col8638 5.94 ±1.50 0.0005 ±0.0015 0.65 ±0.37 +0.23892
cost37 4.05 ±1.90 0.0782 ±0.0756 0.00 ±0.00 −0.01510
europg1494 18.88 ±8.73 0.0119 ±0.0304 0.27 ±0.40 −0.11965
fb4039 3.69 ±1.19 0.0006 ±0.0116 0.62 ±0.20 +0.06358
wspg4941 18.98 ±6.50 0.0036 ±0.0160 0.32 ±0.44 +0.00346
pgieee118 6.30 ±2.81 0.0457 ±0.0723 0.22 ±0.36 −0.15257
pgieee300 9.93 ±4.06 0.0299 ±0.0546 0.31 ±0.42 −0.22063
AS25357 3.39 ±0.70 0.0001 ±0.0020 0.73 ±0.36 −0.18540
AS26475 3.87 ±0.90 0.0001 ±0.0020 0.58 ±0.46 −0.19465



The Susceptible-Exposed-Infected-Susceptible (SEIS) model is
based on the SIS model, and takes into consideration the
exposed or latent period of the disease (S → E → I → S).
The third broad family is Susceptible-Infected-Removed (SIR),
which extends the SI model to take into account a removed
state. In the SIR model, an individual can be infected just
once because when the infected individual recovers, becomes
either immune or dead, and will no longer pass the infec-
tion onto others (S → I → R). Finally, there are two
families that extend the SIR family: Susceptible-Infected-
Detected-Removed (SIDR) and Susceptible-Infected-Removed-
Susceptible (SIRS). The first one adds a Detected (D) state,
and is used to study virus throttling, which is an automatic
mechanism for restraining or slowing down the spread of
diseases (S → I → D → R). The second one considers
that after an individual becomes removed, it remains in that
state for a specific period of time and then goes back to the
susceptible state (S → I → R→ S).

Regarding communication networks, an extension of the
SIS model, which is called Susceptible-Infected-Disabled-
Susceptible (SIDS), was proposed in [25] in order to
overcome the limitations of the SIS model with re-
spect to optical transport networks. The SIDS model
(Susceptible�Infected→Disabled→Susceptible) is proposed
as one of the first models to consider real telecommunication
networks features and it relates each state to a functionality of
the network devices. In addition, other epidemic models have
also been proposed for wireless telecommunication networks
[26].

In this paper we propose a new network measure taking
into account the SIS model, which is characterized by two
probabilities: (a) β, the probability of being infected by an
already infected node; and (b) δ, the probability of an infected
node to recover and become susceptible again. However, our
proposal can be also applied to any other epidemic model and
we plan to do so in the future.

Furthermore, according to [21] and from the following
equation:

s =
β

δ
λ1 (1)

where s is the epidemic intensity and λ1 is the network’s
largest eigenvalue of the adjacency matrix, which has been
typically used to predict network robustness, when s > 1
an epidemic survives and the spread of the infection might
never die. Thus, in order to obtain comparable results between
networks with respect to our proposal (epidemic survivability),
s must be a parameter of our new measure.

In this work we have fixed s = 3 for all networks, in order
to obtain comparable results, and we have obtained a specific
β value for each network from the equation β = sδ

λ .

B. Epidemic Survivability

Here we present our new network measure called epidemic
survivability (ES). We define our proposal as the probability
for each node of a given network to be eventually infected

(i.e., in a large enough amount of time steps), given a specific
epidemic intensity (s). This probability of each node asymptot-
ically reaches a stationary state, according to simulations and
theoretical models. Epidemic survivability can be described as
the proportion of time for which each node of a given network
has been infected for a given s, in a large enough period of
time, as shown in Eq. 2:

ESi(s) =
time for which node i has been infected

total time
i = 1, . . . , N (2)

where N is the number of nodes of the network. As a result,
ES has a value between 0 and 1 for each node, where higher
the value, more vulnerable is the node under the specified
epidemic scenario. Formally, from the SIS model, epidemic
survivability can be computed with the following equation:

ES∗i =
1

1 + (βδ
∑
j∼iES

∗
j )
−1

i = 1, . . . , N (3)

where ∗ means at the stationary state and j ∼ i is the set of
neighbors of node i. Here, it is assumed that δ and s are given
as parameters and β is obtained from the equation β = sδ

λ1
.

Thus, it can be observed that Eq. 3 is a recursive formula and
must be initialized with a value. We define this initialization
of the probabilities in Eq. 4:

ES∗i,approx = (1− 1

s
) i = 1, . . . , N (4)

which corresponds to the solution of Eq. 3 for the case of
a homogeneous/regular network. Moreover, a procedure for
computing epidemic survivability is provided in Algorithm 1.
As it can be observed, the method requires five parameters:
the network G and four constants (s, δ, k and tol). The
first two steps (lines 3 and 4) compute the largest eigenvalue
of the given network and thus obtain the β value of the
epidemic model. Then, all probabilities are initialized as stated
in Eq. 4 (lines 5 to 7). Therefore, in the main loop of line 8
the new probability of each node is computed as defined in
Eq. 3 (lines 9 to 11). After that, the absolute error is checked
(lines 12 to 14) and if it results lower than the given tolerance
(tol) then the algorithm ends, and returns the array containing
the epidemic survivability of each node of the network. If
the absolute error is still higher than tol another iteration is
performed.

C. The distribution

When computing the epidemic survivability for the nodes
of a network, according to a specified set of parameters, it
is interesting to analyze the distribution of ES values. If
these values are sorted, for example, in descending order, it
facilitates the comparison between network topologies when
considering the same failure propagation scenario for all of
them. This approach is illustrated in Fig. 1 which displays
the epidemic survivability distribution, the ES of each node,
for the 17 networks in a specific epidemic scenario. As can
be observed, the two AS networks (AS25357 and AS26475)
together with the two collaboration networks (col4158 and



Algorithm 1 Compute epidemic survivability.
Require: s ≥ 1, d > 0, k > 0, tol > 0, connected G

1: Input: a graph G and the constants s (epidemic intensity),
δ (repairing rate), k (maximum number of iterations) and tol
(tolerance).

2: Output: an array containing the epidemic survivability of each
node.

3: λ← spectralRadius(G) {largest eigenvalue}
4: β ← s∗δ

λ
5: for all v ∈ vertexSet(G) do
6: PES [v] = (1− 1

s
)

7: end for
8: for c = 1→ k do
9: for all v ∈ vertexSet(G) do

10: Paux[v] =
1

1+( β
δ

∑
j∼v PES [j])−1

11: end for
12: if (‖Paux − PES‖) < tol then
13: break
14: end if
15: PES ← Paux
16: end for
17: return PES
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Fig. 1. Epidemic survivability distribution, sorted from major to minor values,
of all networks. In this case the set of parameters has been: s = 3, δ = 0.3,
k = 2000 and tol = 1e−8. The X-axis shows the nodes of the network,
their index not showed for the sake of clarity.

col8638) show the lowest ES distributions, demonstrating that
such networks are more robust than the rest of networks, in
the case of an epidemic-like failure with epidemic intensity
s = 3.

It is worth noting that different types of complex net-
works show different ES distribution curves. While AS and
collaboration networks show power-law-like curves, power
grids, telecommunication networks, synthetic networks and the
biological network depict more smooth-decreasing curves. On
one hand, curves showing a rapid decrease (i.e. power-law-
like profile) would be expected in complex networks regarding
critical infrastructures. This is due to the fact that only a
small portion of the nodes of the network would be highly
vulnerable, and consequently, it would require less effort (e.g.
economical) from the network engineer or operator to protect
it. On the other hand, regarding social networks one could
expect different curve profiles, depending on the purpose of
the social network (e.g. a country’s government interested

in controlling its social networks would prefer flatter curves,
because there would not be any node with a high spreading
potential).

IV. CASCADING FAILURES

Cascading failure models have been used to understand
dynamic multiple failures in different types of complex net-
works. In this section we provide an overview about the main
cascading failure models that have been used in the literature.
Moreover, we present a new network measure to evaluate
the vulnerability of complex networks under these types of
failures.

A. Cascading Failure Models

Cascading failures have been extensively studied in the
literature. Some of the most well-known models are presented
next. In [27] one of the first cascading failure models was pre-
sented, which focused on random complex networks. Contem-
porarily, the authors of [28] presented a simple but functional
model. Later on, the model was enhanced in [29] by keeping
an auxiliary cost matrix related with the efficiency metric [30],
[31]. Furthermore, in [32] the authors proposed an analytically
tractable loading-dependent cascading failure model. In [33]
an AC blackout model representing most of the interactions
observed in cascading failures was presented. Recently, in [34]
a cascading failure model for inter-domain routing systems
was presented. Moreover, the authors proposed two metrics
to assess the impact of a cascading failure: the proportion of
failure nodes and the proportion of failed links.

As previously stated in this work, our objective is to define a
metric able to characterize the vulnerability of the elements of
a network (i.e. in this case nodes) under cascading failures. To
do so, we have chosen the model presented in [28]. According
to this model, each node j is related with a load Lj . The load at
each node is the node betweenness centrality, i.e. the number
of shortest paths passing through the node. Then, the capacity
can be defined as a proportional value to the initial load Lj ,
as denoted by Eq. 5:

Cj = (1 + α) · Lj j = 1, 2, . . . , N (5)

where N is the number of nodes of the network and α, the
tolerance parameter of the model, is a constant that must
be α ≥ 0. This parameter is related with the concept of
capacity dimensioning of a network, which is of paramount
importance at the designing phase of a network (e.g. a critical
infrastructure such as a power grid). An appropriate level
of over-dimensioning can prevent a network from cascading
failures. However, a higher α typically involves a higher
economical budget. Therefore, network engineers must seek
a trade-off between these two factors.

As defined by the model in [28], we focus on cascades
triggered by the removal of a single node. This event, in
general, causes changes in the distribution of shortest paths.
As a result, after an initial node failure, the new load of the



nodes (L′j) might be different from the initial load (Lj). Then,
for each node, if the expression of Eq. 6 is satisfied:

L′j > Cj (6)

the node j overloads and fails, which might cause subsequent
overloading failures on the rest of nodes of the network.

Finally, we note that in the results presented further in this
section we have assumed an α = 0.05 for all networks, with
the purpose of allowing comparison among them.

B. Cascading Survivability

Our new network measure called cascading survivability
(CS) is presented below. Cascading survivability evaluates
how potentially injurious a node is according to a specific cas-
cading failure scenario. In other words, CS can be described
as shown in Eq. 7:

CSi(α) =
nodes that fail if node i initially fails

all nodes in the network− 1
1 = 1, . . . , N (7)

where N is the number of nodes of the network. As observed,
α is a parameter of CS, what means that for different α
distinct CS values might be obtained. Cascading survivability
takes values in the range between 0 and 1 for each node, where
higher the value, more harmful is the node under a specific
cascading failure scenario.

Algorithm 2 Compute cascading survivability.
Require: α ≥ 0, connected G

1: Input: a graph G and the constant α (tolerance parameter).
2: Output: an array containing the cascading survivability of each

node.
3: N ← vertexSize(G))
{initializing load and capacity of each node}

4: for all v ∈ vertexSet(G) do
5: L[v] = NodeBetweennessCentrality(G)
6: C[v] = (1 + α) · L[v]
7: end for
8: for all v ∈ vertexSet(G) do
9: F ← add(v) {add node v to the list of nodes that are going

to fail}
10: while F is not empty do
11: G′ ← removeNodes(G,F ) {removes from G all nodes

in F . After the operation F is empty.}
12: for all u ∈ vertexSet(G′) do
13: L′[u] = NodeBetweennessCentrality(G′)
14: if L′[u] > C[u] then
15: F ← add(u)
16: CS[v] = CS[v] + 1 {increase in 1 the

number of nodes that have failed due to
the initial failure of v}

17: end if
18: end for
19: end while
20: end for
21: for all v ∈ vertexSet(G) do
22: CS[v] = CS[v]

N−1
23: end for
24: return CS
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Fig. 2. Cascading survivability distribution, sorted from major to minor
values, of all networks. In this case we have considered alpha = 0.05. The
X-axis shows the nodes of the network, their index not showed for the sake
of clarity.

We have defined a procedure to compute the cascading
survivability of the nodes of a network, which is presented in
Algorithm 2. As shown, the method requires two parameters:
the network G and the tolerance parameter α. First of all, the
initial load and capacity of each node is computed (lines 4
to 7). Then, an initial failure is caused, for each one of the
nodes of the given network, one at a time (lines 8 to 20). For
each initial failure (line 9) and as well as at each step of the
spreading of the cascade, (lines 10 to 19), the new load of the
remaining nodes of the network is computed (line 13). If the
new load becomes higher than the capacity at any step, then
the cascading survivability of the node that initially triggered
the failure is increased (lines 14 to 17). Finally, the CS of
each node is normalized (lines 21 to 23).

C. The distribution

When computing the cascading survivability for the nodes
of a network, given a network and a specific α, it is worth
noting the utility of analysing the distribution of the CS
values, as previously illustrated for epidemic survivability in
Section III-C.

By sorting the CS values in descending order it is pos-
sible to compare different networks, according to a specific
cascading failure scenario denoted by α. Fig. 2 shows the
CS distribution of 15 of the networks considered in this
work, in the case of a cascading failure with α = 0.05.
It is interesting to note that most of the networks show a
bimodal CS distribution. This means that the nodes of such
networks can be clearly divided in two groups: harmful and
not significant in the case of a cascading failure. This behavior
has been observed in other works such as [35]. Moreover, as
observed, depending on the network the percentage of harmful
nodes might vary. For instance, the fb4039 and the er400
networks start the distribution around 0.9, however it is in the
former where only a 5% of the nodes represents a threat in the
case of cascading failures, while in the latter it is about 55%.
Finally, different types of complex networks show different
CS distribution curves, just like they show different ES curves
as represented in Section III-C.



V. SUMMARY AND CONCLUSIONS

In this paper we have proposed two new measures to
evaluate the vulnerability of complex networks in two dif-
ferent dynamic multiple failure scenarios: epidemic-like and
cascading failures.

Firstly, we have proposed a new network measure called
epidemic survivability (ES), which describes the vulnerability
of each node of a network under a specific epidemic-like fail-
ure propagation scenario. Besides, a procedure to compute our
novel measure has been provided. Sorting the ES distribution
of values of all nodes of a network in descending order, it is
possible to analyze which nodes would be more vulnerable
in the case of an epidemic failure. Furthermore, using this
ES distribution, network vulnerability can be compared for a
specific epidemic scenario.

Secondly, we have presented a new network measure called
cascading survivability (CS), which characterizes how poten-
tially dangerous a node is according to a specific cascading
failure scenario. In addition, we have provided a procedure
to compute CS. Then, as for the epidemic survivability
metric, we have noted the inherent usability related to the CS
distribution.

Lastly, we have computed ES and CS for the set of
networks considered in this work, being each measure de-
pendent on a specific failure scenario. Results have shown
that distinct types of complex networks might react differently
under the same dynamic multiple failure. In addition, results
have revealed that a complex network might be more or
less vulnerable, depending on the specific type of multiple
failure scenario (i.e. epidemic-like or cascading failures). For
instance, while the cogentco197 network shows a smooth
decreasing curve of ES, the same network shows a bimodal
distribution of CS, where about 25% of nodes are not dan-
gerous in the case of cascading failures.
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