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ON THE MINIMUM POSITIVE ENTROPY FOR CYCLES ON

TREES

LLUÍS ALSEDÀ, DAVID JUHER AND FRANCESC MAÑOSAS

Abstract. Consider, for any n ∈ N, the set Posn of all n-periodic tree pat-
terns with positive topological entropy and the set Irrn ( Posn of all n-periodic
irreducible tree patterns. The aim of this paper is to determine the elements
of minimum entropy in the families Posn and Irrn. Let λn be the unique real
root of the polynomial xn − 2x − 1 in (1,+∞). We explicitly construct an
irreducible n-periodic tree pattern Qn whose entropy is log(λn). For n = mk,

where m is a prime, we prove that this entropy is minimum in the set Posn.
Since the pattern Qn is irreducible, Qn also minimizes the entropy in the
family Irrn.

1. Introduction

The notion of pattern plays a central role in the theory of topological and combi-
natorial dynamics. Consider a family X of topological spaces (such as the set of all
trees, graphs, compact surfaces, closed intervals of the real line, etc) and the family
FX of all maps {f : X −→ X : X ∈ X} satisfying a given restriction (continuous
maps, homeomorphisms, etc). Given a map f : X −→ X in FX which is known to
exhibit a finite invariant set P , the pattern of P in FX is the equivalence class P of
all maps g : Y −→ Y in FX having an invariant set Q ⊂ Y that, at a combinatorial
level, behaves like P . That is, the relative positions of the points of Q inside Y are
the same as the relative positions of P inside X , and the way these positions are
permuted under the action of g coincides with the way f acts on the points of P .
In this case, it is said that every map g in the class exhibits the pattern P . If in
particular P is a periodic orbit of f , the pattern P is said to be cyclic or periodic.

When FX is the family of continuous self-maps of closed intervals, the points of
an invariant set P of a map in FX are totally ordered and the pattern of P can
be clearly identified with a permutation π in a natural way. The notion of pattern
for interval maps has its roots in the well known Sharkovskii’s Theorem [23], but it
was formalized and developed in the early 1990s [10, 22].

As another important example, when FX is the family of surface homeomor-
phisms, the pattern (or braid type) of a cycle P of a map f : M −→M in FX is
characterized by the isotopy class, up to conjugacy, of f

∣∣
M\P [16, 21].

Going back to one-dimensional spaces, recently there has been a growing interest
in extending the notion of pattern from the interval case to more general spaces
such as graphs [2, 8] or trees [6, 11, 12]. In this paper we deal with patterns of
invariant sets of continuous maps defined on trees (simply connected graphs). From
now on, such patterns will be called tree patterns.

Let us recall the notion of a tree pattern. If f : T −→ T is a continuous map of
a tree and P ⊂ T is a finite invariant set of f , the triplet (T, P, f) will be called a
model. Two points x, y of P will be called consecutive if the unique closed interval
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Figure 1. Set P = {xi}6i=1 and P ′ = {x′i}6i=1. If f : T −→ T
and f ′ : T ′ −→ T ′ are continuous maps such that f(xi) = xi+1 and
f ′(x′i) = x′i+1 for 1 ≤ i ≤ 5, f(x6) = x1 and f ′(x′6) = x′1, then the
models (T, P, f) and (T ′, P ′, f ′) belong to the same pattern P .

of T whose endpoints are x and y contains no other points of P . Any maximal
subset of P consisting only of pairwise consecutive points will be called a discrete
component. In this setting, a pattern can be identified with the conjugacy class of
all models with a fixed distribution of discrete components and images of points in
P . For instance, in Figure 1 we show two different models (T, P, f) and (T ′, P ′, f ′)
of a 6-periodic pattern P with two discrete components. Observe that two points
xi, xj of P are consecutive in T if and only if the corresponding points x′i, x

′
j of P ′

are consecutive in T ′.
Measuring the dynamical richness of a pattern is a classical problem in the theory

of discrete dynamical systems. The question can be posed as follows. Given a
pattern P in FX , is it possible to establish, in terms only of the combinatorial data
enclosed in P , a lower bound for the dynamical complexity that will be present
in any map in FX exhibiting P? In order for this question to make sense, we
have to be precise on how we understand the dynamical complexity of a map. A
classical way of measuring it is in terms of the topological entropy, a notion first
introduced in 1965 [1]. The topological entropy of a continuous map f : X −→ X
of a compact metric space is a non-negative real number (or infinity) that measures
how the iterates of the map mix the points of X . It will be denoted by h(f). It is
known that an interval map with positive entropy is chaotic in the sense of Li and
Yorke [20]. For general compact metric spaces, the same result has been recently
obtained in [13]. It is also well known that the topological entropy of f is closely
related to the number of different periodic orbits exhibited by f and the sizes of
such orbits. On the other hand, a map with zero topological entropy can be viewed
as dynamically trivial.

Recovering the question posed in the previous paragraph, it is natural to define
the topological entropy of a pattern P in FX , denoted from now on by h(P), as the
infimum of the topological entropies of all maps in FX exhibiting P .

Although computing the entropy of a continuous map is difficult in general, in
some cases the computation of the entropy of a pattern P in FX can be easily
performed thanks to the existence of the so called canonical models. Roughly
speaking, a canonical model of a pattern P in FX is a map f ∈ FX that exhibits
P and satisfies at least the following properties:

(a) f is essentially unique and is determined by the combinatorial data of P
(b) f minimizes the entropy in the set of all maps exhibiting the pattern P
(c) The dynamics of f (in particular, its entropy) can be completely described

and easily computed using some algebraic tools.
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Figure 2. The canonical model (T, P, f) of the pattern Qn, for
which P = {xi}ni=1 is time labeled and f(y) = y.

It follows that h(P), defined as an infimum of entropies of maps, is in fact a min-
imum and coincides with the entropy of the canonical model of P , which can be
easily computed. The existence of canonical models for patterns has been proved
for continuous maps of closed intervals (see [7] for a list of references), homeomor-
phisms of compact surfaces [17, 25] and continuous maps on trees [6].

Once we have depicted the idea of tree pattern and established that for each tree
pattern one can compute its entropy, we are ready to explain the aim of this paper.
We will focus on periodic patterns. In this setting, and according to the topological
entropy as a measure of dynamical complexity, several extremality questions arise.
Fix n ∈ N and consider the (finite) set Patn of all n-periodic tree patterns. A
first natural classification in Patn is given by the zero/positive entropy character
of its elements. On one hand, the zero entropy tree patterns have been completely
characterized [6, 5]. Let Posn denote the subset of Patn of all n-periodic tree
patterns with positive entropy. Describing the patterns with maximal/minimal
entropy in Posn is a natural problem. The entropy-maximal patterns in Posn are
still unknown, although several advances have been recently reported [4]. It is
worth noticing that the maximality problem is unsolved even in the particular case
of interval patterns. Indeed, the maximal-entropy n-cyclic permutations, when n
has the form 4k + 2, are still unknown (a very recent paper [3] studies this case
from a computational point of view and proposes a conjecture).

In this paper we deal with the opposite problem: the characterization of the
patterns of minimal entropy in Posn. For interval maps, the description of the
minimum entropy cyclic permutations is well known (see [7] for a review). In
contrast, as far as we know, there is no literature about this problem in the setting
of tree maps. We will define, for any n ≥ 3, an n-periodic tree pattern Qn that we
conjecture has minimal entropy in the set Posn (observe that the problem makes
no sense when n = 1, 2, since every periodic pattern of period 1 or 2 has entropy
zero). See the canonical model of Qn in Figure 2.

Conjecture. Let n ∈ N with n ≥ 3. The pattern Qn has minimum entropy in the
set of all n-periodic patterns with positive entropy.

The main result of this paper (Theorem A) states that this conjecture is true
when n = mk, where k ≥ 1 and m is prime.

A final remark has to be made. Another important classification of the peri-
odic tree patterns is given by the reducible/irreducible character of each pattern.
Roughly speaking, a pattern is reducible when the points of the invariant set can be
partitioned into disjoint subtrees that are permuted under the action of the map.
The notion of reducibility arose early in the very beginning of the study of interval
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maps and has been recently extended to the setting of tree patterns [5]. The irre-
ducible tree patterns are closely related to pseudo-Anosov braid types of periodic
orbits of orientation preserving disk homeomorphisms [18]. Since the zero-entropy
tree patterns are reducible [5], the set Irrn of all irreducible tree patterns is a proper
subset of Posn. Thus, it makes sense to study the minimality of the entropy in the
subclass Irrn. Again we note that, remarkably, this problem remains unsolved for
interval maps when n is even. Since our candidates Qn turn out to be irreducible
patterns, a corollary of the main result of our paper is that, when n is a power of a
prime, the pattern Qn also minimizes the topological entropy in the subclass Irrn
(Corollary B).

2. Definitions and statement of the main results

A tree is a compact uniquely arcwise connected space which is a point or a union
of a finite number of intervals (by an interval we mean any space homeomorphic
to [0, 1]). Any continuous map f : T −→ T from a tree T into itself will be called a
tree map. A set X ⊂ T is said to be f -invariant if f(X) ⊂ X . For each x ∈ T , we
define the valence of x to be the number of connected components of T \ {x}. A
point of valence different from 2 will be called a vertex of T and the set of vertices
of T will be denoted by V (T ). Each point of valence 1 will be called an endpoint
of T . The set of such points will be denoted by En(T ). Also, the closure of a
connected component of T \ V (T ) will be called an edge of T . Any tree which is a
union of r ≥ 2 intervals whose intersection is a unique point y of valence r will be
called an r-star, and y will be called its central point.

Given any subset X of a topological space, we will denote by Int(X) and Cl(X)
the interior and the closure of X , respectively. For a finite set P we will denote its
cardinality by |P |.

A triplet (T, P, f) will be called a model if f : T −→ T is a tree map and P is a
finite f -invariant set such that En(T ) ⊂ P . In particular, if P is a periodic orbit of
f and |P | = n then (T, P, f) will be called an n-periodic model. Given X ⊂ T we
will define the convex hull of X , denoted by 〈X〉T or simply by 〈X〉, as the smallest
closed connected subset of T containing X . When X = {x, y} we will write [x, y] to
denote 〈X〉. The notations (x, y), (x, y] and [x, y) will be understood in the natural
way.

Let T be a tree and let P ⊂ T be a finite subset of T . The pair (T, P ) will be
called a pointed tree. Two points x, y of P will be called consecutive if (x, y)∩P =
∅. Any maximal subset of P consisting only of pairwise consecutive points will
be called a discrete component of (T, P ). We say that two pointed trees (T, P )
and (T ′, P ′) are equivalent if there exists a bijection φ : P −→ P ′ which preserves
discrete components. The equivalence class of a pointed tree (T, P ) will be denoted
by [T, P ].

Let (T, P ) and (T ′, P ′) be equivalent pointed trees, and let θ : P −→ P and
θ′ : P ′ −→ P ′ be maps. We will say that θ and θ′ are equivalent if θ′ = φ ◦ θ ◦ φ−1

for a bijection φ : P −→ P ′ which preserves discrete components. The equivalence
class of θ by this relation will be denoted by [θ]. If [T, P ] is an equivalence class of
pointed trees and [θ] is an equivalence class of maps then the pair ([T, P ], [θ]) will
be called a pattern. We will say that a model (T, P, f) exhibits a pattern (T ,Θ) if
T = [〈P 〉T , P ] and Θ = [f

∣∣
P
].

Despite of the fact that the notion of a discrete component is defined for pointed
trees, by abuse of language we will use the expression discrete component of a
pattern, which will be understood in the natural way since the number of discrete
components and their relative positions are the same for all models of the pattern.
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The topological entropy (see Section 1) of a map f : T −→ T will be denoted by
h(f). Given a pattern P , the topological entropy of P is defined to be

h(P) := inf{h(f) : (T, P, f) is a model exhibiting P}.
The simplest models exhibiting a given pattern are the monotone ones, according

to the following definition. Let S and T be trees and let f : T −→ S be a map.
Given a, b ∈ T we say that f

∣∣
[a,b]

is monotone if f([a, b]) is either an interval or a

point and f
∣∣
[a,b]

is monotone as an interval map. Let (T, P, f) be a model. A pair

{a, b} ⊂ P will be called a basic path of (T, P ) if it is contained in a single discrete
component of (T, P ). We will say that f is P -monotone if f

∣∣
[a,b]

is monotone for

any basic path {a, b}. The model (T, P, f) will be called monotone. In such case,
Proposition 4.2 of [6] states that the set P ∪ V (T ) is f -invariant. Hence, the map
f is also (P ∪ V (T ))-monotone.

Theorem 2.1 (Theorem A of [6]). Let P be a pattern. Then the following state-
ments hold.

(a) There exists a monotone model of P.
(b) Every monotone model (T, P, f) of P satisfies h(f) = h(P).

The monotone models from Theorem 2.1 are essentially unique in the following
sense. Let (T, P, f) be a monotone model and let S be a non-empty union of edges
disjoint from P . We will say that S is an invariant forest of (T, P, f) if either
f i(S) ∩ P = ∅ for every i ≥ 0 or there exists n > 0 such that f i(S) ∩ P = ∅ for
every i = 0, 1, . . . , n − 1 and fn(S) degenerates to a point of P . We will say that
a monotone model (T, P, f) is a canonical model of the pattern ([T, P ], [f

∣∣
P
]) if it

has no invariant forests. From [6, Theorem B] it follows that every pattern has a
canonical model. Moreover, given two canonical models (T, P, f) and (T ′, P ′, f ′) of
the same pattern there exists a homeomorphism φ : T −→ T ′ such that φ(P ) = P ′,
and f ′◦φ

∣∣
P
= φ◦f

∣∣
P
. Hence, the canonical model of a pattern is essentially unique.

It is worth noticing that the proof of Theorem 2.1 is constructive and gives a
finite algorithm to construct the canonical model of any pattern.

Let P = {xi}ni=1 be an n-periodic orbit of a map θ. We will say that P is time
labeled if θ(xi) = xi+1 for 1 ≤ i < n and θ(xn) = x1.

An n-periodic pattern P will be called trivial if it has only one discrete compo-
nent. In this case, for n ≥ 2, let (T, P ) be a pointed tree such that T is an n-star
with En(T ) = P = {x1, x2, . . . , xn} and let y be its central point. Consider a rigid
rotation on T . That is, a model (T, P, f) such that f(y) = y and f maps bijectively
[y, xi] onto [y, xi+1] for 1 ≤ i < n and [y, xn] onto [y, x1]. Clearly, (T, P, f) is a
monotone model with no invariant forests. In consequence, (T, P, f) is the canon-
ical model of P . Therefore, it easily follows that every trivial pattern has entropy
0.

The topological entropy of every map being Q-monotone with respect to a set Q
containing the vertices of the tree can be easily computed as the logarithm of the
spectral radius of the associated Markov matrix. Let us recall such technique.

A combinatorial directed graph is a pair G = (V, U) where V = {v1, v2, . . . , vk}
is a finite set and U ⊂ V × V . The elements of V are called the vertices of G and
each element (vi, vj) in U is called an arrow (from vi to vj) in G. Such an arrow
is usually denoted by vi → vj . The notions of path and loop in G are defined as
usual. The length of a path is defined as the number of arrows in the path. The
transition matrix of G is a k× k binary matrix (mij)

k
i,j=1 such that mij = 1 if and

only if there is an arrow from vi to vj , and mij = 0 otherwise.
Let (T,Q, f) be a monotone model such that Q ⊃ V (T ). Note that, in this case,

any connected component of T \ Q is an open interval. An interval of T will be
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called Q-basic if it is the closure of a connected component of T \Q. Observe that
two different Q-basic intervals have pairwise disjoint interiors. Given K,L ⊂ T ,
we will say that K f -covers L if f(K) ⊃ L. Consider a labelling I1, I2, . . . Ik of
all Q-basic intervals. The Markov graph of (T,Q, f) associated to this labelling is
a combinatorial directed graph whose vertices are the Q-basic intervals and there
is an arrow from Ii to Ij if and only if Ii f -covers Ij . On the other hand, the
Markov matrix of (T,Q, f) associated to this labelling is the transition matrix of
the corresponding Markov graph of (T,Q, f). Given two different labellings of the
set of Q-basic intervals and their associated Markov matricesM and N , there exists
a permutation matrix A such that M = ATNA (where AT denotes the transpose
of A), and the corresponding Markov graphs are isomorphic.

For any square matrix M , we will denote its spectral radius by σ(M). We recall
that it is defined as the maximum of the moduli of the eigenvalues of M .

Remark 2.2. Let (T,Q, f) be a monotone model such that Q ⊃ V (T ). Let M be
the Markov matrix of (T,Q, f). By standard arguments (see for instance [14] or [7,
Theorem 4.4.5]), the topological entropy of f can be computed as

h(f) = logmax{σ(M), 1}.

Recall that if (T, P, f) is the canonical model of a pattern P then the model
(T, P ∪ V (T ), f) is monotone. Thus, according to the previous paragraphs, we can
consider the associated Markov graph and matrix. Since both objects depend only
on the canonical model of P , which is uniquely determined by the combinatorial
data of the pattern P , they will be respectively called Markov graph of P and
Markov matrix of P .

Remark 2.3. Let P be a pattern and let M be its Markov matrix. From Theo-
rem 2.1(b) and Remark 2.2 we get that h(P) = logmax{σ(M), 1}.

Next we introduce our candidates for minimum entropy in the class Posn of
positive entropy n-periodic patterns. Of course every periodic pattern of period 1
or 2 has entropy zero, so the problem makes sense only for n ≥ 3.

Let n ∈ N with n ≥ 3. Let Qn be the n-periodic pattern ([T, P ], [θ]) such
that P = {x1, x2, . . . , xn} is time labeled and (T, P ) has two discrete components,
{xn, x1} and {x1, x2, . . . , xn−1}. It is straightforward to check that the canonical
model (T, P, f) of Qn satisfies:

(a) T is an (n− 1)-star with endpoints {x2, x3, . . . , xn}.
(b) The central point of T is fixed by f .
(c) x1 belongs to the interior of the edge that has xn as an endpoint.

In Figure 2 we show the canonical model ofQn. Observe thatQ3 is the 3-periodic
Štefan cycle of the interval [24].

Now we are ready to state the main result of this paper.

Theorem A. Let n be a positive integer such that n = mk ≥ 3 with m prime and
k ≥ 1. Then, the pattern Qn has minimum entropy in the set of all n-periodic
patterns with positive entropy.

As it has been explained in Section 1, there is an important subclass of pat-
terns with positive entropy: the irreducible patterns. The characterization of such
patterns relies on the idea of block structure. This notion appeared early in the
literature for interval patterns: the square root construction [7, 23] or the notion
of extension, first appeared in [15], are examples of block structures for interval
periodic orbits. The generalization to periodic patterns on trees has been recently
introduced in [5].
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Let P be an n-periodic pattern and let (T, P, f) be a model of P . For n > p ≥ 2,
we will say that P has a p-block structure (or simply a block structure) if there
exists a partition P = P1 ∪ P2 ∪ . . . ∪ Pp such that f(Pi) = Pi+1 for 1 ≤ i < p,
f(Pp) = P1, and 〈Pi〉T ∩ Pj = ∅ whenever i 6= j. In this case, p is a strict divisor
of n and |Pi| = n/p for 1 ≤ i ≤ p. It is easy to see that this definition does not
depend on the particular chosen model (T, P, f). The trees 〈Pi〉T (which do depend
on the particular model (T, P, f) realizing the pattern) will be called blocks. We
note that if a pattern has a p-block structure, this p-block structure is essentially
unique up to relabelling of blocks. Observe also that a pattern can have several
different block structures [5]. A periodic pattern P with no block structures is said
to be irreducible.

Remark 2.4. Let (T, P, f) be the canonical model of the pattern Qn and let P be
labeled as in the definition of Qn above. If (T, P, f) had a block structure, then the
convex hull of the block Pi containing xn would contain also x1. Since f(xn) = x1,
f(Pi) would intersect Pi, a contradiction. In consequence, the patterns Qn are
irreducible.

From the characterization of the zero entropy patterns given in [6] it follows
that every pattern with entropy zero has a block structure (we will recall and use
such a characterization in Section 9). In consequence, the set Irrn of all irreducible
n-periodic patterns is contained in Posn. By Remark 2.4, the patterns Qn are
irreducible. Hence, we have the following corollary of Theorem A.

Corollary B. Let n be a positive integer such that n = mk ≥ 3 with m prime
and k ≥ 1. Then, the pattern Qn has minimum entropy in the set of all n-periodic
irreducible patterns.

This paper is organized as follows. In Section 3 we compute the entropy of
the patterns Qn. In Section 4 we recall the notion of division for periodic tree
patterns, a particular case of block structure that will play a central role in the
proof of Theorem A. In Section 5 we introduce a partial ordering ≤ in the set of
all n-periodic patterns and prove that P ≤ Q implies h(P) ≤ h(Q). In Section 6
we introduce the notion of strongly centered pattern. This means essentially that
all its discrete components are adjacent to a central discrete component which
satisfies an additional rotational property. We also prove that for any n-periodic
pattern Q with no division there exists a strongly centered n-periodic pattern P
with no division such that P ≤ Q. In Section 7 we prove that, when n = mk for
some m prime, given any strongly centered n-periodic pattern Q with no division
there exists an n-periodic pattern P ≤ Q with no division such that P has only
two discrete components. In Section 8 we show that the entropy of such patterns
is greater than or equal to the entropy of Qn. Collecting it all, we prove that
Theorem A is true when we restrict ourselves to the family of patterns with no
division. Finally, Section 9 is devoted to the proof of Theorem A.

3. Computation and properties of the topological entropy of Qn

We start this section by introducing a standing notation. Let n be a positive
integer with n ≥ 3. From now on, qn will stand for the polynomial qn(x) =
xn − 2x − 1. Observe that qn(1) = −2 and that qn(x) is strictly increasing for
x ≥ 1. In consequence, qn(x) has a unique real root in (1,∞). From now on, such
a real root will be denoted by λn. The following result summarizes some properties
of the sequence (λn)n≥3.

Proposition 3.1. Let n be a positive integer with n ≥ 3. Then:

(a) λn+1 < λn
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(b) (λn)
1/k > λkn for every k ∈ N with k ≥ 2.

Proof. Statement (a) follows from qn(1) = qn+1(1) = −2 and qn+1(x) > qn(x) for
x > 1. Next we prove (b). By definition,

(1) (λn)
n − 2λn − 1 = 0.

On the other hand, since qkn(x) is strictly increasing for x ≥ 1 and qkn(λkn) = 0,
to prove (b) it is enough to show that qkn((λn)

1/k) > 0. Observe that

qkn((λn)
1/k) = ((λn)

1/k)kn − 2(λn)
1/k − 1 = (λn)

n − 2(λn)
1/k − 1− 2λn + 2λn

which, by virtue of (1), is equal to 2(λn − (λn)
1/k). This expression is positive,

since λn > 1. �
Next we recall a powerful tool, first introduced in [14], to compute the spectral

radius of a transition matrix in terms of the loops of its associated combinatorial
directed graph. The corresponding notions are defined for nonnegative matrices,
but here we adapt the definitions to the setting of binary matrices.

Let G be a combinatorial directed graph ofm vertices and letM be its associated
transition matrix. Let α be a path I0 → I1 → . . .→ Ik of length k in G. The length
of α will be denoted by l(α). A subset R of the set of vertices of G is called a rome
if there is no loop outside R. That is, there is no loop I0 → I1 → . . .→ Ik → I0 in
G such that {Ii : 0 ≤ i ≤ k} ∩R = ∅. For a rome R, a path I0 → I1 → . . .→ Ik in
G is called simple if {I0, Ik} ⊂ R and Ii /∈ R for 0 < i < k. If R = {J1, J2, . . . , Js}
is a rome of M then we define an s× s matrix-valued real function MR by setting
MR = (aij), where aij(x) =

∑
α x

−l(α), where the summation is over all simple
paths from Ji to Jj .

Theorem 3.2 (Theorem 1.7 of [14]). If R is a rome of an m×m transition matrix
M then the characteristic polynomial of M is (−1)m−sxmdet(MR(x) − Id), where
s = |R| and Id is the s× s identity matrix.

By means of Theorem 3.2 we are able to compute the topological entropy of the
patterns Qn.

Proposition 3.3. Let n be a positive integer with n ≥ 3. The topological entropy
of the pattern Qn is equal to log(λn).

Proof. LetM be the Markov matrix of Qn. By Remark 2.3, the topological entropy
of Qn is equal to logmax{σ(M), 1}. Since M is a nonnegative matrix, the Perron-
Frobenius Theorem tells us that σ(M) is an eigenvalue of M . Then, since λn is the
largest real root of qn(x), it is enough to prove that the characteristic polynomial
ofM is ±qn(x). Let (T, P, f) be the canonical model of Qn, with P = {xi}ni=1 time
labeled. Then, (T, P, f) satisfies properties (a–c) as stated in page 6.

Let y be the central point of T , which satisfies f(y) = y. Next we fix a labelling
for the set of (P ∪ V (T ))-basic intervals. Set Ii = [y, xi] for 1 ≤ i < n and In =
[x1, xn]. Then, it is straightforward to check that the Markov graph of Qn contains
exactly the following loops: I1 → I2 → . . .→ In−1 → I1, I2 → I3 → . . .→ In → I2
and I1 → I2 → . . . → In−1 → I1. We call such loops α, β and γ respectively.
Then, {In−1} is a rome and α, β and γ are simple loops of respective lengths n− 1,
n− 1 and n. In consequence, by Theorem 3.2, the characteristic polynomial of M
is (−1)n−1xn(x−n + 2x−(n−1) − 1) = (−1)nqn(x). �

4. Division for periodic patterns

In this section we introduce the notions of rotational component and division for
a periodic pattern, that will play an important role in the proof of the main result
of this paper. A division is a classical example of block structure, first introduced
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in [19] for interval periodic orbits and generalized in [9] in order to study the
topological entropy and the set of periods for tree maps. For practical reasons,
the definition of division given here is a slightly modified version of the definition
introduced in [9]. As we will remark, both notions are completely equivalent.

Let us start with a simple topological remark on the structure of the trees induced
by the discrete components of a pointed tree.

Remark 4.1. Let (T, P, f) be a model and let C be a discrete component of (T, P ).
Recall that, by definition, En(T ) ⊂ P . It easily follows that Int(〈C〉) is a connected
set and Bd(〈C〉) = En(〈C〉) = C.

Let (T, P, f) be a model of a periodic pattern P . Let C be a discrete component
of (T, P ). We will say that a point x ∈ C escapes from C if f(x) does not belong
to the connected component of T \ {x} that intersects Int(〈C〉). As an example,
observe that the point 1 escapes from C2 in the 16-periodic pattern shown in Fig-
ure 3. Any discrete component C of (T, P ) without points escaping from it will be
called a rotational component of P . Clearly, this notion does not depend on the
particular chosen model of P . So, it makes sense to say that the pattern P has a
rotational component. For instance, the component C3 is a rotational component
of the pattern shown in Figure 3.

The next result states that every periodic pattern has rotational components,
and its proof provides an algorithm to find out rotational components of a given
periodic pattern. See again Figure 3 for an example.

Lemma 4.2. Any periodic pattern P has rotational components.

Proof. Let (T, P, f) be any representative of P . Set T1 := T . Let C1 be a non-
rotational discrete component of (T, P ). Then, C1 contains an escaping point x1.
Let T2 be the closure of the connected component of T1 \ {x1} containing f(x1).
Observe that T2 ( T1. On the other hand, T2∩P is a union of discrete components
of (T, P ). Note that C1 is not a discrete component of (T, P ) in T2. Let C2 be
the only discrete component of (T, P ) in T2 such that x1 ∈ C2. Then, x1 does not
escape from C2. If C2 is a rotational component, then we are done. Otherwise,
C2 contains an escaping point x3 and we can clearly iterate the above argument
obtaining a subtree T3 ( T2 such that {C1, C2} are not discrete components of
(T, P ) in T3 and a discrete component C3 of (T, P ) in T3. Proceeding in this way
we obtain sequences of subtrees T1 ) T2 ) . . . and discrete components C1, C2, . . .
of (T, P ) such that

(a) Ci is contained in Ti, and
(b) C1, C2, . . . , Ci are not contained in Ti+1.

From (a–b) it follows that Ci and Cj are different discrete components whenever
i 6= j. Since the number of discrete components is finite, this construction stops
after k steps for some k ∈ N with a component Ck that has to be rotational. �

The next technical lemma tells us that the convex hull of every rotational com-
ponent contains a fixed point of the map.

Lemma 4.3. Let (T, P, f) be a model of a periodic pattern. Let C be a rotational
component of (T, P, f). Then, there are fixed points of f in Int(〈C〉).
Proof. By Remark 4.1, Int(〈C〉) is connected and Bd(〈C〉) = En(〈C〉) = C. Let
r : T −→ 〈C〉 be the natural retraction. Since 〈C〉 is a tree and g := r ◦ f

∣∣
〈C〉

is continuous, there exists a fixed point y of g. The definition of a rotational
component clearly implies that C cannot contain fixed points of g. Hence, y ∈
Int(〈C〉). If f(y) /∈ Int(〈C〉) then, by definition of a retraction, we would have
that y = g(y) ∈ Bd(〈C〉) = C, a contradiction. Thus, f(y) ∈ Int(〈C〉) and the
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Figure 3. An example of application of Lemma 4.2 on a 16-
periodic pattern ([T, P ], [θ]). The points of P are time labeled
with natural numbers. We start with x1 = 5 and C1 = {5, 9}. The
algorithm gives x2 = 1, C2 = {1, 5, 13} and C3 = {1, 6, 8, 11, 14},
which is a rotational component.

retraction r acts as the identity on f(y). Summarizing, y = r(f(y)) = f(y) and y
is, in consequence, a fixed point of f . �

Next we introduce the notion of a division. Let (T, P, f) be a model of an n-
periodic pattern P . Let C be a discrete component of (T, P ). By Remark 4.1,
Int(〈C〉) is connected. Let Z1, Z2, . . . , Zl be the connected components of T \
Int(〈C〉). We will say that (T, P, f) has a p-division with respect to C (or simply a
p-division) if there exists {M1,M2, . . . ,Mp} with p ≥ 2, a partition of T \ Int(〈C〉),
such that eachMi is a union of some of the sets Z1, Z2, . . . , Zl, f(Mi∩P ) =Mi+1∩P
for 1 ≤ i < p and f(Mp ∩ P ) = M1 ∩ P . In this case we will also say that the
partition

⋃p
i=1 Pi defines a p-division for (T, P, f), where Pi :=Mi∩P . Again, this

definition is independent of the particular chosen model of P . In other words, if
(S,Q, g) is another model of P and φ : P −→ Q is a bijection that preserves discrete
components, then (S,Q, g) has a p-division with respect to φ(C). Therefore, it
makes sense to say that the pattern P has a p-division.

The next result follows almost directly from the definition of a division. Its proof
is left to the reader.

Lemma 4.4. If a model (T, P, f) of a periodic pattern has a division with respect
to a discrete component C, then C is rotational and (T, P ) has no other rotational
components.

If a model (T, P, f) has a p-division with respect to a rotational component
C then, by Lemma 4.3, Int(〈C〉) contains a fixed point y of f . In this case, it
is immediate to see that P has a p-division with respect to y according to the
original definition (division with respect to a fixed point) given in [9]. Conversely, if
a periodic orbit P of a tree map f : T −→ T has a p-division with respect to a fixed
point y of f according to that definition, then the model (T, P, f) has a p-division
with respect to the unique discrete component C whose interior contains y.

Corollary C of [9] states that a tree map f has zero topological entropy if and
only if, for every k ∈ N, each periodic orbit of fk has a division. Consequently,
each periodic pattern with no division has positive entropy.



ON THE MINIMUM POSITIVE ENTROPY FOR CYCLES ON TREES 11

Finally, let us remark that Lemmas 4.2 and 4.4 can be used to quickly decide
whether a given periodic pattern P = ([T, P ], [θ]) has a division. To do it, use the
procedure defined in the proof of Lemma 4.2 to detect a rotational component C. If
P has a division then, by Lemma 4.4, C has to be the only rotational component of
P . Then, it is straightforward to check whether the points of P are separated with
respect to the set Int(〈C〉) in such a way that they are permuted by θ according
to the definition of a division. If not, then P cannot have a division. For instance,
consider again the 16-periodic pattern in Figure 3, for which C3 = {1, 6, 8, 11, 14}
is a rotational component. Then, P1 := {1, 5, 9, 13}, P2 := {2, 6, 10, 14}, P3 :=
{3, 7, 11, 15} and P4 := {4, 8, 12, 16} are mapped cyclically by θ. Since every Pi is
contained in a union of connected components of T \ Int(〈C3〉), P has a division.

5. Fine patterns

In this section we introduce a partial ordering in the set of all n-periodic patterns.
It will be used as a tool to compare the entropy of two patterns in some particular
cases.

Let (T, P, f) and (S,Q, g) be n-periodic models. A time bijection from Q to P
is a bijective map ϕ : Q −→ P such that g

∣∣
Q

= ϕ−1 ◦ f ◦ ϕ. Observe that if we

choose time labellings P = {xi}ni=1 and Q = {zi}ni=1 then there are n different time
bijections ϕi : Q −→ P (set ϕi(z1) := xi and the remaining images are then decided
by the condition g

∣∣
Q
= ϕ−1 ◦ f ◦ϕ). On the other hand, observe that given a time

labelling P = {xi}ni=1 and a time bijection ϕ : Q −→ P there exists a unique time
labelling Q = {yi}ni=1 such that ϕ(yi) = xi for 1 ≤ i ≤ n. In this case we will say
that P and Q are consistently labeled with respect to ϕ.

Let P and Q be n-periodic patterns. We will say that Q is finer than P , denoted
by P ≤ Q, if there exist respective n-periodic models (T, P, f) and (S,Q, g) and a
time bijection ϕ : Q −→ P such that for any discrete component C of (S,Q), ϕ(C)
is contained in a discrete component of (T, P ). Is is easy to see that this definition
is independent from the chosen models.

For an example, consider the 7-periodic patterns P andQ shown in Figure 4, with
models labeled as in the upper part of the picture. To see that P ≤ Q, consider the
time bijection ϕ : Q −→ P such that ϕ(z1) = x3. Then, ϕ(z2) = x4, ϕ(z3) = x5,
ϕ(z4) = x6, ϕ(z5) = x7, ϕ(z6) = x1 and ϕ(z7) = x2. The discrete components
of (S,Q) are C1 = {z3, z6, z7}, C2 = {z1, z4, z5} and C3 = {z2, z5, z6}. Then,
ϕ(C1) = {x1, x2, x5}, which is a discrete component of (T, P ). Analogously, ϕ(C2)
and ϕ(C3) are contained in {x1, x3, x4, x6, x7}, a discrete component of (T, P ).
Hence, Q is finer than P . However, observe that P and Q are not consistently
labeled with respect to ϕ. In order to have consistent time labellings for P and Q,
we should consider a relabelling Q = {yi}7i=1 such that y1 = z6, y2 = z7, y3 = z1,
y4 = z2, y5 = z3, y6 = z4 and y7 = z5 (Figure 4, bottom).

Lemma 5.1. The relation ≤ is a partial ordering in the set of all n-periodic pat-
terns.

Proof. The reflexivity and transitivity of the relation ≤ follow easily from its def-
inition. Let us see that ≤ is antisymmetric. Let P and Q be n-periodic patterns
such that P ≤ Q ≤ P . We have to show that P = Q. Assume that n ≥ 3 to discard
trivial cases.

Take models (T, P, f) and (S,Q, g) of P and Q respectively. Since P ≤ Q ≤ P ,
there are time bijections ψ : P −→ Q and ϕ : Q −→ P such that for any discrete
component C of (T, P ) (respectively, of (S,Q)), ψ(C) (resp. ϕ(C)) is contained
in a discrete component of (S,Q) (resp. (T, P )). We will prove that ψ preserves
discrete components, that is, ψ(C) is a discrete component of (S,Q) for every
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Figure 4. Top: two 7-periodic patterns P (left) and Q (right)
of respective models (T, P, f) and (S,Q, g) with time labellings
P = {xi}7i=1 andQ = {zi}7i=1. HereQ is finer than P . Bottom: the
same patterns consistently labeled with respect the time bijection
ϕ such that ϕ(z1) = x3.

discrete component C of (T, P ). Then, (T, P ) and (S,Q) are equivalent pointed
trees. Since, in addition, ψ is a time bijection, f

∣∣
P

and g
∣∣
Q

are equivalent maps.

Summarizing, ([T, P ], [f ]) = ([S,Q], [g]) and, in consequence, P = Q.
Note that ϕ ◦ ψ : P −→ P is a bijection. Moreover, ϕ(ψ(C)) is contained in a

discrete component of (T, P ) for any discrete component C of (T, P ). We claim
that in fact ϕ(ψ(C)) is a discrete component of (T, P ). This is clearly true if C
has maximum cardinality. Hence, ϕ ◦ ψ is a permutation in the set X of discrete
components with maximum cardinality. Consequently, ϕ(ψ(D)) is not contained
in a discrete component from X , for every D /∈ X . So, ϕ ◦ ψ is a permutation in
the set of discrete components not in X with maximum cardinality. Iterating this
process, the claim follows.

Let C be a discrete component of (S,Q) and letD be the only discrete component
of (T, P ) such that ψ(C) ⊂ D. Since ϕ(ψ(C)) is a discrete component and ϕ(D) ⊃
ϕ(ψ(C)) is contained in a discrete component, it follows that ϕ(D) = ϕ(ψ(C)).
Hence, D = ψ(C). �

For practical purposes, it is convenient to give an alternative definition of fine
pattern. Consider again the example in Figure 4 (bottom). One can think that
the pattern P has been obtained from Q by “pulling out” the point y7 in such
a way that the two discrete components {y1, y4, y7} and {y3, y6, y7}, adjacent at
y7, are joined together in a unique discrete component {x1, x3, x4, x6, x7}. So, at
least intuitively, a pattern Q is finer than a pattern P when one can iteratively
join together several adjacent discrete components of Q to get finally the discrete
components of P . Let us introduce the precise notions.

Let (T, P, f) be a model of a pattern P . We recall that two discrete compo-
nents of (T, P ) are either disjoint or intersect at a single point of P . Two discrete
components C,D of (T, P ) will be called adjacent at x ∈ P (or simply adjacent) if
C ∩ D = {x}. A point z ∈ P will be called inner if z belongs to k ≥ 2 discrete
components of (T, P ), all being pairwise adjacent at z. In this case, ValT (z) = k.
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z v

a

Figure 5. Replacing a point z by an interval [a, v] in order to join
together two discrete components.

Moreover, if (T ′, P ′, f ′) is another model of the same pattern and φ : P −→ P ′ is a
bijection which preserves discrete components, then ValT ′(φ(z)) = k.

Let (T, P, f) and (S,Q, g) be n-periodic models. Let J be the set of discrete
components of (S,Q) and let z ∈ Q be an inner point. Let W be the set of k ≥ 2
discrete components of (S,Q) which are adjacent at z. We will say that (T, P, f) is
a pull out of (S,Q, g) if there exists a time bijection ϕ : Q −→ P and a nonempty
subset Y ⊂W of cardinalitym ≤ k such that

⋃
C∈Y ϕ(C) is a discrete component of

(T, P ), and the rest of discrete components of (T, P ) are {ϕ(C) : C ∈ J \Y }. This
corresponds to joining together the m discrete components in Y and keeping intact
the remaining discrete components of (S,Q). Note that in this case ValT (ϕ(z)) =
k−m+1. At a topological level, one can obtain T from S by expanding the point
z to an interval [a, v] in such a way that (see Figure 5 for an example):

(a) ValT (a) = k −m+ 1
(b) ValT (v) = m+ 1
(c) S \ {z} and T \ [a, v] are homeomorphic.

In the above definition, if m = k (equivalently, Y = W ) then ϕ(z) ∈ En(T )
and we will say that (T, P, f) is a complete pull out of (S,Q, g). When we want to
specify the time bijection ϕ, the inner point z and the set of discrete components
joined together we will say that (T, P, f) is a ϕ-pull out of (S,Q, g) with respect to z
and Y . Of course, when Y =W we will also say that (T, P, f) is a complete ϕ-pull
out of (S,Q, g) with respect to z. At the level of patterns, if P = ([T, P ], [f

∣∣
P
])

and Q = ([S,Q], [g
∣∣
Q
]) we will say that P is a pull out of Q. It is clear that this

definition does not depend on the chosen models. Observe also that if in the above
definitions we take m = 1 then P = Q. Of course, if P is a pull out of Q then
P ≤ Q.

The next result provides an alternative definition, in terms of pull outs, of the
fact that a pattern is finer than another one. See Figure 6 for an example.

Theorem 5.2. Let P and Q be n-periodic patterns. Then, P ≤ Q if and only if
there exists a sequence of n-periodic patterns {Pi}li=0, with l ≥ 1, such that P0 = P,
Pl = Q, and Pi is a pull out of Pi+1 for 0 ≤ i < l.

Proof. Observe that if Pi is a pull out of Pi+1 then Pi ≤ Pi+1 by definition. Then,
the “if” part of the theorem follows from Lemma 5.1.

Let us prove the “only if” part. The result is trivial when P = Q. Assume
that P 6= Q. Let (T, P, f) and (S,Q, g) be models of P and Q respectively, and let
ϕ : Q −→ P be a time bijection such that for any discrete component C of (S,Q),
ϕ(C) is contained in a discrete component of (T, P ). In particular,

(2) if {a, b} is a basic path of (T, P ) then {ϕ(a), ϕ(b)} is a basic path of (S,Q).

Since P 6= Q, there exists at least one discrete component C of (S,Q) such that
ϕ(C) ( D for some discrete component D of (T, P ). Observe that there must exist
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Figure 6. P1 is a pull out of P2 with respect the inner point 3 and
the discrete components {2, 3} and {1, 3}. P0 is a complete pull out
of P1 with respect the inner point 6 and the discrete components
{6, 7} and {3, 5, 6}. Therefore, P0 ≤ P1 ≤ P2. The consistent time
labellings have been specified with natural numbers.

at least one discrete component of (S,Q) adjacent to C. Otherwise, Q would be
the trivial n-periodic pattern and, in consequence, P = Q.

Now we claim that D contains ϕ(x) for some point x which belongs to C′ \C for
some discrete component C′ adjacent to C. Let us prove the claim. Assume by way
of contradiction that ϕ(C′ \C)∩D = ∅ for all the discrete components C′ adjacent
to C. Take z ∈ D \ ϕ(C). Since we are assuming that ϕ−1(z) cannot belong
to any discrete component adjacent to C, there exists a sequence {ai}ki=1 ⊂ Q
with k ≥ 3 such that a1 ∈ C, a2 /∈ C, ak = ϕ−1(z) and (ai, ai+1) ∩ Q = ∅ for
1 ≤ i < k. Clearly a2 belongs to a discrete component adjacent to C. Hence,
by assumption, ϕ(a2) /∈ D. On the other hand, since ϕ(ak) = z ∈ D, there is
a minimum m ∈ {3, 4, . . . , k} such that ϕ(am) ∈ D. Let X be the connected
component of T \ {ϕ(a1)} containing ϕ(a2). By (2), (ϕ(a1), ϕ(a2)) ∩ P = ∅. Since
ϕ(a1) ∈ D and ϕ(a2) /∈ D, it follows that

(3) 〈D〉S ⊂ T \X.
Using (2) for each pair {ai, ai+1} with 2 ≤ i ≤ m − 2 and the fact ϕ(ai) /∈ D we
easily get that ϕ(ai) ∈ X for 2 ≤ i ≤ m− 1. But, since ϕ(am) ∈ D \ {ϕ(a1)}, from
(3) we get that ϕ(a1) ∈ (ϕ(am−1), ϕ(am)), in contradiction with (2). So the claim
is proved.

By the previous claim, there exists a discrete component C′ adjacent to C and
a point x ∈ C′ \ C such that ϕ(x) ∈ D. Let z be the inner point in Q such that
{z} = C ∩ C′. Clearly, ϕ(z) ∈ D. Recall that, by hypothesis, ϕ(C′) is contained
in a single discrete component of (T, P ). Since {ϕ(x), ϕ(z)} ⊂ D, it follows that
ϕ(C′) ⊂ D. Thus, ϕ(C) ∪ ϕ(C′) ⊆ D.

Let J be the set of discrete components of (S,Q). Now consider a pull out
(S,Q, g) of (S,Q, g) with respect to z and W := {C,C′}. That is, there exists
a time bijection φ : Q −→ Q such that φ(C) ∪ φ(C′) is a discrete component of
(S,Q) and the remaining discrete components are {φ(E) : E ∈ J \ {C,C′}}. Set
Q := ([S,Q], [g

∣∣
Q
]). It is clear that ϕ ◦ φ−1 is a time bijection from Q to P and

that, for every discrete component E of (S,Q), ϕ◦φ−1(E) is contained in a discrete
component of (T, P ). Therefore, P ≤ Q. If Q 6= P , then we can repeat the above
construction replacing (S,Q, g) by (S,Q, g) and ϕ by ϕ ◦ φ−1. Since the number
of discrete components of (S,Q) is one less than that of (S,Q), it is clear that this
procedure can be iterated in a finite number of steps to get the desired result. �
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Going back again to Figure 4 (bottom), it is reasonable to expect that the entropy
of Q is larger than that of P , since the point y7, which separates several points in
Q, has been pulled out in P to become the endpoint x7. So, the coverings forced by
the inner character of the point y7 in Q are expected to be lost in P . So, at least
intuitively, if Q is finer than P then the entropy of Q should be greater than or
equal to the entropy of P . In other words, the topological entropy should respect
the partial ordering ≤ in the set of all n-periodic patterns. This turns out to be
true and is in fact the main result of this section.

Theorem 5.3. Let P and Q be n-periodic patterns. If P ≤ Q then h(P) ≤ h(Q).

Proof. By Theorem 5.2, it is enough to prove the result when P is a pull out of
Q. Let (T, P, f) and (S,Q, g) be the canonical models of P and Q respectively.
Assume that, for a time bijection ϕ : Q −→ P , (T, P, f) is a ϕ-pull out of (S,Q, g)
with respect to a point z ∈ Q and a subset Y of the setW of all discrete components
of (S,Q) adjacent at z.

If |Y | = 1 then P = Q and the theorem follows trivially. So, we can assume that
|Y | ≥ 2.

To prove the theorem we will proceed as follows. From (S,Q, g) we will ob-
tain a new model (S′, Q′, g′) of the pattern P such that the map g′ is (Q′ ∪
V (S′))−monotone. This model will be constructed in such a way that h(g′) = h(Q),
as we will show at the end of the proof. Also, since ([S′, Q′], [g′]) = P , from the
definition of h(P) it follows that h(P) ≤ h(g′) = h(Q).

Next we start the construction of the model (S′, Q′, g′).
Set m := |Y | ≥ 2, k := |W | and take a labelling {C1, C2, . . . , Cl} of the discrete

components of (S,Q) such that W = {C1, C2, . . . , Ck} and Y = {C1, C2, . . . , Cm}.
Let P = {xi}ni=1 and Q = {zi}ni=1 be consistent time labellings with respect to

ϕ. Recall that, by definition of a time bijection,

(4) g
∣∣
Q
= ϕ−1 ◦ f ◦ ϕ.

Consider a tree S′ obtained from S by expanding the point z to an interval [a, v]
such that (see Figure 5):

(a) ValS′(a) = k −m+ 1
(b) ValS′(v) = m+ 1
(c) There exists a homeomorphism φ : S \ {z} −→ S′ \ [a, v].
Set Q′ = φ(Q \ {z}) ∪ {a} and observe that |Q′| = |Q| = |P | = n. Consider the

bijection µ : Q −→ Q′ defined by

µ(w) =

{
φ(w) if w 6= z
a if w = z.

From (a–c) above it follows that µ(C1 ∪ C2 ∪ . . . ∪ Cm) is a discrete component
of (S′, Q′), and that the rest of discrete components of (S′, Q′) are µ(Ci), for m <
i ≤ l. From the definition of a pull out, this implies that ϕ ◦µ−1 is a bijection from
Q′ to P which preserves discrete components. In consequence,

(5) (T, P ) and (S′, Q′) are equivalent pointed trees via ϕ ◦ µ−1.

Set θ′ = µ ◦ g ◦ µ−1
∣∣
Q′ . Since Q is an n-periodic orbit of g, Q′ is an n-periodic

orbit of θ′. Moreover, by (4), θ′ = µ ◦ ϕ−1 ◦ f ◦ ϕ ◦ µ−1
∣∣
Q′ . In other words,

[θ′] = [f
∣∣
P
]. Together with (5), this yields

(6) ([S′, Q′], [θ′]) = P .
Set Q′

V := Q′ ∪ V (S′). Observe that v ∈ V (S′) because, by (b), ValS′(v) ≥ 3.
Next we define a map g′ on Q′

V as follows:
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(A) g′
∣∣
Q′ = θ′

∣∣
Q′

(B) g′(v) = θ′(a)
(C) g′(w) = φ ◦ g ◦φ−1(w) for any w ∈ V (S′) \ (Q′ ∪{v}) such that g(φ−1(w)) 6= z
(D) g′(w) = a for any w ∈ V (S′) \ (Q′ ∪ {v}) such that g(φ−1(w)) = z

Now we take an obvious piecewise monotone extension of g′ to the whole S′, obtain-
ing a Q′

V -monotone map g′ : S′ −→ S′. From (A) and (6), we get that g′ exhibits
P over Q′. Hence, from the definition of h(P),

(7) h(P) ≤ h(g′).

Let M be the Markov matrix of Q. By Remark 2.3,

(8) h(Q) = logmax{σ(M), 1}.
Let {Ii}si=1 be the set of (Q∪V (S))-basic intervals (so thatM is an s×smatrix).

By construction (that is, by (a–c) above), there are s+ 1 Q′
V -basic intervals in S′.

We take a labelling {Ji}s+1
i=1 of the set of Q′

V -basic intervals in such a way that:

• Js+1 = [v, a]
• If Ii = [x, y] and Ii is contained in a connected component of S \ {z}, then
Ji = [φ(x), φ(y)]

• If Ii = [x, z] and Ii is contained in 〈Cj〉S for some 1 ≤ j ≤ m, then
Ji = [φ(x), v]

• If Ii = [x, z] and Ii is contained in 〈Cj〉S for some m < j ≤ k, then
Ji = [φ(x), a].

Let M ′ be the Markov matrix of g′ with respect to this labelling. Since g′ is
Q′

V -monotone, by Remark 2.2 we have that

(9) h(g′) = logmax{σ(M ′), 1}.
From the definitions it easily follows that, for any 1 ≤ i ≤ s, if Ii g-covers Ij then

Ji g
′-covers Jj and, perhaps, Js+1. Moreover, Js+1 does not cover any Q′

V -basic
interval. This implies that all entries in the (s+1)-th row of M ′ are zero, and that
after deleting the (s + 1)-th row and column from M ′ we get the matrix M . In
consequence, σ(M ′) = σ(M). Then, the theorem follows from (7), (8) and (9). �

6. Centered patterns. Reduction to a strongly centered pattern

In this section we prove that for any n-periodic pattern Q with no division there
exists another n-periodic pattern P with no division such that Q is finer than P
(so, h(P) ≤ h(Q) by Theorem 5.3) and the distribution of the discrete components
of P is particularly simple.

Let (T, P, f) be a model of a periodic pattern P . We will say that P is centered
if there exists a rotational discrete component C of (T, P ) such that all the inner
points of P belong to C. If in addition each inner point belongs exactly to two
discrete components then we will say that P is strongly centered. Of course, these
definitions do not depend on the particular choice of the model. For an example,
consider the patterns P0, P1 and P2 in Figure 6. The discrete component {3, 4}
is rotational for the patterns P1 and P2. However, it does not contain the point
6, which is inner. Both patterns have also another rotational component, {6, 7},
which in both cases does not contain the inner point 3. Hence, P1 and P2 are not
centered patterns. On the other hand, {3, 4} is the only rotational component of
P0. This component contains 3, which is the only inner point. In consequence,
P0 is a centered pattern. However, it is not strongly centered, since 3 belongs to
three discrete components. The 6-periodic pattern Q in Figure 7 is an example of
a strongly centered pattern.

Now we are ready to state the main result of this section.
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Theorem 6.1. Let Q be an n-periodic pattern with no division. Then, there exists
a strongly centered n-periodic pattern P with no division such that P ≤ Q.

Proof. We will proceed in two steps: first we will construct a centered pattern R
with no division such that R ≤ Q, and then we will construct a strongly centered
pattern P with no division such that P ≤ R.

First step: construction of R. Let (S,Q, g) be a model of Q. By Lemma 4.2, there
exists a rotational discrete component D of Q. If all inner points are in D, then Q
is centered and we are done simply by taking R = Q.

Let z ∈ Q be an inner point of Q such that z /∈ D. Let J be the set of discrete
components of (S,Q) and let W ⊂ J be the set of all discrete components adjacent
at z. In particular, D /∈ W . Let Q′ be a complete pull out of Q with respect to z.
Take the canonical model (S′Q′, g′) of Q′ and a time bijection ϕ : Q −→ Q′ such
that (S′, Q′, g′) is a complete ϕ-pull out of (S,Q, g) with respect to z. By definition,⋃

C∈W ϕ(C) is a discrete component of Q′, and the rest of discrete components are
{ϕ(C) : C ∈ D \W}. In particular, ϕ(D) is a discrete component of Q′. Moreover,
since we have joined together all the components adjacent to z, it follows that ϕ(z)
is an endpoint of S′. Thus, ϕ(z) is not an inner point. On the other hand, the
ϕ-image of every inner point of Q different from z is an inner point of Q′.

Let us see that ϕ(D) is a rotational component of Q′. Let D = {a1, a2, . . . , al}.
For every 1 ≤ i ≤ l, let Zi be the connected component of S \ Int(〈D〉S) containing
ai and let Z ′

i be the connected component of S′ \ Int(〈ϕ(D)〉S′ ) containing ϕ(ai).
From the definition of a pull out if follows that

(10) ϕ(Zi ∩Q) = Z ′
i ∩Q′ for every 1 ≤ i ≤ l.

Since ai does not escape from D, g(ai) ∈ Zj from some j 6= i. On the other hand,
g′(ϕ(ai)) = ϕ(g(ai)). Then, by (10), g′(ϕ(ai)) ∈ Z ′

j . Therefore, ϕ(D) does not
contain escaping points and is, in consequence, a rotational component.

Next let us show that Q′ has no division. Since ϕ(D) is a rotational component,
by Lemma 4.4 it is enough to see that (S′, Q′, g′) has not a division with respect
to ϕ(D). Assume the contrary. That is, for some p ≥ 2 there is a partition
{M ′

1,M
′
2, . . . ,M

′
p} of S′ \ Int(〈ϕ(D)〉S′ ) such that each M ′

i is a union of some of the
sets Z ′

1, Z
′
2, . . . , Z

′
l , g

′(M ′
i∩Q′) =M ′

i+1∩Q′ for 1 ≤ i < p and g′(M ′
p∩Q′) =M ′

1∩Q′.
Then, (10) and the fact that ϕ◦g

∣∣
Q
= g′

∣∣
Q′ ◦ϕ imply that (S,Q, g) has a p-division

with respect to D, a contradiction.
Summarizing, we have proved that there is an n-periodic pattern Q′ such that:

• Q′ is a pull out of Q (in particular, Q′ ≤ Q)
• ϕ(D) is a rotational component of Q′

• The number of inner points of Q′ which are not in D is exactly that of Q
minus one

• Q′ has no division.

It is clear that this procedure can be iterated as many times as the number of
inner points of Q which are not in D, in order to finally obtain the prescribed
pattern R.

Second step: construction of P . Let (S,Q, g) be a model of R. Since R is centered,
there exists a rotational discrete component D of R containing all inner points.
If all such points belong exactly to two discrete components, then R is strongly
centered and we are done simply by taking P = R.

Assume that there exists an inner point z ∈ D and m ≥ 2 such that there are
m+1 discrete components of (S,Q) adjacent to z. Let {D,C1, C2, . . . , Cm} be the
set of such discrete components. As in the first step of the proof, we can construct
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a pull out Q′ of Q with respect to z and {C1, C2, . . . , Cm}. If (S′, Q′, g′) is any
model of Q′ and ϕ : Q −→ Q′ is a time bijection such that (S′, Q′, g′) is a ϕ-pull out
of (S,Q, g), then ϕ(z′) is an inner point of ϕ(D) which belongs to the two discrete
components ϕ(D) and

⋃m
i=1 ϕ(Ci). Moreover, the same arguments used in the first

step of the proof show that ϕ(D) is a rotational discrete component of Q′ and that
Q′ has no division.

It is clear that this procedure can be iterated finitely many times in order to
finally obtain the prescribed pattern P . �

7. Reduction to a pattern with two discrete components

In this section we will prove that, when n = mk for some m prime, given any
n-periodic strongly centered pattern Q with no division there exists an n-periodic
pattern P with two discrete components such that Q is finer than P (so, h(P) ≤
h(Q) by Theorem 5.3) and P has no division. For a counterexample of this result
when n is not a power of a prime, consider the 6-periodic pattern Q shown in
Figure 7. There are only three 6-periodic patterns smaller than Q with respect to
the partial ordering ≤: the trivial pattern with only one discrete component, which
has obviously a division, and the patterns Q′ and Q′′ shown in Figure 7, having
also a division in each case.

We start this section with an intuitively clear lemma.

Lemma 7.1. Let Q be a strongly centered n-periodic pattern and let Q′ be a com-
plete pull out of Q with respect to an inner point. Then, Q′ is strongly centered.

Proof. Let (S,Q, g) and (S′, Q′, g′) be models of Q and Q′ respectively. Let x ∈ Q
be an inner point such that (S′, Q′, g′) is a complete ϕ-pull out of (S,Q, g) with
respect to x for some time bijection ϕ : Q −→ Q′. Since Q is strongly centered, x
belongs exactly to two adjacent discrete components C,D of (S,Q) such that D is
rotational. By definition of a complete pull out, ϕ(C ∪D) is a discrete component
of (S′, Q′). Moreover, from the definition of a pull out and since x is the only inner
point in C, any y ∈ ϕ(C ∪D) verifies one of the following statements:

(a) y = ϕ(x) and ValS′(y) = 1
(b) y ∈ ϕ(C \ {x}) and ValS′(y) = 1
(c) y ∈ ϕ(D \ {x}) and ValS′(y) = ValS(ϕ

−1(y)).

Since Q is strongly centered, all points in D have valence 1 or 2. Then, from (a–c)
it follows that all points in ϕ(C ∪ D) have valence 1 or 2. Also, since a pull out
does not increase the valence of any point, each point in Q′ \ϕ(C ∪D) has valence
1. Hence, to prove the lemma it is enough to show that ϕ(C ∪ D) is a rotational
component. Take any y ∈ ϕ(C ∪ D). We have to see that y is not an escaping
point.

Since an endpoint cannot be an escaping point, according to (a–c) we are left
with the case y = ϕ(z) with z ∈ D\{x} and ValS(z) = 2. Let E be the only discrete
component of (S,Q) different fromD containing z. Observe that ϕ(E) and ϕ(C∪D)
are the two discrete components of (S′, Q′) containing y. Since D is rotational, z
is not an escaping point and g(z) /∈ E. Then, g′(y) = g′(ϕ(z)) = ϕ(g(z)) /∈ ϕ(E).
In consequence, y is not an escaping point. �

The following technical lemma will be essential to obtain the main result of this
section.

Lemma 7.2. Let (S,Q, g) be a model of a strongly centered n-periodic pattern with
no division and at least two inner points x, y. Let (S′, Q′, g′) and (S′′, Q′′, g′′) be
complete pull outs of (S,Q, g) with respect to x and y respectively. Assume that
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Figure 7. The time labellings have been specified with natural
numbers. Q is strongly centered with no division. The only rota-
tional component is {1, 2, 3, 6}. The patterns Q′ and Q′′ have been
obtained after a complete pull out with respect the inner points 1
and 3, respectively. Q′ has a 2-division defined by {1, 3, 5}∪{2, 4, 6}
and Q′′ has a 3-division defined by {1, 4} ∪ {2, 5} ∪ {3, 6}.

both models have divisions defined respectively by partitions Q′ = Q′
1∪Q′

2∪ . . .∪Q′
p

and Q′′ = Q′′
1 ∪Q′′

2 ∪ . . . ∪Q′′
q with p ≤ q. Then, q is not a multiple of p.

Proof. Let ϕ′ : Q −→ Q′, ϕ′′ : Q −→ Q′′ be the time bijections such that (S′, Q′, g′)
is a ϕ′-pull out of (S,Q, g) and (S′′, Q′′, g′′) is a ϕ′′-pull out of (S,Q, g). Let
Q = {xi}ni=1, Q

′ = {x′i}ni=1 and Q′′ = {x′′i }ni=1 be consistent time labellings with
respect to ϕ′ and ϕ′′. We can assume without loss of generality that x = x1,
x′1 ∈ Q′

1 and x′′1 ∈ Q′′
1 .

Assume by way of contradiction that q = lp for some l ≥ 1. By definition of a
division, we have that g′(Q′

i) = Q′
i+1 mod p and g′′(Q′′

i ) = Q′′
i+1 mod q. Since x

′
1 ∈ Q′

1

and x′′1 ∈ Q′′
1 , the fact that q = lp implies that Q′

i = {x′i+jp}
n
p −1

j=0 for 1 ≤ i ≤ p and

Q′′
i = {x′′i+jlp}

n
lp−1

j=0 for 1 ≤ i ≤ lp. In consequence,

(ϕ′)−1(Q′
i) =

l−1⋃

j=0

(ϕ′′)−1(Q′′
i+jp) for 1 ≤ i ≤ p.

In particular,

(11) (ϕ′)−1(Q′
1) ⊃ (ϕ′′)−1(Q′′

1 ).

On the other hand, since g′
∣∣
Q′ = ϕ′ ◦ g

∣∣
Q
◦ (ϕ′)−1, then

(12)
g((ϕ′)−1(Q′

i)) = (ϕ′)−1(Q′
i+1) for 1 ≤ i < p,

g((ϕ′)−1(Q′
p)) = (ϕ′)−1(Q′

1).

Since (S,Q, g) is strongly centered, there exists a rotational discrete compo-
nent D of (S,Q) containing x and y. Moreover, there exists exactly two discrete
components Cx and Cy , different from D, such that x ∈ Cx and y ∈ Cy. Set
Z = Int(〈D〉S), Z ′ = Int(〈ϕ′(Cx ∪D)〉S′) and Z ′′ = Int(〈ϕ′′(Cy ∪D)〉S′′). For each
inner point w in Q (respectively, in Q′ and Q′′), let Zw (respectively, Z ′

w and Z ′′
w) be

the connected component of S\Z (respectively, of S′\Z ′ and of S′′\Z ′′) containing
w. Observe that Zx ∩ Q = Cx and Zy ∩Q = Cy. Moreover, since (S′′, Q′′, g′′) is a
complete pull out of (S,Q, g) with respect to y, it follows that

(13) (ϕ′′)−1(Z ′′
x′′
1
∩Q′′) = Zx1 ∩Q.

Note that Q′′
1 is a union of sets of the form Z ′′

w ∩Q′′, because the partition {Q′′
i }

defines a division for (S′′, Q′′, g′′). Since x′′1 ∈ Q′′
1 , it follows that Q

′′
1 ⊃ Z ′′

x′′
1
∩ Q′′.

Therefore, (ϕ′′)−1(Q′′
1) ⊃ (ϕ′′)−1(Z ′′

x′′
1
∩ Q′′), which is equal to Zx1 ∩ Q by (13).

Together with (11), this yields

(14) (ϕ′)−1(Q′
1) ⊃ Zx1 ∩Q.
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Now we claim that the partition {(ϕ′)−1(Q′
i)}pi=1 defines a p-division for (S,Q, g).

This claim is in contradiction with the fact that (S,Q, g) has no division, thus
proving the proposition.

In view of (12), to prove the claim it is enough to show that each set (ϕ′)−1(Q′
i)

is a union of sets of the form Zt ∩Q with t ∈ D.
Since (S′, Q′, g′) is a complete pull out with respect to x, it follows that

(15) (ϕ′)−1(Z ′
w ∩Q′) = Z(ϕ′)−1(w) ∩Q whenever w /∈ ϕ′(Zx1 ∩Q).

On the other hand, since the partition {Q′
i} defines a division for (S′, Q′, g′),

every Q′
i is a union of sets of the form Z ′

w ∩ Q′. From (14) we get that Q′
1 =

ϕ′(Zx1 ∩ Q) ∪ K, where K is either empty or a union of sets of the form Z ′
w ∩ Q′

with w /∈ ϕ′(Zx1 ∩ Q). Moreover, for every 2 ≤ i ≤ p, Q′
i is a union of sets of the

form Z ′
w ∩Q′ with w /∈ ϕ′(Zx1 ∩Q). In any case, from (15) we get that (ϕ′)−1(Q′

i)
is a union of sets of the form Zt ∩Q for 1 ≤ i ≤ p and the claim is proved. �

As a corollary of Lemma 7.2, we obtain the main result of this section.

Proposition 7.3. Let n = mk where m is a prime number and k ∈ N. Let Q
be a strongly centered n-periodic pattern with no division. Then, there exists an
n-periodic pattern P with two discrete components such that P ≤ Q and P has no
division.

Proof. Let (S,Q, g) be a model of Q. Since Q is strongly centered, there exists
a rotational component D containing all the inner points, and each inner point
belongs exactly to two discrete components. If Q has two discrete components, we
are done simply by setting P = Q. Assume that Q has l ≥ 3 discrete components.
This implies that there are at least two inner points in D. Recall that if an n-
periodic pattern has a p-division then p is a strict divisor of n. Since n = mk, from
Lemma 7.2 it follows that we can choose an inner point x ∈ D and a complete pull
out (S′, Q′, g′) of (S,Q, g) with respect to x such that (S′, Q′, g′) has no division.
Set Q′ = ([S′, Q′], [g′

∣∣
Q′ ]). By Lemma 7.1, Q′ is strongly centered. Moreover, from

the definition of a pull out we get that the number of discrete components of Q′ is
l − 1. It is clear that this argument can be iterated as many times as necessary in
order to obtain the prescribed pattern P . �

8. A lower bound for the entropy of no division patterns with two
discrete components

In this section we prove that the entropy of any n-periodic pattern with two
discrete components and no division is greater than or equal to the entropy of
the pattern Qn. We recall that the patterns Qn are our candidates for minimum
(positive) entropy in the class of n-periodic patterns. They were defined in page 6.
Recall also that that the entropy of Qn is log(λn), where λn is the unique real root
of the polynomial qn(x) = xn − 2x− 1 in (1,∞) (see Section 3).

So far, the entropy of any pattern P has been obtained by constructing the
canonical model (T, P, f) and computing the logarithm of the spectral radius of
the Markov matrix associated to the monotone model (T, P ∪ V (T ), f). However,
there is an alternative way which depends only on the combinatorial data of P
and does not require the construction of the canonical model. Indeed, h(P) can be
obtained from the transition matrix of a combinatorial directed graph that can be
constructed independently of the images of the vertices in any particular monotone
model of the pattern. To prove the main theorem of this section it is convenient
to use this alternative approach. Let us introduce the necessary notions. Let
{π1, π2, . . . , πk} be the set of basic paths of the pointed tree (T, P ). We will say that
πi f -covers πj , denoted by πi → πj , whenever πj ⊂ 〈f(πi)〉T . The P-path graph is
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the combinatorial directed graph whose vertices are in one-to-one correspondence
with the basic paths of (T, P ), and there is an arrow from the vertex i to the vertex
j if and only if πi f -covers πj . The associated transition matrix, denoted by MP ,
will be called the path transition matrix of P . It can be seen that the definitions
of the P-path graph and the matrix MP are independent of the particular choice
of the model (T, P, f). Thus, they are well-defined pattern invariants. The crucial
fact about the path transition matrix MP is the following (see [6]):

(16) h(P) = max{0, logσ(MP)}.
Now we are ready to prove the main theorem of this section. We suggest the

reader to accompany the reading of the proof of Theorem 8.1 with an example, as
the one shown in Figure 8.

Theorem 8.1. Let P be an n-periodic pattern with two discrete components. If P
has no division, then h(P) ≥ log(λn).

Proof. Until the end of this proof, for any k ≥ 1 we will take {1, 2, . . . , k} as the
representatives of the classes of Z/kZ.

Let (T, P, f) be the canonical model of P and let P = {xi}ni=1 be a time labelling
such that x1 is the only inner point of P . Let C1 and C2 be the discrete components
of (T, P ), labeled in such a way that x2 ∈ C2. Set L = 〈C1〉 and R = 〈C2〉. Observe
that C1 ∩ C2 = L ∩ R = {x1}. Note also that C2 is a rotational component since
x1 does not escape from it and the remaining points of C2 are endpoints.

By Lemma 4.3, there exists a fixed point y of f in Int(R). This fixed point is
unique, since if there were another fixed point y′ of f in Int(R) then [y, y′] would
be an invariant forest, in contradiction with the fact that (T, P, f) is a canonical
model. Observe that f is (P ∪ {y})-monotone.

Let p be the minimum positive integer such that xi ∈ R for 1 ≤ i ≤ p and
xp+1 ∈ L. Since {x1, x2} ⊂ R and L 6= ∅, it follows that 2 ≤ p < n. Assume that
p = n − 1. Then, C1 = {x1, xn} and C2 = {x1, x2, . . . , xn−1}. In this case, the
pattern P coincides with Qn. In consequence, h(P) = log(λn) by Proposition 3.3
and the theorem holds. So, from now on we assume that

(17) 2 ≤ p ≤ n− 2.

Let m = Val(y) ≥ 2 and let {ai}mi=1 be the set of m points of P ∪ V (T ) closest
to y. That is, (y, ai)∩ (P ∪V (T )) = ∅. Assume without loss of generality that they
have been labeled in such a way that a1 ∈ (y, x1]. Since f is P -monotone, it follows
that

(18) f is monotone on each interval of the form [ai, aj ]

and

(19) f is monotone on each interval of the form [y, ai].

Note that f(ai) 6= y for all i: this is obvious when ai ∈ P and, if ai ∈ V (T ) \ P ,
then f(ai) 6= y because otherwise [y, ai] would be an invariant forest. Therefore,
each interval of the form [y, ai] f -covers one of such intervals, which is unique by
(19). Hence, we have a well defined map

φ : {1, 2, . . . ,m} −→ {1, 2, . . . ,m}
such that φ(i) = j if and only if [y, aj ] is the only interval adjacent to y f -covered
by [y, ai]. Observe that if i 6= j then φ(i) 6= φ(j) since, otherwise, using (18) and the
fact that f(y) = y would lead us to a contradiction. In consequence, φ is injective.
It follows that {1, 2, . . . ,m} is a union of periodic orbits of φ.
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Figure 8. The canonical model of a 10-periodic pattern with two
discrete components. In the notation of the proof of Theorem 8.1,
p = 3. The subtrees L, R1, R2, R3 and the fixed point y are
indicated. For this example a1 = x1.

For 1 ≤ i ≤ m, let Ri be the closure of the connected component of R \ {y}
containing ai. Note that R =

⋃m
1 Ri. The (P ∪{y})-monotonicity of f easily yields

that

(20) If φ(i) 6= 1 then f(Ri) ⊂ Rφ(i), while if φ(i) = 1 then f(Ri) ⊂ R1 ∪ L.
Now we claim that all the elements in {1, 2, . . . ,m} form in fact a unique m-

periodic orbit of φ. Otherwise, there exists an l-periodic orbit Q = {i1, i2, . . . , il} (
{1, 2, . . . ,m} of φ such that 1 /∈ Q. In particular, x1 /∈ ∪l

j=1Rij . By (20), P ∩(
∪l
j=1Rij

)
contains an invariant subset of P disjoint from {x1}; a contradiction.

From now on we assume that the points ai (and, consequently, the trees Ri) are
labeled in such a way that f([y, ai]) ⊃ [y, ai+1 mod m] for 1 ≤ i ≤ m. Then,

(21) f(Ri) ⊂ Ri+1 for 1 ≤ i < m and f(Rm) ⊂ R1 ∪ L.
We claim that m = p. To prove this claim, recall that x1 ∈ R1 and that

f(xi) = xi+1 for 1 ≤ i < p and f(xp) ∈ L. Then, from (21) it follows that p = tm
for some t ≥ 1 and xi ∈ Ri mod m for 1 ≤ i ≤ p. Since p,m ≥ 2, the claim is trivially
true when p = 2 or p = 3. So, assume that p ≥ 4. Set X := {xi}pi=1 ⊂ P . Then,
X ⊂ En(R) and X ∩Ri = {xi, xi+m, . . . , xi+(t−1)m}. Consider the set V of vertices
v satisfying the following property: there exists a pair of points {xi, xj} ⊂ X such
that i ≡ j mod m (that is, {xi, xj} ⊂ Ri mod m) and v is the central point of the
3-star 〈{y, xi, xj}〉. If t > 1, then V 6= ∅ since each tree Ri contains t ≥ 2 points of
X . In this case, take any v ∈ V . By the (P ∪ {y})-monotonicity of f we have that
either xp /∈ {xi, xj} and f(v) is the central point of the 3-star 〈{y, xi+1, xj+1}〉 or
{xi, xj} = {xi, xp} and f(v) is the central point of the 3-star 〈{y, xi+1, x1}〉. In any
case, we have that f(v) ∈ V for any v ∈ V . Since V is finite, it follows that there
exists a periodic orbit Q of vertices in V ⊂ Int(R). Then, 〈Q∪ {y}〉 is an invariant
forest; a contradiction. In consequence, t = 1 and the claim is proved.

Summarizing, we have proved that the fixed point y defines a partition of R into
p subtrees {Ri}pi=1 such that

(22) f(Ri) ⊂ Ri+1 for 1 ≤ i < p and f(Rp) ⊂ R1 ∪ L.
Set S1 := R1 ∪ L, Si := Ri for 2 ≤ i ≤ p. Then, xi ∈ Si mod p for 1 ≤ i ≤ p+ 1.

Now observe that if xi ∈ Si mod p for 1 ≤ i ≤ n then P would have a p-division
with respect to the discrete component C2. Since P has no division by hypothesis,
it follows that there exists an integer k such that

(23) p+ 1 ≤ k ≤ n
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with xi ∈ Si mod p for 1 ≤ i ≤ k and xk+1 /∈ Si+1 mod p. From (22) it follows that

(24) xk ∈ L \ {x1} and k ≡ 1 mod p.

Since f is (P ∪{y})-monotone, from Theorem 2.1(b) we get that h(P) = h(f) =
h(Py), where Py is the pattern ([T, P ∪ {y}], [f

∣∣
P∪{y}]). So, to prove the theorem

it is enough to show that h(Py) ≥ log(λn). To do it, we will find some loops of the
path transition matrix of Py, thus obtaining a subgraph G of the Py-path graph.
Then we will prove that the spectral radius of the transition matrix MG associated
to G is greater than or equal to λn. Proceeding in this way, we get that λn ≤
σ(MG) ≤ σ(MPy ) and then the theorem follows from (16), since h(P) = h(Py).

By construction, each basic path of Py has one of the following forms:

• {y, x} with x ∈ P ∩Ri for some 1 ≤ i ≤ p
• {x, z} with x, z ∈ P ∩Ri for some 1 ≤ i ≤ p
• {x, z} with x, z ∈ P ∩ L.

For the sake of brevity, from now on we will write {a, b} → {c, d} to indicate
that {a, b}, {c, d} are basic paths of Py and that {a, b} f -covers {c, d}.

Set πi := {y, xi} for 1 ≤ i ≤ p.
From (22) and the fact that f(y) = y we get that

(25) If x ∈ P ∩Ri for some 1 ≤ i < p then {y, x} → {y, f(x)} ⊂ Ri+1.

Moreover,

(26) If x ∈ P ∩Rp then {y, x} →
{

{y, f(x)} if f(x) ∈ R1

π1 and {x1, f(x)} if f(x) ∈ L \ {x1}.
Since f(xp) ∈ L \ {x1}, from (25) and (26) it follows that the Py-path graph

contains the following subgraph:

(27) π1 → π2 → . . . → πp → {x1, xp+1} .
On the other hand, from (22) and the definition of xk we get that

(28)
If {xi, xj} is a basic path in Sm with 1 ≤ m < p and i < j < k,

then {xi, xj} → {xi+1 mod n, xj+1 mod n} ⊂ Rm+1.

When {xi, xj} ⊂ Rp, then either {xi+1 mod n, xj+1 mod n} is a basic path (con-
tained in either R1 or L) f -covered by {xi, xj}, or xi+1 mod n and xj+1 mod are sep-
arated by x1 and, in this case, {xi, xj} f -covers the two basic paths {x1, xi+1 mod n}
and {x1, xj+1 mod n}. One of these two basic paths is contained in L and the other
one in R1. Hence,

(29)

If {xi, xj} ⊂ Rp, then

{xi, xj} →
{
either {xi+1 mod n, xj+1 mod n} ⊂ S1

or {x1, xi+1 mod n} ⊂ S1 and {x1, xj+1 mod n} ⊂ S1.

We consider two cases.

Case 1. k = p+ 1.

In this case, xk = xp+1 ∈ L and xk+1 = xp+2 /∈ R2. If xp+2 ∈ L, then {x1, xp+1}
f -covers both π1 and π2. Together with (27), this amounts to the subgraph of the
Py-path graph shown at the top of Figure 9. When xp+2 /∈ L, then xp+2 ∈ Ri

for some i 6= 2. In consequence, {x1, xp+1} f -covers both π2 and {y, xp+2}. Now
starting with {y, xp+2} and iteratively using (25) and/or (26) we easily get that
there exist p+ 2 ≤ l ≤ n and a sequence of coverings of the form

{y, xp+2} → {y, xp+3} → . . .→ {y, xl} → π1,
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π1 → π2 → . . . → πp → {x1, xp+1} → {y, xp+2} → . . . → {y, xl}

π1 → π2 → . . . → πp → {x1, xp+1}

Figure 9. The two possibilities for a subgraph G of the Py-path
graph in Case 1 of the proof of Theorem 8.1.

which amounts to the the subgraph shown at the bottom of Figure 9. In any case,
the Py-path graph contains a subgraph G for which {πp} is a rome and there are 3
simple loops starting and ending at πp, of lengths p, p and l, where p+ 1 ≤ l ≤ n.
Let us prove that λn ≤ σ(MG). By Theorem 3.2, the characteristic polynomial of
MG is ± xl(2x−p + x−l − 1) = ±(xl − 2xl−p − 1). Let us see that the polynomial
F (x) := xl−2xl−p−1 has a real root greater than or equal to λn. Since F (x) → +∞
when x→ +∞, it is enough to prove that F (λn) ≤ 0. Recall that, by definition,

(30) (λn)
n − 2λn − 1 = 0.

Then, F (λn) = (λn)
l−2(λn)

l−p−1 = (λn)
l−2(λn)

l−p− (λn)
n+2λn. Since λn > 1

and p + 1 ≤ l ≤ n, we get that (λn)
l − (λn)

n ≤ 0 and 2λn − 2(λn)
l−p ≤ 0. In

consequence, F (λn) ≤ 0 and we are done in this case.

Case 2. k > p+ 1.

From (24), k ≥ 2p+ 1. Here we have to consider two different situations.

Subcase 2.1. xjp+1 ∈ L for each j ≥ 1 such that jp+ 1 ≤ k.

From (24) and the definition of k we get that xk ∈ L and xk−p+1 ∈ R2.Moreover,
in this subcase we also get that xk−p ∈ L.

If xk+1 ∈ L it follows that {xk−p, xk} f -covers π1 and {y, xk−p+1}, and {x1, xk}
f -covers π1 and π2, by (22). Consequently, if xk+1 ∈ L, from (25)–(28) we get that
the Py-path graph contains the subgraph shown at the top of Figure 10.

If xk+1 /∈ L then {x1, xk} f -covers {y, xk+1} and π2, and {xk−p, xk} f -covers
{y, xk+1} and {y, xk−p+1}. So, as above, it follows from (25)–(28) that the Py-path
graph contains the subgraph shown at the bottom of Figure 10.

Both graphs from Figure 10 have {πp} as a rome. In the graph at the top of
Figure 10 there are unique simple loops of lengths p, k, k + p and two of length
k + p− 1. Consequently, Theorem 3.2 yields that the characteristic polynomial of
the Markov matrix associated to this graph is

± xk+p(x−p + x−k + x−k−p + 2x−k−p+1 − 1) = ±G(x)

with G(x) := xk+p − xk − 2x− xp − 1.
In the graph at the bottom of Figure 10 there are unique simple loops of lengths

p, l, l+ p and two of length k + p− 1. In this case, Theorem 3.2 gives

± xl+p(x−p + x−l + x−l−p + 2x−k−p+1 − 1) = ±F (x)

with F (x) := xl+p−xl−2xl−k+1−xp−1 and l > k as the characteristic polynomial
of the Markov matrix associated to this graph.

As above, to end the proof of the theorem in this subcase, we have to see that
F (λn) ≤ 0 and G(λn) ≤ 0.
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π1 → π2 → . . .→ πp → {x1, xp+1} → . . .→ {xk−p, xk} → {y, xk−p+1} → . . .→ {y, xk−1} → {x1, xk}

π1 → π2 → . . .→ πp → {x1, xp+1} → . . .→ {xk−p, xk} → {y, xk−p+1} → . . .→ {y, xk−1} → {x1, xk}

{y, xl} ← . . .← {y, xk+2} ← {y, xk+1}

Figure 10. The two possibilities for a subgraph G of the Py-path
graph in Subcase 2.1 of the proof of Theorem 8.1.

Since k < l and xl+p − xl − 2xl−k+1 = xl−k(xk+p − xk − 2x), it follows that
G(x) ≤ F (x) for x ≥ 1. Therefore, it is enough to show that F (λn) ≤ 0.

Observe that, fixing x > 1 and p ≥ 1, the expression xl+p − xl is increasing in l.
Since λn > 1 and k < l ≤ n, it follows that

F (λn) ≤ (λn)
n+p−(λn)

n−2(λn)
l−k+1−(λn)

p−1 < (λn)
n+p−(λn)

n−2λn−(λn)
p−1.

From (30) we get

(31) (λn)
n+p − 2(λn)

p+1 − (λn)
p = 0

and

(λn)
n+p − (λn)

n − 2λn − (λn)
p − 1 = −(λn)

n − 2λn − 1 + 2(λn)
p+1

= −2(λn)
n + 2(λn)

p+1.

This expression is negative since 2p+ 1 ≤ k ≤ n. So we are done in this case.

Subcase 2.2. xjp+1 /∈ L for some j such that jp+ 1 ≤ k.

Let s be the minimum of such j. Hence, 2 ≤ s because xp+1 ∈ L. Moreover, by
(24), k ≡ 1 mod p and xk ∈ L. Therefore, sp+ 1 ≤ k − p. In consequence,

(32) 3p+ 1 ≤ (s+ 1)p+ 1 ≤ k.

From (22) and the definition of s we get that {xi, xi+p} is a Py−basic path for 1 ≤
i ≤ (s− 1)p. By (29), {x(s−1)p, xsp} f -covers both {x1, x(s−1)p+1} and {x1, xsp+1}.
In addition, since xp+1 ∈ L and xsp+1 /∈ L, {xp, xsp} f -covers both {x1, xp+1} and
{x1, xsp+1}.

From (29) we also get the following sequence of coverings in the Py-path graph:

{x1, xsp+1} → τsp+2 → τsp+3 → . . .→ τk,

where every path τi has the form {xt(i), xi} for some t(i) < i such that t(i) ≡
i mod p. Since t(k) ≡ k mod p and t(k) < k, it follows that xt(k)+1 ∈ R2. On the
other hand, by the definition of k, xk+1 /∈ R2. In consequence, τk f -covers either
{y, xk+1} when xk+1 /∈ L or {y, x1} otherwise. So, by (25)–(28) we get that the
Py-path graph contains one of the two subgraphs G shown in Figure 11: the one at
the top when xk+1 ∈ L and the one at the bottom when xk+1 /∈ L, where l satisfies
k ≤ l ≤ n.
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π1 → . . .→ πp → {x1, xp+1} → . . .→ {x(s−1)p, xsp} → {x1, x(s−1)p+1} → . . .→ {xp, xsp}

{y, xl} ← . . .← {y, xk+2} ← {y, xk+1} ← τk ← . . .← τsp+3 ← τsp+2

{x1, xsp+1}

π1 → . . .→ πp → {x1, xp+1} → . . .→ {x(s−1)p, xsp} → {x1, x(s−1)p+1} → . . .→ {xp, xsp}

τk ← . . .← τsp+3 ← τsp+2 ← {x1, xsp+1}

Figure 11. The two possibilities for a subgraph G of the Py-path
graph in Subcase 2.2 of the proof of Theorem 8.1.

In any case, the set {πp, {x1, xp+1}} is a rome for G. In both graphs, there is a
simple loop of length p starting and ending at πp. There is also a simple loop of
length sp starting and ending at {x1, xp+1}. On the other hand, πp → {x1, xp+1}
is a simple path of length 1. Finally, there are two simple paths of lengths l − 1
and l + p− 1 from {x1, xp+1} to πp. Moreover, these are the only simple paths in
the two graphs of Figure 11. In consequence, from Theorem 3.2 we get that the
characteristic polynomial of MG is ±F (x) := ± xl+pdet(M), where

M =

(
x−p − 1 x−1

x−l+1 + x−l−p+1 x−sp − 1

)
.

Then, F (x) = xl−sp − xl − xl+p−sp + xl+p − xp − 1. As above, it is enough to
see that F (λn) ≤ 0. Since xl−sp − xl−sp+p < 0 for x > 1, it suffices to show that
G(λn) := −(λn)

l+(λn)
l+p−(λn)

p−1 ≤ 0. Recall that xl+p−xl is increasing in l for
x > 1 and p ≥ 1 fixed. Since λn > 1 and l ≤ n, it follows that G(λn) < −(λn)

n +
(λn)

n+p− (λn)
p−1 which, by (31), is equal to −(λn)

n+2(λn)
p+1−1. Since k ≤ n,

from (32) we get that n > 3p. Therefore, the previous expression is smaller than
H(λn), where H(x) := −xn + 2x

n
3 +1 − 1. Then, H ′(x) = −nxn−1 + 2(n3 + 1)xn/3.

Since k ≤ n and p ≥ 2, (32) yields n ≥ 7. Thus, xn−1 > xn/3 for x > 1 and
n > 2(n3 + 1), what implies that H ′(x) < 0 for x > 1. Since H(1) = 0, it follows
that H(x) < 0 for x > 1. In particular, H(λn) < 0. This completes the proof of
the theorem. �

Now we are ready to prove that Qn minimizes the entropy in the set of all n-
periodic patterns with no division, when n is a power of a prime. This result will
play a central role in the proof of Theorem A.

Corollary 8.2. Let n = mk where m is a prime number and k ∈ N. Then,
the pattern Qn has minimum entropy in the set of all n-periodic patterns with no
division.

Proof. Let Q be an n-periodic pattern with no division. By Theorem 6.1, there
exists a strongly centered n-periodic pattern Q′ with no division such that Q′ ≤ Q.
By Theorem 5.3, h(Q′) ≤ h(Q). On the other hand, by Proposition 7.3 there exists
an n-periodic pattern Q′′ with two discrete components such that Q′′ ≤ Q′ and
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Q′′ has no division. Using again Theorem 5.3, we get that h(Q′′) ≤ h(Q′). Finally,
by Theorem 8.1 we have that h(Q′′) ≥ log(λn), which equals h(Qn) by virtue of
Proposition 3.3. �

9. Proof of Theorem A

We start by giving a sketch of the proof of Theorem A. Let P = ([T, P ], [f ]) be
an n-periodic pattern. A pattern P ′ will be called subordinated to P if for some
divisor n > p > 1 of n there is an (n/p)-periodic orbit P ′ ⊂ P of fp such that
P ′ = ([〈P ′〉T , P ′], [fp

∣∣
P ′ ]). Clearly, this definition is independent of the particular

model (T, P, f) representing P . The following result states that when an n-periodic
pattern P has a subordinated pattern P ′ with positive entropy, then we can reduce
the problem of determining whether h(P) ≥ h(Qn) to determining whether h(P ′) ≥
h(Qn/p).

Lemma 9.1. Let P be an n-periodic pattern. Let P ′ be an n′-periodic pattern
subordinated to P. If n′ ≥ 3 and h(P ′) ≥ h(Qn′) then h(P) ≥ h(Qn).

Proof. Let (T, P, f) be the canonical model of P . By definition of a subordi-
nated pattern, there exists a strict divisor p of n such that n′ = n/p and P ′ =
([〈P ′〉T , P ′], [fp

∣∣
P ′ ]) for some n′-periodic orbit P ′ ⊂ P of fp. Since h(P ′) is smaller

than or equal to the entropy of any map exhibiting P ′ and fp exhibits P ′,

(33) h(P ′) ≤ h(fp) = p · h(f) = p · h(P).

We are assuming that h(P ′) ≥ h(Qn/p), which, by Proposition 3.3, is equal to
log(λn/p). Then, from (33) it follows that

h(P) ≥ 1

p
log(λn/p) = log((λn/p)

1/p),

which is greater than or equal to log(λn) by Proposition 3.1(b). Since log(λn) =
h(Qn) by Proposition 3.3, the lemma follows. �

Remark 9.2. Surprisingly, it is not always true that a positive entropy pattern has
subordinated patterns with positive entropy. See Figure 12 for a counterexample.
The pattern P has a 2-division, but a direct computation using the Markovmatrix of
P shows that h(P) ≈ log(1.272) > 0. It turns out that all the subordinated patterns
induced by fp for p = 2, 3, 4, 6 have entropy zero. Indeed: all patterns of f6 and f4

are trivial 2-periodic and 3-periodic patterns respectively. On the other hand, f3 in-
duces three 4-periodic patterns on the sets P ′

1 := {1, 4, 7, 10}, P ′
2 := {2, 5, 8, 11} and

P ′
3 := {3, 6, 9, 12} and f2 induces two 6-periodic patterns on P ′

4 := {1, 3, 5, 7, 9, 11}
and P ′

5 := {2, 4, 6, 8, 10, 12}. The patterns ([〈P ′
1〉T , P ′

1], [f
3]) and ([〈P ′

2〉T , P ′
2], [f

3])
are trivial. The pattern ([〈P ′

3〉T , P ′
3], [f

3]) is not trivial since it has two discrete
components: {3, 6, 9} and {6, 12}. The same happens for ([〈P ′

4〉T , P ′
4], [f

2]) and
([〈P ′

5〉T , P ′
5], [f

2]). However, it is not difficult to show that all these patterns have
entropy zero (use the characterization of zero entropy patterns that we explain
below). The existence of such counterexamples explains why we cannot use these
techniques to prove Theorem A for any n ∈ N.

The core idea of the proof of Theorem A is that a counterexample like the one
shown in Figure 12 cannot be found in the family of n-periodic patterns when n is
a power of a prime. More precisely, we will see that, in this case, any n-periodic
pattern with a division and positive entropy has subordinated patterns of positive
entropy (Proposition 9.7).

Let us recall now the description of zero entropy patterns first given in [6]. This
characterization applies to general (not specifically periodic) patterns. However, as



28 LLUÍS ALSEDÀ, DAVID JUHER AND FRANCESC MAÑOSAS
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Figure 12. The canonical model of a 12-periodic pattern P .
The point y is fixed by f and the images of the vertices are:
f(a) = f(w) = b, f(b) = c, f(c) = d, f(d) = a, f(v) = w.
All subordinated patterns have entropy zero, while h(P) > 0.

we will see, the zero entropy periodic patterns exhibit some additional properties
that will be used in the proof of Theorem A.

Let (T, P, f) be a monotone model of a pattern P . Let π be a basic path of
(T, P ). We say that P is π-reducible if fn(π) is contained in a single discrete
component of (T, P ) for every n ≥ 0. In this case, let X =

⋃
i≥0〈f i(π)〉 and let

C1, C2, . . . , Cp be the connected components of X . Note that P ⊂ X . It is easy to
see that for each 1 ≤ i ≤ p there exists ji such that f(Ci) ⊂ Cji . Then we take the
tree T ′ obtained from T by collapsing each Ci to a point ci. Let κ : T −→ T ′ be the
standard projection. We set P ′ = κ(P ) and define f ′ : P ′ −→ P ′ as f ′ = κ◦f ◦κ−1.
It is easy to see that ([T ′, P ′], [f ′]) is a well defined pattern, which we call a π-reduced
(or simply reduced) pattern of P . The process of obtaining this pattern from P is
called a reduction. The entropies of P and the reduced pattern coincide, as the
following result (Proposition 8.1 of [6]) states.

Proposition 9.3. Let P be a pattern. Let P ′ be a reduced pattern of P. then,
h(P ′) = h(P).

A pattern will be called strongly reducible if there is a finite sequence of reductions
leading to a pattern consisting of a single point. The notion of a strongly reducible
pattern depends apparently on the chosen sequence of basic paths and monotone
models. From the next theorem, which is the characterization of zero entropy
patterns given in [6], it follows that this notion is well defined.

Theorem 9.4 (Theorem E of [6]). A pattern has zero entropy if and only if it is
strongly reducible.

The following result summarizes some specific properties of the reduced patterns
of a periodic pattern. Statements (a) and (b) are immediate and statement (c) is
Proposition 5.2 of [5].

Proposition 9.5. Let P = ([T, P ], [f ]) be an n-periodic pattern that is π-reducible
for a basic path π. Let C1, C2, . . . , Cs be the connected components of

⋃
i≥0〈f i(π)〉.

Then, n > s ≥ 1 and the following statements hold:

(a) En(Ci) ⊂ P for 1 ≤ i ≤ s.
(b) The sets Ci can be labeled in such a way that f(Ci) = Ci+1 for 1 ≤ i < s

and f(Cs) = C1. Thus, s divides n, Ci ∩ P is an (n/s)-periodic orbit of f s

for each 1 ≤ i ≤ s and the π-reduced pattern is s-periodic.
(c) The pointed tree (Ci, Ci∩P ) has a unique discrete component for 1 ≤ i ≤ s.
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Proposition 9.5(b) tells us that a reduced pattern of a periodic pattern is also
periodic, with a period strictly smaller than that of the original pattern. The
following result is the analog of Lemma 9.1 for reduced patterns.

Lemma 9.6. Let P be an n-periodic pattern. Let P ′ be an n′-periodic reduced
pattern of P. If n′ ≥ 3 and h(P ′) ≥ h(Qn′) then h(P) ≥ h(Qn).

Proof. Using Propositions 9.3 and 3.3 we obtain that

h(P) = h(P ′) ≥ h(Qn′) = log(λn′).

Since n > n′, the lemma follows from Proposition 3.1(a). �

The following proposition is the central result in the proof of Theorem A.

Proposition 9.7. Let P be an n-periodic pattern such that n = mk for some
prime m. Assume that P is not π-reducible for any basic path π and that P has a
p-division. Then, P has subordinated patterns of positive entropy.

Proof. From Theorem 9.4 we get that h(P) > 0. By definition of a p-division, p is
a divisor of n and p > 1. Moreover, if p = n then P would be a trivial pattern, a
contradiction. In consequence, n > p > 1.

Let (T, P, f) be the canonical model of P and let C be a discrete component
of (T, P ) such that (T, P, f) has a p-division with respect to C. Set Z = Int(〈C〉)
and let Z1, Z2, . . . , Zl be the connected components of T \ Z. By definition of a
p-division, there exists {M1,M2, . . . ,Mp}, a partition of T \ Z, such that each Mi

is a union of some of the sets Z1, Z2, . . . , Zl, f(Mi ∩ P ) = Mi+1 ∩ P for 1 ≤ i < p
and f(Mp ∩ P ) = M1 ∩ P . Observe that, for any 1 ≤ i ≤ p, the set Pi := Mi ∩ P
is an (n/p)-periodic orbit of fp.

Set g := fp and consider the (n/p)-periodic patterns Pi := ([〈Pi〉T , Pi], [g
∣∣
Pi
])

for 1 ≤ i ≤ p. Since n > p > 1, all these patterns are subordinated to P . Now we
claim that

(34) If {a, b} is a basic path of Pi, then {a, b} is a basic path of P .
Indeed, this is clear when {a, b} ⊂ Zj for some j or when {a, b} ⊂ Cl(Z). These are
the only two possibilities, because if a ∈ Zr \Cl(Z) and b ∈ Zs \Cl(Z) with r 6= s,
then, since Mi is by definition a union of sets Zj, the interval [a, b] would contain
the only point in Cl(Z)∩Zr and the only point in Cl(Z)∩Zs, a contradiction with
the fact that {a, b} is a basic path of Pi. So the claim is proved.

To prove the proposition, assume by way of contradiction that h(Pi) = 0 for
each 1 ≤ i ≤ p. In particular, by Theorem 9.4, every pattern Pi is πi-reducible
for a basic path πi of Pi. For 1 ≤ i ≤ p, let {Ci

1, C
i
2, . . . , C

i
ji
} be the connected

components of
⋃

r≥0〈gr(πi)〉. By Proposition 9.5(b), ji divides n/p and Ci
r ∩ Pi is

an (n/pji)-periodic orbit of gji . So, for any 1 ≤ r ≤ ji,

(35) If x ∈ P ∩ Ci
r then {x, gji(x), g2ji (x), . . . , g(n

p−1)ji(x)} ⊂ Ci
r.

Moreover, Proposition 9.5(c) tells us that

(36) (Ci
r , C

i
r ∩ Pi) has a unique discrete component for 1 ≤ r ≤ ji.

Now observe that, since n = mk for some prime m, then p = mk′
for some

k′ < k. Then, each pattern Pi is (mk−k′
)-periodic and ji = mki for some ki such

that k − k′ ≥ ki ≥ 0. Let s ∈ {1, 2, . . . , p} be such that

js = max{ji : 1 ≤ i ≤ p}.
Observe that ji divides js for all i. Now take a point x ∈ P ∩ Cs

1 . By (35),
the point y := gjs(x) belongs to P ∩ Cs

1 . In consequence, (36) implies that {x, y}
is a basic path of Ps. By (34), {x, y} is also a basic path of P . Now consider
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the pair {f(x), f(y)}. Then, f(x) ∈ Cs+1
r for some 1 ≤ r ≤ js+1 (here and in

the rest of this paragraph, s + 1 stands for 1 when s = p). On the other hand,
since js+1 divides js, there exists 1 ≤ l ≤ (n/p) − 1 such that js = ljs+1. Then,
f(y) = f(gjs(x)) = gjs(f(x)) = gljs+1(f(x)) which, by (35), belongs to Cs+1

r . In
consequence, (36) implies that {f(x), f(y)} is a basic path of Ps+1 and, by (34), also
of P . Clearly one can iterate this argument n times to obtain that {f i(x), f i(y)}
is a basic path of P for 0 ≤ i ≤ n. This means that P is {x, y}-reducible; a
contradiction. �

Now we are ready to prove Theorem A.

Proof of Theorem A. Let P be an n-periodic pattern with positive entropy. Recall
that, by assumption, n = mk ≥ 3 for some prime m. We have to show that
h(P) ≥ h(Qn). Next we construct sequences {ni}li=1 and {Pi}li=1 such that:

• ni = mki and {ki}li=1 is strictly decreasing
• Pi is an ni-periodic pattern with positive entropy and ni ≥ 3 for 1 ≤ i ≤ l
• P1 = P
• Pi+1 is either subordinated to Pi or a reduced pattern of Pi for 1 ≤ i < l
• Pl has no division.

Set k1 := k, n1 := n and P1 := P . Then, n1 = mk1 . If P1 has no division,
we simply set l := 1. Otherwise, to construct inductively the above sequences it is
enough to explain how to construct Pi+1 when the pattern Pi has positive entropy
and a division. We consider two cases.

Case 1. Pi is π-reducible for some basic path π.

In this case, let Pi+1 be the π-reduced pattern. By Proposition 9.5(b), Pi+1 is
ni+1-periodic for some ni+1 < ni. Moreover, ni+1 divides ni and, in consequence,
ni+1 has the form mki+1 for some ki+1 < ki. Finally, ni+1 ≥ 3 since, otherwise,
Pi+1 would have entropy 0, in contradiction with the fact that, by Proposition 9.3,
h(Pi+1) = h(Pi).

Case 2. Pi is not π-reducible for any basic path π.

Since Pi has positive entropy, a division, and its period is a power of a prime then, by
Proposition 9.7, Pi has a subordinated pattern Pi+1 with positive entropy. By the
definition of a subordinated pattern, Pi+1 is ni+1-periodic for some 1 < ni+1 < ni

which divides ni. Hence, ni+1 has the form mki+1 for some ki+1 < ki. Finally,
ni+1 ≥ 3 since otherwise Pi+1 would have entropy 0. This completes the induction
step.

Now observe that, since Pl has no division, Corollary 8.2 yields that h(Pl) ≥
h(Qnl

). Then, using iteratively l times either Lemma 9.1 or Lemma 9.6 we obtain
that h(P1) = h(P) ≥ h(Qn). �
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