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Figure 1: (a) The flower image is 3820 × 3820 image (14.5 million pixels) and contains 3.7 million non–white pixels. The coordinates of
these pixels are shown as colors in (b). We store the image in a hash table under a 0.99 load factor: the hash table contains only 3.73 million
entries. These are used as keys for hashing. (c) The table obtained with a typical randomizing hash function: Keys are randomly spread
and all coherence is lost. (d) Our spatially coherent hash table, built in parallel on the GPU. The table is built in 15 ms on a GeForce GTX
480, and the image is reconstructed from the hash in 3.5 ms. The visible structures are due to preserved coherence. This translates to faster
access as neighboring threads perform similar operations and access nearby memory. (e) Neighboring keys are kept together during probing,
thereby improving the coherence of memory accesses of neighboring threads.

Abstract

Recent spatial hashing schemes hash millions of keys in parallel,
compacting sparse spatial data in small hash tables while still allow-
ing for fast access from the GPU. Unfortunately, available schemes
suffer from two drawbacks: Multiple runs of the construction pro-
cess are often required before success, and the random nature of the
hash functions decreases access performance.

We introduce a new parallel hashing scheme which reaches high
load factor with a very low failure rate. In addition our scheme has
the unique advantage to exploit coherence in the data and the access
patterns for faster performance. Compared to existing approaches,
it exhibits much greater locality of memory accesses and consistent
execution paths within groups of threads. This is especially well
suited to Computer Graphics applications, where spatial coherence
is common. In absence of coherence our scheme performs similarly
to previous methods, but does not suffer from construction failures.

Our scheme is based on the Robin Hood scheme modified to
quickly abort queries of keys that are not in the table, and to pre-
serve coherence. We demonstrate our scheme on a variety of data
sets. We analyze construction and access performance, as well as
cache and threads behavior.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types;

Keywords: spatial, parallel, coherent, hashing, sparse data

1 Introduction

Sparse spatial data is very common in Computer Graphics and find-
ing the good tradeoff between access performance and efficient

storage is an ongoing challenge. Spatial hashing has proven use-
ful in these situations, enabling data to be tightly packed while still
allowing fast random access. It has been successfully applied for
texturing, rendering, collision detection and animation.

Using a spatial hash, data is stored in a single array—the hash
table—addressed through a hash function. The hash function com-
putes the data location in the hash table from the query coordinates,
or keys. There have been several developments lately, improving
query and construction times, and in particular enabling fast paral-
lel construction on GPUs.

The first spatial hashing schemes focused essentially on reaching
good load factors while having a constant time and simple access
to the data from the GPU. Lefebvre and Hoppe [2006] proposed a
static hash construction enabling access to the data with as little as
two memory accesses and one addition. However, to achieve this
result the hash has to be perfect: All keys corresponding to defined
data should map to different locations in the hash table. In other
words, there are no collisions. Building such a constrained hash
function requires an off–line construction process, limiting this ap-
proach to static cases.

Alcantara et al. [2009; 2011] propose less constrained hashing
schemes that achieve fast, parallel construction on the GPU. These
schemes may produce collisions. However, querying a key never
requires more than four independent memory accesses. The par-
ticular hash mechanism they use is known as Cuckoo hashing. We
detail it in Section 2.

Both approaches achieve constant query time with a fixed number
of instructions. Unfortunately, these constraints imply that con-
struction is difficult and the process may fail, requiring several
restarts especially at high load factors. In this paper, we relax the
constraint of accessing data with a fixed number of instructions.
Instead, we implement queries with few memory fetches on aver-
age. The increased flexibility in the access enables a more robust
construction process. However, a small average does not guarantee
good performance as empty keys are generally detected only after
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trying the maximum number of accesses required to find a defined
key. We propose a mechanism to quickly reject empty keys, thereby
significantly reducing their negative impact.

In addition, we tailor our scheme to exploit the spatial coherence
of rendering algorithms. In existing schemes, neighboring keys are
often mapped to distant locations in the hash table. This is an issue
since graphics hardware is designed to benefit from spatial coher-
ence: Threads are organized in a grid and best access performance
is achieved when nearby threads access nearby memory locations.
Lefebvre and Hoppe [2006] were aware of this and proposed a con-
struction process preserving some degree of coherence, however
with only limited positive impact on access performance. Linial
and Sasson analyzed a non-expansive hashing scheme to bring sim-
ilar keys close to each other in the hash table [1996]. That scheme,
however, necessitates too much space to be practical in graphics ap-
plications. As we shall see, the improved robustness of our scheme
lets us design hash functions improving memory coherence during
queries, while still affording high load factors.

Contributions Our main contributions are: 1) A parallel hashing
approach reaching high load factor with a low failure rate. It re-
lies upon a coherent hash function exploiting coherence in memory
accesses, when available. This leads to increased locality in mem-
ory accesses and increased coherence in the execution paths within
a thread group accessing the data. 2) An improved query scheme
using a few bits of additional information per key to efficiently find
defined keys, and perform early rejection of empty keys.

We introduce a complete parallel GPU implementation and analyze
its behavior in details.

Notations and definitions Keys are taken in a universeU of size
|U |. We noteD ⊂ U the set of defined keys, that is the keys from U
which should be stored in the hash table. Keys which do not belong
to D are called empty keys. Throughout the paper we consider the
load factor d. It corresponds to the ratio of the number of defined
keys to the number of keys that the hash table can hold. A hash
table with load factor d = 1 is a minimal hash, that is a hash with no
wasted space. It is worth considering another type of “load factor”,
which we call the key-density; it is defined as the ratio of the number
of bits used to store the keys to the number of bits in the hash table
(not counting data bits).

Each defined key may be associated with some additional data. In
our setting, all defined keys are associated with data fields having a
same, fixed size (e.g. an RGB color triple, or a boolean value). The
input is thus given as a set of key-data pairs.

An application is said to perform a constrained access to the hash if
the only queried keys are in the setD. The scheme of [Lefebvre and
Hoppe 2006] is especially efficient in this situation, as keys do not
need to be stored. In this paper however we are mostly concerned
with the unconstrained access scenario, where empty keys may be
queried and must be detected as such.

By coherence we refer to the locality of the parallel memory ac-
cesses performed within a thread group. In Section 4.2 we compare
query performance for the 2D case using different access patterns:
Linear row major, Morton and the bit-reversal permutation. The
first two offer a strong locality—neighboring threads access neigh-
boring data—while the third has poor locality.

2 Background on parallel hashing

Alcantara et al. [2009] introduced the first algorithm enabling fast,
parallel hash table construction on the GPU. Millions of keys are

test1: 2.2M/40962 fish: 20.5M/81922

Figure 2: Two of the datasets used to test our hashing algorithm.
They give a good spread of behaviors between randomness and
structure. The number of defined keys (black pixels) and the size
of the image is indicated below each.

efficiently hashed in milliseconds, outperforming previous schemes
by several orders of magnitude. Since this approach is the closest
to our work, we describe it in more details.

A Cuckoo hash [Pagh and Rodler 2004] maintains two or more dif-
ferent tables of the same size, each accessed through a different
hash function—Alcantara et al. [2009] use three tables. Keys are
inserted in the first table, evicting already inserted keys in case of
collision. Evicted keys are in turn inserted in the second table, then
from the second to the third, and from the third back to the first.
The process loops around until all keys are inserted or until the
number of iterations reaches a maximum—which triggers a con-
struction failure. Upon failure the process is restarted with different
hash functions. Unfortunately, given a number of tables the failure
rate abruptly increases above a limit load factor. Using more ta-
bles increases this limit. However, using too many tables becomes
wasteful at lower load factors. In contrast, our scheme automati-
cally adapts to these various situations.

The parallel construction algorithm builds a Cuckoo hash in shared
memory—a small but very fast memory. It starts by randomly
distributing the keys in equally sized buckets using a first level
hash [Botelho and Ziviani 2007]. Any bucket overflow triggers a
construction failure. This limits the maximum possible load fac-
tor to 0.7: higher load factors give a too large failure rate for this
key distribution phase. Next, all buckets are hashed independently
in parallel with Cuckoo hashing. In recent work, Alcantara et
al. [2011] build a Cuckoo hash in a single pass. The single pass
approach is made possible by latest hardware capabilities (efficient
atomic operations on NVidia Fermi devices). Their new hashing
scheme also reaches higher load factors thanks to the use of four
hash functions. Both schemes further introduce handling of multi-
value hashing and duplicate keys in the input.

The Cuckoo scheme behaves very well in practice, and the guaran-
tee of a constant number of memory accesses to query a key is well
adapted to GPUs. Its main drawback stems from an increasing fail-
ure rate at high load factors requiring to manually select more hash
functions, and the loss of coherence due to randomization. Another
less obvious issue is that while a fixed number of lookups are re-
quired, the average number of lookups is often higher than that of
our scheme as keys tend to be uniformly distributed in all the ta-
bles, even at lower load factors. We compare our work to parallel
Cuckoo hashing in Section 4.

3 Parallel coherent hashing

Our hash is designed to reach high load factors at low failure rate,
and to provide fast queries regardless of the load factor.
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The key insight is to exploit dynamic branching to release the con-
straints on the construction process, and to exploit coherence in the
access patterns when available.

Our algorithm builds a unique, large hash table in one pass. Paral-
lelism is obtained by launching many thread groups simultaneously.
Each thread is responsible for inserting exactly one key.

3.1 Main algorithm

Our hash is at heart an open addressing scheme [Peterson 1957]:
Each input key k is associated with a sequence of probing locations
h1(k), h2(k), . . . in the hash table. Ideally, this probe sequence
should enumerate all locations in finite time. For now, we assume
that the sequence is given. We introduce our coherent probe se-
quence later.

In order to add a key, the insertion algorithm iterates along the probe
sequence until an empty location is found. The key is then inserted.
We call the number of steps required for successful insertion the
age of a key. If the hash table can fit all the defined keys, then
the process is guaranteed to succeed as long as the sequence hi(k)
enumerates all locations. Therefore the algorithm is quite robust to
changes in the hash function. Querying a key proceeds similarly to
construction, by walking along the probe sequence until the key is
found in the hash table.

However, open addressing suffers from a severe drawback for our
purpose: The age of the keys is very low on average but typically
has a large maximum. This maximum age, noted M , is crucial:
When querying an empty key, its absence from the hash table can
only be verified by walking along the sequence of keys at least M
steps. Since the data set is sparse, a large number of queries to
empty keys is expected in many applications. The overall perfor-
mance can dramatically suffer. Note that hitting an empty location
during a query before reaching M steps is unlikely, especially un-
der high load factors.

We next discuss how to efficiently reduce the maximum age and
reject empty keys.

Reducing the maximum age The maximum age issue has al-
ready been identified and studied in previous work. A very effective
solution to it is known as Robin Hood hashing [Celis 1986], which
is based on open addressing.

The idea is to store the age of the keys in the hash table during its
construction. This additional data is discarded afterwards. Con-
sider the case of inserting a key knew at a location hi(knew) already
occupied by a key kprev. The age a of kprev is compared to i. If the
key being inserted is older (i > a), then kprev is evicted. The cur-
rent key is inserted at hi(knew) and kprev is recycled into the set of
keys to be inserted. Intuitively, the keys which are difficult to insert
push away the keys which have been easier to insert. This has a
drastic effect on the histogram of key ages, and in particular on the
maximum age as illustrated Figure 3.

There are two particularly important theoretical facts about Robin
Hood hashing making it especially well suited to our purpose [Celis
1986]: The expected maximum age in a full table of size n
is Θ(logn) and Devroye et al. [2004] improve the bound to
Θ(log2 logn) on non full tables. Furthermore, the expected query
time complexity can be made constant if starting the accesses at
the average age. Note that these facts are derived assuming uni-
form random sparse data, but our experiments show that they hold
in practice on our datasets.

In our current implementation we do not start the accesses at the

Figure 3: Hashing 220 defined keys randomly distributed in a uni-
verse of 224 keys into a hash table of 1.3 million keys (the load fac-
tor is 0.8). Histogram of insertion ages for open addressing (top)
and Robin Hood (bottom). Gray bars correspond to very few items
but are non–zero. The maximum age goes down from 46 to only 5.

average age: For simplicity we always start from age one, searching
for the key until the maximum age for the sequence is reached.

Empty key rejection While Robin Hood hashing strongly re-
duces the maximum age M , it remains quite large compared to the
few memory accesses of Cuckoo hashing. This is especially im-
portant in applications querying many empty keys, as they always
require M steps along the sequence. We therefore introduce a new
mechanism to accelerate the rejection of empty keys.

We note that most keys have a very small age, with only a few
outliers ever reaching M . Therefore, in most cases a much smaller
value than M would suffice to detect empty keys. To benefit from
this we store in each entry of the hash table the maximum age of all
the keys mapping first to this location. More precisely, let H[p] be
the key stored at location p in the hash table H , let MAT[p] be the
maximum age starting from p, then we have:

MAT[p] = max
{k∈D|h1(k)=p}

(
i st. H[hi(k)] = k

)
(1)

When querying a key k we iterate at most MAT[h1(k)] times along
the probe sequence. This guarantees that defined keys are found,
and affords for fast detection of empty keys.

Encoding the maximum age Storing the maximum age table
MAT requires additional memory. Fortunately, the maximum age
values are small and only require a few bits. In all our tests, the
maximum age was below 16. Thus, we reserve 4 bits in each hash
table cell to store the maximum age. The latter can optionally be
quantized to either accommodate larger values or reduce even fur-
ther the number of bits used to 3 or less.

Let us assume each key is stored on k bits and their age is stored
on a bits. When the user targets a data structure p times larger
than the defined keys, we allocate pk|D| bits of memory. In fact,
due to the additional storage of the maximum age, this corresponds
to a hash table storing pk|D|

(k+a)
keys. Thus, the keys will be hashed

at load factor (k+a)
pk

. For example, in a typical situation, we have
k = 28 bits, a = 4 bits. Then, targeting a storage of 1.2× k× |D|
bits—that is 1.2 times the size of the defined keys, or a 0.83 key-
density—requires hashing at 0.95 load factor, while targeting a 0.7
key-density requires a 0.82 load factor. With 64 bit cells and 60 bit
keys, these load factors become 0.89 and 0.76 respectively.

The hashing scheme of Alcantara et al. [2011] requires no addi-
tional information apart from the key, in which case the load factor
and the key-density are equal.
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Figure 4: Maximum age table for test1 hashed at 0.8 load factor.
Color code: 0, black; 1, blue; 2, green; 3, yellow; greater, red. Left:
Random probe sequence. Right: Coherent probe sequence. Key
age histograms are comparable, but note how coherence is main-
tained in the map on the right. We can expect more efficient dynamic
branching when branching with respect to this map.

Exploiting coherence In many computer graphics applications,
data is queried in a coherent manner: Either spatial coherence
within a frame, or temporal coherence due to limited motion be-
tween frames. We design a new probe sequence tailored to exploit
coherence in the queries.

Note that we seek coherence of memory accesses between neigh-
boring threads. This is quite different from the typical CPU notion
of cache coherence where one seeks to access nearby memory loca-
tions in sequence. On the GPU, groups of threads access memory
simultaneously, and it is important to group the accesses in nearby
locations. This is also known as coalesced accesses. Similarly,
the hardware performs faster when groups of threads take similar
branching decisions.

Our objective is to design a different probe sequence for the
keys, which favors coherence. Our new probe sequence hcoh pre-
serves coherence by making neighboring keys test neighboring
locations—while still ensuring that the successive locations of a
same key are uncorrelated and perform a random walk. It corre-
sponds to random translations of the entire hash table at each step
i. That is, for a key k at step i in a hash table of size |H|:

hi
coh(k) = k + oi mod |H|

where oi is a sequence of offsets, independant of k. We typically
set o0 = 0 and use large random numbers as offsets.

An important property of this probe sequence is that neighbor-
ing keys remain neighbors at each step, as illustrated Figure 1(e).
Therefore, if two neighboring threads attempt to find neighboring
keys, they will both always access neighboring memory locations
until one terminates. Note that these keys do not have to be present
in the hash table for coherence to happen at the thread level during
queries. In fact, access coherence during queries is orthogonal to
the distribution of the defined keys. Sparse random data encoded
with our hash will still benefit from being queried in a coherent
manner.

The map MAT encoding the maximum ages also benefits from a
coherent hash function: It exhibits a much stronger spatial coher-
ence. This implies that neighboring threads will perform similar
data–dependent loops, reducing divergence. In Figure 4, for illus-
tration purposes we hash the image test1 shown in Figure 2 in a 2D
hash table – we extend the hash to 2D by applying the same compu-
tations independently to each dimension. We display the maximum
age table MAT for a random and a coherent probe sequence. The
second image (coherent) exhibits structure and coherence, and thus
affords for more efficient dynamic branching than the first.

Our coherent probe sequence outperforms the random one when co-
herence is present. It strongly reduces cache misses, thread branch
divergence and results in significantly faster queries. We measure
these effects on various data sets in Section 4.

3.2 Implementation

Our CUDA implementation runs on a graphics processor, where
multiple threads are organized in groups and execute the program
in parallel. We always build 1D hash tables. 2D and 3D data is
linearized, as discussed in Section 4.2.

Building the hash table in a single pass requires global atomic oper-
ations to safely manipulate memory. Our eviction strategy requires
comparing the age of the key to be inserted to the age of the key al-
ready in the hash table. These operations—compare ages and store
key if greater—have to be performed atomically, or the table will
quickly get corrupted by concurrent accesses.

We encode the age, the key and its data in a single word (either 32 or
64 bits) with the age on 4 bits. We never observed an age above 15
in all our tests, but reaching this value would trigger a construction
failure. The 4 bits of the age are stored in the most significant bits.
This is important since on 32 bits, for two words w = a× 228 + k
and w′ = a′×228 +k′ we have a > a′ ⇒ w > w′. Thanks to this
property we can test and store in a single atomic max instruction.

The insertion algorithm is detailed next. For clarity we ignore the
data fields. Please note that this is a pseudo code. The actual imple-
mentation differs slightly. In particular, the atomicMax operation
is not available on 64 bits words on current hardware (however,
it is natively supported on 32 bit words). We thus emulate it us-
ing atomicCAS, as suggested by the CUDA programming guide.
This incurs a performance penalty in the construction process: Full
hardware support of 64 bits atomicMax will further improve per-
formance.

The input defined keys are in the array D. The outputs are the hash
table H and the max age table MAT. The type uint represents un-
signed integers. The algorithm performs the following operations:

1 kernel (const uint ∗D, uint ∗H, uint ∗MAT) {
2 uint key = D[ global thread id ];
3 uint age = 1;
4 while( age < MAX AGE ) {
5 uint h k i = hash( key , age ) ;
6 uint age key = PACK( age , key ) ;
7 uint prev = atomicMax( & H[ h k i ] , age key ) ;
8 if ( age key > prev ) {
9 uint h k 1 = hash( key , 1 ) ;

10 atomicMax( & MAT[ h k 1 ] , age ) ;
11 if ( AGE( prev ) > 0 ) {
12 key = GET KEY( prev );
13 age = GET AGE( prev );
14 } else {
15 return;
16 }
17 } else {
18 age++;
19 }
20 }
21 }

init The hash table H and the max age table MAT are allocated and
initialized to zero.

2-3 The thread reads the key from the input located at index
global thread id, which is unique for each thread. The
current key is read in key, and age is the current insertion
age.

4 The thread executes until the key has been inserted in an empty
cell of the hash table or the maximum number of iterations for
the current key has been reached.

5 The hash function is applied to key at age.
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6-7 The key and its age are packed into a word age key (32 or
64 bits). An atomicMax is used for the eviction mecha-
nism. This instruction compares the current value in memory
to age key and replaces it if greater. The previous value is
always returned.

8 Tests whether an eviction occurred, by comparing the value re-
turned by atomicMax to age key.

9-10 An eviction occurred and the current key has been inserted.
These two lines update the max age table MAT. The first hash
position of the current key is computed, and an atomicMax
updates the max age table.

11-13 The age at the insertion location determines whether it was
an empty slot or a previously inserted key. An age above zero
implies that a key was evicted. The evicted key is recycled
and becomes the current key, inserted next.

15 If the insertion location was empty, the thread has finished in-
serting its key and exits.

18 The key was not inserted. The age is incremented and the next
insertion location will be tested.

After construction the maximum ages stored in MAT are optionally
quantized and packed together with the keys in H. This is done in a
second CUDA kernel. The table MAT is discarded after this. Note
that duplicate keys in the input could be trivially handled by com-
paring whether prev equals age key.

Running the kernel The number of threads and groups is chosen
so as to maximize the GPU workload. A thread that has finished
its job sits idle until all threads in its group have finished as well.
While our coherent probe sequence and max-age table help reduc-
ing thread divergence, some remain and idle threads do occur. To
minimize their number, the number of threads per group should
not be too large. It should however not be too small either for a
good GPU utilization as we are limited by the maximum number
of groups working simultaneously (120 in our NVidia Fermi GPU).
We experimentally found that the best tradeoff is to use 192 threads
per group.

Thus, we set the number of groups to d|D|/192e (a few threads
after the end of the input array run without performing any opera-
tions).

4 Results and discussion

The performance of our scheme is impacted by several factors: The
number of keys to be hashed, the target load factor, and whether co-
herence exists in the data and the access. All our tests are performed
with a NVidia Fermi GTX 480 GPU.

In the following comparisons we introduce a variant of our scheme
using a random probe sequence hrand defined as follows:

hi
rand(k) = c0 + (k ∗ c1) + (i ∗ c2) mod |H|

where c0, c1 and c2 are large random numbers. The purpose of
hrand is to reveal when coherence is successfully exploited by our
coherent probe sequence. Indeed, in absence of coherence we ex-
pect hcoh and hrand to result in similar performance. When coher-
ence is available we expect better performance from hcoh.

We compare our results to the methods of Alcantara et al. [2009;
2011]. We use the implementations made available by the au-
thors in the NVidia CUDPP library, using the multiplicative hash
functions described in these papers. We ran all tests on a NVidia
GeForce GTX 480.
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Figure 5: Insertion rates (top) and retrieval rates (bottom) for hrand
and hcoh and earlier schemes, for increasingly larger input, under
0.8 load factor. Timings are averaged over several runs. Please
refer to the text for details on these data sets.

In Section 4.1 we analyze the behavior of our hash when no par-
ticular coherence exists, and compare it to previous work. In Sec-
tion 4.2, we discuss the behavior of our hash in a Computer Graph-
ics setting, where spatial coherence exists.

4.1 Hashing generic data

In this section we focus on hashing random keys taken in a 1D uni-
verse, assuming that no particular coherence exists neither between
keys nor in the access patterns. We consider key–data pairs of 64
bits, having a key on 32 bits, a data record on 28 bits, and using 4
bits to encode the maximum age. We randomly select an increas-
ingly larger number of keys in the universe of 232 possible keys.

We analyze insertion and retrieval of defined keys. For insertion
the input is a vector of key–data records. For retrieval, the input
is a vector of keys for which data must be retrieved. To avoid all
bias in the measure, we shuffle the input vectors for both construc-
tion and query. Of course, this setting exhibits no coherence and
corresponds, in fact, to the worst case scenario for our hash. We
will see in Section 4.2 that performance significantly increases in
the presence of coherence.

Insertion Figure 5 (top) compares construction performance of
increasingly larger random sets of keys, under a 0.8 load factor. We
observe that both probe sequences hrand and hcoh behave similarly.
This is explained by the fact that the random input data does not
exhibit any coherence that could be exploited during construction.

Retrieval Figure 5 (bottom) compares query performance of in-
creasingly larger sets of keys, under a 0.8 load factor. Again, on
these random data sets we observe that both probe sequences hrand
and hcoh behave similarly. In these tests we only query defined
keys. Since the input is extremely sparse, there is no coherence in
the access. We will observe the benefit of coherence in Section 4.2.
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Comparison to Cuckoo hashing Under a 0.8 load factor and
for 16M (million) keys, our scheme achieves an insertion rate of
249 Mkeys/sec. In comparison, [Alcantara et al. 2011] achieves
318 Mkeys/sec and [Alcantara et al. 2009] achieves 268 Mkeys/sec.
Therefore, in absence of coherence our insertion scheme is slower
than both versions of the cuckoo scheme. This is essentially due
to the update of the max-age table MAT, and the emulation of the
64 bits atomicMax. We will see in the next section, however,
that in presence of coherence our scheme performance increases
significantly.

Remarkably, our scheme consistently reaches load factor as high
as 0.99. For 32 millions random keys under 0.99 load factor, our
insertion rate is 112 MKeys/s and the retrieval rate is 241 MKeys/s.

Failure rates In all our tests our scheme never failed to build a
hash table both with hrand and hcoh, and up to 0.99 load factor.
Load factors higher than 0.99 typically generate a max age above
15 which no longer fits our simple 4 bits encoding. This robustness
is an important advantage compared to the Cuckoo scheme where
restarts can lead to inconsistent performance behavior under high
load factors.

Cuckoo hashing [Alcantara et al. 2009] rarely fails at 0.7 load fac-
tor, however this behavior quickly degrades at higher load factors.
Higher load factor may be reached by relying on additional tables,
at the cost of a reduced query performance.

4.2 Hashing in a Computer Graphics setting

Our scheme is best suited when data is coherent—defined keys
tend to be neighboring—and when the data is accessed in a coher-
ent manner. Coherence in the data helps the construction process;
However a random set of keys still benefits from a coherent access
due to thread locality.

In a typical Computer Graphics application the hash table stores a
sparse, structured, set of elements (texels, vector primitives, voxels,
particles, triangles) which are accessed with some degree of spatial
coherence. In most scenarios, a large number of empty keys are
also queried.

2D data We first consider 2D data sets. Our test consists in hash-
ing a sparse subset of the pixels of a 2D image (e.g. all the non
white pixels), and then query all pixels of this image to reconstruct
it. In the tests below, keys are computed from the 2D pixel coor-
dinates with a row-major ordering. We later discuss the impact of
different pixel orderings.

Figure 6 reports construction times for both a random data set and
the fish data set. The important observation is that coherence in the
fish data set—the existence of many neighboring keys—directly re-
sults in improved construction performance. The fish data set con-
tains 20.5M keys. Under a 0.85 load factor, the random sequence
reaches 142 Mkeys/s while our coherent hashing scheme achieves
368 Mkeys/s – an improvement of 159%. Thanks to coherence our
scheme is now on par with parallel cuckoo hashing for construc-
tion times. In contrast, on random data the coherent sequence has
similar performance as the random sequence.

Figure 7 reports the time taken to retrieve all the keys, both defined
and empty. The distinction between querying empty or defined keys
is important since empty keys are typically the most expensive to
retrieve. In our scheme their cost is greatly reduced by using the
the max-age table. The results are shown in Figure 7 for both a
random set of keys and the fish dataset. Clearly, both the fish and
random data sets benefit from coherence in the access. These results
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Figure 6: Construction times for hrand and hcoh and earlier
schemes. Times are averaged over several runs. Top: 1M random
keys are inserted, taken from a universe of size 8K × 8K. Bottom:
Timings for the fish image: 20.5M are defined in a universe of size
8K × 8K.

are consistent across all the datasets we tested. Under a 0.85 load
factor our coherent hash retrieves 5324 Mkeys/s, while all other
schemes achieve less than 1000 Mkeys/s: Coherence brings a very
significant improvement in query performance.

The benefit of our coherent probe sequence is also clearly revealed
by the percentage of global cache hit during queries, as shown Fig-
ure 8. No other scheme in our tests made any significant use of the
cache. Figure 8 shows only L1 cache data. We ran additional tests
to reveal further improvements in the number of L2 cache read re-
quests and DRAM read requests, as reported in Figure 9 together
with the measured branch divergence rate. In Figures 8 and 9, the
data is taken from the above experiment with the fish data set.

Key layout We now analyze the effect of different orderings of
the 2D data in the 1D key universe. This is important as in many
graphics applications of hashing, the keys are queried in a system-
atic and coherent way. For example, threads in a same group raster-
ize neighboring pixels that have neighboring texture coordinates, so
we should strive to keep this coherence when translating the posi-
tion or the texture coordinates into 1D keys. We test three orderings:

• The linear row-major order maps (x, y) to x+Wy when W
is the width of the (rectangular) domain: we should benefit
from the coherent hash when we query neighboring keys on a
same line of the domain.

• The Morton order maps (x, y) to M(x, y), the integer ob-
tained by interleaving the bits of the binary representation of
x and y. This improves locality along both X and Y axes.

• The bit-reversal permutation σ = (σi, i ∈ [0, 2w)) is
obtained by reversing the bits of the binary representation
bi1b

i
2...b

i
w of integer i: σi = biwb

i
w−1...b

i
1. For the experi-

ment, we map (x, y) to M(σx, σy). This mapping exhibits
no coherence at all.
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Figure 7: Access times for hrand and hcoh and earlier schemes.
Times are averaged over several runs. Missing data for Alcan-
tara09 is due to construction failure at high load factors. Top:
8K × 8K keys are queried, 1M of which, chosen at random, are
defined. Bottom: Timings for the fish image: 8K × 8K keys are
queried, of which 20.5M are defined.
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Figure 8: Percentage of L1 global cache hit during queries for the
fish data set. The higher the better. Note that only our coherent
probe sequence exhibits a significant cache reuse.

The test consists in drawing a full-screen rotating image using a
custom GLSL pixel shader to query the hash map. The latter is
stored as a 2D texture and encodes the image color data using the
three orderings above. Since GLSL offers fewer opportunities for
optimization, the test reports overall lower performance than the
CUDA implementation. The results are shown in Figure 10. The
random probe sequence behaves roughly the same for each ordering
and even gives slightly faster queries with the highly incoherent
bit-reversal ordering. On the contrary, the coherent probe sequence
gives significantly faster queries on the two other orderings since it
leverages coherence in the access pattern. One can clearly see how
increasingly coherent orderings translate into higher performance.

3D data We have experimented with 3D data as well, consisting
in voxelizations of the armadillo and hairy models (see Figure 12)
in a grid of size 5123. We hash 64 bits key-data pairs. Our exper-
iments consisted in drawing slices of the volume at random orien-
tations. The armadillo voxel data results in 9.2M keys. Insertion
rate is 280 Mkeys/s under load factor d = 0.8 and 254 Mkeys/s
at d = 0.99. Retrieval rate is 1905 Mkeys/s at d = 0.8 and

Time L2 requests DRAM requests Branch divergence

hrand 97.1 ms 458.6 M 458.6 M 21.8 %

hcoh 12.6 ms 44.2 M 42.9 M 10.4 %

Figure 9: L2 and DRAM read requests for the fish data set under
0.85 load factor.
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Figure 10: Query timings for hcoh using different ordering of the
pixels, for the fish data set.

1182 Mkeys/s at d = 0.99. The hairy voxel data results in 24M
keys. Insertion rate is 455 Mkeys/s at d = 0.8 and 182 Mkeys/s
at d = 0.99. Retrieval rate is 1736 Mkeys/s at d = 0.8 and 1208
Mkeys/s at d = 0.99.

Regarding the key layout, we obtain similar results as the 2D results
shown in Figure 10, with an even stronger advantage to the Morton
ordering.

4.3 Example application

We demonstrate a sparse painting application relying on our hash-
ing scheme, illustrated Figure 11. A 2D atlas is updated inter-
actively while the user paints along the surface. Only the pixels
touched by the brush are stored in the hash table. This lets us paint
locally at very high resolution, while maintaining a low memory
usage.

When the user paints on the model we retrieve the (u, v) coordi-
nates of the pixels touched by the brush. If pixels are already in the
hash table, we simply update their colors. If new pixels are touched
we rebuild the hash table entirely: We first gather the new pixel
key–color pairs and concatenate them with the current hash table
from which we remove empty entries. This array is used as the in-
put for building a new hash table. The entire process is fast enough
to happen seamlessly while the user paints.

Some applications may choose to spend more memory in exchange
for faster queries. This can happen seamlessly by simply rebuilding
the hash table with a lower or higher load factor.

For the dataset and viewing conditions of Figure 11, at 0.8 load
factor, our scheme with hrand builds in 7 ms and reaches 299 FPS,
and our scheme with hcoh builds in 3 ms and reaches 375 FPS.

4.4 Limitations, future work

Our scheme has two main drawbacks. First, in absence of coher-
ence in the access patterns our scheme brings little to no benefit
compared to a random probe sequence. Second, the max age table
slows down construction and requires additional memory. Quan-
tizing the max age could reduce this issue but not solve it entirely.
Note that this is only problematic if empty keys are queried: In
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d = 0.5 d = 0.99

Atlas:

Figure 11: Our sparse painting application lets the user decorate
an object with high resolution details. Only the painted pixels are
stored, regardless of the resolution of the virtual texture. In this
example the virtual texture has size 40962, among which 1M pixels
are painted. For this 10242 viewpoint, 389586 queries are made.
At 0.5 load factor the hash table is built in 3 ms and the display
runs at 446 FPS, while at 0.99 load factor it is built in 10 ms and
display runs at 237 FPS.

case of constrained access the max age table is not used and does
not have to be built.

Future directions of research include handling deletion of keys as
well as incremental insertions and deletions while maintaining a
compact hash table.

5 Conclusion

Hashing is often synonymous of random access patterns. A re-
markable result of our work is to demonstrate that coherence can
be preserved, going against this common belief. As shown by our
analysis coherence immediately translates to large improvements in
cache behavior, and thus to large improvements in query time.

The CUDPP 2.0 implementation of [Alcantara et al. 2011], released
concurrently to the publication of our work, also improves signifi-
cantly the cache behavior. The authors now rely on more coherent
hash functions, which resemble the translations of our coherent se-
quence. This is another strong indication that hashing can preserve
memory access efficiency on parallel processors.

Of course, these results only hold when some degree of coherence
is available, in the data for construction and in the access patterns
for retrieval. This is why we strongly believe our hash is of par-
ticular interest for graphics applications, where spatial coherence is
common – it was designed from the start with this goal in mind.

In addition, our hash reaches high load factors without failure and
performs consistently well at all load factor settings. This is in con-
trast to Cuckoo hashing which requires to manually select a fixed
number of hash functions. Its code is very simple, there is no extra
complexity to deal with restarts or to generate new hash functions.
We thus believe it offers a strong alternative for storing sparse data
in a computer graphics context.
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