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Abstract—Detecting and selecting proper landmarks is a key
issue to solve Simultaneous Localization and Mapping (SLAM).
In this work, we present a novel approach to perform this
landmark detection. Our approach is based on using three
sources of information: 1) three-dimensional topological informa-
tion from SLAM; 2) context information to characterize regions
of interest (RoI); and 3) features extracted from these RoIs.
Topological information is taken from the SLAM algorithm,
i.e. the three-dimensional approximate position of the landmark
with a certain level of uncertainty. Contextual information is
obtained by segmenting the image into background and RoIs.
Features extracted from points of interest are then computed by
using common feature extractors such as SIFT and SURF. This
information is used to associate new observations with known
landmarks obtained from previous observations. The proposed
approach is tested under a real unstructured underwater environ-
ment using the SPARUS AUV. Results demonstrate the validity
of our approach, improving map consistency.

I. INTRODUCTION

Many areas in oceans, seas and lakes are still completely

unknown. For this reason, underwater research is nowadays

gaining importance within the scientific community and un-

derwater technology developers. Different underwater vehicles

have been developed in order to explore underwater regions,

specially those of difficult access for humans. Some examples

of these vehicles are the ones developed at the Underwater

Robotics Research Center (CIRS) at the University of Girona:

ICTIENU (2006), SPARUS (2010) and GIRONA-500 (2011)

(see Fig. 1). These vehicles are necessary not only to reach

difficult places in the hydrosphere, but also to intervene in

maintenance or reparation of structures, facilities or vehicles

that work in the water. In order to conduct autonomously such

tasks, it is vital to have precise and accurate information about

the scene and the vehicle location.

To achieve this goal, the proposed system must enable 3D

reconstruction from underwater imagery. For this reason, it is

necessary to develop algorithms to take profit from available

data. This is: 1) to use navigation and sensor data to improve

the localization estimates, 2) to extract robust features from

underwater imagery, 3) to develop reliable feature matching

algorithms, 4) to determine the uncertainties associated with

the process to allow loop detection, and 5) to make it a real-

time feasible solution for large missions.

(a) ICTINEU.

(b) SPARUS.

(c) GIRONA-500.

Fig. 1. AUVs developed by CIRS at the University of Girona.

Autonomous Underwater Vehicles (AUVs) are equipped

with on-board sensors, which provide valuable information

about the vehicle state and the environment. This information

is used to build an approximate map of the area and to

calculate the approximate position of the vehicle within this



map using the so called Simultaneously Localization and

Mapping (SLAM) techniques [1]. SLAM is a process by which

a mobile robot can build a map of an unknown environment

and at the same time use this map to deduce its location.

Initially, both map and vehicle position are not known. The

vehicle has a known kinematic model and it is moving through

the unknown environment, which is populated with several

landmarks. The vehicle is equipped with sensory systems ca-

pable of taking measurements of the relative location between

landmarks and the vehicle itself. SLAM techniques use the

navigation and sensor data to improve localization estimates,

while determining associated uncertainties.

In underwater robotics, the most commonly used sensors

to measure navigation data on AUVs are the Inertial Mea-

surement Unit (IMU) and the Doppler Velocity Log (DVL),

while acoustic sensors are used to gather data from the

environment, for instance, imaging sonar [2] or side-scan

sonar [3]. However, the use of such acoustic devices does not

give any intensity information, which might be necessary on

intervention missions to detect specific objects, or might be

useful when navigating through shallow waters. In addition,

extracting robust features from acoustic images is a complex

task due to the fact that the data is considerably noisy. Instead,

optical video cameras provide further information that can be

used to extract robust features.

Following this idea, in this work we propose a SLAM

algorithm that uses optical video underwater images to per-

form navigation and to build a 3D map of the environment.

These images contain regions of interest (RoIs) with salient

features, which are useful to determine landmarks. Within

SLAM framework, a landmark is understood as part of the

map information and is used to update the map and localize the

vehicle when observed a second time. Being able to identify

when a landmark is reobserved is very important in order

to close a loop. Notice that, closing a loop is important to

improve map consistency and localization accuracy. For this

reason, it is necessary to provide the system with algorithms

capable to identify when a new observation corresponds to a

new landmark or an already seen one. Therefore, detecting

and selecting proper landmarks is a key issue to solve within

the SLAM problem.

In this work, we present a novel approach to perform un-

derwater landmark detection. Our approach is based on using

three sources of information: 1) three-dimensional topological

information from the SLAM problem; 2) image contextual in-

formation to characterize RoIs; and 3) features extracted from

these RoIs. Topological information is taken from the SLAM

algorithm, i.e. the three-dimensional approximate position of

the landmark with a certain level of uncertainty. Contextual

information is obtained by segmenting the image into back-

ground and RoIs. Features extracted from points of interest

are then computed by using common features extractors such

as Scale-invariant Feature Transform (SIFT) [23] and Speeded

Up Robust Features (SURF) [24]. In our approach, SURF is

used because is faster than SIFT. This information is then used

to associate new observations with known landmarks obtained

from previous observations. The method is evaluated through

experimental validation, on a real unstructured underwater

environment using the SPARUS AUV.

The paper is organized as follows: Section II presents the

background behind this work by summarizing the most rep-

resentative works on underwater computer vision; Section III

presents the feature extraction and matching procedure; exper-

imental validation is presented in Section IV, while Section V

discussed the conclusions of this work.

II. UNDERWATER OPTICAL IMAGING

The interest on using optical cameras under the water in-

creases with hardware improvements. Optical cameras provide

high resolution imaging of the sea floor which is easy to

interpret by operators and scientists. These images are useful

for many applications, such as, inspection and maintenance of

underwater man-made structures [4], wreck localization [5],

mine countermeasures and seabed surveying [6]. In these

applications, computer vision algorithms might be useful on

station keeping [7], [8], cable tracking [9], [10], motion

estimation (as a navigation aid) [12], localization [11] and/or

mosaicking [13], [14]. Mosaicking strategies normally assume

planarity, which in large scale mosaicking is not very realis-

tic. Large areas can contain very rugged terrain, therefore,

it is necessary to account for three-dimensional structure.

In [Hartley 2000], the authors study extensively the theory to

convert optical imagery to three-dimensional representations.

Recent works use optical cameras to generate underwater 3D

reconstruction of the scenario [6], [15], [16]. In all these ap-

proaches, computer vision algorithms are used to segment and

interpret images, extract features, and perform the detection

and classification of objects.

Features are selected to provide robustness in front of certain

degree of distortion, so that the same point can be detected

when observed from a different view point. Underwater images

are very challenging, because apart from changes caused by

camera motion, they normally suffer from specific artifacts

due to the medium (see Fig. 2). These distortions are caused

by diffusion, which produces low contrast, scattering, blur and

loss of colour (see Fig. 2(a)); sun flickering, which depending

on the shape of the water surface produces patterns randomly

in all directions (see Fig. 2(b)); and also by non-uniform

lighting (see Fig. 2(c)). Several approaches propose image

processing algorithms to address these issues, for instance [17]

presents an approach to correct lighting effects and [18]

presents a technique to filter flickering.

In the SLAM context, features must be distinguishable

in order to simplify the association of new observations to

corresponding map features. In general, SLAM approaches use

features that can be detected by their location. For instance,

features that are far apart from other features within the map.

However, in underwater environments, it is interesting to have

as much features as possible, and observe them repeatedly, in

order to reduce the uncertainty caused by significant vehicle

drift. In this sense, features from optical images are used either

to estimate the motion in a frame to frame basis, but also as



(a) Diffusion.

(b) Sun flickering.

(c) Non-uniform light.

Fig. 2. Artifacts that appear on underwater images.

landmarks for the SLAM problem. These landmarks have to

be very robust and features are commonly used to characterize

them. Several methods to extract features from optical images

exist. Edges, corner and contour detectors are commonly used

in computer vision, for instance the well-known Canny edge

detector [19], or the Harris corner detector [20]. These features

are commonly used on cable tracking approaches [9] and

on mosaicking [13]. In addition, texture patches are used

to provide more information on the interest points, and to

improve the matching step [14]. However, image patches show

poor robustness to viewpoint changes and scale. A different

invariant approach is to use moment based descriptors [21].

Fig. 3. Working principle for the SPARUS down-looking camera.

For instance, [22] uses Zernike moments, which are robust

to scale and rotation. More robust approaches are SIFT [23]

and more recently SURF [24], which produce rotation and

scale invariant features. SIFT and SURF features are becoming

important features in recent approaches [25], [26].

In most of these approaches, the output of the feature

extraction step is a set of keypoints with its features and

descriptors for every image. Feature matching algorithms are

necessary to allow proper data association. Traditionally, the

cross correlation between two image patches was used, but this

metric is weak in front of slight rotations or scale variations.

A common practice is to match these keypoints between two

images bases on the similarity of their descriptors, i.e. the

Euclidean distance between descriptor vectors. This approach

is prone to find correct pairings, however, many features will

not have a match because either they belong to the background

or they were not detected in the second image. For this reason,

SIFT and SURF matching algorithms use the same distance

together with a comparison between neighbouring features,

making the matching more robust [23].

III. DOWN-LOOKING OPTICAL CAMERA

AUVs are gaining importance on intervention missions. In

order to conduct autonomously such tasks, it is necessary to

have precise and accurate information about the scene. To

achieve this goal, computer vision algorithms are necessary

to enable 3D reconstruction from underwater imagery. These

algorithms must extract robust features from underwater im-

agery and perform reliable feature matching.

SPARUS AUV is equiped with a down-looking camera, as

shown in Fig. 3. This camera acquires three frames per second,

like the one shown in Fig. 4(a). These images contain regions

of interest with salient features, as shown in Fig. 4(b). These

salient features will then be used as landmarks in the SLAM

algorithm.

The idea behind the landmark detection used for SPARUS

dataset is based on using context information to characterize

a RoI and SURF features extracted from these RoIs. This

information is then used together with the topological location

of these landmarks to match new observations with known

landmarks obtained from previous observations.

In what follows we will describe the details of each step:

A. Feature Extraction

Features are selected to provide robustness in front of certain

degree of distortion, so that the same point can be detected



(a) Original image

(b) Salient features

(c) SURF features

Fig. 4. Underwater image and its salient features.

when observed from a different view point. The feature

extraction procedure is show in Fig. 6. The process starts

with an image preprocessing stage. Preprocessing consists of

single channel selection, i.e., gray, followed by non-uniform

light correction and a normalization. These preprocessing steps

are done by common filtering techniques, in this particular

case the ones presented in [18] are used. Results from this

preprocessing step are shown in Fig. 5. In addition, lens

distortion is corrected, using the calibration obtained with the

well known Bouguet’s calibration toolbox [27].

The second stage is focused on detecting RoIs within

these images, i.e. segmenting RoIs. In order to do so, two

parallel segmentation processes are computed. Both of them

are based on image processing common operations. The first

process starts with edge detection, producing the binary image

shown in Fig. 6(b). Afterwards, erode/dilate operations are

conducted, joining regions and eliminating insignificant spots

(see Fig. 6(c)). Next step is a region search within this

black and white image, producing the segmentation shown in

Fig. 5. Three different examples showing original images taken by SPARUS’
camera (left column) and its corresponding preprocessed image (right col-
umn).

Fig. 6(d). On the other hand, the second process uses the Hue

channel (see Fig. 6(e)). This channel is then blurred in order

to smooth the whole image. Afterwards, a threshold is applied,

giving the results shown in Fig. 6(f)). This threshold is selected

according to the mean value of the Hue image. Afterwards,

a region search is conducted, producing the results shown in

Fig. 6(g). At this point both processes are fused: a RoI is

selected through the intersection of both segmentations (see

Fig. 6(h)).

The third stage uses SURF features (see Fig. 6(i)). Depend-

ing on the previous step, if a RoI exists, then SURF features

are extracted within this RoI and associated with it. Otherwise,

if no RoI was segmented, SURF features are extracted within

the whole image, and stored according to the camera pose from

the moment they are extracted, for further matching when the

camera revisits the same area.

B. Feature Matching

The matching approach used in this work is as follows.

First, map information is used to obtain a first approxi-

mate of pairing candidates. The tree-dimensional position

of a landmark and its uncertainty are the first constraint.

Therefore, only new observations whose uncertainty intersects

with known landmarks’ uncertainty, are checked as possible

pairing candidates. Initially, only few landmarks are in the map

and their uncertainties might be small, producing only one

candidate. However, as the mission goes on, more landmarks



(a) Pre-processed image

(b) Edge detection (c) Erode/dilate (d) RoI-1

(e) Hue channel (f) Binary image (g) RoI-2

(h) RoI intersection (i) SURF features

Fig. 6. Procedure to extract regions of interest (RoI). The final selected RoI is the one shown in red in h), and its SURF features are shown in blue in i).

are added in the map, and uncertainties may be larger. At this

point, more than one pairing candidate will be found, and more

information is necessary to find the correct match. Therefore,

SURF matching algorithm is used to discard false matchings

(see Fig. 7), together with the so called Joint Compatibility

Branch and Bound (JCBB) algorithm [28]. JCBB addresses

the issue of having multiple hypothesis by considering the

compatibility of all the pairings globally. JCBB is very robust

because it considers relative locations between features.

IV. EXPERIMENTAL VALIDATION

Experiments were conducted on a sequence of images

acquired by a down-looking camera on-board of the SPARUS

AUV. These sequence was composed of 3199 frames of

320 × 240. SPARUS AUV was initially design to participate

in the Student Autonomous Underwater Challenge – Europe

(SAUC-E) competition. SPARUS is a torpedo shaped AUV

that won the 2010 SAUC-E edition. SPARUS is equiped with

several sensing devices: DVL, IMU, down-looking camera,



Fig. 7. This example shows two different observations of a stone. SURF
features extracted from the ROIs are ploted in yellow. The ones that match in
both images are connected with a line. The stone is observed from different
angles, i.e. is rotated. This fact explains why the lines are not parallel.

imaging sonar

down-looking 

camera

forward-looking camera
DVL

GPS

thrusters

IMU

Fig. 8. SPARUS 3D model with its sensors.

forward-looking camera, imaging sonar and GPS (see Fig. 8).

In this work, only DVL, IMU and down-looking camera were

used, producing information about velocities, orientations and

about sea floor.

Firstly, camera calibration parameters were obtained using a

set of 30 images containing a chess board calibration pattern.

Some of these images are shown in Fig. 9. Available images

for calibration were considerably noisy, producing large cal-

ibration uncertainty, such as about ten pixels uncertainty for

the principal point location.

Secondly, RoIs and features were extracted from the se-

quence of frames. The two process to detect RoIs were based

on edge detection procedures and on hue channel selection,

and afterwards the results from both processes were fused.

The first process produced 5284 regions, the second process

found 2908 regions, while the fusion of both processes defined

a total of 1307 regions. Thirdly, the matching process found

627 matches. The performance of this matching process was

evaluated through the SLAM approach presented in [29].

Correct matching produces proper SLAM updates, thus, im-

proves vehicles trajectory estimates as shown in Fig. 10.

Fig. 10(a) shows vehicle’s estimated trajectory using dead

reckoning, while Fig. 10(b) is the same trajectory estimated by

SLAM. The main difference between these two figures is the

significant improvement produce by SLAM, i.e. the first figure

Fig. 9. A subset of the 30 images used to calibrate the camera on-board of
SPARUS AUV.

shows the drift suffered when using only dead reckoning,

which is addressed in the second figure.

V. CONCLUSION

In this paper, a novel approach to detect robust features

from underwater optical imaging was presented. The idea

behind feature extraction and matching on optical camera

images was described step by step. The core of this approach

relies on using SURF feature extraction and its corresponding

matching algorithm, combined with common image processing

techniques to determine regions of interest. After analysing the

results, one can say that the method performs satisfactorily,

because there is a significant improvement on the final SLAM

estimate. Notice that these tests were conducted off-line,

therefore they need further improvement to become real-time

solutions.
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