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Abstract

Objective: The use of artificial intelligence techniques to find out which Single

Nucleotide Polymorphisms (SNPs) promote the development of a disease is one

of the features of medical research, as such techniques may potentially aid early

diagnosis and help in the prescription of preventive measures. In particular,

the aim is to help physicians to identify the relevant SNPs related to Type 2

diabetes, and to build a decision-support tool for risk prediction.

Methods: We use the Random Forest (RF) technique in order to search for the

most important attributes (SNPs) related to diabetes, giving a weight (degree

of importance), ranging between 0 and 1, to each attribute. Support vector

machines and logistic regression have also been used since they are two other

machine learning techniques that are well-established in the health community.

Their performance has been compared to that achieved by RF. Furthermore, the

relevance of the attributes obtained through the use of RF has then been used

to perform predictions with k nearest neighbour method weighting attributes in

the similarity measure according to the relevance of the attributes with RF.

Results: Testing is performed on a set of 677 subjects. RF is able to handle the

complexity of features’ interactions, overfitting, and unknown attribute values,
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providing the SNPs’ relevance with an up to 0.89 area under the ROC curve in

terms of risk prediction. RF outperforms all the other tested machine learning

techniques in terms of prediction accuracy, and in terms of the stability of the

estimated relevance of the attributes.

Conclusions: The random forest is a useful method for learning predictive mod-

els and the relevance of SNPs without any underlying assumption.

Keywords: Type 2 Diabetes, Random Forest, Feature Learning, Predictive

model, Gini importance

1. Introduction

There is a great deal of interest in finding the SNPs that are related to a given

illness in order to appropriately develop a corresponding personalised treatment.

The first approaches with regard to studying the relationships between SNPs

and diseases focused on single individual variable analysis, where a variable5

(SNP) is removed, and then some predictor indicator is analysed to measure

the impact of the variable influence. However, interactions between variables

meant that this approach did not perform well. Therefore, other approaches

based on machine learning techniques, which enable the analysis of multiple

combinations of variables, are preferred [1, 2]10

The authors in [3] provide an overview of the different machine learning

techniques applied to SNP data, from which two main approaches are distin-

guished: SNP association studies and predictive modelling. While SNP asso-

ciation studies consists of grouping SNPs according to their expression profiles

(e.g. molecular function, biological process, cellular components), predictive15

modelling aims to identify which features are relevant to a specific function or

class. For example, which features are particularly relevant with regard to Type

2 Diabetes (T2D).

Concerning the use of predictive models with SNP data, these methods suffer

from the dimensionality problem: hundreds of subjects (samples), with thou-20

sands of SNPs per subject (features, attributes). As a consequence, [3] warns
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about the risk of incurring an overfitting problem [4] when applying machine

learning techniques to such kinds of datasets.

To overcome the overfitting problem, regularisation techniques [4] are ap-

plied, but they present some difficulties regarding tuning the appropriate regu-25

larisation parameter [5] and moving away from the current trends of personalised

medicine [6]. On the other hand, the random forest (RF) technique [7] has been

proven to outperform most of the current machine learning techniques when

it comes to building classification models in general, and predictive models in

particular, without any underlying assumptions [8]. Moreover, it is a compu-30

tationally efficient technique and one that is almost free of parameters. The

RF technique consists of building a given number of decision trees (a forest),

which are combined in an ensemble mechanism (e.g. majority voting) in order

to obtain a final classification outcome (e.g. ill or healthy), with a confidence

degree associated with the result (a prediction indicator).35

The relevance of features that conform to the RF model is obtained by ag-

gregating the relative importance of the features over all of the trees [9, 10].

Therefore, no particular pre-processing techniques are required for feature se-

lection [11, 12]. Moreover, as an ensemble technique, the obtained relevance

feature set is stable [13, 14].40

An additional property of the RF technique is its capacity for handling

missing information [15], a common situation when dealing with SNP data [16].

This is due to the ensemble nature of the RF method, which combines several

decision trees to provide a classification outcome (e.g. prediction) [7]. Each

decision tree is learned by using a subset of features (SNPs) that are randomly45

selected, as well as a subset of samples that are also randomly chosen. However,

the RF technique does not remove any information, maintaining the changes

towards a personalised outcome.

This paper addresses the application of the RF technique to a dataset of

SNPs, which has a significant percentage of missing information, classified in50

terms of people with T2D and people without it. In particular, our work

concerns the identification of the relevant SNPs related to T2D. Furthermore,
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RF performance is compared with other well-stablished machine learning tech-

niques, such as Support Vector Machines (SVM) and Logistic Regresion (LR)

2. Material and methods55

The Biomedical Research Institute of Girona has been gathering information

about the SNPs of subjects with their corresponding diagnoses (T2D, glucose

intolerance), as well as that of healthy subjects. Based on the available data,

a T2D risk prediction model has been obtained with the use of the RF tech-

nique, from which the relevance of each feature is obtained by using the Gini60

importance [9].

2.1. The problem

The problem addressed in this paper is to find the relevance of a set of SNPs

g1, g2, . . . , gn, given a set of samples P corresponding to people with and without

T2D, in order to enable the prediction of T2D.65

Each sample is noted as (x, y), where x is a list of attribute-value pairs

〈gi, vi〉 regarding the SNPs g1, g2, . . . , gn and their values v1, v2, . . . , vn for the

given sample; and y is the class to which the person belongs. In this particular

case, y ∈ C = {healthy, Type2diabetes}. Attributes, SNPs and features are

used synonymously throughout this work 1.70

Each SNP i has NV Ai values. In our particular case, NV Ai = 4 (∀i), with

the following interpretation: 1: the SNP is not present; 2: the SNP is present; 3:

the SNP has been expressed; 4: unknown value. Therefore, we are considering

SNPs with missing information 2.

1Attributes is often the proper notation of supervised machine learning methods; SNPs of

genetics, and features of feature learning methods
2In fact, this could be considered as a unique-value imputation method, as the unknown

or missing value is treated as another attribute value [17].
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2.2. Random Forest75

RF is a supervised learning method, which means that each instance or

sample is labelled with the outcome (class).

RF consists of an ensemble of k classifiers h1(x), h2(x), . . . , hk(x), with h(x)

being the joint classifier [7, 18]. Each classifier hi(x) consists of a decision tree,

in which nodes are attributes (see Figure 1). The selection of which attribute

is collocated in a node n is performed as follows: 1) a subset of attributes is

randomly selected, 2) an evaluation measure is applied to the selected attributes

according to their capability for providing homogeneity partitions of the sam-

ples, and 3) the attribute with the highest score is chosen. In particular, we

use the change of the Gini impurity3 [18] to compute the score, as described in

Equation (1)

∆G(gi, n) = −
∑

Ck∈C
p2(Ck) +

NVAi∑
j=1

p(vi,j)
∑

Ck∈C
p2(Ck|vi,j) (1)

where vi,j is the j value of the i SNP. Probabilities are estimated according to

the instances that reach the n node.

Once a node is assigned to an attribute gi, the data is split into as many80

sets as values the gi attribute has (four). Then, the tree is grown with new

nodes in each branch. These are obtained by repeating the attribute selection

process. The stopping condition is defined according to the number of instances

that remain in a node: if this number is lower than a given threshold τ , the

algorithm stops. Samples used to build each tree are also selected randomly85

with replacements.

Once the RF is built, it can be used (tested) for predicting the T2D risk of a

person. Given a query case q, with a list of SNP-value pairs 〈gi, vi〉, each decision

tree provides an outcome, hi(q). The final prediction (class for q) is obtained

by using an averaging mechanism that combines the probabilistic prediction of90

3Gini impurity is a measure of how often a randomly chosen element from the set would

be incorrectly labelled if it was randomly labelled according to the distribution of labels in

the subset.
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Figure 1: Example of a decision tree.

each tree regarding each class. The class with the highest prediction is assigned

to q.

2.3. SNP relevance

The relevance of each SNP is obtained by averaging the information with

regard to the SNP in each node n of each tree t, as shown below.95

GI(gi) =
1

T

∑
∀t

∑
∀n∈t

p(n)∆G(gi, n)δ(gi, n) (2)

where T is the total number of trees in the RF; δ(gi, n) is a boolean function that

returns 1 if gi has been selected as the splitting feature in node n, 0 otherwise;

and p(n) the proportion of cases in node n, i.e. p(n) = |Pn|
|P | , where |Pn| is the

number of samples that reach n . This is known as the Gini importance or Mean

Decrease Gini [19].100

2.4. Dataset and quality control

The experiments have been carried out with a dataset of 1074 subjects, but

246 subjects had an unknown diagnostic, and therefore they were removed from

the dataset, leaving a total of 828 participants for the experiments. Each sample

contains 101 SNPs regarding T2D.105
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Figure 2: Rate of missing SNP values per sample. Horizontal-axis corresponds to the subject

number of the 828 subjects with known diagnostic. Vertical-axis indicates the number of

missing values (of the 101 SNPs) for each subject.

Figure 3: Distribution of SNP values of the 828 subjects with known diagnostic. SNPs are

sorted according to the highest to lowest number of missing values. Blue: missing values;

red: 1 value; grey: 2 value; yellow: 3 value. Vertical-axis represent the percentage of values

(missing, 1, 2 and 3) for each SNP. Horizontal-axis correspond to SNPs.

Regarding missing information, Figure 2 shows the distribution of missing

data among the different samples. It is worth observing that some of the samples

accumulate a huge amount of missing information. On the other hand, Figure 3

shows the number of missing values per SNP4 (blue colour). SNPs have been

ordered in the x-axis according to the amount of missing values.110

The elimination of samples with a large amount of unknown SNPs benefits

the learning process, although RF can manage unknown data. Recent studies

4SNPs names are hidden for simplicity reasons and medical research confidentiality issues.

7



argue that RF can suffer from some instability regarding prediction outcomes if

the amount of irrelevant information they handle is high [20]. The improving on

stability of RF has been recently addressed by using a k-Nearest Neighbour (k-115

NN) algorithm to perform feature selection [21]. This alternative approach can

be explored in a near future regarding prediction, but some challenges should be

considered regarding the generation of the SNP’s relevance, due to the nature of

k-NN. Therefore, we removed samples with more than 25% missing information.

This kind of pre-process has been proven useful in previous work [15].120

Moreover, five SNPs (hcv256 a, ctgfg447, ela2g741, ela2a255, tlr4a170) were

used for subjects recruitment criteria and, as a consequence, they were also

removed. At the end, 677 samples were left, with 96 SNPs each one.

The remaining dataset has the following characteristics:

• The 10.94% of SNPs have missing value. The distribution of missing125

values respect to the class is 48.03% in the healthy class and 51.97% in

the diabetes class.

• there are 429 samples of healthy subjects. All of them have missing values.

• there are 248 samples of diabetic subjects. All of them have missing values.

2.5. Experimental set-up130

A 10-cross validation method has been used for experimentation purposes.

The original dataset is imbalanced, and we generated balanced sets. Therefore,

the percentage of both classes in each fold was 50%.

The number of decision tress has been set at k=1000. According to [7], as

the number of trees increases, the RF tends to converge on the real predictor.135

In order to analyse the implications of RF on learning SNP’s relevance, the

following experimental scenarios have been defined:

• Raw data: The dataset is used as provided.

• Clinical data: SNP data has been combined with clinical information to

understand the prediction capacity of SNPs.140
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• SNP-value relevance: Each SNP value has been substituted for a boolean

variable, so each SNP-value pair is converted to a boolean variable that

indicates whether the SNP has a particular value or not. For example,

SNP1 has three possible values (1, 2 or 3), then instead of a variable

to indicate the value of SNP1, we have three boolean variables (SNP1-1,145

SNP1-2 and SNP1-3). If SNP1 value is unknown, then the three SNP-

value boolean variables also have unknown value. The aim is to obtain

fine grain information about SNP-value interaction or interactions about

SNP variations.

Moreover, a comparison analysis with other state of the art machine learning150

methods, such as SVM and LR, has been performed.

Results are analysed in terms of the average AUC over all of the folds, where

AUC is the area under the ROC5 curve. An AUC of 1 represents a perfect test,

i.e. all subjects of class diabetic have been classified as diabetic without any

healthy subject being classified as diabetic.155

3. Results

Regarding the SNP relevance, results are measured according to the Gini

importance measure as defined in Section 2.3. The Gini importance of each

SNP is averaged over all of the k-folds and the mean and standard deviation

are provided.160

3.1. Initial results

An AUC of 0.853 ± 0.050 (average ± standard deviation) was obtained for

the raw dataset. The mean relevance values obtained for each SNP is plotted

in Figure 4. SNPs are sorted in the x-axis according to their original sort in

the dataset. The SNP with the highest relevance, tnf308, has been proved to165

5The Receiver Operating Characteristic curve (ROC curve) illustrates the ability of a

binary classifier by plotting the true positive rate against the false positive rate. Therefore, it

illustrates the cost, in false positives, of achieving a particular true positive rate.
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Figure 4: SNP relevance obtained with RF

be directly related to diabetes [22, 23]. Other high scored SNPs, such as snp4,

are proven to be related to T2D [24, 25]. Moreover, it is worth noting in Figure

4 that the standard deviation of the weights is low, demonstrating the stability

of the RF technique.

3.2. Adding clinical data170

Information about sex, Body Mass Index (BMI) and age has been added to

all of the samples in order to analyse the impact of such clinical variables on

the prediction and, with them the AUC increased to 0.890± 0.041. Therefore,

information about sex, BMI and age improves the prediction of T2D. However,

when only clinical data is used, the AUC decreases to 0.624 ± 0.049, meaning175

that these variables are insufficient for T2D prediction.

The relevance values learnt for the clinical variables are important, except

for sex, respect most of SNPs relevance values. This result coincides with the

fact that an AUC of 0.890 is obtained without using information about sex (only

SNPs, BMI and age), and the AUC is similar 0.854 when sex is added to the180

one achieved with only SNPs information.
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Figure 5: Feature relevance for SNPs and clinical variables (first three variables).

3.3. SNP-value relevance

The results in this scenario are worse since accuracy drops to 0.819± 0.046.

The reason for the performance decrease can be found in the increase of the

dimensionality problem, since the original set of 96 SNPs has been converted to185

a set of 96× 3 variables, without increasing the number of samples.

The relevance values learnt in this scenario are shown in Figure 6, where

SNPs with greater relevance in Figure 4 also have important relevance value for

at least one SNP-value pair. However, there are interesting differences between

SNP-value pairs for the same SNP. Therefore, despite the reduction in accuracy,190

using SNP-value attributes enables the comparison between the values of the

SNPs. In this regard, in 30 of the 96 SNPs, the biggest relevance is when the

value of the SNP is 1 (i.e. the SNP is not present). Similarly, in 43 of the

96 SNPs, the relevance is bigger for value 2 (i.e. the SNP is present); and in

23 SNPs, the relevance is bigger for a value of 3 (i.e. the SNP is expressed).195

Focusing on the 14 most relevant SNPs (see Figure 4), 4 times value 1 obtains

the biggest relevance, 9 times value 2 and value 3 just once. Therefore, according

to RF, the presence or not of these SNPs is more important than if they are

expressed for the prediction of T2D.
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Figure 6: SNP-value relevance.

Scenario RF LR SVM

Raw data 0.853± 0.050 0.835± 0.054 0.825± 0.044

With clinical data 0.890± 0.041 0.844± 0.050 0.825± 0.038

SNP-value 0.819± 0.046 0.791± 0.062 0.773± 0.059

Table 1: Summary of the results for all of the methods

3.4. Comparative analysis with other machine learning algorithms200

Two other machine learning techniques that are well established in the health

community have also been analysed: SVM and LR. SVM outperforms most of

the other classification techniques, as does RF [8]. We have used a linear kernel

since other kernels (polynomial, radial basis function, etc.) obtained worse

results. On the other hand, we use an LR approach, since this is a traditional205

practice in medicine.

Table 1 shows the results for all of the methods in each of the experimental

scenarios. It is possible to observe that RF outperforms all the other methods.

The reasons for the bad performance of SVM and LR can be found in the

overfitting problem caused by the dimensionality problem [3], but also on the210

issue that both methods constrain the predictive model to a linear split of the

sample space.
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On the other hand, the SNP relevance values for SVM and LR regarding the

raw data set are shown in Figure 7 (top and bottom respectively). It is possible

to observe that the values for both methods are similar, but they differ from215

the RF (see Figure 4). For example, the sets of weights found by SVM and

LR in the different cross-validation subsets have an average Pearson coefficient

of 0.90, while the average Pearson coefficient between the RF weights and the

absolute values of LR and SVM weights is 0.20 and 0.14, respectively.

Despite the fact that RF does not consider negative relevance values, the220

distribution of the importance of each SNP is different to that of the other

methods (see Figure 8). On the other hand, the sign of the relevance learnt by

SVM and LR provides more information regarding the class. That is, positive

relevance is related to diabetic persons, while negative relevance is related to

healthy persons.225

However, depending on the variability of the relevance values obtained, we

can observe that SVM and LR incur a high variability, demonstrating a high

degree of instability. On the other hand, RF standard deviations are the lowest.

In the other scenarios, the methods show similar results regarding relevance

learning.230

4. Discussion

RF is a simple method that does not require too many parameters nor un-

derlying assumptions about the domain in order to obtain SNP’s relevance while

obtaining a high predictive power. Moreover, the accuracy of RF is better than

that of other existing machine learning methods.235

Two of the important benefits of using the RF method is its capacity to

manage missing information, and the stability of the feature relevance set ob-

tained. Missing data is inherent when handling genetic data. On the other

hand, stability is important regarding result reproducibility [14].

In this regard, we have explored how the SNP relevance values could be240

transferred to other decision support tools. In doing so, we have used k-NN
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Figure 7: SNP relevance obtained with SVM (top) and LR (bottom)

methods [26], which classify new samples q according to a weighted average

similarity measure. The weight of the k-NN method have been set to the SNP’s

relevance learnt using RF. The accuracy results however, differs from those of

the RF ones (83.95%), as they decrease about 5 points down to 78.75%. This245

means that the aggregation of the Gini importance performed when extracting

the SNP’s relevance loses some information that is inherent in the RF regarding

their predictive power.

On the other hand, some works such as [14] suggests the use of handling dif-

ferent subsets of features in a same domain, instead of a single, averaged feature250

set. The problem in this scenario will be to decide which context determines
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Figure 8: SNP relevance obtained with RF (top) and SVM and LR (bottom). Lines are drown

for highlighting the shapes of the relevance learnt.

the identification of one subset or another.

There are several avenues of future work that could improve the RF model

presented here. First of all, it could be interesting to quantify the uncertainty of

the RF predictor following the work proposed in [10], which could be extended to255

detect covariate features. Moreover, the sparsity constraint, as described in [27],

helps to manage missing information. This constraint allows to define that only

some features are informative. It can be used to appropriately discard features

instead of the threshold cut applied in this work. Other alternative methods to

better manage missing data are proposed in [28], by providing alternative impor-260

tance measures. Finally, regarding imbalanced data, other measures than AUC

are proposed in [29] which are more robust towards class imbalance regarding

ensemble importance measures.

5. Conclusions

SNP’s data are complex data which presents the dimensionality problem265

(low samples with regard to the number of SNPs) with usually a lot of miss-

ing information. Some machine learning methods suffer the risk of overfitting

when trying to build a predictive model. Moreover, they can also suffer from
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some instability regarding the SNP’s relevance. The RF technique is a machine

learning technique that naturally handles the complexity of SNP datasets, while270

providing SNP’s relevance with a certain degree of stability as shown in this pa-

per, with the application of RF to obtain a predictive model for type 2 diabetes

prediction and the relevance of the SNPs that conforms to such a model.
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