
1Scientific RepoRts | 5:14600 | DOi: 10.1038/srep14600

www.nature.com/scientificreports

Obesity changes the human gut 
mycobiome
M. Mar Rodríguez1, Daniel Pérez2, Felipe Javier Chaves2, Eduardo Esteve1, Pablo Marin-Garcia2,  
Gemma Xifra1, Joan Vendrell3, Mariona Jové4, Reinald Pamplona4, Wifredo Ricart1, 
Manuel Portero-Otin4, Matilde R. Chacón3,* & José Manuel Fernández Real1,*

The human intestine is home to a diverse range of bacterial and fungal species, forming an 
ecological community that contributes to normal physiology and disease susceptibility. Here, the 
fungal microbiota (mycobiome) in obese and non-obese subjects was characterized using Internal 
Transcribed Spacer (ITS)-based sequencing. The results demonstrate that obese patients could be 
discriminated by their specific fungal composition, which also distinguished metabolically “healthy” 
from “unhealthy” obesity. Clusters according to genus abundance co-segregated with body fatness, 
fasting triglycerides and HDL-cholesterol. A preliminary link to metabolites such as hexadecanedioic 
acid, caproic acid and N-acetyl-L-glutamic acid was also found. Mucor racemosus and M. fuscus were 
the species more represented in non-obese subjects compared to obese counterparts. Interestingly, 
the decreased relative abundance of the Mucor genus in obese subjects was reversible upon weight 
loss. Collectively, these findings suggest that manipulation of gut mycobiome communities might be 
a novel target in the treatment of obesity.

The human gut is a robust ecosystem composed of a dynamic microbial community, collectively termed 
microbiota, which have important roles in the acquisition of energy from foods and the regulation of 
host physiology through immune modulation1,2. The finely tuned equilibrium between the host and 
microbiota may be disrupted when changes in the latter, described as “dysbiosis”, occur in the context of 
prevalent disorders such as obesity, diabetes and metabolic inflammation2,3.

Bacteria are the most abundant components of the human gut microbiome1,4,5. The composition 
of distal gut microbiota is known to be altered in obesity and obese individuals generally harbour a 
decreased ratio of Bacteroidetes to Firmicutes1,2,4. The relationship between gut microbiota and the emer-
gence of obesity4,6,7 might be causal, opening a myriad of possibilities for novel treatment approaches.

The mycobiome, referring principally to the fungal component of microbiota, comprises approxi-
mately 0.03–2% of total gut microorganisms and is an integral part of the gastrointestinal tract8–11. The 
diversity of fungi inhabiting the human gut remains poorly explored9,12–14. A fungal cell is > 100-fold 
larger than a bacterial cell, and thus fungi represent substantially greater biomass than is suggested by 
the number of available genomes3.

Next generation sequencing has been valuable for characterizing the human gut mycobiome3,12,15,16. 
Studies have shown that the human gut is home to more than 66 genera and 184 species of fungi, with 
Candida, Saccharomyces and Cladosporium being particularly common3,9,11,12,15,17,18. In mice, the majority 
of gut fungi are indigenous to the intestine since only a few of the most common gut fungi were found 
in mouse food16.
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Mycobiome dysbiosis is relevant in inflammatory diseases such Crohn’s disease or ulcerative colitis16–18. 
As yet, no studies have addressed the role of gut fungal microflora in obesity and related diseases.

Here, we used Multitag Pyrosequencing (MTPS) to evaluate fungal diversity in faecal samples from 
obese and non-obese patients using internal transcribed spacer (ITS) primers, which have broad fun-
gal specificity. We found that the faecal mycobiome is disturbed in obese patients in comparison with 
non-obese subjects, in parallel with alterations in glucose and lipid metabolism. We observed an optimal 
grouping of individuals according to genus abundance, that clustered together with metabolic pheno-
types. Additionally, we found a dynamic relationship between adiposity and the gut mycobiome after 
weight loss, indicating that manipulation of gut mycobime communities could be a novel approach in 
the treatment of obesity.

Results
Characteristics of the studied participants. A total of 52 Caucasian subjects were recruited at 
the Hospital Universitari Dr. Josep Trueta, Girona (Spain) (Supplementary Table 1). The patients were 
matched by age and sex and stratified according to BMI in order to evaluate the associations between 
faecal fungi and obesity. Clinical and analytical characteristics according to obesity status are shown in 
Table 1.

Taxonomic description and relative abundance of fungi. The Internal Transcribed Spacer 
(ITS)-based sequencing effort yielded 126704 sequence reads, of which 102891 corresponded to known 
fungi belonging to 5 different phyla, 13 classes, 50 families and 75 different genera (Supplementary Table 
2).

Fungal sequences were detected in every sample analyzed. Less than 1% of sequences correspond-
ing to unknown fungi were detected in 48% of subjects and between 1 and 20% in 17.3% of subjects. 
The majority of classes, families and genera belonged to the phylum Ascomycota, which corresponds 
to the largest fungi phylum, and were detected in all samples studied. The phyla Basidiomycota and 
Zygomycota were detected in 90.38% and 42.30% of samples, respectively. The phyla Chytridiomycota 
and Neocallimastigomycota, which include a small number of fungi, were present only in two subjects.

At the class level, Saccharomycetes was the most predominant, and was detected in every sample 
analyzed, followed by Eurotiomycetes and Dothideomycetes, present in 92.3% and 61.53% of the samples, 
respectively; all belonging to the phylum Ascomycota. The most abundant class of the Basidiomycota 
phylum was Agaricomycetes, which was present in 46.15% of the samples.

The most abundantly detected families were: Aspergillaceae (86%), belonging to the class 
Eurotiomycetes, and Dipodascaceae (52%) and Saccharomycetaceae (67.3%) belonging to the class 
Sacharomycetes. Finally, the family Mucoraceae, one of the three family sequences from the phylum 
Zygomycota, was identified in 38% of samples.

The most prevalent genera in our analysed samples were Penicillium (present in 73% of the sam-
ples), followed by Candida (55%), Saccharomyces (55%), Mucor (38%) and Aspergillus (35%). The rela-
tive proportions of the most abundant genera detected by pyrosequencing in each patient are shown in 
Supplementary Figure 1.

Obese mycobiome. No differences were detected in the richness of the mycobiome between 
non-obese and obese subjects (Fig.  1a). However, family biodiversity was significantly lower in obese 
subjects compared with non-obese individuals, and a tendency towards increased biodiversity at other 
levels was also found in non-obese individuals (Fig. 1b).

Obese and non-obese patients could be distinguished by their specific fungal composition (Fig. 1c,d). 
The relative abundance of the two major phyla, Ascomycota and Basidiomycota, was not significantly dif-
ferent between obese and non-obese subjects; however, the minor phylum Zygomycota was significantly 
under-represented among obese subjects (p =  0.031) (Fig. 1e).

At the class level, Tremellomycetes appeared only in a subset of obese subjects, whereas it was com-
pletely absent in non-obese subjects (p =  0.028). In contrast, the class Agaricomycetes was significantly 
more abundant in non-obese patients compared to obese patients (p =  0.017) (Fig. 1f).

At the family level, no significant differences were observed between obese and non-obese sub-
jects. Nonetheless, Aspergillaceae (15.91%) and Mucoraceae (7.58%) were the most prevalent families 
in non-obese subjects, while Dipodascaceae (7.31%), Aspergillaceae (6.93%) and Saccharomycetaceae 
(6.13%) were the most abundant in obese subjects (Fig. 1g).

Candida, Nakaseomyces and Penicillium (present in 6.57%, 4.33% and 3.12%, respectively) were the 
most abundant genera detected in obese patients (Fig.  1h)., Mucor was the most prevalent genus in 
non-obese patients (8.07%), followed by Candida and Penicillium (5.79% and 2.49% respectively).

Sample clusters according to genus abundance: relation with metabolic parameters. We 
used multivariate analyses to further evaluate the potential differences in the composition of the myc-
obiome with respect to obesity. A Partial Least Square Discriminant Analysis (PLSDA) revealed that a 
model with a high accuracy (three component model accuracy 0.77; R2 0.83 and Q2 0.027) could distin-
guish obese from non-obese mycobiomes (Fig. 1c,d). In order to examine potential overfitting, we also 
tested as alternative systems for classification random forest-type classifications and recursive support 
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vector machine, by using all genera of the samples. Regarding random forest-type classification, the 
system produced a relatively low classification error for obese individuals (18%), with high abundance 
of Aspergillus genus and low abundance of Mucor, Penicillium, Saccharomyces and Eupenicillium genera 
contributing to obesity (Supplementary Fig. 2). Concerning the recursive support vector machine, this 
system generated a 10-genus model with an overall error rate near 30% (Supplementary Fig. 3). In this 
model, low abundance genera, such as Moniliella, Paralepista, Fuscosporia, Limonomyces were present 
in most of the models tested, but also low Eupenicilium abundance was present in obese individuals. 
Further, by including a model of only Eupenicillium, Mucor, Penicillium, Moniliella and Eurotium, PLSDA 
model accuracy was 79.3%, with low discovery rate (permutation test, p =  0.04), suggesting that all these 
genera are fairly associated with obesity (data not shown).

Next, the relative genus abundances were used for optimal grouping (clustering) of individuals 
according to the Calinksi-Harabasz index. Interestingly, these tests uncovered the presence of 3 potential 
clusters (Fig.  2a,b) that differed according to the relative abundance of Penicillium spp., Mucor spp., 
Aspergillaceae, Saccharomycetes, Eurotiomycetes and Zygomycota (Fig.  2c). Strikingly, these clusters 
were associated with body fatness (BMI, DEXA-measured fat mass and android fat mass), and also with 
fasting triglycerides and HDL- cholesterol (Fig. 2d). The relationships among anthropometric and meta-
bolic parameters were more marked between subjects harbouring cluster 1 (Fig. 3a).

Women Obese subjects Non-obese subjects P-value

N 27 12

Age 47.85 ±  7.74 43.08 ±  9.11 0.1

BMI ( kg/cm2) 45.36 ±  5.52 22.66 ±  3.34 < 0.001

Waist (cm) 120.88 ±  11.25 76.91 ±  9.07 < 0.001

Hip (cm) 134.81 ±  11.56 100.41 ±  8.74 < 0.001

Fat Mass (kg) 57.159 ±  9.328 19.293 ±  7.984 < 0.001

Lean Mass (kg) 54.539 ±  6.887 37.892 ±  4.082 < 0.001

Android fat mass (kg) 5.562 ±  1.231 1.428 ±  0.841 < 0.001

SBP (mmHg) 138.14 ±  18.81 121.83 ±  15.75 0.013

DBP (mmHg) 74.55 ±  10.43 64.83 ±  10.24 0.01

Fasting glucose (mg/dl) 93.77 ±  15.26 89.08 ±  7.84 0.322

Glucose post-OGTT(mg/dl) 134.11 ±  40.15 102.75 ±  29.13 0.02

AUC glucose (mmol/l/60 min) 17680 ±  3838.15 13796.25 ±  2918.35 0.003

Glycated haemoglobin (%) 5.84 ±  0.37 5.44 ±  0.22 0.002

Fasting insulin (mU/l) 11.24 ±  9.18 3.90 ±  3.39 0.001

Insulin post-OGTT(mU/l) 71.96 ±  58.94 32.50 ±  37.08 0.040

AUC insulin (mmol/l/60 minutes) 7075 ±  4189 4094.50 ±  2909.05 0.032

HOMA 2.83 ±  2.82 0.9 ±  0.75 0.003

Uric Acid (mg/dl) 5.20 ±  1.34 3.42 ±  0.77 0.245

AST (U/l) 21.33 ±  12.64 21.5 ±  7.77 0.987

ALT (U/l) 23,66 ±  18,28 19.08 ±  7.08 < 0.001

GGT (U/l) 22.22 ±  8.41 18.58 ±  9.86 0.409

Cholesterol (mg/dl) 201.27 ±  37.84 200.83 ±  37.07 0.973

LDL-Cholesterol (mg/dl) 130.51 ±  32.66 115.5 ±  33.33 0.120

HDL-Cholesterol (mg/dl) 48.85 ±  9.54 72.83 ±  16.68 < 0.001

Triglycerides (mg/dl) 109.48 ±  43.30 61.5 ±  26.82 < 0.001

LBP (μ g/ml) 24.99 ±  9.47 16.05 ±  3.03 < 0.001

CRP (mg/dl) 0.91 ±  0.47 0.16 ±  0.28 < 0.001

Ferritin (ng/ml) 83.4 ±  69.08 54.58 ±  54.40 0.180

Table 1.  Clinical and anthropometrical characteristics of the study groups. Data are given as mean ±  SD. 
BMI: Body mass index, SBP: Systolic Blood Pressure, DBP: Diastolic Blood pressure; OGTT: Oral Glucose 
Tolerance Test; AUC: Area Under the Curve, HOMA: homeostatic model assessment insulin resistance, 
AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, GGT: Gamma-glutamyltranferase, LDL-
cholesterol: low-density lipoprotein, HDL-cholesterol: high-density lipoprotein; LBP: Lipopolysaccharide-
binding protein, CRP: C-reactive protein.
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Association with anthropometrical and metabolic parameters. Heat map analysis demon-
strated significant associations among anthropometric and metabolic parameters and fungal taxa 
(Fig. 3b). The relative abundance of the phylum Zygomycota, class Agaricomycetes, families Mucoraceae 
and Nectriaceae and genus Mucor and Penicillium correlated negatively with parameters of body fatness 
such as BMI, fat mass, android fat mass and hip circumference. Conversely, the relative abundance of 
the classes Sacharomycetes, Tremellomycetes, Cystobasidiomycetes, and families Erythrobasidiaceae and 

Figure 1. Fungal distribution in obese and non-obese subjects. (a) Fungal richness and (b) fungal 
biodiversity observed in obese and non-obese faecal samples. (c) Mycobiota genus abundance defined by 
PLSDA in obese and non-obese individuals. (d) Variable importance in projection of the first component of 
the PLSDA model. Frequencies of detected fungi in each phylum (e), class (f), family (g) and genus  
(h) between obese and non-obese patients. Mean values ±  s.e (bars) are plotted, *p <  0.05.
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Dipodascaceae and genus Aspergillus was positively associated with adiposity. Moreover, serum total 
cholesterol, LDL-cholesterol and fasting triglycerides were negatively linked to the relative abundance of 
sequences belonging to phylum Zygomycota, and also to the class Eurotiomycetes, families Mucoraceae, 
Hypocraceae and genus Mucor. Conversely, the relative abundance of those sequences belonging to the 
family Dipodascaceae was positively associated with serum total cholesterol and fasting triglycerides. 

Figure 2. Phylogenetic and metabolic differences between clusters (a) Class analyses and (b), Cluster 
of patients based on fungi genus identified by pyrosequencing-based ITS- sequences using Principal 
Coordinate Analyses (PCA) (c), Abundance of the main contributors of each cluster. The coloured scale blox 
plot, blue, red and green represents cluster 1, 2 and 3 respectively. (d) Cluster associations with clinical and 
anthropometrical data (body fat and lipid profile). BMI: Body mass index, HDL-cholesterol: high-density 
lipoprotein.
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Figure 3. Relationships between human mycobiome and anthropometric and metabolic parameters.  
(a) Circos table viewer plot of significant correlations (Spearman test, at least p <  0.05) among 
anthropometric, metabolic and cardiovascular parameters in the identified clusters. The different Circos 
graphs depict that these associations are present in individuals belonging to specific clusters while in others 
the correlation disappears. Black color indicates negative correlations and edge width of lines connecting 
segments is proportional to correlation coefficient (b) Heat map showing associations of phylum, class, 
family and genus with clinical and anthropometrical data. The heat map is organized with fungi in rows and 
metabolic parameters in columns. *p <  0.05. Abbreviations key: P: Phylum, F: Family, C: Class,  
G: Genus, BMI: Body mass index, SBp: Systolic blood pressure, DBp: Diastolic blood pressure, LMs: 
Lean mass, FMs: Fat mass, WtH: waist to hip ratio, TAG: triacylglycerides, Glyc: fasting glycemia, Chol: 
total cholesterol, GTT: Glucose tolerance test, AUC: Area under the curve, HOMA: homeostatic model 
assessment insulin resistance, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, GGT: 
Gamma-glutamyltranferase, LDL-cholesterol: low-density lipoprotein, HDL-cholesterol: high-density 
lipoprotein, LBP: Lipopolysaccharide-binding protein, CRP: C-reactive protein.
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The relative abundance of fungi belonging to the class Eurotiomycetes, family Aspergillaceae and 
genus Penicillium was positively correlated with HDL-cholesterol, whereas the abundance of the classes 
Saccharomycetes, Tremellomycetes, Cystobasidiomycetes and family Erythrobasidiaceae was negatively 
correlated with this parameter (Fig. 3b).

Fascinatingly, the relative abundance of some fungi was linked to parameters of glucose metabo-
lism. Specifically, the relative abundance of fungi of the class Agaricomycetes, and families Mucoraceae, 
Ceratocystidaceae, Corticiaceae, Debariomycetaceae, genus Mucor, Monilliela, Ceratocystis and 
Eupenicillium were negatively associated with HOMA value, glycated haemoglobin and AUC of glu-
cose and insulin during oral glucose tolerance testing. Conversely, the relative abundance of the genus 
Eurotium was positively associated with fasting glucose and glycated haemoglobin, while the phylum 
Ascomycota was positively associated with fasting insulin, and the genus Aspergillus correlated positively 
with AUC insulin. Of note, we also observed associations with parameters of metabolic inflammation 
(C-reactive protein and lipopolysaccharide binding protein) (Fig. 3b).

Associations of the gut mycobiome with “healthy” and “unhealthy” obesity. Amongst obese 
individuals, we observed significant associations between the relative abundance of sequences belonging 
to the Eurotiomycetes class (belonging to Ascomycota phylum) and metabolic parameters (Supplementary 
Table 3). Interestingly, although the mean relative abundance of Eurotiomycetes was similar between 
obese (13.02%) and non-obese (13.40%) subjects, 40% of obese patients had an abundance lower than 
1%. We observed that obese subjects with less than 1% of sequences belonging to Eurotiomycetes in 
faecal samples had a more pronounced dyslipidemic profile, increased fasting triglycerides and increased 
total cholesterol concomitant with increased fasting hyperinsulinemia, compared with obese patients 
with Eurotiomycetes > 1% (p =  0.022, p =  0.036 and p =  0.007, respectively) (Supplementary Table 3) 
(Fig.  4a,b), and a tendency towards increased HOMA and LDL-cholesterol (p =  0.063 and p =  0.055, 
respectively) (Supplementary Table 3). Interestingly, no significant differences in fasting insulin and fast-
ing triglycerides were found between obese subjects with Eurotiomycetes present in > 1% and non-obese 
subjects (Fig. 4a,b).

We performed a plasma metabolomics profile in 8 subjects (Supplementary Table 4). Several metab-
olites differed significantly in concentrations between individuals with Eurotiomycetes abundance < 1% 
and those with > 1% (Fig.  4c). Remarkably, the relative abundance of Eurotiomycetes was associated 
with plasma concentrations of N-acetyl-L-glutamic acid, caproic acid and hexadecanedioic acid, among 
other metabolites (Fig. 4d–f). The abundance of Mucor genus was also found significantly correlated with 
certain metabolites (Fig. 4g).

Weight loss results in increased relative abundance of the Mucor genus. Since the Mucor 
genus was significantly more abundant in non-obese subjects, we investigated the potential relationship 
between gut mycobiome ecology and body fat. We evaluated the relative abundance of Mucor spp. in 
14 patients by real time PCR before and after diet-induced weight loss. Results showed that the relative 
abundance of Mucor spp. for each subject paralleled the degree of weight loss (Fig.  5a). Additionally, 
pyrosequencing of Mucor positive patients showed that M. fuscus, M. circineloides, M. velotinosus and 
M. racemosus were the species identified in Mucor genus positive faeces. In non-obese patients, M. rac-
emosus and M. fuscus were significantly more present (p =  0.0099 and p =  0.0316, respectively) when 
compared with obese patients (Fig. 5b).

The relative abundance of M. racemosus was negatively associated with BMI, waist circumference, 
hip circumference, % total fat, fat android distribution, fat gynoid distribution, LDL-cholesterol, fasting 
triglycerides, uric acid and CRP (Fig. 5c).

Discussion
This study shows that the mycobiome of obese subjects has an increased presence of the phylum 
Ascomycota, class Sacharomycetes and families Dipodascaceae and Saccharomycetaceae and, an 
increased relative abundance of fungi belonging to class Tremellomycetes, compared with non-obese 
subjects. Although fungi are known to be linked to a number of gastrointestinal diseases11,14,15,17,18, the 
association between fungal microflora and obesity is novel. A clear tendency towards decreased diversity 
was observed in obese subjects. These findings are consistent with previously reported data on bacterial 
diversity in the obese state19 and are contrary to the observed increase in fungal diversity in patients 
with inflammatory bowel disease or chronic hepatitis B13,17,18. Overall, these findings indicate that the 
fungal gut mycobiome seems to be disturbed in obese patients, in association with alterations in lipid 
and glucose metabolism.

The relative abundance of some fungi was linked to adiposity and related metabolic disorders 
including insulin resistance, dyslipidaemia, blood pressure and inflammatory activity. For example, 
the phylum Ascomycota, classes Sacharomycetes, Tremellomycetes and Cystobasidiomycetes, families 
Erythrobasidiaceae and Dipodascaceae and genera Aspergillus, Eurotium and Rhodotorula, all increased 
with the occurrence of metabolic abnormalities. Conversely, the relative abundance of fungi belonging to 
the phylum Zygomycota, classes Agaricomycetes and Eurotiomycetes, families Mucoraceae, Nectriaceae, 
Ceratocystidaceae, Corticiaceae, Debariomycetaceae and Hypocraceae, and genera Mucor, Penicillium, 
Monilliela and Ceratocystis were associated with protection from these metabolic disorders. The finding 
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that systemic inflammation is associated with obesity suggests that the obesity-related bacterial gut com-
position has a proinflammatory effect19. This is similar to our observations with Tremellomycetes. This 
class was not only significantly more abundant in obese subjects, but also correlated positively with 

Figure 4. Metabolic associations of the fungal faecal communities within obese subjects and their 
relationship with body fat. Classification of patients according to Eurotiomycetes abundance in relation 
to (a) fasting insulin (b) fasting triglycerides (c) Individuals with Eurotiomycetes abundance < 1% and 
those with > 1% present significant differences (p <  0.05, Student’s t test) in the plasma concentration of 
several metabolites, coloured in pink. Profiles panels (both normalized and raw data) from representative 
metabolites. (d) N-acetyl-L-glutamic acid (e) Caproic acid (f), Hexadecanedioic acid 0: individuals with 
Eurotiomycetes < 1% and 1: individuals with Eurotiomycetes > 1%. (g) Mucor is associated with specific 
abundance of selected metabolites.*p <  0.050.
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inflammatory parameters. Of note, some metabolites from the Penicillium genus have been shown to 
exhibit anti-inflammatory and insulin sensitizing activities20.

Interestingly, the presence of some fungal communities was associated with metabolically healthy 
obese subjects. Although the relative abundance of Eurotiomycetes was similar in obese and non-obese 
subjects, 40% of obese subjects had an abundance less than 1%, and this was associated with a worse 
metabolic glucose and lipid profile. Moreover, those obese subjects with > 1% Eurotiomycetes had similar 
fasting insulin and fasting triglycerides compared with non-obese subjects.

Figure 5. Mucor is associated with obesity. (a) Changes in the relative abundance of Mucor gene 
expression and weight loss at time 0 and 4 months after weight loss for every studied patient. (b) Mucor 
species distribution in obese and non-obese studied fecal samples. *p <  0.050. (c) Heat map showing 
associations of Mucor spp. with clinical and anthropometrical data. The heat map is organized with Mucor 
spp. in rows and metabolic parameters in columns. *p <  0.05. Abbreviations key: BMI: Body mass index, 
SBP: Systolic blood pressure, DBP: Diastolic blood pressure, HDL-cholesterol: high-density lipoprotein, LDL-
cholesterol: low-density lipoprotein, AST: Aspartate aminotransferase, ALT: Alanine aminotransferase, GGT: 
Gamma-glutamyltranferase, CRP: C-reactive protein.
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N-acetyl-L-glutamic acid is known to be metabolized by some members of the Ascomycota phy-
lum, to which Eurotiomycetes belongs21. Interestingly, N-acetyl-L-glutamic acid salts have been shown 
to exhibit natriuretic effects, resulting in the lowering of blood pressure22. Furthermore, hexadecanedioic 
acid, associated with a decreased abundance of Eurotiomycetes, has been demonstrated to exhibit anti-
mycotic activity23. Further studies should be performed to experimentally address whether the metab-
olites described here correlate only with the expansion (or decrease) of specific fungi, or whether they 
have a direct effect on these fungi.

Candida spp. have been successfully identified from the intestine of healthy individuals9,17. Some stud-
ies have suggested a link between expansion in Candida spp. and diabetes24 and inflammatory disorders 
of the gastrointestinal tract17,25, with a possible active role for Candida albicans26. In this sense, we have 
not observed differences of the relative expression of Candida albicans in obesity (data not shown).

In our study, the Mucor genus was the most prevalent genus in non-obese subjects; specifically,  
M. racemosus and M. fuscus were the more representative species in these subjects. Mucor sp. has a cell 
wall polysaccharide composition based on chitin-chitosan27, and multi-functional roles of this polysac-
charide as a protective agent against obesity have been described28. M racemosus has been described as 
source of chitosan29. Future animal studies will help to evaluate the role of the identified Mucor spp. in 
obesity.

Mechanistically, we also demonstrate that the relative abundance of the Mucor genus increased after 
weight loss in obese subjects in a manner analogous to Bacteroidetes, which increases also after weight 
loss4,30. However, a larger study should be carried out to evaluate the significance of these findings.

At the bacterial level, three predominant enterotypes have been identified based on variations in the lev-
els of three different genera (Bacteroides, Prevotella and Ruminococcus)10,31. Here we identified 3 different 
clusters; strikingly, cluster 1 was significantly associated with adiposity markers and dyslipidemia, hinting 
at a possible target for treatment. We observed that the major shift in fungal populations associated with 
cluster 3 mirror similar dramatic changes in the bacterial communities (ratio Firmicutes/Bateriodetes)  
than cluster 1 and 2 (data not shown). One could argue that 4 samples that fall in the less abundant 
cluster 3 are actually outliers. In order to exclude that proposed clusters were not derived from outlying 
measures, we performed Grubb’s outlier test on the matrix of Jensen-Shannon distances, by employing 
the R package “outliers”, and found no significant outliers. However the number of subjects studied 
within this cluster was too low to reach to any conclusion. We acknowledge that further cluster validation 
is required for a generalization of these results as potential “enteromycotypes”.

Finally, fungal-fungal interaction analysis showed that, in obese patients, the Ascomycota phylum 
negatively correlated with Basidiomycota and Zygomycota phyla. Noteworthy, among non-obese sub-
jects, a significant negative association was observed between Pichiaceae and Dipodascaceae. The same 
antagonistic relationship between Candida (Family Dipodascaceae) and Pichia (Family Pichiaceae) has 
been observed in oral mycobiota of HIV-infected patients32.

In summary, this study represents the first analysis of the human mycobiome in obesity and associ-
ated metabolic disorders. There is limited knowledge on gut bacterial-fungal interactions and their role 
in health and disease. An understanding of cross-kingdom microbial interactions within the context of 
health and disease holds considerable promise to facilitate the discovery of potential preventative and 
therapeutic targets. Further analysis on the metabolic road-maps involving fungal and bacterial genomes 
will be needed to unequivocally unravel new avenues in inter-kingdom metabolic dependencies.

Methods
Subjects and Sample Collection. Two cohorts were used to perform the study. In cohort 1, 52 sub-
jects were recruited at Hospital Universitari Dr. Josep Trueta, Girona (Spain) (Supplementary Table 1). 
All subjects were Caucasian and reported that their body weight had been stable for at least 3 months 
before the study. These subjects had no systemic disease other than obesity or dyslipidaemia, were free of 
any infection in the month before the study and did not undergo treatment with drugs that affect glucose 
metabolism or antibiotics. Liver and renal diseases were specifically excluded by biochemical work-up.

Cohort 2 included 14 overweight and obese patients from the Hospital Universitari Dr. Josep Trueta. 
The subjects were 7 men and 7 women, aged 54.2 ±  8.7 years, with a mean BMI of 33.4 ±  7.4 kg/m2. 
Subjects were instructed to maintain a 20 kcal/kg balanced diet. Measurements and samples were taken 
at baseline and 16 weeks after starting the diet. At the end of this period, mean BMI was 31.5 ±  7.3 kg/m2  
(p =  0.005 vs. baseline).

All experiments were performed in accordance with approved guidelines and regulations. All exper-
imental protocols were approved by the Ethics Committee of the Hospital Universitari Dr. Josep Trueta 
(Comitè d’Ètica d’Investigació Clínica, CEIC, ethical approval number 2009046). Informed consent was 
obtained from all participants.

Clinical and biochemical variables. Each patient underwent evaluation of anthropometric and lab-
oratory parameters on the same day. Blood pressure was measured using a blood pressure monitor 
(Hem-703C, Omron, Barcelona, Spain), with the subject seated and after 5 minutes of rest. Three read-
ings were obtained and the mean value was used in the analyses.
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Body composition. Fat mass was evaluated by dual-energy x-ray absorptiometry (DEXA) using a GE 
Lunar Prodigy Oracle densitometer (GE Healthcare, enCore software version 13.2). Whole body compo-
sition (fat mass and fat-free soft tissue mass) was obtained by trained personnel according to standard 
procedures. Obesity was considered as a BMI ≥ 30 kg/m2. Android fat mass was calculated using regions 
of interest at the abdominal level in DEXA scans.

Analytical methods. After 8 h of fasting, blood was drawn for the measurement of fasting plasma 
lipids, glucose and insulin. Serum glucose concentrations were measured in duplicate by the glucose 
oxidase method using a Beckman Glucose Analyser II (Beckman Instruments, Brea, CA). Intra-assay 
and inter-assay coefficients of variation (CV) were less than 4%. Plasma lipid determinations were per-
formed on a Roche/Hitachi Cobas c 711 autoanalyzer (Roche Diagnostics GmbH, Mannheim, Germany). 
Total serum cholesterol was measured by an enzymatic colorimetric cholesterol esterase/cholesterol oxi-
dase/peroxidase reaction (Cobas CHOL2). HDL cholesterol was quantified by a homogeneous enzy-
matic colorimetric esterase/cholesterol oxidase/peroxidase reaction (Cobas HDLC3). LDL cholesterol 
was calculated using the Friedewald formula. Total serum triglycerides were measured by an enzymatic 
colorimetric glycerol phosphate oxidase and peroxidase reaction (Cobas TRIGL).

Glycated haemoglobin (HbA1c) was measured by high-pressure liquid chromatography using a fully 
automated glycosylated haemoglobin analyzer system (Hitachi L-9100). Serum insulin was measured in 
duplicate using a monoclonal immunoradiometric assay (Medgenix Diagnostics, Fleunes, Belgium). The 
intra-assay CV was 5.2% at a concentration of 10 mU/l and 3.4% at 130 mU/l. The inter-assay CVs were 
6.9 and 4.5% at 14 and 89 mU/l, respectively. The homeostatic model assessment insulin resistance index 
(HOMA-IR) was calculated by the formula: (serum glucose (mmol/l) x serum insulin (mU/l))/22.5. 
A standard 75 g oral glucose tolerance test was performed after an overnight fast and venous blood 
samples were drawn at time points 0 30, 60, 90 and 120 min for determination of plasma glucose and 
insulin. Area under the curve of glucose (AUC-glucose) and insulin (AUC-insulin) concentrations dur-
ing the 120 min of the 75 g oral glucose tolerance test was then calculated using the trapezoid method. 
C-reactive protein (ultrasensitive assay; Beckman, Fullerton, CA) was determined by a routine labora-
tory test, with intra- and interassay CVs of 4%. The lower limit of detection is 0.02 mg/l. Serum ferritin 
was measured by microparticle enzyme immunoassay (AxSYM™ ; Abbot Laboratories) with intra- and 
interassay CVs <  6%. Serum lipopolysaccharide binding protein (LBP) levels were measured with an 
ELISA kit (HK315-02, HyCult Biotech Inc., Uden, The Netherlands). Serum samples were diluted and 
assayed according to the manufacturer’s instructions. Intra- and inter-assay CVs for all the determina-
tions were between 5 and 10%. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) 
and gamma-glutamyltransferase (GGT) levels were determined using enzymatic methods. Uric acid was 
determined by routine laboratory tests.

Stool processing and DNA extraction. Stool specimens were obtained from patients using sterile 
containers and were immediately frozen in liquid nitrogen and stored at − 80 °C until analysis. Samples 
were processed individually using the Fast DNA Spin Kit for faeces (MP Biomedicals, Solon, OH). Briefly, 
a frozen aliquot (400mg) of each sample was added to a 2 ml tube containing 825 μ l sodium phosphate 
buffer, 275 μ l of pre-lysis solution and Lysing matrix E, a mixture of ceramic and silica particles designed 
to efficiently lyse all stool microorganisms. Each extraction tube was agitated twice for 40 seconds using a 
Fast Prep FP120 instrument at a speed setting of 6 to ensure proper extraction of fungal DNA, a crucial 
point in the methodology. Tubes were cooled on ice between the different agitation procedures. DNA 
extraction was then carried out following the manufacturer’s instructions. The quantity and quality of 
isolated DNA was determined with a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, 
Wilmington, DE, USA).

Pyrosequencing analysis. Fungal genomic sequences present in faecal samples were identified by 
amplification of the internal transcribed spacer-based region (ITS). The ITS primers used span the 
region between the 3′  end of the 18S gene, including the entire 5.8S gene, and end of the 5′  region 
of 28S gene. PCR reactions were performed in 15 μ l reaction volumes containing 0.33 μ M of primer. 
Two different PCR reactions were performed per sample, using two different pair of primers in a 
384-well plate. Both sets of primers contained a universal tag sequence in the second PCR step (5′  =   
AGGTCAGGATCAACGCTCAAG, 3′  =   CATCTTGCATGATCCAACCTTC). Primer set A; H1SeqF 
GTCATTTAGAGGAAGTAAAAGTCGTAACAAGG and H1SeqRb GCTRYGTTCTTCATCGDTGC. 
Primer set B; H2SeqFb GCA TCG ATG AAG AAC RYA GC and primerH2SeqRb TTC TTT TCC TCC 
GCT TAT TGA TAT GC. Standard PCR cycling was performed on a Veriti 384-well Thermal Cycler 
(Applied Biosystems) with an initial step at 95° for 15 min followed by 35 cycles of 95° for 20 sec, 62° 
for 30 sec and 72° for 60 sec, and a final step of 72° for 10 min. PCR products were visualized using a 
Qiaxcel system (Qiagen).

PCR products from the first step were diluted 1/5 with water and were used as templates in the 
second PCR step in order to tag every PCR product with a sample specific tag multiplex identifier 
(MID) consisting of a 10 base pair specific sequence. Two μ l of the diluted PCR product were used 
for the second PCR reaction, containing 0.3 μ M of each MID. Standard PCR cycling was performed as 
before. PCR products were visualized using a Qiaxcel system, purified using size-exclusion AMPure SPRI 
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DNA-binding paramagnetic beads (Agencourt Bioscience Corp. Beckman Coulter) and quantified in 96 
well-format with the QuantiFluor-ST Fluorometer (Promega) using a PicoGreen®  assay (InvitroGen). 
Samples were then pooled at an approximate equimolar concentration. After pooling, the library was 
further purified with the Pippin Prep size-exclusion system (SageScience), quantified in 96-well format 
with the QuantiFluor-ST Fluorometer (Promega) and diluted to 5 ×  105 molecules/μ l. Five μ l of the pools 
were then subjected to emulsion PCR (emPCR) using the 454 Junior Titanium Series LibA emPCR kit 
(Roche diagnostics) to perform last amplification step.

Data Analysis. The 454 multitag pyrosequencing (MTPS) data was de-multiplexed by sorting the 
sequences into bins based on the barcodes in the samples. A quality control was carried out on the reads 
for each sample using FastQC (v. 0.10.1) to assess potential problems in the data. TagCleaner (v. 0.12) was 
used to remove the additional tag sequences (sequencing primers and adaptors) that appeared on the raw 
reads, which could contain deletions or insertions due to sequencing limitations. This step was followed 
by the trimming of low quality read ends (both 5′  and 3′ ) with PRINSEQ (v. 0.19.5), removal of short 
reads, removal of reads with low mean quality and removal of low complexity reads. The cleaned pyrose-
quencing data was BLASTed against the NCBI nucleotide collection (nr/nt) database using BLAST from 
the standalone BLAST+  package. We found that 18.8% of the data did not match to fungal sequences. 
Fungal reads were assigned taxonomically with MEGAN (v. 5.2.3). This step was optimized to maximize 
the number of reads (Min Support  =   1, Min Score  =   50.0, Max Expected  =   0.01, Top Percent  =   5.0, 
Min Complexity  =   0.44). The results were summarized at a variety of taxonomic ranks according to the 
NCBI taxonomy using the Lowest Common Ancestor (LCA) algorithm in MEGAN. The LCA algorithm 
assigns taxa to the lowest possible taxonomic rank that presumably reflects the level of sequence variation 
present in the query sequence compared with reference sequences.

MEGAN classifies each read depending on 4 different types of scenarios: 1) Those reads with a clear 
species or genera classification get assigned to this taxon. 2) Those with an ambiguous classification 
(reads match with several different taxa): we report the upper common level of the main matches. 3) 
Reads in all fungal classes: classified as unknown fungi 4) Those with no matches to fungal sequences: 
removed from the data analysis but taken into account in the quality control of sequences.

Although parameters were optimized to reach species level as much as possible, when BLAST results 
classified the sequence as one specific species in most of the hits, MEGAN stops at the higher taxon. We 
are aware that MEGAN is more conservative than other curated databases, however it is robust enough 
to be valid for this project and as we are aware of its limitations. Therefore, we decided to provide 
sequences only up to genus level.

Richness of fungal community was calculated as the number of different taxa for each patient. 
Biodiversity index was assessed using the Shannon-Weaver index since this is quite insensitive to sample 
size18. This index was calculated with R-bioconductor package vegan (v. 2.0–10).

Samples clusters according to genus abundance. Samples were clustered based on relative genus 
abundances using Jensen-Shannon distance and the Partitioning Around Medoids clustering algorithm, 
previously used for enterotype determination10. The results were assessed for the optimal number of 
clusters using the Calinski-Harabasz (CH) Index33. These studies, as well as those between class and 
principal coordinate analyses, were performed by using the r scripts present in http://enterotype.embl.
de/enterotypes.html.

Relative quantification of Mucor species by Real-time PCR. Mucor species quantification was 
performed on a 7900HT Fast Real-Time PCR System using the primers and probes described previously34, 
with slight modifications. Mucor (F) 5′  GTC TTT GAA CGC AAC TTG CG 3′ , Mucor (R) 5′  CCG CCT 
GAT TTC AGA TCA AAT T 3′  and Mucor probe: 5′  TTCCAATGAGCACGCCTGTT-MGBNFQ 3′ . 
DNA from Mucor circinelloides (CBS277.49), belonging to the mold collection of the Fungal Biodiversity 
Center (CBS) was used as a positive control. For Mucor detection, PCR was performed in a final volume 
of 20 μ l containing 0.5 μ M of each primer of the Mucormycetes species, 0.25 μ M of the internal control 
primers and 0.2 μ M of Mucor spp. probe. For 18S (reference gene) amplification, we used primers, probes 
and conditions described previously35. PCR conditions for Mucor spp., 18S and internal control were: 
2 min at 50 °C for Uracil-DNA Glycosylase treatment, 10 min at 95 °C for Taq activation, 15 s at 95 °C 
for denaturation and 1 min at 61.2 °C for annealing and extension (50 cycles). SDS software 2.3 and 
RQ Manager 1.2 (Applied Biosystems) were used to analyze the results with the comparative threshold 
cycle (Ct) method (2−∆∆Ct). Ct values for each sample were normalized with the 18S reference gene. All 
data were expressed as an n-fold difference relative to a calibrator (a mix of DNA from 4 human faecal 
samples).

Identification of Mucor species by pyrosequencing. For each sample sequenced we created a 
custom DNA sequencing library specific for Mucor sequences. We performed high-throughput shotgun 
DNA sequencing using the Illumina MiSeq platform 2 ×  300 bp. The data analysis consists of two major 
stages, the denoising and chimera detection stage and the microbial diversity analysis stage. During the 
denoising and chimera detection stage, denoising is performed using various techniques to remove short 
sequences, singleton sequences, and noisy reads.

http://enterotype.embl.de/enterotypes.html
http://enterotype.embl.de/enterotypes.html
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With the erroneous reads removed, chimera detection is performed to aid in the removal of chi-
meric sequences. Lastly, remaining sequences are then corrected base by base to help remove noise from 
within each sequence. For this procedure, we used the USEARCH global alignment algorithm and the 
UCHIME chimera detection software. During the diversity analysis stage, for each sample we determine 
the taxonomic information for each constituent read. For this procedure we used USEARCH global 
alignment and UPARSE algorithms and the RDP classifier against a database of high quality sequences 
derived from the NCBI database. The OTU information was obtained by using MUSCLE aligner and 
FastTree software.

Metabolomic analysis. Metabolites were extracted from plasma samples of 8 random samples from 
cohort 1 with methanol according to a previously described method36. Briefly, 30 μ l of cold methanol was 
added to 90 μ l of plasma, incubated 1 h at − 20 °C and centrifuged for 3 min at 12000 g. The supernatants 
were recovered, evaporated using a Speed Vac (Thermo Fisher Scientific, Barcelona, Spain) and resus-
pended in water. We used an ultra-high pressure liquid chromatography (Agilent 1290 LC) system cou-
pled to an electrospray-ionization quadrupole time of flight mass spectrometer (Q-TOF) 6520 instrument 
(Agilent Technologies, Barcelona, Spain). A column with 1.8 micron particle size was employed, and we 
performed identification of metabolites using the PCDL database from Agilent (Agilent Technologies, 
Barcelona, Spain), which uses retention times in a standardized chromatographic system as an orthogo-
nal searchable parameter to complement accurate mass data, according to previously published works37.

Statistical analysis. Statistical analysis was performed using version 19 of the Statistical Package for 
the Social Sciences (SPSS, Chicago, IL). For clinical and anthropometrical variables, data are expressed 
as mean  ±  SD. Before statistical analysis, normal distribution and homogeneity of the variances was 
evaluated using Levene’s test, and then variables were log-transformed when necessary. Differences 
between non-obese and obese subjects were tested with the Mann-Whitney U test for non-normally 
distributed data. For comparison among clusters and fungi, we used the Mann-Whitney U test, with 
Bonferroni corrections for multiple comparisons. Differences between cluster 1 and cluster 2 plus 3, in 
relation to metabolic parameters, were tested using unpaired t-test. Spearman’s correlation coefficient was 
used to analyze the association between fungi and clinical or metabolic parameters. Partial least square 
discriminant-analyses were performed using the Metaboanalyst v 3.0 platform37. Two-way ANOVA fol-
lowed by Bonferroni post hoc comparison test (Prism 5 software; Graph- Pad Software, Inc., San Diego, 
CA) was used to assess differences in metabolic parameters according to Eurotiomycetes class relative 
abundance. P <  0.05 was considered significant.
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