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F. Torrent-Fontbonaa,∗, B. Lópeza, D. Busquetsb, J. Pittb

aeXiT research group, Institute of Informatics and Applications, University of Girona, Campus Montilivi, Building P4, 17071 Girona
bISN research group, Imperial College of London, South Kensington Campus, London, UK

Abstract

The energy sector is being driven into a new era where considerable portions of electrical demand will be met through
distributed energy resources (DERs). Microgrids have been suggested as a tool for integrating and managing DERs.
In this context, we formulate the energy demand allocation problem in order to provide service to a given load.
We then propose a dynamic method for agreeing and setting the rules to perform the allocation. The methodology
is based on self-organisation and the concept of distributive justice which integrates different principles of fairness
represented as legitimate claims. Legitimate claims are implemented as voting functions and are used to determine
how the DER requests are satisfied. The method is tested by considering different configurations of DERs, mainly
of the renewable type, and comparing them with other allocation methods. Results show that this self-organising
allocation method provides a better balance amongst all the representations of justice, but also it is more robust for
the external authorities that manipulate the allocation process.
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1. Introduction

In power systems with distributed energy resources
(DERs), energy demand allocation consists of determin-
ing the energy production of each DER; or, in other
words, which portion of the energy demand should
cover each DER. In this regard, the energy demand
allocation becomes a problem where different agents
(DERs) compete to appropriate a particular quantity of a
common pool resource (energy demand). Traditionally
the allocation is performed according to the price or to
rules set by a central authority, i.e. the system operator.
However, the microgrids need alternative methodolo-
gies for locally managing the microgrid and allocating
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the energy generation. This paper proposes a method-
ology based on self-organisation to set the rules to per-
form the energy demand allocation. Therefore, the pro-
posed method avoids the need of a central authority dic-
tating the allocation of energy production. At the same
time, as a method it is not only based on the price of
the energy because it uses other indicators to perform
the allocation. Accordingly, this method seeks to agree
the rules of the allocation which, at the same time, are
based on different principles of justice.

Without a centralised authority, it may seem ineffec-
tive to manage situations where a resource has to be al-
located amongst a group of agents willing to appropri-
ate a particular amount. The reason is because agents
may tend to appropriate as much as they can, draining
the resource and damaging the community or even de-
stroying it. However, Ostrom has observed that, with-
out a centralised intervention, some communities have
formed institutions that defined a set of rules regulat-
ing the resource allocation in order, in time, to preserve
either the institution or the resource.

On the other hand, Rescher (1966) introduces dis-
tributive justice by representing canons in which partici-
pants can provide legitimate claims regarding a resource
which are implemented as voting functions. Based on
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these previous research, Pitt et al. (2012) propose an ap-
proach of distributive justice that allocates a common
pool resource amongst self-organised agents in regard to
a linear public good game. This paper proposes ground-
ing the methodology in power systems and their par-
ticularities. To this end, we have adapted the method
proposed by Pitt et al. (2012) to energy demand alloca-
tion and power systems requirements in a microgrid (Pi-
agi & Lasseter, 2006), where a set of DERs makes joint
decisions regarding the energy demand allocation prob-
lem. Such an approach allows heterogeneous DERs to
enjoy fair outcomes, including situations in which exter-
nal interference could arise, such as when green energy
quotas of generation are imposed.

This paper is organised as follows: first, we provide
some necessary background on self-governing institu-
tions and distributive justice. Second, we present some
related work to the energy demand allocation problem.
Third, we present the methodology proposed in this pa-
per based on canons of distributive justice. Fourthly, we
present the experimentation we have conducted while
analysing and discussing the performance of the method
proposed. Finally we finished the paper by stating the
conclusions and proposing some future research work.

2. Background

Institutions define a set of rules that determine sev-
eral aspects of a system: who can perform what ac-
tions and under what circumstances; what are the conse-
quences of performing such actions; and how are agents
sanctioned when not complying with the rules. Ostrom
(1990) observes that efficient management of the re-
sources need not to resort to centralised approaches, but
could instead be performed by the members of the insti-
tution themselves (i.e. self-governance). From her field-
work and subsequent analysis, she has derived a set of
principles necessary for an institution to endure (i.e. not
ending up in a depletion of its resources). These prin-
ciples are concerned with issues such as: who belongs
to the institution; congruence between allocation rules
and local conditions; participation of those affected by
the operational rules in the selection and modification of
those rules; graduated sanctions for violating rules; and
layered or encapsulated systems.

On the other hand, the allocation of resources was
studied by Rescher (1966) who introduces the concept
of distributive justice in which people are treated ac-
cording to different concepts (or canons) of justice:
equity (treatment as equals); needs (treatment accord-
ing their needs); productivity (treatment according to
their actual productive contribution); effort (treatment

according to their efforts and sacrifices); social utility
(treatment according to a valuation of their social-useful
services); supply and demand (treatment according to
supply and demand) and ability (treatment according
to their ability, merit or achievements). Rescher argues
that each canon alone is inadequate as a sole dispensary
of distributive justice. Instead, he holds that distributive
justice is found in the canon of claims, which consists
of treating people according to their legitimate claims,
so leaving open questions of what the legitimate claims
are, how they are accommodated in case of plurality and
how they are reconciled in case of conflict.

3. Related Work

New challenges posed by the increased distributed
generation distributed generation of electric power have
been tackled taking advantage of the possibilities of
coalitions of distributed generators, loads and storage
systems in form of Virtual Power Plants (VPPs), mi-
crogrids, etc. Roughly speaking, microgrids are a col-
lection of interconnected generators and (or not) loads
islanded or semi-islanded (i.e. connected through only
one link) from the main grid. On the other hand, Vir-
tual Power Plants (VPPs) are collections of coordinated
generators that behave as a single generator to have ac-
cess to electricity markets or provide services that small
generators cannot reach (more information about mi-
crogrids and VPPs can be found in (Bakari & Kling,
2010, Piagi & Lasseter, 2006)). Thus, microgrids and
VPPs (Bakari & Kling, 2010) need methods to control
DERs locally and allocate the energy generation. These
methods can reproduce or copy the mechanisms used in
the power grid where a system operator coordinates and
monitors a set of auctions. Kok et al. (2005) argue that
these control and management mechanisms should be
based on market-economic mechanisms. Following this
hypothesis, Ausubel & Cramton (2010) and Mashhour
& Moghaddas-Tafreshi (2011) propose auction-based
systems to allocate the energy generation in VPPs which
aim to participate in energy markets. However, due to
environmental concerns, it is necessary to perform the
allocation of the energy generation not solely based on
the economic cost of producing energy. According to
this, Ramchurn et al. (2011) propose an alternative pric-
ing model based on carbon emissions.

However, Ostrom (1990) demonstrates that a commu-
nity can perform an allocation of a resource without fol-
lowing centralised market-based rules, but through self-
organisation and enduring through time. Accordingly,
and conversely to Kok et al. (2005), this paper pro-
poses the use of self-organisation to set the rules; these
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are based on different canons of distributive justice, af-
ter allocating energy generation. Niese et al. (2012)
and Wedde et al. (2008) also propose the use of self-
organisation for determining the matching between load
and generation. However, they propose a distributed ne-
gotiation between consumers and producers. Therefore,
the allocation is ultimately based on the bids of the in-
volved agents. Conversely, this paper proposes to per-
form the allocation according to distributive justice, and
as a consequence, prioritising the fairness and satisfac-
tion of DERs. In this regard, Kohler & Steghofer (2014)
studies fairness mechanisms for self-organised systems
and highlights the advantages of including fairness in
resource allocation problems.

Moreover, there is in depth research now available
on developing new methods for managing groups of
DERs, but considering that they are owned by the same
agent. Some examples are Wang et al. (2014), Peik-
Herfeh et al. (2013) and Bu et al. (2011) who propose
different scheduling methods for optimising the costs
of producing energy. However this hypothesis may not
match the reality, being that many DERs or storage sys-
tems are expected to be placed in residential buildings
and will be owned by the landlords (Dibangoye et al.,
2015). To this end, Dibangoye et al. (2015) is also fo-
cused on optimising the generation schedules of a set of
DERs, but considering that they are managed by inde-
pendent agents. As a consequence, the problem is mod-
elled as a distributed scheduling problem, where agents
share some private information and collaborate in or-
der to find the optimal generation schedule of a whole
set of DERs. Conversely to Dibangoye et al. (2015),
this paper does not propose a methodology to find the
optimal schedule, but a methodology to allow DERs to
agree the rules to perform the allocation of energy gen-
eration. Furthermore, Dibangoye et al. (2015) only con-
siders controllable generators such as Fuel Cells (FC)
and not renewable and stochastic DERs. Therefore, the
only source of uncertainty comes from possible break-
downs of the generators or the network. However, the
method proposed in this paper considers different kind
of generators, and also, renewable DERs.

4. Problem formulation

Microgrids are constituted by a collection of differ-
ent DERs which are usually independent and have their
own interests. Each DER wants to produce a particular
amount of energy to increase its benefits and satisfac-
tion. The mission of a microgrid is to manage DERs
or provide tools for coordination and/or cooperation in

order they can cover a load, so that there is balance be-
tween energy production (fulfilling DERs’ requirements
and/or constraints) and consumption (load). Thus, this
scenario presents a resource allocation problem where
an infinitesimal divisible good (load) has to be allocated
among a set of agents (DERs), {1, . . . ,NDER}, in such a
way that the constraints of DERs are satisfied.

DER constraints are determined by design (minimum
and maximum DER generation bounds) and by their
present running state and context (minimum and max-
imum available production). First, design constraints
mean that the DER will not be able to produce in any
situation involving an energy amount out of the design
limits, pmin

i and pmax
i . And second, when a DER is ac-

tually producing pi(t), the generation bounds for t + 1,
pmin

i (t+1) and pmax
i (t+1), depend on the technical speci-

fications of the DER as well as the weather forecast (i.e.
wind or solar radiation), as follows:

pmin
i (t + 1) = max

{
pmin

i , pi (t) − sd
i

}
(1)

pmax
i (t + 1) = min

{
pmax

i , p f orecast
i (t + 1), pi (t) + su

i

}
where p f orecast

i (t + 1) is the expected production con-
ditioned to the weather forecast; and su

i and sd
i are the

up and down ramp limits respectively, as determined by
the technical specifications of the DER. To summarise,
constraints regarding the production pi(t) of a DER can
then be expressed as follows:

pmin
i ≤ pmin

i (t) ≤ pi(t) ≤ pmax
i (t) ≤ pmax

i ,∀i (2)

Consistently, we can define the total minimum and
maximum energy production limits of the microgrid at
time t as follows:

Pmin (t) =

NDER∑
i=1

pmin
i (t) (3)

Pmax (t) =

NDER∑
i=1

pmax
i (t)

According to their strategic goals, each DER is in-
terested in producing a given amount of energy di(t),
subject to the constraints shown in Equation 2. When-
ever di(t) ≤ pi(t) or di(t) ≥ pi(t) that would depend on
the DERs’ business, but di(t) can never surpass DERs’
energy bounds.
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Consistently then, the total energy production de-
manded (henceforth total demand) inside the microgrid
is defined as follows:

D (t) =

NDER∑
i=1

di (t) (4)

subject to Pmin (t) ≤ D(t) ≤ Pmax (t).
The inputs of the problem are both the load L (t) and

the DERs’ demand di(t)∀i, which vary along time. Load
and total demand do not necessarily match, while the
microgrid should decide what is the amount of energy
ai(t) each DER should produce, subject to DER con-
straints. Thus, the energy demand allocation problem
consists of determining the amount of energy each DER
should produce ai(t).

5. Methodology

The allocation methodology proposed consists of a
self-organised approach based on distributive justice
(Pitt et al., 2012). Self-organised means that DERs
agree the rules for performing the allocation. This allo-
cation is then computed by any of the agents assuming
the microgrid coordinator role; they can also take turns
on that role. Distributive justice means that the alloca-
tion is performed according to a set of canons (princi-
ples, criteria; see Section 2).

To this end, in order to agree the allocation of the
load at a given time t (hour), we propose the following
procedure:

1. The microgrid coordinator has information about
the load L(t)

2. Each DERi sends a demand message to the micro-
grid coordinator for covering di(t) of this load, as
well as the generation limits pmin

i (t) and pmax
i (t).

3. The microgrid computes the total demand D(t).
There may be different situations:

(a) L (t) ≤ Pmin (t). If the equality fits, all DERs
produce at their minimum capacity, ai(t) =

pmin
i . Otherwise, there is a surplus of energy

and mechanisms, such as the disconnection
of DERs or energy export to the main grid
which should be activated to balance the en-
ergy generation and the load.

(b) Pmin (t) < L (t) < Pmax (t): DERs get
individual allocations within their feasible
production range. The microgrid coordina-
tor calculates the energy production of each
DER according to a ranking based on a set of
weights. Weights are set up among all of the

DERs according to an achieved consensus for
the relevance of a set of canons.

(c) L (t) ≥ Pmax (t): all DERs produce at their
maximum capacity, ai(t) = pmax

i , but, if the
equality is not fulfilled, the load cannot be
covered with DERs’ production. Thus, other
mechanisms should be activated to meet the
load, i.e. disconnecting loads or importing
energy from the main grid.

4. The microgrid coordinator sends the computed al-
location ai(t) to each DER

5. Each DER delivers an energy amount ri(t) ∼ ai(t).
The ideal situation is ri(t) = ai(t) but uncertainty
on generation cannot guarantee that the equality is
fulfilled.

6. Each DER receives a payment τi(t) according to
the delivered energy ri(t)

The key step of the protocol is 3(b) where the
agents, according to the distributive justice fundamen-
tals, should agree on how the load is shared. For carry-
ing out the allocation, the legitimate claims of Rescher’s
canons are implemented as voting functions f∗ and the
importance of each function is determined by its cor-
responding weight w∗. Basically, the determination of
how the load is shared is an allocation process which is
repeated over time. The initial value of the weights is
set to w∗ = 1

m (where m is the number of functions) and
the process follows the next protocol:

1. Sorting. Each function f∗ sorts all the DERs, while
the microgrid coordinator takes all partial orders
and computes a new ranking of DERs, taking into
account the weight w∗ assigned to each function.

2. Allocation. The microgrid coordinator computes
the allocation ai(t) of each DERi according to the
resulting ranking

3. Voting. Each DERi votes about the relevance of
each function f∗, and the microgrid computes a
ranking of functions based on a consensus method
that updates the weight w∗ for each function to be
used in the next allocation round.

In the remainder of the section we explain the imple-
mentations of the claims and the different steps of this
protocol.

Before continuing, it is worth noting, that the appli-
cation of this methodology assumes that no monitoring
costs are incurred and that there is no cheating in the
reporting of pmin

i (t) and pmax
i (t).
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5.1. Legitimate claims

Canons are used to determine rank lists, reflecting
DERs’ relative merits in the microgrid. Canons are
based on statistical data during the time-range Ti in
which the DER has been an active member of the micro-
grid. Ti varies over time (Ti (t)), and serves as a counter
of the time-steps that each DER has been active in the
microgrid. However, for the sake of clarity we denote it
Ti.

A total of six canons have been used, among the seven
available in the methodology proposed in Pitt et al.
(2012): equality, need, productivity, effort, social util-
ity, and supply and demand. The last canon, ability, has
not been used because it is not appropriate in the micro-
grid management context. They have been instantiated
to the energy problem we are facing.

Canon of equality: we have used three ways to rep-
resent this canon: by their average allocations ( f1a);
by the number of rounds they have received allocation
( f1b); and by the average payment received ( f1c).

f1a(DERi,Ti) =

∑Ti
k=1 ai (k)

Ti

f1b(DERi,Ti) =

∑Ti
k=1 (ai (k) > 0)

Ti
(5)

f1c(DERi,Ti) =

∑Ti
k=1 τi (k)

Ti

where τi is the payment received. Note that f1a and
f1b represent equality according to the workload and f1c

represents equality according to the awards for produc-
ing energy.

Note that f1a and f1b are very close but are used to
avoid two different situations: (i) a situation where a
DER receives only a very big allocation for a long pe-
riod, and (ii) a situation where a DER continuously re-
ceives very small allocations. This latter situation can
be faced through f1c, but leaving f1b in do not repre-
sent a drawback to the methodology, but another way to
rate DERs. In addition to this, f1b and f1c are usually
preferred than f1a according to the experimentation we
have performed (see Section 6.5).

Canon of needs: this second canon, f2, ranks the
agents in increasing order of their satisfaction σi (t)
(therefore f2(DERi, t) = σi (t)). Note that satisfaction
is not a verifiable attribute, so it has to be based on
an estimation of it, as with Equation (6). The DERs
then increase or decrease their satisfaction depending
on whether the allocation received is (or is not) close to
their demand. To represent the closeness concept to the

demand, we define the interval Ii =
[
di (t) , di (t)

]
as the

interval which determines whether the DER i increases
(or does not increase) its satisfaction and whether the al-
location received is inside (or not inside) such interval.
Thus, we model satisfaction as follows:

σi (t + 1) =

σi (t) + α · (1 − σi (t)) ai (t) ∈ Ii

σi − β · σi (t) ai (t) < Ii
(6)

where α and β are coefficients in [0, 1] which determine
the rate of reinforcement of satisfaction and dissatisfac-
tion respectively. If di (t) = 0 then σi (t + 1) = σi (t).
α and β are the same for all DERs but a different value
could eventually be defined by each DERi, representing
their tolerance.

Canon of productivity: this canon f3 ranks the
agents in decreasing order of their average production
success rate as the relationship with the allocated load
ai(t) and the delivered energy ri(t), represented as fol-
lows:

f3(DERi,Ti) =

∑Ti
k=1

ri(k)
ai(k)

Ti

Therefore, f3 measures the DER reliability. When
f3(DERi,Ti) = 1, the corresponding DER has been al-
ways providing the allocated energy.

Canon of effort: this canon f4 ranks the agents in
decreasing order according to the time spent as an ac-
tive member of the microgrid i.e. Ti. This is thus the
time that the DER has been a member of the microgrid,
excepting the time when the DER has stopped due to
maintenance or repair.

Canon of social utility: there are two representations
of social utility: first f5a ranks the agents in decreasing
order according to the amount of time spent in a dis-
tinguished role i.e. any microgrid using the allocation
method of this paper would need a coordinator that com-
putes the allocation at each time-step. It also involves
agents that, among other roles, monitor every DER (or
agent) ensuring that they follow the rules, even agents
with the role of sanctioning those who are not following
the rules. Some DERs will then be required to perform
these extra roles (or distinguished) besides being energy
generators. Including a function that considers the effort
of performing these roles is a way to award DERs per-
forming them. Second, f5b ranks the agent in increasing
order according to their CO2 emissions.

Canon of supply and demand: The sixth canon f6
aims to benefit DERs that can produce energy when it is
needed while others cannot. For example, if a microgrid
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with only PV generators cannot produce energy at night,
then any other type of DER capable of covering the en-
ergy demand at night (i.e. batteries) would be promoted
by this canon. But if there is not any energy demand at
night, batteries would not be promoted by this canon be-
cause, is such situation is useless at providing energy at
night. Thus, this canon ranks agents in decreasing order
according to

f6(DERi,Ti) =
1
Ti

Ti∑
k=1

$i (k) · L (k)
NDER∑

j=1, j,i

(
1 −$ j (k)

)
where $i (k) =

pmax
i (k)
pmax

i
indicates the relative generation

capacity of DER i at time k.
Summing up, we have a total of m = 9 criteria de-

rived from the six canons. Note also that some functions
( f1a, f1b, f1c and f3) present an indeterminacy when a
DER appears in the microgrid for the first time (Ti = 0).
These indeterminacies have been solved by setting the
results to zero. This fact benefits new DERs according
to the functions of the canon of equity, but penalises
them according to the canon of productivity. However,
this situation has not been seriously considered since
it is not expected to be be relevant consistently to new
DERs in the context of a microgrid.

5.2. Sorting

Each function f∗ makes a sorted list of all DERs. A
consensus should then be agreed on a single ranked list
of the DERs to proceed to the allocation accordingly. To
that end, Pitt et al. (2012) proposes a Borda count proto-
col Emerson (2007), considered a consensus-based vot-
ing method. Then, for each partial rank list provided
by each function f∗, Borda points pDER

i,∗ are assigned to
each DERi, so rank k scores NDER − k + 1 points.

The points from each DER regarding f∗ are multi-
plied by the corresponding weight w∗ and summed for
all the functions to give a total Borda score to each DER.
This finally enables a sorted list of DERs then used to al-
locate the load. We can therefore say that canons agree
a ranked list of the DERs.

5.3. Allocation

Once agents are sorted according to the canons, the
allocation method proceeds to determine the amount of
energy each DER has to generate according to DER’s
demand and system constraints.

It is worth pointing out first that, the allocation re-
quired meets the minimum and maximum DERs’ gen-
eration limits (Pmin (t) < L (t) < Pmax (t), see Step 3b).

However, the allocation depends on whether there is
scarcity of load or not in regard to the available demand,
that is:

1. L (t) < D (t): there is scarcity of load and some
DERs have to produce below their demanded
amount di, but not below its reported limit pmin

i (t).
2. L (t) = D (t): all DERs produce the demanded

amount di(t).
3. L (t) > D (t): there is a surplus of load and

some DERs have to produce over their demanded
amount di, but not over its reported limit pmax

i (t).

Then, for case 1 and 3, the microgrid adjusts the al-
location that each DER receives according to the list
sorted by the canons. Note that since there are oppo-
site cases (scarcity of load versus excess of load), the
methodologies to follow are also opposite. On the one
hand, when there is scarcity the most meritorious DER
is the first to receive allocation. On the other hand, when
there is an excess of load, the least meritorious DER is
the first to receive an allocation greater than its demand.

Scarcity of load: each agent receives an allocation
equivalent to pmin

i (t). Then each agent (from the first to
the last of the list) receives another allocation according
to its di(t) and the canons. Therefore,

ai (t) = pmin
i (t) + min

{
LR (t) , di (t) − pmin

i (t)
}

(7)

where LR (t) is the (yet) non-allocated load. When an
allocation ai (t) is assigned, its value is subtracted from
LR (t).

Excess of load: each agent receives an allocation
equivalent to di (t). Then each agent (from the last to
the first of the list) receives another allocation equiva-
lent to

ai (t) = di(t) + min
{
LR (t) , pmax

i (t) − di (t)
}

(8)

Note that pmin
i (t) and pmax

i (t) are reported continu-
ously by DERs and also express their maximum and
minimum desired amount of energy to produce energy.
Therefore, no DER will be commanded to produce en-
ergy outside its limits or desires. Note that DERs could
adjust pmin

i (t) = di(t) = pmax
i (t) in order to obtain the

best allocation. However, as we have previously stated,
cheating behaviour like this one is not considered in this
paper but might be penalised through an extra function
of the canon of social utility that considers the span be-
tween pmin

i (t) and pmax
i (t).

Besides, all of the allocation procedure can be con-
strained by external authorities as, for example, by im-
posing some quotas of green energy. When this is the
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case, the allocation method first fulfils operational con-
straints; secondly it allocates energy demand to green
DERs following the rank list until the green quota is
completed or there is no more energy demand. Finally,
if there is still energy demand to allocate, it is shared
amongst all DERs according to the list. In doing so, we
expect the community to be more robust to withstand
external interferences.

5.4. Voting

To enable the participation of the DERs in the allo-
cation method, each DER i votes each function f∗, giv-
ing it Borda points pc

i,∗ according to the rank index f∗
that has been given to DER i at time t. Therefore the
canon that has given the best rank to i receives the best
Borda punctuation m (being m the number of functions)
from DERi. In case of a draw, each canon receives a
punctuation equal to the sum of points reserved for the
positions they occupy divided by the number of canons
in the draw. For example, suppose we have four func-
tions which ranked DERi second, third, third and fourth.
Then DERi’s vote would give 4 points to the first func-
tion, 2.5 points to the second and third functions (they
share the punctuations of 3+2), and 1 point to the fourth
function.

Once DERs have voted canons, all Borda points of
each function are summed and the resulting scores are
used to update the weight w∗ of each function f∗ as fol-
lows:

w∗ (t) = w∗ (t)+w∗ (t)
Borda ( f∗,microgrid) − AvgBorda

TotalBorda
(9)

where Borda ( f∗,microgrid) is the total Borda points

that function f∗ receives from DERs (
NDER∑
i=1

pc
i,∗);

AvgBorda and TotalBorda are the average and
the total Borda points of all functions in the
current round t ( 1

m
∑
∀ f∗

Borda ( f∗,microgrid) and∑
∀ f∗

Borda ( f∗,microgrid) correspondingly).

It is worth pointing out that those canons that perform
better than the average, increase their weight in the next
round. Thus, DERs affected by the allocation method
agree the weight of each canon representation and there-
fore its relative importance in the allocation process.

6. Experimentation

In this section, we present the experimentation that
we have conducted and the results we have obtained,

comparing our method with other two allocation meth-
ods. Results are measured in relation to the DERs’ ben-
efits (payments received τi minus costs) and agents’ sat-
isfaction (measured according to Equation (5.1)). The
fairness of the last two measures (benefit and satisfac-
tion) is analysed using the Gini index (note that the
lower the better) as we are pursuing a distributive jus-
tice approach. Special attention is given to the re-
sults obtained regarding reliability and carbon emis-
sions. Claims’ weights are also used as a measure of
the adaptability of the approach to the microgrid com-
position and context (including external interferences).
We end this section with a discussion of the results ob-
tained regarding its effect in microgrid.

6.1. Testbed
We have conducted experiments over Presage2 (Mac-

beth et al., 2012) modelling agents as DERs of dif-
ferent types (FC, PV, wind turbines or batteries) and
sizes. The DERs were interconnected in a 14-bus grid
with the global electricity load of Figure 1 which was
periodically repeated over time. The load was dis-
tributed among all the buses. We also considered time-
dependent electricity prices. Simulations consisted of
1000 rounds, representing each round a time-step of one
hour.

DERs are modelled as greedy agents desiring to pro-
duce the amount of energy that maximises their benefits.
We have considered four kinds of generators, FC, PV
plants, wind turbines and batteries since the trend in mi-
crogrids is to incorporate green generators and batteries,
while at the same time complementing them with the
presence of more controllable generators such as FC.
The features of the considered DERs are:

• Fuel cells: they can produce energy whenever they
want, considering their up and down ramp limits
(2MW/h). Their production cost is 37$/MWh and
their start up and shut down costs are 20$ and 25$
respectively. They only demand to produce energy
if the payment they will receive compensates its
cost. They produce 390 kg/MWh of CO2.

• PV plants: they only can produce energy depend-
ing on the solar radiation (we have considered the
average meteorological data in Catalunya1). Their
production cost is zero, so they require the produc-
tion of as much energy as they can considering the
weather forecast. They have an average prediction
relative error of 25% (Pelland et al., 2013).

1Data from Servei Meteorològic Català (Catalan Meteorological
Service).
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• Wind turbines: they can produce energy depending
on the wind speed1. Their production cost is zero,
so, as PV plants, they require the production of as
much energy as they estimate they can according
to the weather forecast. Their average prediction
error is 0.85m/s (Soder, 2004). They are thus the
more inaccurate DERs.

• Batteries: they do not produce energy, but they can
buy energy and sell it later, complementing those
DERs that cannot produce energy whenever they
want. They thus buy energy when it is very cheap
and demand to sell it when it is more expensive.
They cannot exceed their storage capacity and their
charge/discharge ramp limits (1.5MW/h). They
have an associated CO2 emissions factor of 240
kg/MWh which corresponds to the average Span-
ish electricity emissions factor.

We define two test scenarios over two microgrid con-
figurations with scarcity of electric load:

• Case 1: all DERs has the same capacity C =

10.0MW. There are two FC, two PV plants, two
wind turbines and two batteries.

• Case 2: there are four PV plants and four batteries
with C = 2.0MW, two wind turbines with C =

2.0MW and one FC with C = 20MW.

Therefore, we will compare results on a partially homo-
geneous microgrid (DERs with the same size) against a
heterogeneous microgrid (composed of different DERs
of different sizes).

To test the performance of our approach, we distin-
guish the following configurations in regard to the meth-
ods used:

SO-canons: the method explained in this paper, self-
organisation with legitimate claims. It is labelled
as SO in the figures.

NONSO-equity: a non self-organised approach where
the equity claim f1b is the only one used. This situ-
ation is equivalent to other fair mechanisms in the
literature based on a single measure (fairness) (Pla
et al., 2015). This method is labelled as f1b in the
figures.

NONSO-reliability: a non self-organised approach
with the productivity claim f3 alone. This scenario
means to favour reliable DERs in regard to the oth-
ers, so minimising problems of imbalance in the
grid. This method is labelled as f3 in the figures.

Finally, to test the challenges regarding external inter-
ferences, we consider three forms of green quotas (per-
centage of green energy that has priority in the alloca-
tion process): Q of 0%, 50% and 75%. These percent-
ages state that the corresponding percentage of the load
has to be covered by green energy if possible.

6.2. Results of DERs’ profit
We considered DERs’ profit as the difference be-

tween the income they receive for producing energy (the
energy produced multiplied by the corresponding price)
and the energy generation cost (not including amortisa-
tion and maintenance costs).

At the end of the simulations (see Figure 2), we see
that, as was expected, the increase of Q conveys an in-
crease in the overall profit of green DERs (especially PV
plants which are the most promoted by the most voted
canons) in exchange of a reduction of the benefits of
the rest of the DERs. Comparing allocation methods,
NONSO-equity provides the highest equity in terms of
profit for case 1 (see Figures 2 and 3). However, if there
is a much bigger FC than the others, SO-canons obtains
better values of equity because DERs foster canons of
equity and need.

When analysing in depth the results with the Gini in-
dex, for case 1, SO-canons obtains worse results be-
cause, despite allocating similar amounts to FCs and
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PV plants, FCs obtain lower benefits due to its lower
profit margin. To obtain better equity values, we should
have added a canon of equity considering profit mar-
gins; however, this is an internal information for each
DER and it is not likely to be verifiable. Therefore we
decided not to use such information. On the other hand,
NONSO-reliability is highly unfair (see Figure 3) be-
cause it tries to allocate all demand to FC and when
Q > 0 it allocates the demand imposed by the green
quota to PV plants and the rest to the FCs, omitting
wind turbines and batteries (batteries are useless when
producers can guarantee energy whenever it is needed
as FCs do).

6.3. Results on DERs satisfaction
Regarding satisfaction (estimated according to Equa-

tion (6)), the NONSO-equity and SO-canons results are
comparable and, as in terms of wealth, it depends on
the configuration of the microgrid. Thus SO-canons ob-
tains similar results to NONSO-equity in terms of equity
when it takes account of other claims such as productiv-
ity or social utility. On the other hand, Figures 4 and
5 illustrate the unequal allocation provided by NONSO-
reliability, reaching satisfaction levels lower than 0.2 for
DERs other than FC. These low wealth and satisfac-
tion values convey the risk of depopulating the micro-
grid (unsatisfied DERs might leave the microgrid) and
reducing the diversity of energy resources with their as-
sociated problems, such as oligopolies, contamination,
etc.

6.4. Reliability and carbon emissions
We considered that a reliable allocation is one that

minimises the percentage of uncovered energy demand
due to the lack of DER production fulfilment.

Despite SO-canons and NONSO-equity reporting
good results in terms of equity, NONSO-reliability ob-
tains the best results in terms of reliability. Figure 6
shows the part of the allocated load that is finally uncov-
ered by the corresponding DER. It shows that NONSO-
reliability obtains the lowest uncovered amounts be-
cause it allocates all the load it can to FCs, but with its
corresponding drawbacks like CO2 emissions (see Fig-
ure 7). However, this uncovered demand does not cor-
respond to an imbalance in the power grid between load
and generation, it corresponds to typical imbalances due
to beforehand (i.e. day-ahead) estimations of the load
and generations schedules. Obviously, a reduction of
the prediction error of stochastic DERs will convey an
improvement in the credibility values of the results, as
well as, an increase of the storage capacity in the micro-
grid.

Given these results we can say that the proposed en-
ergy demand allocation method provides distributive
justice dealing with the plurality of legitimate claims
according to Pitt et al. (2012). Furthermore, the method
presented has been proven to be robust against exter-
nal authorities (green quotas). Nevertheless, an allo-
cation method designed to optimise a particular canon
or minimise a particular interference will usually ob-
tain better results regarding the optimised target than a
plurality approach, but it will err in rigidity when tack-
ling other situations. Besides, with SO-canons, DERs
have more power to decide how the allocations are per-
formed, which they cannot do with the other mecha-
nisms.

6.5. Results on weight claims

Figure 8 shows the evolution of the claims’ weights
for cases 1 and 2 and for different values of Q. As a con-
sequence, which are determined the preferred canons or
which canons will have a major impact on the alloca-
tion.

Figure 8 shows that f6 (canon of supply & demand),
which promotes DERs that can produce energy when
others cannot, is usually the most preferred weight.
Considering a scenario with different types of DERs,
this result is not surprising. Furthermore, for case 1
we see that f3 has a very significant weight, and it in-
creases when Q > 0. In this sense, when an external
interference appears, weights evolve to minimise its ef-
fect. Thus, if energy from green DERs, which are at the
same time DERs with the lowest productivity success
rate, is prioritised, then weights prioritise DERs with
a high productivity success rate. Note that for case 1
Q = 50% they also increase the weight of f1c (equity
in payments) but it is also a way to prioritise FC and
batteries since they have a lower wealth (see Figure 2)
because they receive smaller allocations.

When there are differences between DERs’ capaci-
ties (there are larger DERs than others), the weights of
claims of equity and needs are increased (see differences
between case 1 and 2 with Q = 0%). However, f3 and
f6 are still important claims. Thus, there is a balance
between claims that promote equity, diversity and pro-
ductivity. Nevertheless, when Q is increased for case
2, DERs respond reducing equity claims because green
DERs are more satisfied (all green DERs get most of
the allocation they demand), so they reduce their votes
for claims of equity and need. But f6 becomes predom-
inantly what benefits the large FC, but at the same time
prioritises PV plants over wind turbines (which are usu-
ally allocated most of their demand). In this sense, they
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Figure 2: Average and standard deviation of the benefits of each type of DER for cases 1 and 2.
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Figure 3: Gini index of the accumulated benefits by the DERs.
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Figure 4: Average and standard deviation of the satisfaction of each type of DER for cases 1 and 2.
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Figure 5: Gini index of the final satisfaction of the DERs.
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Figure 6: Part of the allocated load that, in the end, cannot be covered by the corresponding DER it was allocated.

0

500

1000

1500

2000

2500

CO2 emissions

f1
b 

Q=0
 

f1
b 

Q=5
0

f1
b 

Q=7
5

f3
  Q

=0
 

f3
  Q

=5
0

f3
  Q

=7
5

SO  Q
=0

 

SO  Q
=5

0

SO  Q
=7

5

Case 1

0

500

1000

1500

2000

2500

3000

f1
b 

Q=0
 

f1
b 

Q=5
0

f1
b 

Q=7
5

f3
  Q

=0
 

f3
  Q

=5
0

f3
  Q

=7
5

SO  Q
=0

 

SO  Q
=5

0

SO  Q
=7

5

Case 2

Figure 7: CO2 emissions

12



0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Case 1 Q=0%

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Case 1 Q=50%

Claims’ weights

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Case 1 Q = 75%

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

Case 2 Q=0%
0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

Case 2 Q=50%
0 200 400 600 800 1000

0

0.1

0.2

0.3

0.4

0.5

Case 2 Q=75%

 

 

f1a
f1b
f1c
f2
f3
f4
f5a
f5b
f6

Figure 8: Claims’ weights for cases 1 and 2 and with green quotas of 0%, 50% and 75%.

again find a balance between all claims that benefits all
them (or at least the majority).

6.6. Discussion: potential of the method in microgrids

Power grids such as microgrids are being required
more and more to rely continuously on renewable gen-
erators to reduce CO2 emissions. However, renewable
generators, such as PV plants or wind turbines, depend
on meteorological events that are hardly predictable to
produce energy. As a consequence, there is a trade-
off between promoting green energy and keeping or in-
creasing the reliability of the system. The proposed
method presents the best results in terms of CO2 (see
Figure 7) since it promotes renewable generators (espe-
cially when there are no external interferences involved
in promoting them). However, the promotion of green
DERs is paid by a lower performance reliability (see
Figure 6). This is due to the fact that green DERs
have inaccurate predictions of their generation capac-
ity. Thus, we propose a methodology for a day-ahead
allocation. However, weather forecasting techniques,
from which the capacity prediction depends on, are be-
ing improved every day and they are capable to perform
very accurate short-term weather forecasts. Thus, our
methodology may also be appropriate for shorter-term
allocations such as an hour-ahead.

On the other hand, it is crucial to consider that any
used allocation method promotes cheap energy genera-
tion DERs in order to contribute to the reduction of the
energy price. The presented allocation method does not
directly consider energy generation costs, but these are
indirectly managed: a low level of CO2 emissions im-
plies the use of green DERs which have in turn a low
energy generation cost. In addition to this, the canon
of equity ( f1c) penalises expensive energy generation
DERs which are interested in producing energy when
its price is high (i.e. batteries buy cheap energy to sell
it when it becomes more expensive). Despite of that,
these kind of DERs such as batteries or FCs are needed
because they are capable to supply energy when others
cannot, improving reliability. Then, the aggregation of
all the canons can model the transition from expensive
carbon-based energy to cheap renewable energy.

Price, CO2 emissions and reliability are tightly cou-
pled and the smart grid pursues all of them by diversify-
ing the energy generation. The presented methodology,
tries to incentive the participation of the maximum num-
ber of agents by keeping adequate satisfaction values for
all the members of the microgrid (or most of them) as
Figures 4 and 5 show.

Another interesting outcome of the presented
methodology is that it is capable of self-adapting to
new situations such as the incorporation of new DERs

13



to the microgrid or the presence of external commands
that modify the allocations, as the results with Q = 0,
Q = 50% and Q = 75% show. That enables us to think
that the methodology could be capable of dealing with
a new DER that appears in the micro-grid threatening
the rest of DERs. Whenever the new DER alone can
cover the demand, weights change in order to mitigate
the effect of the new DER, as shown in Figure 8 for case
2.

Comparing the presented method with other existing
works such as Bu et al. (2011) or Wang et al. (2014),
which aim to optimise one or a few targets (i.e. min-
imise costs while ensuring a particular degree of relia-
bility), we will obtain similar conclusions that when the
presented method is compared with NONSO-reliability,
which aims to minimise only the percentage of uncov-
ered demand (maximise reliability). As the results show
in Figure 6, previous works will obtain better results
regarding reliability than our methodology, but in ex-
change of worsen results on other terms, i.e. CO2 emis-
sions (see Figure 7), fairness (see Figures 5 and 3), sat-
isfaction (see Figure 4), etc.

The presented allocation method considers a situation
where all DERs production limits can be met (situation
3(b) of Section 5). Then it first aims to meet these con-
straints and then allocate the remaining energy gener-
ation according to the canons (see Equations (7) and
(8)). Thus, any DER will not be commanded to produce
more or less energy than the limits it reported (mini-
mum/maximum desired production). However, if all
DERs production limits cannot be met (situations 3(a)
and 3(c) of Section 5), which is beyond the scope of
this paper, another methodology or protocol (i.e. ex-
changing energy with the main grid) should be applied
to extend the presented methodology.

7. Conclusions

This paper presents a self-organising energy demand
allocation method based on distributive justice repre-
sented as legitimate claims. It also takes into account
grid constraints such as the balance between gener-
ation and consumption, and energy producers’ con-
straints such as their generation bounds. In this sense,
we provide an implementation of the legitimate claims
grounded to an energy demand allocation scenario.

Regarding the results obtained from the simulations
we can conclude that the proposed allocation method
provides a balance between the canons of distributed
justice, while this balance is determined by the agents
which, at the same time, are able to adjust the alloca-
tion method to be more robust against external interfer-

ences. Nevertheless, allocation methods that minimise
a particular interference or optimise results regarding a
particular canon, will obviously obtain better results in
terms of the optimised target, although they may err of
rigidity when dealing with other situations. The capac-
ity to adapt to new situations may then be a wiser option,
especially in the long run.

The work remains open to further research since the
presented approach is initially an experimental work.
There are some idealisations, like network constraints,
that have to be considered. However, these idealisa-
tions can be tackled in other stages of the energy de-
mand allocation process (i.e. hour-ahead allocation),
as well as the need for further increasing the reliabil-
ity or performing an allocation for a given reliability
rate. Other interesting lines of research may involve
how to integrate dispensable loads or how to manage, by
self-organisation, the disconnection of generators when
there is deep a valley of demand. Furthermore, the allo-
cation method does not present computational problems
when it scales because it is not solved as a combinato-
rial problem. However, it would be interesting to study
the scalability of the presented method from the com-
munication and message passing point of view.
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Pla, A., López, B., & Murillo, J. (2015). Multi-dimensional fairness
for auction-based resource allocation. Knowledge-Based Systems,
73, 134–148.

Ramchurn, S., Vytelingum, P., Rogers, A., & Jennings, N. R. (2011).
Agent-based homeostatic control for green energy in the smart
grid. ACM Transactions on Intelligent Systems and Technology,
2, 1–28.

Rescher, N. (1966). Distributive justice. Bobbs-Merrill.
Soder, L. (2004). Simulation of wind speed forecast errors for oper-

ation planning of multiarea power systems. In 8th International
Conference on Probabilistic Methods Applied to Power Systems
(pp. 723–728). Ames.

Wang, R., Wang, P., Xiao, G., & Gong, S. (2014). Power demand and
supply management in microgrids with uncertainties of renewable
energies. International Journal of Electrical Power & Energy Sys-
tems, 63, 260–269.

Wedde, H., Lehnhoff, S., Rehtanz, C., & Krause, O. (2008). Bottom-
up self-organization of unpredictable demand and supply under de-
centralized power management. 2n IEEE International Conference
on Self-Adaptive and Self-Organizing Systems . . . , (pp. 74–83).

15


