MOLECULAR ECOLOGY

Genomic survey provides insights into the evolutionary changes that occurred during European expansion of the invasive mosquitofish (Gambusia holbrooki)

Journal:	Molecular Ecology
Manuscript ID	MEC-15-0854.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	10-Dec-2015
Complete List of Authors:	Vera, Manuel; University of Girona, Biology, Genetics Area; University of Santiago de Compostela, Genetics Diez-del-Molino, David; University of Girona, Biology Garcia-Marin, Jose Luis; University of Girona, Biology
Keywords:	RADtag sequencing, SNPs, population genomics, Invasive Species, genetic drift, natural selection

1	Manuscript, December 2015
2	Do not distribute without authors' permission
3	Genomic survey provides insights into the evolutionary changes that occurred during
4	European expansion of the invasive mosquitofish (Gambusia holbrooki)
5	Vera, M. ^{1*}
6	Díez-del-Molino, D ^{1,\$}
7	García-Marín, J.L. ¹
8	¹ LIG-UdG, Department of Biology, Faculty of Sciences, Universitat de Girona. Campus
9	of Montilivi, 17071 Girona, Spain
10	
11	* to whom correspondence should be addressed
12	TLF +34 630 75 69 62
13	Fax +34 972 41 82 77
14	e-mail: <u>manuel.verar@udg.edu</u>
15	
16	
17	Running title: Population Genomics for the invasive Gambusia holbrooki
18	
19	
20	^{\$} Present address: Research Department of Genetics, Evolution, and Environment,
21	University College London, WC1E 6BT, London, United Kingdom
22	

23 Abstract

24 Biological invasions rank among the main global threats for biodiversity. The eastern 25 mosquitofish (Gambusia holbrooki) is considered one of the 100 world worst invasive species due to its high adaptation capability to new environments. Using the restriction-26 site associated DNA tags (RADtags), introduced European locations were compared 27 against native USA mosquitofish populations to analyze genomic changes that occurred 28 29 during invasive process of European locations. After filtering, 7,724 RADtags containing only one SNP were retained for population studies. Comparative genomics 30 31 indicated that 186 of these RADtags matched sequences in the transcriptome of 32 *Xyphophorus maculatus*, the most closely related genome available. Genomic analyses 33 showed that invasive populations show high reductions in diversity. Further, analyses of population structuring based on these data are concordant with previous analyses 34 35 based on microsatellites. It is concluded that during the invasion process genetic drift was the main evolutionary force affecting patterns of diversity and population structure. 36 While recognizing that positive selection could be masked by the strong drift during 37 founder events, adaptive processes were evidenced in a reduced number of RADtags 38 (less than 2%), with only one of these in a putative coding region. Surprisingly, 39 balancing selection was detected in several coding RADtags, suggesting that the 40 41 preservation of polymorphism in specific genes could be more important than the 42 average population diversity for the population maintenance at any location, 43 particularly for the survival of introduced populations. 44 45 Keywords: RADtag sequencing, SNPs, population genomics, invasive species, genetic

46 drift, natural selection.

47	Introduction
----	--------------

48 The introduction and spread of nonindigenous species in new regions is one of the main global threats to biodiversity (Clavero & García-Berthou 2005). Freshwater ecosystems 49 50 are among the most affected by invasions (WWF 2014). Genetic diversity is expected to decline during biological invasion episodes due to founder effects associated with a 51 52 reduced number of introduced individuals. If the low effective population sizes (Ne) are maintained over time, or at least during several generations following introduction, the 53 54 effects of subsequent genetic drift may limit the success of the introduced population by increasing inbreeding depression and reducing adaptive potential (Allendorf & 55 56 Lundquist 2003; Blackburn et al. 2015). However, multiple introductions from different 57 source populations (Kolbe et al. 2004) or migration (i.e. gene flow) between newlyestablished populations of alternative origin in the invaded range may maintain or even 58 59 recover the population genetic diversity of the species in these territories (Facon et al. 2008; Keller & Taylor 2010). While several evolutionary processes related to 60 successful invasions, such as the relative importance of propagule pressure to retain 61 62 enough genetic diversity for establishment, the best traits to predict invasion success or 63 the differences in local adaptation among invaders are still unknown (Bock et al. 2015). The Eastern mosquitofish, Gambusia holbrooki, is a small, ovoviviparous poeciliid 64 65 species native to the southeastern USA that was introduced worldwide as biological 66 control agent for mosquito populations (reviewed in Garcia-Berthou et al. 2005). 67 Originally supported by governmental health agencies, these introductions resulted in an important threat to native species of fish and amphibians (see Stockwell & 68 Henkanaththegedara 2011). For this reason, and together with G. affinis, G. holbrooki is 69 70 listed as one of the 100 world worst invasive species (Lowe et al. 2000). Several ecological factors contribute to the worldwide invasive success of poeciliid fish, 71

72	including a short period for population recovery (Chapman & Warburton 2006; Deacon
73	et al. 2011), multiple paternity (Neff et al. 2008), and high dispersal capabilities
74	(Rehage & Sih 2004). Recently translocated populations of G. affinis from shared
75	ancestors in Hawaii and in North America displayed divergences among introduced
76	populations reflecting environmental adaptation (reviewed in Reznick & Ghalambor
77	2001). In fact, mosquitofish quickly adapt in response to environmental factors such as
78	the presence of predators (Langerhans et al. 2007), salinity and thermal gradients
79	(Congdon 1994; Meffe et al. 1995; Purcell et al. 2012), and pollutants (e.g. Tatara et al.
80	2002). Some of the above adaptations were maintained over time even in the absence of
81	barriers to gene flow (Purcell et al. 2012).
82	Mosquitofish arrived to Europe with the release of only 12 individuals in a Spanish
83	pond in 1921 (Vidal et al. 2010). The following year, 200 descendants of these
84	introduced individuals were transferred to Italy, and subsequent human translocations
85	spread G. holbrooki throughout the Mediterranean countries (Garcia-Berthou et al.
86	2005). The wide ecological tolerance and aggressive behavior has been claimed to
87	facilitate the integration of G. holbrooki in these invaded fish communities (Ribeiro et
88	al. 2008). A mtDNA survey throughout European G. holbrooki populations confirmed
89	a common source for the majority of these populations and indicated a notorious
90	uniformity among Iberian ones (Vidal et al. 2010). These analyses linked the European
91	populations to the native Type I group found in northern USA basins that were invaded
92	after the glacial ice-retreat (Wooten et al. 1988; Scribner & Avise 1993). Genetic
93	diversity in these American populations is lower than in southern non-glaciated areas
94	along the Atlantic coast of the USA (Wooten et al. 1988; Scribner & Avise 1993;
95	Hernández-Martich et al. 1995). Surprisingly, substantial genetic diversity was
96	observed at nuclear markers among Iberian populations from distinct river basins

97	(Vidal et al. 2012; Sanz et al. 2013), with considerable variation also in life-history
98	traits such as size-at-maturity, reproductive effort, and gonadal size (Benejam et al.
99	2009; Carmona-Catot et al. 2011). Reduced mitochondrial variation and significant
100	nuclear divergence were also observed among introduced Australian populations of the
101	guppy (Poecilia reticulata), another worldwide distributed poeciliid. However, in spite
102	of founder effects related with the introductions, substantial adaptive variation was
103	apparently retained in these guppy populations (Lindholm et al. 2005). Deacon et al.
104	(2011) showed that guppy populations founded from a single gravid female can
105	preserve enough adaptive potential to colonize new territories. Compared to Australian
106	guppies, European mosquitofish populations apparently retained most of the genetic
107	variation of their American sources (Sanz et al. 2013), and apparently also the invasive
108	potential acquired during the post-glacial colonization of the northernmost American
109	basins (Díez-del-Molino et al. 2013).
110	Improvements in speed, cost and accuracy of next-generation sequencing (NGS) and
111	bioinformatics tools are increasing the availability of genetic resources for non-model
112	organisms (Helyar et al. 2011). These advances are fostering genomic studies in
113	ecology and evolution through the fast development of new molecular markers such as
114	single nucleotide polymorphisms loci (SNPs) (Allendorf et al. 2010; Davey et al.
115	2011). High throughput sequencing likely will be a key tool to analyze genomic basis
116	of adaptation of non-native species (Blanchet 2012), and genomic studies may help
117	disentangle the genetic processes that occurred during invasions, including the
118	discovery of the sources of genetic variation in invasive populations, the role of
119	expansion load, the relative importance of propagule pressure vs. genetic diversity for
120	successful establishment, or the role of chromosomal rearrangements (Bock et al.
121	2015). Genomic approaches have been applied to study introgression events between

122	native and introduced populations of freshwater fish species (e.g Hohenlohe et al. 2011;
123	Hand et al. 2014), although the number of studies of invasive processes in freshwater
124	ecosystems is still limited (see Critescu 2015). SNPs occur in non-coding and coding
125	regions thus the study of neutral variation and of genomic regions under selection (e.g.
126	Bruneaux et al. 2013). Additionally, the potential for their high-throughput genotyping
127	offers the possibility to obtain extremely large collections of data at relatively modest
128	and decreasing costs (Davey et al. 2011). Genotyping-by-sequencing (GBS) techniques
129	are based on the massive sequencing of a reduced part of the genome followed by SNP
130	discovery (Elshire et al. 2011). High-throughput sequencing of restriction-site
131	associated DNA tags (RADtags) (Miller et al. 2007; Baird et al. 2008) allows efficient
132	identification of SNPs because the coverage of each RADtag is extremely high (e.g.
133	Andrew et al. 2013; Fraser et al. 2015), and a large proportion of the identified
134	RADtags are well represented in all analyzed individuals (Davey et al. 2011; Wang et
135	al. 2013). Recently, this methodology has been successfully applied to SNP discovery
136	in non-models species allowing researchers to perform genomic studies related with
137	ecological, evolutionary and population genetic issues (see Narum et al. 2013 for
138	review).
139	In this work, we used the RAD sequencing approach to explore genomic changes
140	between native American and introduced European mosquitofish populations.
141	Comparisons of diversity levels and population structure between the two geographical
142	territories provided insights of the relative relevance of the evolutionary forces (drift,
143	migration, selection) during the invasive process. We also noted limitations of current
144	statistical approaches to detect directional positive selection involved in local adaption
145	after recent strong drift events. Furthermore, due to the scarcity of molecular markers in
146	G. holbrooki, the genomic resources obtained in this study are also introduced.

147	Material and methods
148	Sampling sites
149	A total of 96 individuals from eight different locations, including three North American
150	native locations and five European invaded locations, were analyzed (Table 1, Fig.1).
151	According with previous genetic analyses using microsatellite loci and mtDNA
152	sequences, American Everglades (EV) and Florence (FLO) locations represented the
153	Type-II populations of <i>G.holbrooki</i> as defined by Wooten et al (1988), while Potomac
154	(PO) which has been suggested as genetically close to the source populations involved
155	in the European introduction (Vidal et al. 2010; Sanz et al. 2013), represented the
156	Type-I. The four Spanish collections represented the upper and lower reaches of two
157	geographically close rivers (see Diez-del-Molino et al. 2013). Individuals were stored
158	in 95% ethanol and frozen at -20°C until assayed.
159	RADtag sequencing
160	Total genomic DNA was extracted from muscle tissue using the DNeasy Blood and
161	Tissue Kit (Qiagen) following the manufacturer's instructions. Subsequently, 3 μ g of
162	high molecular weight (> 50Kb) DNA samples fluorometrically quantified by Qubit
163	(Invitrogen, Carlsbad, CA) (concentration \approx 30 ng/ µl) were sent to FLORAGENEX
164	(Eugene, Oregon) to generate and sequence RADtags following the methods outlined
165	by Baird et al. (2008), Hohenlohe et al. (2010) and Emerson et al. (2010). Briefly,
166	sequencing adaptors and individual barcodes were ligated to fragments of total genomic
167	DNA obtained by digestion using SbfI restriction enzyme (enzyme target:
168	5'CCTGCA/GG 3', giving cohesive extremes). The resulting fragments were
169	sequenced from the restriction sites. Individually barcoded RAD samples were jointly
170	sequenced on the Illumina HiSeq2000 platform with single-end 100-bp chemistry.

171 Reads were separated by individual, and sequencing barcodes were removed after the

sequencing run, resulting in RADtags of 90 bp of length.

173 *RADtag database description and SNP identification*

174	Because the genome of G. holbrooki is not available, the individual VM43 collected in
175	Vilanova de Muga (Spain) was used as a model skeleton framework for the
176	construction of RADtags due to the high quality of its sequences. The Illumina
177	sequence reads from this sample were trimmed from the 3' end to a total length of 90
178	bp. FLORAGENEX custom PERL scripts were used to cluster 100% identical
179	sequences represented between 5 and 500 times in VM43 sequence dataset. Based on
180	the observed coverage distribution from VM43, these sequences were posited to be
181	sequence reads from low-copy or single dose RADtags in the G. holbrooki genome.
182	The VM43 assembly was condensed to FASTA format and then aligned against itself
183	using BWA software (Li & Durbin 2009). BWA alignment parameters were aln
184	function, edit distance (-n) of 3 and the iterative search disabled. This self-alignment
185	was performed to identify sequences within the assembly that carried substantial
186	homology to one another. BWA alignment criteria also permitted a maximum 3bp
187	mismatch between reference and query (96.6% sequence identity). After alignment, any
188	cluster with more than two observed haplotypes during alignment was discarded as a
189	potential paralog or duplicated sequence in the assembly. The final VM43 assembly
190	contained 44,398 RADtag clusters (see results). Using the program BLAST+ (NCBI),
191	this final assembly was locally aligned against the Xyphophorus maculatus
192	transcriptome (23,236 sequences), representing the most closely related fish species
193	transcriptome available in GenBank. Hrbek et al. (2007) included Gambusia and
194	Xyphophorus genus in a monophyletic cluster of Central and North American poeciliid
195	species that likely diverged during the Oligocene (33-22 Mya). BLASTN searches were

performed using a word size (length of the initial exact match) of 90 for accuracy, and 196 with an e-value threshold of $< 10^{-5}$ to consider the match significant. In case of multiple 197 hits, only the best match was kept. Only identity percentages $\geq 90\%$ were considered. 198 These stringent searching conditions were used to ensure that the RADtags matches 199 against X. maculatus transcriptome were reliable. Statistics on output files were 200 performed using R custom scripts. 201 202 The VM43 assembly was used for mapping raw Illumina sequence reads for the rest of analyzed samples into the constructed RADtags using BOWTIE software version 203 204 0.11.3 (Langmead et al. 2009). For each individual, the ref map.pl pipeline included in 205 STACKS program version 1.19 (Catchen et al. 2011, 2013) was used to analyze the 206 BAM files provided directly by FLORAGENEX. This ref map.pl pipeline executes 207 sequentially the STACKS programs for building the different loci and calling their 208 SNPs (pstacks), creating a catalog (cstacks), matching each sample against the catalog (sstacks) and finally indexing the data into the database (index radtags.pl). STACKS 209 210 also loaded outputs into a MySQL database to facilitate their visualization. This database was used for mining and filtering the data. The number of mismatches allowed 211 between loci when building the catalog (-n) was 0 and the minimum coverage depth to 212 report a stack in an individual was 10X. To reduce genotyping errors and spurious 213 214 SNPs, we selected only RADtags with a single SNP for population genomic analyses. After this data filtering, all RADtags containing repetitive motifs were identified and 215 removed for subsequent analyses using SciROKO 3.4 (Kofler et al. 2007) with default 216 parameters. RADtags containing a single SNP included in the above list among the 217 ones matching against the X. maculatus transcriptome were selected as a subset of 218 219 RADtags (hereafter named MXT) to describe population diversity patterns from coding 220 regions, and further annotation analyses.

221 *Genetic diversity and population structure*

222	The computer program POPULATIONS, included in STACKS, was used to process the
223	SNP dataset across all analyzed locations. Diversity indices were estimated without
224	allele frequency restriction and with a minimum percentage of 70 % genotyped
225	individuals to process a locus for that population (- r option). The minimum stack depth
226	(- m option) required for individuals at a RADtag was 10X. POPULATIONS provided
227	the corresponding GENEPOP files (genepop option) which were further transformed
228	for the subsequent analyses using PGDSpider 2.0.7.4 (Lischer & Excoffier 2012).
229	ARLEQUIN 3.5 (Excoffier & Lischer 2010) was used to estimate genomic measures of
230	genetic diversity [number and percentage of polymorphic loci, mean number of alleles
231	per locus and expected heterozygosity (HE)] at each of the studied locations and the
232	overall and pairwise population differentiation (F_{ST}) values (significance for F_{ST} values
233	estimated by 10,000 permutations). Analyses of the molecular variance (AMOVA;
234	Excoffier et al. 1992) carried out with ARLEQUIN were used to study the distribution
235	of genetic variation within and among population groups according to geographical
236	hierarchical models of population clustering. The number of population units (K) was
237	estimated using the Bayesian Markov Chain Monte-Carlo clustering approach
238	implemented in the STRUCTURE 2.3.3 program (Pritchard et al. 2000) and running
239	the output files in the STRUCTURE HARVESTER program (Earl & VonHoldt 2012)
240	which implements the methodology proposed by Evanno et al. (2005) for K estimation.
241	Due to computational limitations, a total of 10,000 burn-in steps and 20,000 replicates
242	were performed for each run, with ten replicates for each K value tested ($K=1-9$).
243	The contribution of genetic drift to differentiation among populations was explored
244	using the search algorithm implemented in TREEMIX program (Pickrell & Pritchard

246	admixture) on the basis of the allele frequencies and a Gaussian approximation to
247	genetic drift, allowing patterns of splits and mixtures in multiple populations to be
248	inferred. Files were translated into TREEMIX format using the eight locations as
249	clusters. We searched the best model to fit the data using a range of migrational events
250	from 0 to 8. Because the EV location was situated in a suggested glacial refugium for
251	the species, we run TREEMIX using this location as root for all the trees. Independence
252	of all SNPs was assumed using the $-K l$ label.
253	Finally, a F_{ST} outlier approximation was used to determine the SNPs showing higher
254	F_{ST} (i.e. positive selection) or lower F_{ST} values (i.e. balancing or purifying selection)
255	than expected under a neutral model of selection using the approach of Beaumont &
256	Balding (2004) implemented in the software BAYESCAN 2.1 (Foll & Gaggiotti 2008).
257	This approximation was selected over the method proposed by Beaumont & Nichols
258	(1996) implemented in LOSITAN software (Antao et al. 2008) because BAYESCAN
259	considers scenarios where the effective size and the immigration rate may differ among
260	analyzed locations (Foll & Gaggiotti 2008) as expected for our locations (Diez-del-
261	Molino et al. 2013). RADtags were analyzed in five models: (1) including all locations,
262	(2) pooling the samples in the two best population groups proposed by STRUCTURE
263	analyses (EV + FLO group vs PO + European samples group, see results section), (3)
264	only USA samples, (4) only European samples and (5) only Spanish samples (Table 1).
265	The runs were performed using prior odds value of 10, with 100,000 iterations and a
266	burn-in of 50,000 iterations. Only loci with a posterior probability (P) \ge 0.99 and a
267	FDR < 0.01 were considered as outliers. SNPs in the outlier RADtags from the MXT
268	subset were located inside the X. maculatus genes and the two resulting sequences (one
269	for each SNP variant) were translated to determine whether SNP variants lead
270	synonymous or non-synonymous changes using the program BIOEDIT 7.1 (Hall 1999).

- Finally, these genes were functionally categorized according the three Gene Ontology
- 272 (GO) terminology categories (biological process, molecular function and cellular
- component) using the DAVID web-service (Jiao *et al.* 2012).

274 **Results**

- 275 *RADtag development and genomic resources*
- The raw VM43 assembly consisted of 3,215,755 sequence reads. After quality filtering
- 277 procedures, a total of 54,939 RADtag clusters were coalesced from 2,886,102 sequence
- reads, representing the 89.7% of the total sequence data from this individual. After
- homology filtering, the VM43 assembly retained 44,398 RADtags, representing 3.995
- 280 Mb of mosquitofish genomic sequence. The number of RADtags of VM43 that
- matched against *X. maculatus* mRNAs was 562 with the word size of 90. The stringent
- conditions used in our search ensured that these RADtags represented coding regions
- also in *G. holbrooki* (although many other *G. holbrooki* coding regions likely remain
- undetected and present in our 44,398 RADtag dataset).
- 285 The total number of reads for the 96 mosquitofish specimens analyzed was
- 286 394,574,734. Due to low quality results, one individual for each American location
- (EV, FLO and PO) were not used to construct the SNP database and therefore only 93
- 288 mosquitofish were used for subsequent analyses. The number of reads per individual
- ranged from 612,917 for the individual BL42 to 6,350,615 for the individual FLO06
- with a mean number of sequence reads per sample $4,178,503.5 (\pm 824828.2)$. Per
- individual, the number of RADtags ranged from 36,418 for BL42 to 72,011 for EV16
- 292 (mean $60,683.6 \pm 5,837.1$) for a coverage higher than 5X.
- 293 SNP calling and datasets
- The number of RADtags present in the database constructed from the BAM files of the
- 93 individuals studied was 44,271 with 36,052 of these containing SNPs. The number

296	of RADtags with a single SNP was 7,724 (Supplementary Table 1), and the SNPs
297	presented a homogeneous distribution along the RADtag sites/nucleotides
298	(Supplementary Figure 1). Of all these single SNPs, 5,259 involved transitions (A/G
299	and C/T) and 2,465 transversions (A/C, A/T, C/G and G/T), with A/G being the most
300	common (2,667) and A/T the least common (558). Of the 7,724 filtered RADtags, 46
301	showed repeat motifs and were excluded for subsequent analyses (marked in red into
302	Supplementary Table 1).
303	Genetic variability and population structure analyses
304	After filtering for population genotyping, the number of RADtags retained was 7,621,
305	185 of them creating the MXT subset of undoubtedly coding regions (marked in green
306	into Supplementary Table 1). Considering the 7,621 SNPs, the most variable location
307	according with the number of polymorphic loci, the percentage of polymorphic loci and
308	gene diversity (H_E), was the American EV while the least variable was the Italian CO
309	(Table 2). Significant reductions in diversity levels were found in comparisons between
310	USA and European locations (Mann-Whitney U tests; $P \le 0.025$ for the different
311	genetic estimators at all comparisons). PO was the least diverse of USA locations
312	studied, although this reduction was not significant (Mann-Whitney U tests; $P > 0.600$
313	for the different genetic estimators at all comparisons). Reduced diversity was also
314	observed in the Italian CO location when compared with Spanish ones (Table 2), but
315	again non-significant (Mann-Whitney U tests with $P > 0.150$ for all analyzed local
316	diversity indexes).
317	Global estimate of population differentiation (F_{ST}) was 0.416 (P < 0.001). Average
318	pairwise F_{ST} values ranged from 0.045 between EP and PP locations, to 0.547 between
319	EV and CO. The number of genetic homogenous units (K) inferred following the
320	Evanno's method with the STRUCTURE results was 2 (Delta value $_{(K=2)}$ = 1264.2,

321	Delta value $_{(K=4)}$ = 76.3, Delta value $_{(K=3,5,6,7,8,9)}$ < 1.2). One of the clusters grouped
322	together EV and FLO mosquitofish, while the other grouped American PO
323	mosquitofish with all the European fish (Fig.4). Considering $K=3$, mosquitofish from
324	EV and FLO locations separated in two different clusters (Fig.4). Any hierarchical
325	AMOVA model suggested significant genomic divergence among locations within
326	group. AMOVA arranged by studied countries resulted in worst grouping of the
327	locations compared to the one based on the two groups identified by STRUCTURE.
328	The proportion of variation due to differences among groups (F_{CT}) of this later
329	AMOVA model (EV + FLO vs PO + European samples, see Table 4), was six fold
330	larger than the proportion within groups (F_{SC}). The AMOVA models grouping the
331	American EV or FLO locations with European mosquitofishes resulted in larger
332	divergences among locations within group and non-significant divergence among
333	groups (P>0.05, Table 4), corroborating historical records and previous genetic
334	evidences regarding the origin of European mosquitofish populations from some
335	location in the native northern range of the Type-I G. holbrooki. Diversity patterns
336	showed by the MXT RADtags subset agreed fully with observations from the complete
337	data set (Table 2 and 4).
338	TREEMIX results reported the best model fit for the tree containing three migration
339	events (Fig. 5). The tree supported the colonization pathway suggested in previous
340	studies (i.e. Southern USA (EV+PLO) > Northern USA (PO) > European samples). It
341	also suggested a prominent role of genetic drift in the steps of these mosquitofish
342	expansions, with a substantial increase (three to four fold) in drift in American PO and
343	European mosquitofish locations as compared with the southernmost American
344	locations EV and FLO. Results indicated admixture within European locations.
2/15	

345

346	Outlier detection and gene annotation
347	From the 7,621 markers analyzed, selection scans indicated that a total of 185 SNPs
348	had a posterior probability larger than 0.99 of being outlier (Supplementary Table 2;
349	Fig. 4). Eighty-five markers were associated to positive alpha values (positive
350	directional selection,) while 100 were associated to negative alpha values (balancing or
351	purifying selection). Only four out of these 185 outliers were listed among the MXT
352	subset representing coding regions in <i>G.holbrooki</i> . One of them (RADtag 11446)
353	showed positive selection, while the other three showed balancing selection (Table 5).
354	Selection scans did not detect outliers RADtags when comparisons were restricted to
355	the USA locations, or in comparisons of pooled individuals according to the two
356	population groups suggested by STRUCTURE. Analysis including only the Spanish
357	locations detected 308 outlier RADtags, all of them candidates for balancing or
358	purifying selection, with only ten of these from the MXT subset (Table 5). The number
359	of outliers increased to 346 when analyzing all European locations (all of them again
360	related with balancing or purifying selection, and seven of them from MXT subset).
361	The three outliers RADtags from the MXT subset putatively under balancing selection
362	when comparing all samples, remained under balancing selection in the analysis
363	restricted to the Spanish or European locations. Overall, 11 different RADtags from the
364	MXT subset resulted outliers showing negative alpha value in more than one of the
365	different geographical analyses performed. The allele frequencies of the two variants of
366	the SNP contained in these RADtag were intermediate, suggesting balancing rather
367	than purifying selection. The outlier candidate for positive selection (RADtag 11446)
368	showed a fixed variant for EV and FLO (G nucleotide) whereas the American PO and
369	the European locations for another (A nucleotide). All the outlier SNPs of the MXT
370	subset, except RADtag 37,928 that corresponds to an uncharacterized/unknown protein

371	(Table 5), were annotated using the available information from <i>X.maculatus</i> . All the
372	annotated SNPs were located inside the coding region of the annotated genes. Six of
373	them SNPs leaded to silent synonymous change while the other four leaded to non-
374	synonymous change.
375	The ten outlier mosquitofish associated to genes were involved in signal transduction,
376	apoptosis, cell morphogenesis, locomotion, organ development and catabolic processes
377	(Supplementary Table 3). When compared to human genome, they were enriched in
378	three different GO terms (FDR < 0.05): GO: 0005737 cytoplasm (cellular component
379	category) found in eight genes (ARFGEF2, ABTB1, CYFIP2, FEZ1, RARB,
380	SLC9A3R2, UBR4 and ZRANB1), GO: 0005515 protein binding (molecular function
381	category) also found in eight genes (ARFGEF2, ABTB1, CYFIP2, FEZ1, MPP2,
382	SLC9A3R2, UBR4 and ZRANB1), and GO: 0016881 amino-acid ligase activity
383	(molecular function) found in two genes (UBR4 and ZRANB1).
384	Discussion
385	Discussion Genomic resources for mosquitofish
386	The application of NGS techniques to non-model organisms is fuelling the availability
387	of genomic resources, providing a huge number of valuable molecular information to
388	analyze genetic diversity, population structure and adaption in these organisms (Helyar
389	et al. 2011). In this study a trustable genomic database containing information on
390	thousands of SNPs that can further the study G. holbrooki, or other close-related

- 391 poeciliid species such as G. affinis or Poecilia reticulata, is presented
- Despite of its rank as one of the 100 world's worst invasive species (Lowe *et al.* 2000),
- the number of molecular markers available to study mosquitofish was extremely low
- [30 microsatellite loci (Parker *et al.* 1998; Zane *et al.* 1999; Spencer *et al.* 1999; Purcell
- *et al.* 2011) and five associated-gene SNPs designed for *G.holbrooki* (Vidal *et al.*

396	2012)]. This study increases substantially the number of makers available to study
397	mosquitofish, by generating a 36,052 polymorphic RADtags. This total is similar to
398	those described in databases for other species created using a similar number of
399	individuals and techniques (Narum et al. 2013; Richards et al. 2013; Wang et al. 2013).
400	As suggested by the homogeneous distribution of filtered SNP positions in the
401	RADtags, sequencing errors were not responsible for the observed SNPs (Fig. 2). A
402	transition/transversion (ts/tv) ratio close to 0.50 would be obtained when a large portion
403	of detected SNPs resulted from sequencing errors because a random nucleotide error
404	has a probability of 1/3 to be a transition (A \leftrightarrow G, C \leftrightarrow T) and 2/3 to be a transversion
405	$(A\leftrightarrow C, A\leftrightarrow T, C\leftrightarrow G, G\leftrightarrow T)$. However, we obtained a ts/tv ratio of 2.13, and similar to
406	those reported in other species analysed with RADtag sequencing (Solanum melongena
407	1.65, Barchi et al. 2011; Anguilla anguilla 1.60, Pujolar et al. 2013), and fish species
408	analysed using other sequencing approaches (Sparus aurata 1.38, Cenadelli et al. 2007;
409	Salmo salar 1.37, Hayes et al. 2007; Scophthalmus maximus 1.35-1.88, Vera et al.
410	2011, 2013).
411	Mosquitofish population genomics: local diversity and population structure
412	A cline of decreasing genetic diversity towards northern mosquitofish populations was
413	observed in American locations (Table 2). In fact, the genetic diversity levels of
414	mosquitofish collected in PO location were even lower than those observed in post-
415	glacially founded freshwater Alaskan populations of three-spine stickleback,
416	Gasterosteus aculeatus, using the same methodology (Hohenlohe et al. 2010). In the
417	Northern hemisphere, the genetic variability of many species of animals and plants has
418	been influenced by the Quaternary ice ages (Hewitt 2000). The effects of these climatic
419	fluctuations resulted in range expansions and contractions, commonly depicted in the
420	population structure of species with a contrasting differentiation between northern and

421	southern populations. In North America, comparative phylogeographical congruence
422	across many taxa indicates historical biogeographical signal and a major role for
423	climate cycles in intraspecific diversification along the Gulf-Atlantic Coastal Plain
424	(Avise 1992). The Florida peninsula has been proposed as glacial refuge for many fish
425	species (Bermingham & Avise 1986; Bernatchez & Wilson 1998; Bagley et al. 2013).
426	Values of SNPs diversity among mosquitofish G.holbrooki populations agreed with the
427	patterns of divergence observed in other species, confirming at a genomic scale the
428	vicariance between northern and southern populations. In fact, increased diversity in
429	Florida and other southern mosquitofish populations yields support for this region as a
430	glacial refuge for this species (Scribner & Avise 1993).
431	Vidal et al. (2010) conducted mtDNA sequence analyses on the same samples
432	employed in present study and found that the EV mosquitofish were related with the
433	southern and more diverse Type II group, whereas FLO and PO collections contained
434	haplotypes characteristic of the northern Type I group. The most common mtDNA
435	haplotype observed at PO (Hol1) was also the most common among introduced
436	European populations, suggesting that the source of the invasion came from a
437	mosquitofish population close to PO. Population differentiation patterns reported in
438	here also agreed with recent observations using microsatellite loci (Sanz et al. 2013,
439	Díez-del-Molino et al. 2013). Those studies assigned the highest levels of diversity to
440	the EV location from Florida (H_S = 0.867), and confirmed PO as the genetically closest
441	population to introduced European mosquitofish populations (Fig. 3). Significant
442	reductions in diversity levels (measured as H_{E} and percentage of polymorphic loci)
443	have been detected during the invasion process as consequence of sequential founder
444	effects (Lockwood et al. 2005). In our results, American mosquitofish locations

445	harbored larger levels of genetic diversity compared to the introduced European
446	populations (Table 2).
447	At a global level, the results presented here agree with other studies that identify (EV)
448	as the more diverse location and the likely source for the USA northern natural post-
449	glacial colonization, whereas the least diverse (CO) probably represents the last
450	invasive event among the European locations studied (Table 2; Graputto et al. 2006).
451	Genetic losses of variation have been described for many invasive species, both in
452	animals and plants, but these not necessarily imply also the loss of adaptive potential
453	(Duglosch & Parker 2008). For example, in Hypericum canariense, a native endemic
454	plant of the Canary Islands introduced in USA Pacific coast and Hawaii Islands,
455	approximately 45 % of the diversity was lost in each invasive event but evidences for
456	adaptive genetic changes were also shown for increased growth in terms of both
457	survival and reproduction (Duglosch & Parker 2008).
457 458	survival and reproduction (Duglosch & Parker 2008). Northern USA locations genetically close to PO have been suggested to act as "invasive
458	Northern USA locations genetically close to PO have been suggested to act as "invasive
458 459	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive
458 459 460	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive bridgeheads are described as particularly successful invasive populations that
458 459 460 461	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive bridgeheads are described as particularly successful invasive populations that accumulate the evolutionary changes necessary to become invaders, and as such the
458 459 460 461 462	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive bridgeheads are described as particularly successful invasive populations that accumulate the evolutionary changes necessary to become invaders, and as such the source of colonists for remote new habitats (Lombaert <i>et al.</i> 2010). Following the
458 459 460 461 462 463	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive bridgeheads are described as particularly successful invasive populations that accumulate the evolutionary changes necessary to become invaders, and as such the source of colonists for remote new habitats (Lombaert <i>et al.</i> 2010). Following the hypothesis of Díez-del-Molino <i>et al.</i> (2013), northern USA locations would have
458 459 460 461 462 463 464	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive bridgeheads are described as particularly successful invasive populations that accumulate the evolutionary changes necessary to become invaders, and as such the source of colonists for remote new habitats (Lombaert <i>et al.</i> 2010). Following the hypothesis of Diez-del-Molino <i>et al.</i> (2013), northern USA locations would have acquired their invasive potential due to the stress of post-glacial expansion process.
458 459 460 461 462 463 464 465	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive bridgeheads are described as particularly successful invasive populations that accumulate the evolutionary changes necessary to become invaders, and as such the source of colonists for remote new habitats (Lombaert <i>et al.</i> 2010). Following the hypothesis of Díez-del-Molino <i>et al.</i> (2013), northern USA locations would have acquired their invasive potential due to the stress of post-glacial expansion process. Therefore, the invasive potential of mosquitofish would predate recent anthropic
458 459 460 461 462 463 464 465 466	Northern USA locations genetically close to PO have been suggested to act as "invasive bridgeheads" to the European invasion (Diez-del-Molino <i>et al.</i> 2013). Invasive bridgeheads are described as particularly successful invasive populations that accumulate the evolutionary changes necessary to become invaders, and as such the source of colonists for remote new habitats (Lombaert <i>et al.</i> 2010). Following the hypothesis of Diez-del-Molino <i>et al.</i> (2013), northern USA locations would have acquired their invasive potential due to the stress of post-glacial expansion process. Therefore, the invasive potential of mosquitofish would predate recent anthropic introductions. In fact, populations from peripheral ranges of distribution often show

between PO and the European locations, confirming the status of the former as thesource for European locations.

471 Evolutionary forces driving invasive process: genetic drift versus selection Understanding genetic changes involved in invasive potential as well as developing 472 473 genetic control measures are key topics to prevent and control invasions (Lee 2002; Handley et al. 2011). Mosquitofish diversity loses at genomic scales during the 474 European colonization affected equally coding and non-coding regions (Table 2). In 475 agreement with theoretical expectations at early stages of invasions (Allendorf & 476 Lundquist 2003), such losses reflect the effects of genetic drift rather than other 477 478 evolutionary forces. Genetic drift related to the founder events during the post-glacial colonization has been invoked as responsible for the genetic depauperation of northern 479 480 USA G. holbrooki populations (Scribner & Avise 1993). Strong genetic drift would 481 differentiate introduced mosquitofish populations by randomly fixing allelic variants, 482 resulting in significantly high F_{ST} values detected either in the global analysis (F_{ST} = 0.416) and in pairwise comparisons among studied locations (Table 3). Unshared 483 genetic drift also explained a major part of the differentiation seen between PO and the 484 485 other American collections in the TREEMIX analysis. Mosquitofish have colonized all Mediterranean coastal basins in the Iberian Peninsula 486 competing and displacing such native fishes as *Valencia hispanica* and *Aphanius iberus* 487 (Rincon et al. 2002; Carmona-Catot et al. 2013), and are currently spreading towards 488 the headstreams of all major Iberian river basins (e.g. Oscoz et al. 2008). Substantial 489 490 divergence has been observed among Iberian mosquitofish populations from distinct river basins at life-history traits such as size-at-maturity, reproductive effort, or 491 gonadal-size (Benejam et al. 2008; Carmona-Catot et al. 2011). Certainly, phenotypic 492 493 plasticity enables organisms to respond to varying environments (reviewed in Murren et

494	al. 2015), but more often, the success of invasive species after introduction has been
495	associated to rapid adaptive response to novel selective processes during spread and
496	colonization of newer habitats (Barrett 2015). Despite the prominent role of founder
497	events during invasions, it appears that genetic drift does not eliminate adaptive
498	potential because many fitness-related traits may be polygenic and do not lose variation
499	as quickly as individual loci do (Duglosh & Parker 2008). Accordingly, substantial
500	additive variation could be retained during bottlenecks (e.g. Lindholm et al. 2005). Our
501	outlier analyses indicated 85 out of 7,724 studied RADtags to be under positive
502	selection pressure when comparing all locations. The lack of positive selective response
503	in comparisons involving only European collections indicated that allele changes in
504	RADtags related to positive selection occurred prior to the European mosquitofish
505	invasion. For instance, the RADtag 11446 showed a fixed G nucleotide at the studied
506	SNP at EV and FLO locations, while PO and all European locations had an A at that
507	site, resulting in a non-synonymous amino acid substitution. Positive selection may be
508	confused with demographic fluctuations because they leave similar signals in genomic
509	variation (Currat et al. 2006). Genetic drift tends to increase differentiation among
510	populations (i.e. high F_{ST} values), therefore outliers methods based on F_{ST} values are
511	limited to detect positive selection under strong genetic drift. The inclusion of
512	populations which suffered severe bottlenecks increases the false-positive outlier rate
513	for directional selection in BAYESCAN (Foll & Gaggiotti 2008). Microsatellite
514	analyses suggested that most of the mosquitofish diversity present in Europe can be
515	attributed to a single American source (Sanz et al. 2013), and since the introduction of
516	mosquitofish in Spain in 1921 consisted of only 12 individuals, it can be inferred that
517	several additional bottlenecks occurred during subsequent spread along the Iberian
518	Peninsula (Diez-del-Molino et al. 2013). It is very likely that not enough time has

519	elapsed to dismiss the effect of genetic drift on the outlier analyses performed. Hence
520	the relevance of adaptive pressures in European mosquitofish populations could remain
521	underestimated.
522	Interestingly, a larger number of outliers detected in this study were related to
523	balancing selection either in analyses involving all locations or in those restricted to the
524	European locations. Among Spanish location, nine RADtags undoubtedly associated to
525	coding regions in mosquitofish (MXT RADtag subset) showed balancing selection and
526	three of these consist of non-synonymous substitutions. The low FDR values (< 0.010,
527	Table 5) suggest that these results are reliable. Genes associated to these outliers were

related with cell morphogenesis, locomotion, organ development and some catabolic

529 processes which are important for individual development/integrity (Supplementary

Table 3). Accordingly, these results suggest that retention of genetic variability in some

531 specific genes is essential for the survival of both native and invasive mosquitofish

532 populations.

533 Putative loci under balancing selection have been often detected in genomic surveys of

534 population structure within species (e.g. Makinen *et al.* 2008). Nevertheless these loci

have received less attention than those showing positive directional selection because of

the more evident relationship of positive selection with local adaptation (Belanger-

537 Deschenes *et al.* 2013; Fisher *et al.* 2014). Balancing selection in isolated small

538 populations retained diversity levels of MHC immunity in the guppies (Van Oosterhout

et al. 2006) and panthers (Castro-Prieto *et al.* 2011). High genetic variability in MHC

540 genes is necessary for the pathogen detection that triggers the immune response

541 essential for survival (Luo *et al.* 2012). Loci retaining polymorphism under putative

542 balancing selection has been also detected in yellow perch (*Perca flavescens*)

543 inhabiting polluted environments (Belanger-Deschenes *et al.* 2013).

544	Genetic drift associated with founder events at early stages of invasion tends to
545	maximize genetic differentiation among populations by randomly fixing allele variants.
546	Our results indicate that genetic drift shaped diversity and divergence among studied
547	mosquitofish populations by increasing allele frequency variance among populations
548	and consequently the estimates of F_{ST} . In such scenario polymorphic loci retaining
549	similar allele frequencies in all populations would be rare and such diversity could be
550	putatively maintained by balancing selection. There appears to be no studies
551	documenting the effect of strong drift on the detection of outlier loci under balancing
552	selection using genomic population data. By combining information from different
553	approaches, the detection of outliers may improve by reducing rates of false positives
554	(Excoffier et al. 2009; De Mita et al. 2013; De Villemereuil et al. 2014). Although
555	BAYESCAN may be useful to detect outliers under some evolutionary scenarios
556	(Perez-Figueroa et al. 2010), it is prone to yield false positive results when hierarchical
557	substructure is present among locations. To minimize this potential error, Excoffier et
558	al. (2009) proposed a method to detect outliers under a hierarchical island model where
559	locations within groups exchange more migrants than locations from different groups.
560	This methodology is implemented in ARLEQUIN 3.5 software, and such analysis was
561	performed as follows: [number of simulations= 50,000; demes simulated (d) = 100;
562	number of groups $(k)=10$ including all locations grouped as suggested by
563	STRUCTURE and AMOVA results (EV+FLO – PO+Europe). The results obtained
564	confirmed the same four RADtag outliers suggested by BAYESCAN among the MXT
565	RADtags subset. Thus, RADtag 11446 (CYFIP2 gene) was identified to be
566	experiencing positive selection and RADtags 13210 (ZRANB1 gene), 36169
567	(ARFGEF2 gene), and 37928 (uncharacterized protein) were identified again to be
568	experiencing balancing selection.

569	As far as we know, this is the first genomic evidence of the role of genetic drift and
570	adaptation in the invasive process of a highly successful freshwater invasive fish, G.
571	holbrooki. We added genomic evidence to explain how pre-invasive evolutionary
572	changes, such as postglacial expansion in America, are relevant when exploring
573	changes on levels of genetic diversity as a consequence of invasions. Finally, our
574	results support a prominent role of genetic drift as one of the main evolutionary forces
575	driving the invasive process, but preserving polymorphisms by balancing selection in
576	specific genes could be more important than the average population diversity for the
577	maintenance of local populations and for their invasive success.
578	Acknowledgements
579	Authors wish to thank FLORAGENEX team for their technical assistance, Dr. J. Boone
580	for his comments about RAD technology, Dr. J. Catchen for his help with data analyses
581	and Dr. J. Alvarado-Bremer (Texas A&M University) for grammatical improvements.
582	The authors are also grateful to Dr. J. Gow, Dr. P. Hohenlohe and two anonymous
583	reviewers for their constructive comments on the earlier version of this manuscript.
584	DDM was supported by a predoctoral fellowship from the University of Girona
585	(BR10/15). This study has been supported by the Spanish Ministry of Science and
586	Innovation project CGL2009-12877-C02-02, and the AGAUR 2009 SGR/144 financial
587	budget of the Autonomous Government of Catalonia.
588	References
589 590	 Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. <i>Conservation Biology</i> 17, 24–30.

- Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of
 conservation genetics. *Nature Reviews Genetics* 11, 697-709.
- Andrew RL, Kane NC, Baute GJ, Grassa CJ, Rieseberg LH (2013) Recent nonhybrid
 origin of sunflower ecotypes in a novel habitat. *Molecular Ecology* 22, 799-813.
- Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G. LOSITAN: A workbench to
 detect molecular adaptation based on a F_{st}-outlier method. *BMC Bioinformatics*
- **9**, 323.

598	Avise JC (1992) Molecular population-structure and the biogeographic history of a
599	regional fauna - a case-history with lessons for conservation biology. Oikos 63,
600	62-76.
601	Bagley JC, Sandel M, Travis J, de Lourdes Lozano-Vilano M, Johnson JB (2013)
602	Paleoclimatic modeling and phylogeography of least killifish, Heterandria
603	formosa: insights into Pleistocene expansion-contraction dynamics and
604	evolutionary history of North American Coastal Plain freshwater biota. BMC
605	Evolutionary Biology 13, 223.
606	Baird NA, Etter PD, Atwood TS, <i>et al.</i> (2008) Rapid SNP Discovery and Genetic
607	Mapping Using Sequenced RAD Markers. <i>Plos One</i> 3 , e3376.
608	Barchi L, Lanteri S, Portis E, <i>et al.</i> (2011) Identification of SNP and SSR markers in
609	eggplant using RAD tag sequencing. BMC Genomics 12, 304.
610	Barrett SCH (2015) Foundations of invasion genetics: the Baker and Stebbins legacy.
611	Molecular Ecology 9, 1927-1941.
612	Beaumont MA, Nichols RA (1996) Evaluating loci for the use in the genetic analysis of
613	population structure. Proceedings of the Royal Society, Series B: Biological
614	<i>Sciences</i> 263 , 1619-1626.
615	Beaumont MA, Balding DJ (2004) Idenntfying adaptative genetic divergence among
616	populations from genome scans. Molecular Ecology 13, 969-980.
617	Belanger-Deschenes S, Couture P, Campbell PGC, Bernatchez L (2013) Evolutionary
618	change driven by metal exposure as revealed by coding SNP genome scan in
619	wild yellow perch (Perca flavescens). Ecotoxicology 22, 938-957.
620	Benejam L, Alcaraz C, Sasal P, Simon-Levert G, García-Berthou E (2008) Life history
621	and parasites of the invasive mosquitofish (Gambusia holbrooki) along a
622	latitudinal gradient. Biological Invasions 11, 2265–2277.
623	Benejam L, Benito J, García-Berthou E (2009) Decreases in Condition and Fecundity of
624	Freshwater Fishes in a Highly Polluted Reservoir. Water, Air, & Soil Pollution
625	210, 231–242.
626	Bermingham E, Avise JC (1986) molecular zoogeography of freshwater fishes in the
627	southeastern United States. Genetics 113, 939-965.
628	Bernatchez L, Wilson CC (1998) Comparative phylogeography of nearctic and
629	palearctic fishes. Molecular Ecology 7, 431-452.
630	Blackburn TM, Lockwood JL, Cassey P (2015) The influence of numbers on invasion
631	success. <i>Molecular Ecology</i> 24 , 1942-1953.
632	Blanchet S (2012) The use of molecular tools in invasion biology: an emphasis on
633	freshwater ecosystems. <i>Fisheries Management and Ecology</i> 19 , 120–132.
634	Bock DG, Caseys C, Cousens RD, <i>et al.</i> (2015) What we still don't know about
635	invasion genetics. <i>Molecular Ecology</i> 24, 2277-2297.
636	Bruneaux M, Johnston SE, Herczeg G, <i>et al.</i> (2013) Molecular evolutionary and
637	population genomic analysis of the nine-spined stickleback using a modified
638	restriction-site-associated DNA tag approach. <i>Molecular Ecology</i> 22, 565-582.
	Carmona-Catot G, Benito J, García-Berthou E (2011) Comparing latitudinal and
639	
640	upstream-downstream gradients: life history traits of invasive mosquitofish.
641	Diversity and Distributions 17, 214–224.
642	Carmona-Catot G, Magellan K, García-Berthou E (2013) Temperature-specific
643	competition between invasive mosquitofish and an endangered cyprinodontid
644	fish. <i>PloS One</i> 8 , e54734.
a - -	
645	Castro-Prieto A, Wachter B, Melzheimer J, Thalwitzer S, Sommer S (2011) Diversity
645 646 647	

648	Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks:
649	Building and Genotyping Loci De Novo From Short-Read Sequences. G3-Genes
650	Genomes Genetics 1, 171-182.
651	Catchen JM, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an
652	analysis tool set for population genomics. Molecular Ecology 22, 3124-3140.
653	Cenadelli S, Maran V, Bongioni G, et al. (2007) Identification of nuclear SNPs in
654	gilthead seabream. Journal of Fish Biology 70, 399-405.
655	Chapman P, Warburton K (2006) Postflood movements and population connectivity in
656	gambusia (Gambusia holbrooki). Ecology of Freshwater Fish 15, 357–365.
657	Clavero M, Garcia-Berthou E (2005) Invasive species are a leading cause of animal
658	extinctions. Trends in Ecology and Evolution 20, 110.
659	Collins JE, White S, Searle SMJ, Stemple DL (2012) Incorporating RNA-seq data into
660	the zebrafish Ensembl genebuild. Genome Research 22, 2067-2078.
661	Congdon B (1994) Salinity-related fitness differences amongst GPI genotypes in the
662	mosquitofish Gambusia holbrooki (Poeciliidae: Teleostei). Biological Journal of
663	the Linnean Society 53, 343–352.
664	Critescu ME (2015) Genetic reconstructions of invasion history. <i>Molecular Ecology</i> 24,
665	2212-2225.
666	Currat M, Excoffier L, Maddison W, et al. (2006) Comment on "Ongoing adaptive
667	evolution of ASPM, a brain size determinant in Homo sapiens" and
668	"Microcechaplin, a gene regulating brain size, continues to evolve adaptively in
669	humans". <i>Science</i> 313 , 172.
670	Davey JW, Hohenlohe PA, Etter PD, et al. (2011) Genome-wide genetic marker
671	discovery and genotyping using next-generation sequencing. Nature Reviews
672	<i>Genetics</i> 12 , 499-510.
673	Deacon AE, Ramnarine IW, Magurran AE (2011) How reproductive ecology
674	contributes to the spread of a globally invasive fish. <i>PLoS One</i> 6 , e24416.
675	De Mita S, Thuillet AC, Gay L, et al. (2013) Detecting selection along environmental
676	gradients: analysis of eight methods and their effectiveness for outbreeding and
677	selfing populations. <i>Molecular Ecology</i> 22, 1383–1399.
678	De Villemereuil P, Frichot É, Bazin É, François O, Gaggiotti OE (2014) Genome scan
679	methods against more complex models: when and how much should we trust
680	them? Molecular Ecology 23, 2006–2019.
681	Diez-del-Molino D, Carmona-Catot G, Araguas R-M, et al. (2013) Gene Flow and
682	Maintenance of Genetic Diversity in Invasive Mosquitofish (Gambusia
683	holbrooki). Plos One 8, e82501.
684	Dlugosh KM, Parker IM (2008) Founding events in species invasions: genetic variation,
685	adaptive evolution, and the role of multiple introductions. <i>Molecular Ecology</i>
686	17 , 431-449.
687	Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program
688	for visualizing STRUCTURE output and implementing the Evanno method.
689	Conservation Genetic Resources 4, 359-361.
690	Elshire RJ, Glaubitz JC, Sun Q <i>et al.</i> (2011) A robust, simple genotyping-by-sequencing
691	(GBS) approach for high diversity species. <i>PLoS ONE</i> 6, e19379.
692	Emerson KJ, Merz CR, Catchen JM, <i>et al.</i> (2010) Resolving postglacial
693	phylogeography using high-throughput sequencing. <i>Proceedings of the National</i>
694	Academy of Sciences of the United States of America 107 , 16196-16200.
695	Evanno G, Regnaut S, Goudet J (2005). Detecting the number of clusters of individuals
696	using the software STRUCTURE : a simulation study. <i>Molecular Ecology</i> 14 , 2611-2620
697	2611-2620.

698	Excoffier L, Smouse PE, Quattro JM (1992) Analysis of moleculrar variance inferred
699	from metric distances among DNA hapltypes: Application to human
700	mitochondrial DNA restriction data. Genetics 131, 479-491.
701	Excoffier L, Hoffer T, Foll M (2009) Detecting loci under selection in a hierarchically
702	structured population. Heredity 103, 285-298.
703	Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to
704	perform population genetics analyses under Linux and Windows. Molecular
705	Ecology Resources 10, 564-567.
706	Facon B, Pointier JP, Jarne P, Sarda V, David P (2008) High genetic variance in life-
707	history strategies within invasive populations by way of multiple introductions.
708	Current Biology 18, 363-367.
709	Fraser BA, Kunstner A, Reznick DN, Dreyer C, Weigel D (2015) Population genomics
710	of natural and experimental populations of guppies (<i>Poecilia reticulata</i>).
711	Molecular Ecology 24, 389-408.
712	Fischer MC, Foll M, Heckel G, Excoffier L (2014) Continental-scale footprint of
713	balancing and positive selection in a small rodent (<i>Microtus arvalis</i>). <i>PLoS ONE</i>
714	9, e112332.
715	Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate
716	for both dominant and codominant markers: a Bayesian perspective. <i>Genetics</i>
717	180 , 977-993.
718	Garcia-Berthou E, Alcaraz C, Pou-Rovira Q, <i>et al.</i> (2005) Introduction pathways and
719	establishment rates of invasive aquatic species in Europe. <i>Canadian Journal of</i>
720	Fisheries and Aquatic Sciences 62, 453-463.
721	Grapputo A, Bisazza A, Pilastro A (2006) Invasion success despite reduction of genetic
722	diversity in the European populations of eastern mosquitofish (<i>Gambusia</i>
723	holbrooki). Italian Journal of Zoology 73 , 67–73.
724	Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and
725	analysis program fro Windows 95/98/NT. <i>Nucleid Acids Symposium Series</i> 41,
726	95-98.
727	Hand BK, Hether TD, Kovach RP, <i>et al.</i> (2014) Genomics and introgression: Discovery
728	and mapping of thousands of species-diagnostic SNPs using RAD sequencing.
729	<i>Current Zoology</i> 61 , 146-154.
730	Handley LJL, Estoup A, Evans DM, <i>et al.</i> (2011) Ecological genetics of invasive alien
731	species. <i>Biocontrol</i> 56, 409-428.
732	Hardie DC, Hutchings JA (2010) Evolutionary ecology at the extremes of species'
733	ranges. Environmental Reviews 18, 1-20.
734	Hayes B, Laerdahl JK, Lien S, <i>et al.</i> (2007) An extensive resource of single nucleotide
735	polymorphism markers associated with Atlantic salmon (<i>Salmo salar</i>) expressed
	sequences. Aquaculture 265, 82-90.
736 727	Helyar SJ, Hemmer-Hansen J, Bekkevold D, <i>et al.</i> (2011) Application of SNPs for
737	
738	population genetics of nonmodel organisms: new opportunities and challenges.
739	Molecular Ecology Resources 11, 123-136.
740	Hernandez-Martich JD, Novak JM, Smith MH, Johns PE (1995) Genetic structure of
741	mosquitofish populations in the Altamaha and Ogeechee drainages of Georgia:
742	Reporting an undescribed form in the Ocmulgee River. <i>Biochemical Systematics</i>
743	and Ecology 23, 617-625.
744	Hewitt G (2000) The genetic legacy of the Quaternary ice ages. <i>Nature</i> 405 , 907-913.
745	Hohenlohe PA, Bassham S, Etter PD, <i>et al.</i> (2010) Population genomics of parallel
746	adaptation in threespine stickleback using sequenced RAD Tags. <i>Plos Genetics</i>
747	6 , e1000862.

748	Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G (2011) Next-
749	generation RAD sequencing identifies thousands of SNPs for assessing
750	hybridization between rainbow and westslope cutthroat trout. Molecular
751	Ecology Resources 11, 117-122.
752	Hrbek T, Seckinger J, Meyer A (2007) A phylogenetic and biogeographic perspective
753	on the evolution of poeciliid fishes. <i>Molecular Phylogenetics and Evolution</i> 43,
754	986-998.
755	Jiao X, Sherman BT, Huang DW, et al. (2012) DAVID-WS: a stateful web service to
756	facilitate gene/protein list analysis. Bioinformatics 28, 1805-1806.
757	Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological
758	invasion. Journal of Evolutionary Biology 23:1720-1731.
759	Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: A new tool for whole genome
760	microsatellite search and investigation. <i>Bioinformatics</i> 23, 1683–1685.
761	Kolbe JJ, Glor RE, Rodriguez Schettino L, et al. (2004) Genetic variation increases
762	during biological invasion by a Cuban lizard. <i>Nature</i> 431 , 177–181.
763	Langerhans RB, Gifford ME, Joseph EO (2007) Ecological speciation in Gambusia
764	fishes. Evolution 61, 2056–2074.
765	Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient
766	alignment of short DNA sequences to the human genome. <i>Genome Biology</i> 10 .
767	Lee CE (2002) Evolutionary genetics of invasive species. Trends in Ecology &
768	Evolution 17, 386-391.
769	Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler
770	transform. Bioinformatics 25, 1754-1760.
771	Lindholm AK, Breden F, Alexander HJ, et al. (2005) Invasion success and genetic
772	diversity of introduced populations of guppies <i>Poecilia reticulata</i> in Australia.
773	Molecular Ecology 14, 3671–82.
774	Lischer HEL, Excoffier L (2012) PGDSpider: An automated data conversion tool for
775	connecting population genetics and genomics programs. Bioinformatics 28, 298-
776	299.
777	Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in
778	explaining species invasions. Trends in Ecology and Evolution 20, 223-228.
779	Lombaert E, Guillemaud T, Cornuet J-M, et al. (2010) Bridgehead Effect in the
780	Worldwide Invasion of the Biocontrol Harlequin Ladybird. Plos One 5, e9743.
781	Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the World's worst
782	invasive alien species: a selection from the global invasive species database (ed.
783	ISSG), 12 p. World Conservation Union (IUCN).
784	Luo MF, Pan HJ, Liu ZJ, Li M (2012) Balancing selection and genetic drift at major
785	histocompatibility complex class II genes in isolated populations of golden
786	snub-nosed monkey (Rhinophitecus roxellana). BMC Evolutionary Biology 12,
787	207.
788	Makinen HS, Cano JM, Merila J (2008) Identifying footprints of directional and
789	balancing selection in marine and freshwater three-spined stickleback
790	(Gasterosteus aculeatus) populations. Molecular Ecology 17, 3565–82.
791	Meffe GK, Weeks SC, Mulvey M, Kandl KL (1995) Genetic differences in thermal
792	tolerance of eastern mosquitofish (Gambusia holbrooki Poeciliidae) from
793	ambient and thermal ponds. Canadian Journal of Fisheries and Aquatic
794	
	Sciences 52, 2704–2711.
795	Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-

798	Murren CJ, Auld JR, Callahan H, et al. (2015) Constraints on the evolution of
799	phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity in
800	press, doi:10.1038/hdy.2015.8
801	Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA (2013) Genotyping-by-
802	sequencing in ecological and conservation genomics. <i>Molecular Ecology</i> 22,
803	2841-2847.
804	Neff BD, Pitcher TE, Ramnarine IW (2008) Inter-population variation in multiple
805	paternity and reproductive skew in the guppy. <i>Molecular Ecology</i> 17,2975–
806	2984.
807	Oscoz J, Miranda R, Leunda P (2008) Additional records of eastern mosquitofish
808	Gambusia holbrooki (Girard, 1859) for the River Ebro basin (Spain). Aquatic
809	Invasions 3, 108–112.
810	Parker KM, Hughes K, Kim TJ, Hedrick PW (1998) Isolation and characterization of
811	microsatellite loci from the Gila topminnow (Poeciliopsis occidentalis) and their
812	utility in guppies (Poecilia reticulata). Molecular Ecology 7, 361-363.
813	Perez-Figueroa A, Garcia-Pereira MJ, Saura M, Rolan-Alvarez E, Caballero A (2010)
814	Comparing three different methods to detect selective loci using dominant
815	markers. Journal of Evolutionary Biology 23, 2267–2276.
816	Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from
817	genome-wide allele frequency data. PLoS Genetics 8, e1002967
818	Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using
819	multilocus genotype data. Genetics 155, 945-959.
820	Pujolar JM, Jacobsen MW, Frydenberg J, et al. (2013) A resource of genome-wide
821	single-nucleotide polymorphisms generated by RAD tag sequencing in the
822	critically endangered European eel. Molecular Ecology Resources 13, 706-714.
823	Purcell KM, Ling N, Stockwell CA (2012) Evaluation of the introduction history and
824	genetic diversity of a serially introduced fish population in New Zealand.
825	Biological Invasions 14, 2057–2065.
826	Purcell KM, Lance SL, Jones KL, Stockwell CA (2011) Ten novel microsatellite
827	markers for the western mosquitofish Gambusia affinis. Conservation Genetics
828	<i>Resources</i> 3 , 361-363.
829	Rehage JS, Sih A (2004) Dispersal behavior, boldness, and the link to invasiveness: a
830	comparison of four Gambusia species. <i>Biological Invasions</i> 6, 379–391.
831	Reznick D, Ghalambor C (2001) The population ecology of contemporary adaptations:
832	What empirical studies reveal about the conditions that promote adaptive
833	evolution. Genetica 112-113, 183–198.
834	Ribeiro F, Elvira B, Collares-Pereira M (2008) Life-history traits of non-native fishes in
835	Iberian watersheds across several invasion stages: a first approach. <i>Biological</i>
836	Invasions 10, 89-102.
837	Richards PM, Liu MM, Lowe N, et al. (2013) RAD-Seq derived markers flank the shell
838	colour and banding loci of the Cepaea nemoralis supergene. Molecular Ecology
839	22 , 3077-3089.
840	Rincón PÁ, Correas AM, Morcillo F, Risueño P, Lobón-Cerviá J (2002) Interaction
841	between the introduced eastern mosquitofish and two autochthonous Spanish
842	toothcarps. Journal of Fish Biology 61, 1560–1585.
843	Sanz N, Araguas RM, Vidal O, et al. (2013) Genetic characterization of the invasive
844	mosquitofish (<i>Gambusia</i> spp.) introduced to Europe: population structure and
845	colonization routes. <i>Biological Invasions</i> 15 , 2333-2346.

846 847	Scribner KT, Avise JC (1993) Cytonuclear genetic architecture in mosquitofish populations and the possible roles of introgressive hybridization. <i>Molecular</i>
848	<i>Ecology</i> 2 , 139-149.
849	Spencer CC, Chlan CA, Neigel JE, et al. (1999) Polymorphic microsatellite markers in
850	the western mosquitofish, Gambusia affinis. Molecular Ecology 8, 157-158.
851	Stockwell CA, Henkanaththegedara S (2011) Evolutionary conservation biology. In
852	Ecology Evolutionary Poeciliid Fishes, chapter 12, page 424. University of
853	Chicago Press, Chicago.
854	Tatara CP, Mulvey M, Newman MC (2002) Genetic and demographic responses of
855	mercury-exposed mosquitofish (Gambusia holbrooki) populations: temporal
856	stability and reproductive components of fitness. Environmental Toxicology and
857	<i>Chemistry</i> 21 , 2191–2197.
858	Van Oosterhout C, Joyce DA, Cummings SM, et al. (2006) Balancing selection, random
859	genetic drift, and genetic variation at the Major Histocompatibility Complex in
860	two wild populations of guppies (<i>Poecilia reticulata</i>). Evolution 60 , 2562-2574.
861	Vera M, Alvarez-Dios J-A, Fernandez C, et al. (2013) Development and validation of
862	Single Nucleotide Polymorphisms (SNPs) markers from two transcriptome 454-
863	runs of turbot (Scophthalmus maximus) using high-throughput genotyping.
864	International journal of molecular sciences 14, 5694-5711.
865	Vera M, Alvarez-Dios JA, Millan A, et al. (2011) Validation of single nucleotide
866	polymorphism (SNP) markers from an immune Expressed Sequence Tag (EST)
867	turbot, Scophthalmus maximus, database. Aquaculture 313, 31-41.
868	Vidal O, Garcia-Berthou E, Tedesco PA, Garcia-Marin J-L (2010) Origin and genetic
869	diversity of mosquitofish (Gambusia holbrooki) introduced to Europe.
870	Biological Invasions 12, 841-851.
871	Vidal O, Sanz N, Araguas RM, et al. (2012) SNP diversity in introduced populations of
872	the invasive Gambusia holbrooki. Ecology of Freshwater Fish 21, 100-108.
873	Wang XQ, Zhao L, Eaton DAR, Li DZ, Guo ZH (2013) Identification of SNP markers
874	for inferring phylogeny in temperate bamboos (Poaceae: Bambusoideae) using
875	RAD sequencing. Molecular Ecology Resources 13, 938-945.
876	Wooten MC, Scribner KT, Smith MH (1988) Genetic variability and systematics of
877	Gambusia in the southeastern United States. Copeia, 283-289.
878	WWF (2014) Living Planet Report: species and spaces, people and places. Ed.
879	McLellan R, Iyengar L, Jeffries B, Oerlemans N. WWF, Gland, Switzerland,
880	178 pp.
881	Zane L, Nelson WS, Jones AG, Avise JC (1999) Microsatellite assessment of multiple
882	paternity in natural populations of a live bearing fish, Gambusia holbrooki.
883	Journal of Evolutionary Biology 12, 61-69.
884	

885 Data Accessibility

- 886 GENEPOP input files, BayeScan results and BLASTN output file have been deposited
- in Dryad (Number identification: 10.5061/dryad.j059v). Filtered consensus RADtag
- sequences containing only one SNP are supplied on the Supporting Information
- (Supplementary Table 1). BAM files for all the individuals included in the database
- have been deposited in NCBI-SRA repository (number: SRP066107; Bioproject:
- 891 PRJNA301984; Biosamples: SAMN04262351 SAMN04262443).

892 Author Contributions Box

- JLGM and MV designed the study. MV, DDM and JLGM analysed data. MV wrote the
- paper with the contributions of JLGM and DDM. JLGM funded the reagents.

895 Figure Legends

Figure 1. Geographical distribution of the sampling sites analysed. Location codes areindicated on Table 1.

Figure 2. Bayesian analyses of population structure carried out with STRUCTURE.

Each vertical bar represents one individual, and the colour proportion for each bar

represents the posterior probability of assignment of each individual to the differentclusters (K) inferred by the program.

Figure 3. Maximum-likelihood tree generated by TREEMIX. The three migration
events are depicted in heatmap colored arrows. EV location was used as root (see text)

Figure 4. Posterior odds of the selection model (Log10(PO)) and locus-specific FST for each SNP in the whole dataset according to the BAYESCAN results. Dotted line indicates the choosen threshold of significance corresponding to a probability $P \ge 0.99$ of being under selection. Loci above that threshold are indicated in red if belong to the

anonymous database, and in green if associated to genes.

909 Supporting information

- Supplementary Table 1.Information for the RADtags containing one SNP included on
- 911 the *Gambusia holbrooki* genomic database. Identification number on the database
- 912 (Catalog ID), corresponding RADtag for the individual VM43 used as framework for
- the construction of RADtags (VM43 RADid), RADtag consensus sequence, number of
- 914 individuals presenting the RADtag (N), SNP position inside RADtag and its variants are
- showed. RADtags in green and red represent markers matching against genes in *X*.
- 916 *maculatus* and containing repeat motifs, respectively.

- 917 Supplementary Table 2. Outliers loci detected with the program BAYESCAN. Only
- 918 RADtags with a posterior probability (P) > 0.99000 and a False Discovery Rate (FDR)
- 919 < 0.01 are showed. RADtags associated to X. maculatus genes are showed in green.
- Supplementary Table 3. Gene Ontology (GO) terms of level 4 for the three GO
- 921 categories provided by DAVID program (a maximum of three for each category).
- 922 Supplementary Figure 1. Number of SNPs per nucleotide position inside the RADtags.
- 923 The first five nucleotide positions correspond with the restriction enzyme target.
- 924

Sampling Site	Code	River	Country	Geographical Coordinates	Ν	
Everaledea			USA	25° 26' N	12	
Everglades	EV	Everglades	USA	80° 46' W	12	
Elenenee	FLO	Florence	USA	36° 01' N	10	
Florence	FLO	Florence	USA	79° 57' W	12	
Potomac	DO	Potomac		38° 39' N	12	
Potomac	PO	Potomac	USA	77° 11' W	12	
Degalý	וח	Elucià	Spain	42° 11' N	10	
Besalú	BL	Fluvià	(Europe)	02° 44' E	12	
Sant Dana Dagaa dan	חח	Elucià	Spain	42° 11' N	12	
Sant Pere Pescador	PP	Fluvià	(Europe)	03° 04' E		
Vilanava da Musa			Spain	42° 17' N	12	
Vilanova de Muga	VM	VM Muga (Eur		03° 02' E	12	
Empirio Drovo	ED	Muss	Spain	42° 14' N	12	
Empúria-Brava	EP	Muga	(Europe)	03° 07' E	12	
Caltana	CO	Caltana	Italy	43° 38' N	10	
Coltano	CO	Coltano	(Europe)	10° 24' E	12	

Table 1. Sampling sites of the present study including the number of individuals analysed (N)

926

Table 2. Diversity levels of the studied sampling sites. Number of individuals analysed (N), Gene diversity (H_E), mean number of alleles per

929 locus (N alleles) and their standard deviations are included. Location codes are showed on Table 1. Results for all RADtags (Full dataset) and for

930 the subset of RADtags matching against the *X. maculatus* transcriptome (XMT subset) are included.

Full datasetUsable Loci76147609762176177619761976197620760476Polymorphic Loci478132321760716975884947650739511% Polymorphic Loci62.7942.4823.099.4012.8011.6012.438.5397.2515 H_E 0.1350.1160.0600.0340.0410.0390.0420.0330.1490.0SD0.1540.1680.1340.1160.1240.1190.1240.1250.1550.1N alleles1.6291.4241.2311.0941.1281.1161.1251.0851.9761.1SD0.4900.4990.4220.2930.3340.3210.3310.2800.1740.33MXT subsetUsable Loci18418418518518518518418418Polymorphic Loci107854414242122161812% Polymorphic Loci58.1546.2023.787.5712.9711.3511.898.7098.3714	Variable	EV	FLO	РО	BL	РР	VM	EP	СО	America	Europe
Usable Loci76147609762176177619761976197620760476Polymorphic Loci478132321760716975884947650739511% Polymorphic Loci62.7942.4823.099.4012.8011.6012.438.5397.2515 H_E 0.1350.1160.0600.0340.0410.0390.0420.0330.1490.043SD0.1540.1680.1340.1160.1240.1190.1240.1250.1550.1N alleles1.6291.4241.2311.0941.1281.1161.1251.0851.9761.1SD0.4900.4990.4220.2930.3340.3210.3310.2800.1740.33MXT subsetUsable Loci184184185185185185184184185% Polymorphic Loci107854414242122161812% Polymorphic Loci58.1546.2023.787.5712.9711.3511.898.7098.3714	Ν	11	11	11	12	12	12	12	12	33	60
Polymorphic Loci 4781 3232 1760 716 975 884 947 650 7395 11 % Polymorphic Loci 62.79 42.48 23.09 9.40 12.80 11.60 12.43 8.53 97.25 15 H _E 0.135 0.116 0.060 0.034 0.041 0.039 0.042 0.033 0.149 0.060 SD 0.154 0.168 0.134 0.116 0.124 0.119 0.124 0.125 0.155 0.1 N alleles 1.629 1.424 1.231 1.094 1.128 1.116 1.125 1.085 1.976 1.1 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.33 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.33 MXT subset	Full dataset										
% Polymorphic Loci 62.79 42.48 23.09 9.40 12.80 11.60 12.43 8.53 97.25 15 H _E 0.135 0.116 0.060 0.034 0.041 0.039 0.042 0.033 0.149 0.0 SD 0.154 0.168 0.134 0.116 0.124 0.119 0.124 0.125 0.155 0.1 N alleles 1.629 1.424 1.231 1.094 1.128 1.116 1.125 1.085 1.976 1.1 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.33 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.33 MXT subset V V V V V V V V 0.149 0.49 0.490 0.490 0.491 0.321 0.331 0.280 0.174 0.33 Usable Loci 184 184 185 185 185 185	Usable Loci	7614	7609	7621	7617	7619	7619	7619	7620	7604	7621
H _E 0.135 0.116 0.060 0.034 0.041 0.039 0.042 0.033 0.149 0.0 SD 0.154 0.168 0.134 0.116 0.124 0.119 0.124 0.125 0.155 0.1 N alleles 1.629 1.424 1.231 1.094 1.128 1.116 1.125 1.085 1.976 1.1 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.33 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.33 MXT subset V V V V V V V 0.149 0.49 Vable Loci 184 185 185 185 185 184 184 185 Polymorphic Loci 107 85 44 14 24 21 22 16 181 2 % Polymorphic Loci 58.15 46.20 23.78 7.57 12.97 11.35 </td <td>Polymorphic Loci</td> <td>4781</td> <td>3232</td> <td>1760</td> <td>716</td> <td>975</td> <td>884</td> <td>947</td> <td>650</td> <td>7395</td> <td>1191</td>	Polymorphic Loci	4781	3232	1760	716	975	884	947	650	7395	1191
SD 0.154 0.168 0.134 0.116 0.124 0.119 0.124 0.125 0.155 0.1 N alleles 1.629 1.424 1.231 1.094 1.128 1.116 1.125 1.085 1.976 1.1 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.331 MXT subset	% Polymorphic Loci	62.79	42.48	23.09	9.40	12.80	11.60	12.43	8.53	97.25	15.63
N alleles 1.629 1.424 1.231 1.094 1.128 1.116 1.125 1.085 1.976 1.1 SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.331 MXT subset	H _E	0.135	0.116	0.060	0.034	0.041	0.039	0.042	0.033	0.149	0.047
SD 0.490 0.499 0.422 0.293 0.334 0.321 0.331 0.280 0.174 0.331 MXT subset Usable Loci 184 184 185 185 185 185 184 184 185 Polymorphic Loci 107 85 44 14 24 21 22 16 181 2 % Polymorphic Loci 58.15 46.20 23.78 7.57 12.97 11.35 11.89 8.70 98.37 14	SD	0.154	0.168	0.134	0.116	0.124	0.119	0.124	0.125	0.155	0.127
MXT subset Usable Loci 184 185 185 185 185 184 184 185 Polymorphic Loci 107 85 44 14 24 21 22 16 181 2 % Polymorphic Loci 58.15 46.20 23.78 7.57 12.97 11.35 11.89 8.70 98.37 14	N alleles	1.629	1.424	1.231	1.094	1.128	1.116	1.125	1.085	1.976	1.156
Usable Loci184184185185185185185184184184Polymorphic Loci107854414242122161812% Polymorphic Loci58.1546.2023.787.5712.9711.3511.898.7098.3714	SD	0.490	0.499	0.422	0.293	0.334	0.321	0.331	0.280	0.174	0.364
Usable Loci 184 184 185 185 185 185 185 184 184 185 Polymorphic Loci 107 85 44 14 24 21 22 16 181 2 % Polymorphic Loci 58.15 46.20 23.78 7.57 12.97 11.35 11.89 8.70 98.37 14											
Polymorphic Loci 107 85 44 14 24 21 22 16 181 2 % Polymorphic Loci 58.15 46.20 23.78 7.57 12.97 11.35 11.89 8.70 98.37 14	MXT subset										
% Polymorphic Loci 58.15 46.20 23.78 7.57 12.97 11.35 11.89 8.70 98.37 14	Usable Loci	184	184	185	185	185	185	185	184	184	185
5 1	Polymorphic Loci	107	85	44	14	24	21	22	16	181	27
	% Polymorphic Loci	58.15	46.20	23.78	7.57	12.97	11.35	11.89	8.70	98.37	14.59
$H_{\rm E}$ 0.124 0.118 0.005 0.035 0.045 0.044 0.042 0.054 0.140 0.0	H_{E}	0.124	0.118	0.063	0.033	0.043	0.044	0.042	0.034	0.146	0.048
SD 0.154 0.168 0.137 0.117 0.125 0.130 0.125 0.115 0.153 0.1	SD	0.154	0.168	0.137	0.117	0.125	0.130	0.125	0.115	0.153	0.133
N alleles 1.573 1.465 1.238 1.076 1.130 1.114 1.119 1.092 1.984 1.1	N alleles	1.573	1.465	1.238	1.076	1.130	1.114	1.119	1.092	1.984	1.146
SD 0.507 0.500 0.427 0.265 0.337 0.318 0.325 0.290 0.127 0.3	SD	0.507	0.500	0.427	0.265	0.337	0.318	0.325	0.290	0.127	0.354

931

932

Table 3. Pairwise FST values among the studied locations. 934

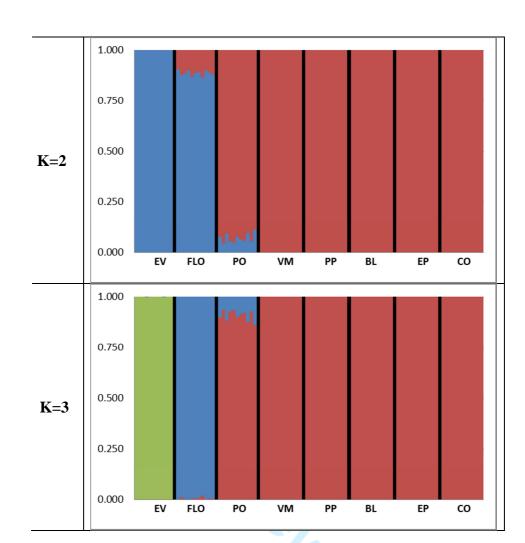
		EV	FLO	РО	BL	PP	VM	EP	СО				
	EV	0.000											
	FLO	0.259	0.000										
	PO	0.475	0.436	0.000									
	BL	0.537	0.508	0.258	0.000								
	PP	0.528	0.499	0.220	0.205	0.000							
	VM	0.536	0.507	0.234	0.255	0.145	0.000						
	EP	0.527	0.495	0.206	0.225	0.045	0.065	0.000					
	CO	0.547	0.520	0.264	0.337	0.307	0.315	0.292	0.000				
935 936	All P-values < 0.05												
937													

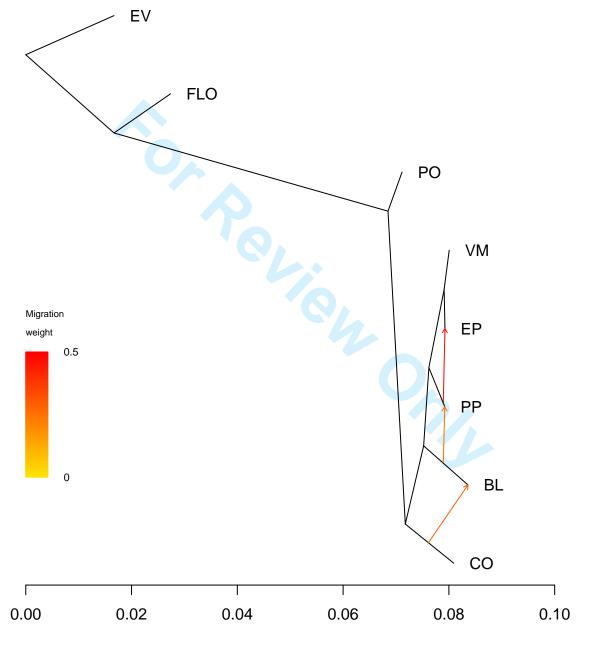
Table 4. AMOVA results applying different hierarchical population structure models. Differences among populations (F_{ST}), among populations within group (F_{SC}) and among groups (F_{CT}) and their percentage (%) of explained variance (% Var) are shown.

Model	F _{ST}	F _{SC}	% Var	F _{CT}	% Var
America vs Europe					
Full dataset	0.484	0.318	24.05	0.243	24.30
	P < 0.001	P < 0.001		P = 0.019	
MXT subset	0.509	0.314	22.50	0.284	28.38
	P < 0.001	P < 0.001		P = 0.019	
America-Spain-Italy					
Full dataset	0.450	0.330	27.06	0.179	17.93
	P < 0.001	P < 0.001		P = 0.095	
MXT subset	0.474	0.320	24.81	0.226	22.55
	P < 0.001	P < 0.001		P = 0.010	
EV+FLO - PO+Europe					
Full dataset	0.571	0.217	11.90	0.452	45.18
	P < 0.001	P < 0.001		P = 0.028	
MXT subset	0.606	0.177	8.47	0.521	52.11
	P < 0.001	P < 0.001		P = 0.037	
EV+PO - FLO+Europe					
Full dataset	0.439	0.398	37.11	0.068	6.82
	P < 0.001	P < 0.001		P = 0.059	
MXT subset	0.442	0.424	41.14	0.031	3.09
	P < 0.001	P < 0.001		P = 0.074	
PO+FLO - EV+Europe					
Full dataset	0.423	0.411	40.19	0.021	2.14
	P < 0.001	P < 0.001		P = 0.159	
MXT subset	0.436	0.429	42.39	0.012	1.23
	P < 0.001	P < 0.001		P = 0.143	

940

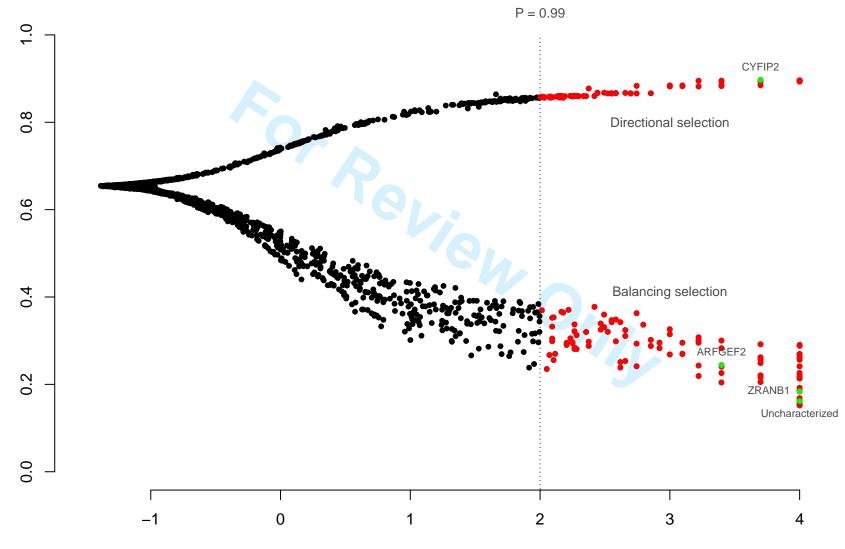
Table 5. Annotated outlier loci detected in the studied locations. The posterior probability (P), False Discovery Rate (FDR), the locus specific
 component shared by all the populations (alpha value; a positive value of alpha suggests diversifying selection, whereas negative values suggest
 balancing or purifying selection), matching sequence over *X. maculatus* transcriptome, annotation, Gene Approved Symbol, the two SNP
 variants, change effect and the interval of the allele frequency for one of the variants (Allele Freq Interval) are shown.


946


Comparison	Catalog_ID	Р	qval (FDR)	alpha	F _{ST}	X. maculatus GenBank	Annotation	Approved Symbol	SNP Variants	Change effect	Allele Freq Interval
All											
Locations	11446	0.999	0.0005	19.994	0.897	XM_005816281.1	cytoplasmic FMR1-interacting protein 2	CYFIP2	G>A	NonSyn (V/M)	G=0.000/1.000*
	13210	1.000	0.0000	-26.589	0.184	XM_005816270.1	ubiquitin thioesterase ZRANB1	ZRANB1	C>A	NonSyn (A/S)	C=0.500-0.682
	36169	0.999	0.0001	-22.211	0.244	XM_005806231.1	brefeldin A-inhibited guanine nucleotide-exchange protein 2	ARFGEF2	T>C	Syn (L/L)	T= 0.500-0.875
	37928	1.000	0.0000	-28.351	0.162	XM_005812435.1	uncharacterized/unknown		G>A		G=0.500-0.625
European											
Locations	1078	1.000	0.0000	-2.2170	0.405	XM_005812632.1	retinoic acid receptor RXR-beta-A	RARB	C>T	Syn (N/N)	C=0.292-0.750
	2804	0.999	0.0002	-2.3534	0.378	XM_005800147.1	E3 ubiquitin-protein ligase UBR4	UBR4	C>T	Syn (N/N)	C=0.182-0.542
	8684	0.999	0.0003	-2.4497	0.360	XM_005800006.1	ankyrin repeat and BTB/POZ domain-containing protein BTBD11-A	ABTB1	T>C	Syn (D/D)	T= 0.708-0.833
	13210	1.000	0.0000	-2.5361	0.342	XM 005816270.1	ubiquitin thioesterase ZRANB1	ZRANB1	C>A	NonSyn (A/S)	C=0.625-0.682
	17945	1.000	0.0000	-2.3183	0.384	XM_005811728.1	MAGUK p55 subfamily member 2	MPP2	T>C	NonSyn (E/G)	T= 0.227-0.727
	36169	0.999	0.0003	-2.3787	0.375	XM_005806231.1	brefeldin A-inhibited guanine nucleotide-exchange protein 2	ARFGEF2	T>C	Syn (L/L)	T= 0.750-0.875
	37928	1.000	0.0000	-2.5656	0.336	XM_005812435.1	uncharacterized/unknown		G>A		G=0.500-0.625
Spanish											
Locations	1078	0.996	0.0029	-2.0452	0.447	XM 005812632.1	retinoic acid receptor RXR-beta-A	RARB	C>T	Syn (N/N)	C=0.417-0.750
	2804	0.994	0.0036	-2.1375	0.428	XM_005800147.1	E3 ubiquitin-protein ligase UBR4	UBR4	C>T	Syn (N/N)	C=0.182-0.375
	3379	0.996	0.0027	-2.1121	0.433	XM_005803525.1	fasciculation and elongation protein zeta-1	FEZ1	C>T	Syn (K/K)	C=0.208-0.591
	8684	0.992	0.0042	-2.1101	0.434	XM_005800006.1	ankyrin repeat and BTB/POZ domain-containing protein BTBD11-A	ABTB1	T>C	Syn (D/D)	T= 0.750-0.833
	13210	0.996	0.0028	-2.2151	0.412	XM 005816270.1	ubiquitin thioesterase ZRANB1	ZRANB1	C>A	NonSyn (A/S)	C=0.625-0.682
	17945	0.997	0.0026	-2.0296	0.450	XM_005811728.1	MAGUK p55 subfamily member 2	MPP2	T>C	NonSyn (E/G)	T= 0.227-0.727
	24342	0.995	0.0033	-1.9499	0.468	XM_005798108.1	sodium/hydrogen exchanger 2	SLC9A3R2	T>C	NonSyn (I/T)	T= 0.458-0.875
	29072	0.993	0.0040	-1.9583	0.466	XM_005811982.1	WD repeat-containing protein 20	WDR20	C>T	Syn (S/S)	C=0.167-0.708
	36169	0.991	0.0045	-2.0405	0.450	XM_005806231.1	brefeldin A-inhibited guanine nucleotide-exchange protein 2	ARFGEF2	T>C	Syn (L/L)	T= 0.750-0.875
	37928	0.998	0.0017	-2.2478	0.404	XM_005812435.1	uncharacterized/unknown		G>A	/	G=0.500-0.625
947											

947

 $948 \qquad {^*} G \text{ variant fixed for EV and FLO and A variant fixed for PO and all European sample}$



Drift parameter

Fst

