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Abstract

This paper is devoted to the analysis of the early dynamics of an SIS epidemic
model defined on networks. The model, introduced by Gross, D’Lima and Blasius
in 2006, is based on the pair-approximation formalism and assumes that, at a given
rewiring rate, susceptible nodes replace an infected neighbour by a new susceptible
neighbour randomly selected among the pool of susceptible nodes in the popula-
tion. The analysis uses a pair closure that improves the widely assumed in epidemic
models defined on regular and homogeneous networks, and applies it to better under-
stand the early epidemic spread on Poisson, exponential, and (truncated) scale-free
networks. Two extinction scenarios, one dominated by transmission and the other
one by rewiring, are characterized by considering the limit system of the model
equations close to the beginning of the epidemic. Moreover, an analytical condition
on the model parameters for the occurrence of a bistability region is obtained.

Key words: pair approximation, network epidemic models, rewiring, basic re-
production number.

1 Introduction

Incorporating human behaviour in the transmission dynamics of epidemic spread has
received a recent wave of interest in epidemic modeling [8]. An important progress to-
wards this goal was the so-called contact network epidemiology which incorporates the
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heterogeneity of the distribution of the number of contacts per individual in the model
formulation. This new paradigm represents a clear improvement over the compartmen-
tal approach which is based on the assumption of fully homogeneous mixing. However,
such an advance has been considered limited because the effects of individual behavioural
responses to epidemics are not yet fully reflected [7]. Certainly, most of these epidemic
network models assume static architectures in the contact pattern among individuals,
whereas behavioural changes due to the perception of risk during the epidemic progress
modify the contact structure [8]. A number of factors like mortality, quarantines and other
epidemiological interventions also modify the contact pattern adding an extra degree of
complexity to the models.

Our aim is to analyze and generalize to some extent the epidemic model introduced in
[12] where susceptible individuals (S) break off connections with an infected neighbour at
a given rate w ≥ 0, and reconnect themselves to a susceptible individual chosen at random
from the pool of susceptible individuals in the population. That paper by Gross et al.
was the first of a series of papers dealing with dynamic networks where different types
of rewiring are assumed reflecting different individual reactions and knowledge about the
infection status of the others (see [27] for a review). For instance, Zanette & Risau-
Gusman [39] assumed that, once a susceptible node has lost a connection with an infected
neighbour, it establishes a new connection to any node, susceptible or not, chosen at
random among all the members in the population. This means that the state of infected
individuals (I) is not known beforehand as it happens, for instance, when infected are
asymptomatic. By contrast, in [12] and [26] the new connections are established only with
other susceptible nodes. This sort of rewiring is appropriate for symptomatic diseases
where susceptible individuals shun potentially infectious contacts. Reconnections taken
place only among infected individuals were considered in [22], reflecting a sort of self-
imposed quarantine, and preferential reconnection to others with matching serostatus
(serosorting) was assumed in the analysis of an early HIV epidemic in [34]. Finally,
an indiscriminate rewiring, independent of the infection process but dependent on the
nodal degree, is the situation considered in [28] and, also, in [33, 35] where a random
and instantaneous exchange of neighbours is assumed to occur at a given rate. Other
interesting examples of human reactions to the spread of a severe disease are described in
[8].

Most of these works describe the epidemic spread in a population using the so-called
pair-approximation models. This formulation leads to a system of differential equations for
the number of pairs of connected nodes in each possible state of the disease. Hence, it takes
into account local correlations of disease states [21]. However, little information about
the contact structure is included under this approximation. For the pair-approximation
model presented in [12], a natural generalization is given in [18] where nodes are clas-
sified according to their disease state and also to their degree (number of connections).
More precisely, for each node, its disease state as well as its degree and the number of its
infected neighbours are considered. More recently, Lindquist et al. [17] have considered

2



an equivalent formulation for an epidemic model without rewiring, called effective degree
model, in which the number of susceptible neighbours of a node is used instead of its
(total) degree. Certainly, both formulations contain the same information on the contact
structure and, although their numerical integration offer accurate predictions of the epi-
demic spread when confronting them with stochastic simulations, both of them involve
a very large number of equations making their analytical treatment extremely difficult if
not impossible.

On the other hand, these works mainly focussed on the long-run behaviour of the
models under different levels of rewiring. For instance, the existence of bistability for
rewiring rates w > 0 and Hopf bifurcations from an endemic equilibrium for large enough
values of w has been well documented from a numerical point of view [12, 26]. Recently, in
[38], the authors obtain an approximate description of the stationary degree distributions
of susceptible and infected individuals for the same model using the ergodic properties
of the network stationary state. Here, in contrast, we will give a closer look at the early
dynamics of the pair-approximation model in [12] to see which scenarios are theoretically
predicted, and to compare them with those given by stochastic simulations. Our approach
will be similar to the invasory pair approximation initially introduced in [14], recently
extended in [2]. In a different context, an invasion-based analysis has been also applied in
[4] to the study of an adaptive voter model, an example of opinion formation model defined
on an adaptive social network. Such an approach outperforms the one based on pair
approximation ([16]) for computing fragmentation thresholds in adaptive networks, i.e.,
critical values of the rewiring rate above which opinions (states) survive in disconnected
components that are internally in consensus [32].

The idea behind the invasory approach is based on the development of invading clusters
of infected nodes during the early epidemic stage. This fact implies a rapid development of
local correlations between disease states within a time interval of a couple of generations
([6]), the latter been defined as the time interval between the infection of a primary case
and the appearance of a secondary case caused by the primary one [29]. In particular,
Keeling [14] introduced the susceptible-infected correlation function CSI in regular lattices,
which is defined as the ratio of the current number of susceptible-infected pairs (denoted
by [SI]) to the expected number from the mean-field assumption, namely, k[S][I]/N where
k is the (constant) number of neighbours per node, [S] the number of susceptible nodes,
[I] the number of infected nodes, and N the size of the lattice (total number of nodes).
The same correlation measure was also used for regular lattices, for instance in [2] and,
more recently, in [30].

When epidemic spreading takes place on heterogenous networks, one possibility for
measuring local correlations could be to replace k by the mean degree k of the network
in the expressions of CSI and CII , the latter been defined in the same manner as CSI .
However, k can change over time depending on the type of rewiring considered. Even
more remarkably, in heterogeneous networks the mean degree of infected and susceptible
nodes are different from each other [1]. Both facts strongly suggest that other quantities
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must be adopted to measure local correlations. For an SIS-type model, the mean number
of susceptible neighbours per infected node, [SI]/[I], is the natural candidate to replace
CSI because it does not depend explicitly on k. Similarly, the mean number of infected
neighbours per infected node, 2[II]/[I], is the second quantity to be considered because
[SI]/[I] + 2[II]/(k[I]) is equal to the mean degree of infected nodes, kI , an important
output of our model analysis. Moreover, the quantity [I]CII/N considered in [2, 14] when
studying the dynamics of CSI corresponds to 2[II]/(k[I]). In consequence, it has the same
dynamics as 2[II]/[I] in a regular lattice.

An important feature of the early dynamics of any transmission process taking place on
heterogeneous networks (infection spreading, energy distribution, traffic in the Internet,
etc.) is the greater vulnerability of nodes with higher degrees. This implies that the pair
approximation traditionally considered in regular lattices ([21, 30]) must be generalized in
order to incorporate more information about the degree distribution. In addition, it also
must be taken into account that the disease states have different degree distributions in
the network [33] which implies additional sources of variability in the model [13]. This fact
has led us to introduce a more suitable expression for the triple closure in heterogeneous
networks. However, this approximation will not have a closed form because it depends
on the degree distribution of susceptible nodes. Even though, a simplified version of it
can be used for the study of the early dynamics by assuming that the initial network
configuration does not change significantly during the initial stages of the epidemics.

In the next section we present the epidemic model with rewiring introduced in [12]. We
also discuss the pair-approximation we use to deal with heterogeneous degree distributions.
Next, in Section 3, we study the early dynamics of the model and obtain an expression
for the mean degree of infected nodes at the beginning of the epidemic spread. We also
derive an expression for the basic reproduction number based on the existence of a quasi-
equilibrium for the quantity [SI]/[I] and compare it with the expression that follows from
the linearization of the model around the disease-free equilibrium (DFE). In Section 4,
we obtain the analytical expression of the bifurcation diagram for the fraction of infected
nodes at the endemic equilibrium as a function of the transmission rate across an infective
contact. In Section 5 we present the simulations of the model and compare them to the
model predictions. Finally, in Section 6 we discuss the importance of considering a suitable
closure for triples when dealing with heterogeneous networks and compare our approach
to the invasory pair approximation introduced in [2].

2 The SIS-w model

As explained in the Introduction, our starting point is the SIS model presented in [12]. Let
us denote by β the transmission rate across an infectious contact, and by µ the recovering
rate of an infected individual. Demographic changes are not considered and, hence, the
population size N is constant. Moreover, let us assume that random disconnections of
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susceptible nodes from one of their infected neighbours occur at a rate w and that, after-
wards, a reconnection of the disconnected susceptible nodes takes place with a randomly
chosen susceptible node. This type of rewiring preserves the network mean degree (the
total number of links remains constant) but changes the mean degree of susceptible and
infected nodes.

Using expected numbers as state variables ([14, 15]) and following the notation in the
Introduction, let us denote by [I] and [S] the expected number of infected and susceptible
individuals, respectively, with [S]+[I] = N . Now, let [ij] be the expected number of (non-
ordered) pairs of connected nodes in states i and j, respectively, and [ij l] be the expected
number of (non-oriented) triples whose sites are in states i, j, and l. Averaging over
the network, it follows that the average number of susceptible neighbours of an infected
node is given by [SI]/[I]. Therefore, the differential equation for the number of infected
individuals in an SIS-type epidemics is given by

d [I]

dt
=

(
β

[SI]

[I]
− µ

)
[I] = µ

(
β

µ

[SI]

[I]
− 1

)
[I]. (1)

Note that rescaling time as τ := µt, we can set µ = 1. In this case, the time unit is equal
to the average infectious period 1/µ.

Similarly, one can compute the average number of nearest neighbours in a given state
for the sites in a given type of pair. For instance, the mean number of infected neigh-
bours around a susceptible node of a (S, I)-pair can be approximated by 1 + [ISI]/[SI].
Therefore, the differential equation for the number of (I, I)-pairs is given by

d

dt
[II] = β

(
1 +

[ISI]

[SI]

)
[SI] − 2µ[II].

Proceeding in the same way for the (S, I) and (S, S)-pairs, we get the system of ordinary
differential equations governing the dynamics of the expected number of infected nodes
and the expected number of pairs of each type. The resulting equations for the SIS model
with rewiring (referred as SIS-w model from now on) are

d

dt
[I] = β[SI] − µ[I],

d

dt
[SI] = β ([SSI] − [ISI] − [SI]) − (µ + w)[SI] + 2µ[II], (2)

d

dt
[II] = β([SI] + [ISI]) − 2µ[II],

d

dt
[SS] = (µ + w)[SI] − β[SSI],

where one of the last three equations is redundant because of the constraint on the total
number of pairs, namely, L = [SS] + [SI] + [II] = kN/2 with k being constant over time
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for any rewiring rate w ≥ 0. Even though, we present all of them because a different set
of equations will be used depending on the analysis we made.

At the population level, the previous system is exact but not closed. To close it, a pair
approximation (PA) for the expected number of (open) triples must be introduced. For
lattices and regular random networks where each node has degree k, the most commonly
assumed PA in the absence of clustering is given by the following triple closure

[ijl] ≈ (1 + δjl)z
[ij][jl]

[j]
, (3)

with z = (k − 1)/k ([15, 21]). For i, j ̸= l, this closure says that the expected number
of (i, j, l)-triples is equal to the number of neighbours of those j-nodes in (i, j)-pairs,
(k − 1)[ij], times the conditional probability that a j-node has a neighbour in state l,
[jl]/(k[j]). In other words, system (2) is closed by assuming the statistical independence
at the level of pairs [25], i.e., by assuming that the neighbours’ states of a node are
given by independent trials and, hence, the frequencies of their occurrence are binomially
distributed [30].

In principle, this approximation could also seem suitable for homogeneous networks,
i.e., networks with a low variance in the node degrees, for which the average number of
neighbours per node, k, is a good representative of the degree distribution. In this case, we
may consider the closure in (3) but with k = k, i.e., with z = (k−1)/k [14]. However, even
for a degree distribution pk with a low variance, like the Poisson distribution, this value
of z leads to a systematic bias in the model predictions. The reason is that, by definition,
the central node of a triple is reached by one of the end nodes through a contact, and
this fact favors the probability that the central node has a degree larger than k. Actually,
the probability that a randomly chosen link connect to any of the nodes with degree k in
the network is proportional to its degree and it is given by qk = kpk/k [5]. In particular,
this means that, in uncorrelated networks, the expected degree of a neighbour is q = k2/k
which is always greater that k, except for regular random networks and lattices where
q = k.

Now, introducing q instead of k in the numerator of z, i.e. z = (q−1)/k, one obtains an
specific expression for z according to the degree distribution of the network. For instance,
for a Poisson distribution, we have that q = k + 1 which amounts to z = 1, which is the
value assumed in [12] and justified in [11], and q = 2k for the exponential distribution
with k ≥ 0, which amounts to z = 2− 1/k. For highly heterogeneous degree distributions
as those given by a power-law distribution pk ∼ k−γ with γ ∈ [2, 3], this corrected closure
turns out to be not suitable because q is not finite and no predictions can be made under
this formalism. In this case, information about the nodal degree must be incorporated
into the model formulation as, for instance, it has been done in [6, 17, 18]. An alternative
approach is based on combining pair approximation and probability generating functions
to introduce such an information into the model [34, 35, 36]. But, when networks have
power-law distributions with γ ∈ [2, 3], even this approach seems to be not appropriate
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because it also involves the second order moment of the degree distribution which is not
finite. Moreover, a correction to (3) must be introduced for networks with a significant
clustering [21, 25, 30, 31]. Indeed, it is well known that this feature of the network
architecture has a strong impact in the epidemic progress, and recent works consider
clustering in network-based models and analyse its impact under different approaches
[19, 24, 37].

Nevertheless, even when the network topology remains invariant during the epidemic
dynamics (w = 0), the previous approximation with z = (q − 1)/k holds only for very
homogeneous networks with a low level of clustering, like random networks with a Poisson
degree distribution. The reason is that the degree distributions pI

k and pS
k of infected and

susceptible nodes, respectively, changes over time [1] and, when the variance of pk is high
enough, there is room for having noticeable differences between both distributions. In
addition, if w > 0 then pk also changes over time. In this case and for networks with a
Poisson initial degree distribution, it is known that, at an endemic equilibrium, pI

k and pS
k

become broadened with the mean degree of susceptible nodes, kS :=
∑

k kpS
k , being greater

than the network mean degree k whereas the mean degree of infected nodes, kI :=
∑

k kpI
k,

is less than k [12]. Consequently, when pI
k and pS

k are quite different, the precise form
of the PA depends on the particular type of triple we need to approximate because the
latter determines which degree distribution must be used to compute q and z.

In our case, since all triples in system (2) have an S as a central node, approximation
(3) holds with

z = (qS − 1)/kS where qS = k2
S/kS and k2

S :=
∑

k

k2pS
k . (4)

Note that, in general, z is not constant but a function of time because both kS and
qS vary with time. Indeed, kS can be easily expressed in terms of the number of pairs
because, by definition, kS = (2[SS]+ [SI])/[S]. However, we need to know pS

k to compute
k2

S. With this respect, a first attempt to obtain the degree distribution of susceptible,
infected, and recovered nodes for a SIRS model with rewiring was made in [26]. In that
paper the authors consider a SIRS model with disconnection of noninfected (S and R)
nodes from infected ones and random reconnection among them. Moreover, it is assumed
that z = 1 which decouples the equations for the dynamics of pairs from those for degree
distributions pI

k(t), pS
k (t) and pR

k (t). The latter equations are obtained from mean-field
approximations and do not offer accurate predictions of pI

k, as the authors themselves
acknowledge. This fact implies that a self-consistent system of equations for pI

k, pS
k and

pR
k is not obtained under their approach, even in the simpler case z = 1. Therefore,

obtaining a good estimate of k2
S that closes system (2) is still an open problem.

On the other hand, if the initial configuration of the network has no clustering, the uni-
form disconnection of susceptible nodes from infected ones followed by a uniform rewiring
among susceptible nodes are not expected to introduce a significant level of clustering into
the network (see also simulation results). So, the correction term accounting for clustering
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will be neglected in our study.
Upon introducing the PA (3) with z given by (4) into the model equations (2), the

SIS-w model becomes

d

dt
[I] = β[SI] − µ[I],

d

dt
[SI] =

(
βz

(
2[SS]

[S]
− [SI]

[S]

)
− β − µ − w

)
[SI] + 2µ[II], (5)

d

dt
[II] = β

(
1 + z

[SI]

[S]

)
[SI] − 2µ[II],

d

dt
[SS] = (µ + w)[SI] − 2βz

[SI]

[S]
[SS].

This system for z = 1 corresponds to the one introduced in [12]. In general, it must
be closed by giving an expression for qS or an approximation of z obtained heuristically.
Note that this approximation can be a constant value or a function of time.

3 The early dynamics of the epidemics

When an epidemic begins in a completely susceptible population, local correlations of
disease states around newly infected nodes develop much faster than the absolute numbers
of susceptible and infected nodes [14]. Indeed, as long as clusters of infected nodes around
those that were initially infected (invading clusters) remain disconnected from each other,
it is expected that local correlations will be more or less constant from the beginning.
These correlations will be described in terms of the local densities given by the mean
number of S and I nodes around an infected node: [SI]/[I] and 2[II]/[I], respectively.

In order to analyze their dynamics, we will consider the limit equations for these
mean numbers obtained by assuming that the system-level features such as [S], [I] and
the degree distribution do not change appreciably at the beginning of the epidemic. In
particular, this means that z will be computed from the initial degree distribution of the
network, and that [S] ≈ N , [SI] ≈ 0, and 2[SS]/[S] ≈ k. Note that an equilibrium of
this limit system can be interpreted as a quasi-steady state (QSS) of the early dynamics
of the local correlations, i.e., before the number of infected nodes grows significantly [23].
This rapid development of local patterns has been previously observed in epidemic models
on regular networks [14] as well as in spatial population models defined on lattices [9].
The existence of such a QSS will allow us to obtain an estimate of the mean degree of
infected nodes of the second and third generations of the epidemic, after a short pre-QSS
period where the mean degree of infected nodes is approximately equal to the network
mean degree (first generation of the epidemic). Note that at least one generation time
is needed to have newly infected nodes and create invading clusters, and that this time
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is related to the length of the infectious period (1/µ) and also to the distribution of the
number of infectious contacts in the network [29].

The equations governing the dynamics of [SI]/[I] and 2[II]/[I] are derived from the
previous system using the standard rules of differentiation which amount to

d

dt

(
[SI]

[I]

)
= −

(
β + w + βz

(
[SI]

[S]
− 2[SS]

[S]

)
+ β

[SI]

[I]

)
[SI]

[I]
+ µ

2[II]

[I]
,

(6)

d

dt

(
2[II]

[I]

)
= 2β

(
1 + z

[SI]

[S]

)
[SI]

[I]
−
(
µ + β

[SI]

[I]

)
2[II]

[I]
,

where we recall that z = (qS − 1)/kS. This system can be easily analyzed when [S] → N ,
[SS] → L, [I] → 0, [SI] → 0, [II] → 0, and qS(t) → qS(0) =: q, i.e., at the beginning of
the infection after the introduction of the primary case (patient zero). Under these limits,
it turns out that z = (q − 1)/k with q = k2/k computed from the degree distribution at
time t = 0 and k = 2L/N (constant mean degree), and the corresponding limit system is

d

dt

(
[SI]

[I]

)
= −

(
w − β(q − 2) + β

[SI]

[I]

)
[SI]

[I]
+ µ

2[II]

[I]
,

(7)

d

dt

(
2[II]

[I]

)
= 2β

[SI]

[I]
−
(
µ + β

[SI]

[I]

)
2[II]

[I]
.

The phase-portrait of this system has one of the forms shown in Figs. 1 and 2. When-
ever β q > w (Fig. 1), there exists a unique positive equilibrium of the limit system which
corresponds to a QSS of system (7) which appears after the first generation of the epi-
demic. If β q ≤ w (Fig. 2), the only nonnegative equilibrium is the trivial one. Therefore,
although it is assumed that almost all the individuals in the population are susceptible
([S] → N), when β q > w there is a rapid convergence of the mean degree of infected nodes
towards a positive value during the early stages of the epidemic outbreak. Remarkably,
this situation is also compatible even when extinction is the final fate of the epidemic
spread.

When β q > w, the first component of this equilibrium is given by

(
[SI]

[I]

)∗

0

=
β(q − 2) − µ − w +

√
(β(q − 2) − µ − w)2 + 4µ(β q − w)

2β
.

which corresponds to the average number of susceptible nodes surrounding the first in-
fected nodes occurring. Therefore, it seems a suitable candidate to be used in Eq. (1)
in order to evaluate the initial growth of the infected population. So, substituting this
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expression in Eq. (1), it follows that the term between parentheses in the rhs is equal or
greater than 0 at the bifurcation point if and only if

R∗
0 :=

β

µ

(
[SI]

[I]

)∗

0

=
β(q − 2) − µ − w +

√
(β(q − 2) − µ − w)2 + 4µ(β q − w)

2µ
≥ 1.

This condition can be rewritten as

R0 :=
β

µ + w
(q − 1) ≥ 1,

which, for w = 0 and q = k, corresponds to the well-known expression of R0 in lattices
and regular random networks. This expression is an alternative expression for the basic
reproduction number R∗

0 and will be recovered from the linear analysis of system (5)
around the DFE.

From the expression of R0 and the condition for the existence of a nontrivial equi-
librium of the limit system (7), we have that the condition w − β < β(q − 1) < w + µ
guarantees both extinction and a positive mean number of S and I around the initially in-
fected individuals. We call this situation “transmission-dominated scenario”. Conversely,
when β q ≤ w, R0 < 1 and [I] → 0 but in a “rewiring-dominated scenario” where the
number of susceptible individuals around infected ones tends to zero faster than [I]. In
this situation (Fig. 2), rewiring causes that infected nodes will be eventually isolated
(singletons) before their become susceptible again and the epidemic dies out.

Adding the equations of the limit system and using that the mean degree of infected
nodes kI equals [SI]/[I] + 2[II]/[I], it follows that the early dynamics of kI is governed
by the differential equation

dkI

dt
= (β q − w − β kI)

[SI]

[I]
,

which must be endowed with the initial condition kI(0) = k when the initially infected
individuals are randomly chosen among the nodes in the network. Whenever β q >
w, [SI]/[I] > 0 and this differential equation has a unique positive and globally stable
equilibrium

k∗
I = q − w

β

for w ≥ 0. This equilibrium of the mean degree of the infected nodes will be noticeable
as long as q is a good approximation of qS, i.e., at the early stage of the epidemic spread.
For instance, recalling the value of q for the exponential degree distribution, it follows
that the mean degree of infected nodes at the beginning of the epidemic changes from k,
at t = 0, to k∗

I = 2k −w/β at t = 1, with t in units of the mean duration of the infectious
period (1/µ). For the Poisson distribution, k∗

I = (k + 1) − w/β which implies that the
initial change in the mean degree of infected nodes will be less marked in networks with
this degree distribution.
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3.1 Local stability analysis of the epidemic outbreak

Once we have obtained a description of the early dynamics of the epidemics in terms
of mean numbers per infected node, we can ask about the behaviour of the absolute
numbers around the DFE of system (5), i.e., around the equilibrium [S]∗ = N , [I]∗ = 0,
and [SI]∗ = [II]∗ = 0. Neglecting the equation for [SS] (because it is redundant) and
linearizing the remaining three equations of (5) around the DFE, it easily follows that the
Jacobian matrix is

JDF =




−µ β 0
0 β(q − 2) − µ − w 2µ
0 β −2µ


 (8)

from which it follows that the largest eigenvalue λ1 is real and it is greater or equal 0 if
and only if β(q − 1) ≥ µ + w, i.e., for R0 ≥ 1, where β, µ or w can be used as a tuning
parameter. So, we recover the threshold condition for the epidemic spreading obtained
from the limit system (7).

Precisely, at the bifurcation point defined by R0 = 1, the left and right eigenvectors of
JDF associated to λ1 = 0 are u′ = (0, 1, 1) and v′ = (2β, 2µ, β), respectively. Moreover,
if f denotes the rhs of the first three equations in (5), and fDF

α denotes the vector of
partial derivatives of its components fi with respect to a tuning parameter (α = β, µ, w),
evaluated at the DFE, then at the bifurcation point we have that:

u′ · fDF
α = 0 for α = β, µ, w, u′ · (DfDF

α v) = −2µ ̸= 0 for α = w, µ

u′ · (DfDF
β v) = 2µ(q − 1) ̸= 0, u′ · (D2fDF (v,v)) =

8µ(µ + w)

kN

(
(µ + w)

k − 1

zk
− 2µ

)

where Dfα is the Jacobian matrix of fα and (D2f(v,v))i =
∑

j,l
∂2fi

∂xj∂xl
vjvl. Hence, when

u′ · (D2fDF (v,v)) ̸= 0, these conditions imply that system (5) experiences a transcritical
bifurcation at R0 = 1 [20], i.e., an interchange of stability between the DFE and the
endemic one. If µ and w satisfy that (µ+w)(k−1)/(zk) = 2µ, then a pitchfork bifurcation
occurs as β varies through the bifurcation value β0 = (µ + w)/(q − 1), as we will see in
the next section from the explicit expression of the bifurcation curve obtained using β
as a bifurcation parameter (cf. Eq (12)). This fact can also be seen by computing
u′ · (D3fDF (v,v,v)) and checking that its value is different from 0 [20].

4 Equilibrium solutions

Although the SIS-w model (5) is not closed due to the quantity z, which basically depends
on the variance of the degree distribution of the susceptible nodes, we can undertake an
analysis of the steady states of system (5) assuming that, after the early dynamics, z
remains nearly constant during the progress of the epidemic.
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Let us recall that N, k̄ and L are fixed and that, according to the relation 2L = k N ,
it is enough setting two of the three parameters. We also recall that the state variables
at equilibrium fulfill [S]∗ + [I]∗ = N and [SS]∗ + [SI]∗ + [II]∗ = L which simplifies the
computations below.

The model equations (5) exhibit two types of equilibrium. On the one hand, there
always exists the DFE [SI]∗ = 0, independently of the value of z:

[I]∗ = 0 , [S]∗ = N , [II]∗ = 0 , [SS]∗ = L .

On the other hand, the endemic equilibrium, i.e. [SI]∗ ̸= 0, can be computed in terms
of the quantity z at equilibrium. So let us assume for a while that z is given and let us
consider all the equations in (5) except for the second one which we disregard since one
of them is redundant.

From the first equation it follows that [SI]∗ =
µ

β
[I]∗ and from the last equation we get

[SS]∗ =
µ + w

2βz
(N − [I]∗) after simplifying the term [SI]∗ ̸= 0. Next, the third equation

β

(
1 + z

[SI]∗

N − [I]∗

)
[SI]∗ = 2µ(L − [SI]∗ − [SS]∗) (9)

can be arranged to become a single equation for the variable [I]∗. Indeed, plugging the
formulas above for [SI]∗ and [SS]∗ into (9) we have

β

(
1 + z

µ
β
[I]∗

N − [I]∗

)
µ

β
[I]∗ = 2µ

(
L − µ

β
[I]∗ − µ + w

2βz
(N − [I]∗)

)
,

or

β[I]∗ + zµ
[I]∗2

N − [I]∗
= 2Lβ − 2µ[I]∗ − µ + w

z
(N − [I]∗) .

Finally, rewriting this equation in terms of the fraction of infected nodes i∗ =
[I]∗

N
, we

arrive at

β(k̄ − i∗) = zµ
i∗2

1 − i∗
+ 2µi∗ +

µ + w

z
(1 − i∗) . (10)

The aim is to draw a bifurcation diagram for the fraction of infected nodes at equilib-
rium as a function of β. To end up we have to deal with the quantity z. If we assume,
first, that z remains constant during the epidemic progress and, second, that its value is
approximately given by the initial network configuration, then (10) is a linear equation
for β and therefore we have an explicit function β = β(i∗) to plot the bifurcation diagram.
Indeed, these assumptions on z were implicitly made in [12] and turns out to be more or
less accurate when the initial degree distribution has a low variance, as it is the case of the
Poisson distribution (top panels in Fig. 3). However, for distributions like the exponential
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or the scale free which have higher variances, we have to replace the initial value of z by
another one close to its asymptotic value, which is clearly lower, in order to have a correct
bifurcation diagram (middle and bottom panels in Fig. 3). Precisely, in Fig. 3, the used
values of z are those obtained by minimizing the mean square error of fitting the function
β(i∗) given by (10) to the set of points {(i∗j , βj)} with i∗j being the fraction of infected
nodes observed in the simulations with β = βj.

We can compute the bifurcation point, i.e., i∗ = 0, which occurs at β = β0 with

β0 =
µ + w

zk
or, equivalently, at R0 = 1 , (11)

if we recall that z = (q − 1)/k. Moreover, according to equation (10), two types of
bifurcation diagram are possible. Indeed, these situations are determined by the sign of

the derivative
∂β

∂i∗

∣∣∣∣∣
i∗=0

. So, differentiating with respect to i∗ in (10) we have that

∂β

∂i∗
(k − i∗) − β = zµ

2i∗(1 − i∗) + i∗2

(1 − i∗)2
+ 2µ − µ + w

z
.

Now evaluating the previous equation at i∗ = 0, and taking into account that β =
(µ + w)/(zk) at i∗ = 0 it follows

k
∂β

∂i∗

∣∣∣∣∣
i∗=0

=
µ + w

zk
+ 2µ − µ + w

z
.

So, the sign of
∂β

∂i∗

∣∣∣∣∣
i∗=0

is determined by the sign of

2µ − (µ + w)
k − 1

zk
. (12)

Summarizing, using w as a tuning parameter, two regimes are possible: a low rewiring
regime defined for 0 ≤ w < wc := (2z k/(k − 1) − 1)µ, and a high rewiring regime defined
for w > wc where two endemic equilibria exist for a range of values of β (Fig. 4). In both
cases, a transcritical bifurcation occurs at R0 = 1 which is subcritical for w > wc, and
supercritical for w < wc. For w = wc, the curve β = β(i∗) has a minimum at i∗ = 0 when
R0 = 1 (Eqs. (10)-(11)). This implies that a supercritical pitchfork bifurcation occurs at
i∗ = 0 as β varies through the bifurcation value (µ + wc)/(zk) (cf. Sect. 3.1).

5 Simulations

To establish the initial network configurations, we have generated non-correlated networks
of size N = 5000 according to three types of degree distributions: Poisson, exponential,
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and scale-free (SF), the latter with exponent γ = 3 (pk ∼ k−γ). Poisson networks were
obtained by connecting with probability p = k/N every pair of nodes of a set of N nodes.
Here we consider k = 10 and, so, p = 0.002. Exponential and SF networks were obtained
from the so-called configuration model. According to this model, a random sequence {ki}
of N degrees (with

∑N
i=1 ki an even number) is drawn from the corresponding probability

distribution. Each degree ki of the sequence is then associated to one node, which is
randomly connected to ki neighbours. In our case, the exponential distribution has been
generated with an expectation k = 10, and the SF distribution with a minimum degree
k0 = 5 and a maximum degree given by the so-called natural cut-off kc = k0N

1/(γ−1) = 354,
which is defined as the value of the degree above which one expects to find at most one node
in the network [3]. For such a truncated SF distribution, k = 2k0(1 − N−1/2) = 9.86 and,
moreover, we can easily obtain an analytical expression for q and, hence, an estimation
of k∗

I , which would not be possible for a non-truncated SF with γ = 3. In particular, for
k0 = 5 and N = 5000, it follows that q = 21.6. These values of k lie in the range of those
observed in the social networks discussed in [1]. For these mean degrees, the variances of
each degree distribution are, respectively, 10, 100, and 115.7. In all the simulations µ = 1,
i.e., time is measured in units of mean infectious period (1/µ). The epidemic progress is
simulated as a continuous time process using the Gillespie’s algorithm [10].

According to this procedure and after simulating the epidemics for T = 120 infectious
periods, the values of z in Fig. 3 that minimize the mean square error are (from left
(w = 1) to right (w = 5)): Top: z = 1 (e2 = 3.1 × 10−4), z = 1.125 (e2 = 2.95 × 10−4);
middle: z = 1.095, (e2 = 3.4 × 10−4), z = 1.145 (e2 = 4.5 × 10−4); bottom: z = 1.010
(e2 = 2.3 × 10−4), z = 1.135 (e2 = 4.8 × 10−4). Therefore, the optimal value of z
changes with the rewiring rate w but, quite surprisingly, it gives a very good fit using β
as bifurcation parameter and keeping w frozen. Indeed, the fact that a single value of
z fits each bifurcation curve to simulations is quite unexpected. Note that, by changing
β, we are changing the number of rewirings per time unit and the size of the susceptible
population, and, hence, the stationary degree distribution among susceptible nodes which
in turn determines the asymptotic value of z.

For R0 > 1, simulation results presented in Fig. 4 clearly show that, depending on
the degree distribution, kI(t) can increase or decrease from an initial value kI(0) close
to k during the first infectious period. For Poissonian networks and averaging over 50
sets of initially infected nodes, the observed minimum of kI(t) is equal to k∗

I (horizontal
dashed line in the top left panel). Remarkably, the same accuracy is obtained for other
values of the rewiring rate. In exponential and scale-free networks, the variance of the
degree distribution is higher and allows kI(t) to initially increase because of the higher
vulnerability of nodes with larger degrees. However, the finite size of the generated
networks introduces a cut-off in the empirical degree distribution which is translated to
the fact that k∗

I is always larger than the observed maximum averaged over 50 runs on the
same network but with different sets of infected individuals (although, for some initial sets
of infected individuals, kI(t) may go beyond this value). Even for the SF networks, where
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a cut-off which depends on their size was explicitly introduced to generate the sequence
of degrees, k∗

I is larger than the average maximum of kI(t). For this type of networks,
however, there is a large variability among the generated degree sequences. This fact
implies a large variability in the maximum of kI(t) (averaged over 50 runs with different
sets of initally infected nodes) when it is computed over different networks (bottom of
Fig. 4). Late in the outbreak, kI(t) tends to a value defined by the endemic equilibrium.
For the Poisson distribution, an initial increase of kI(t) does not occur unless lower values
of w are considered. Remarkably, the length of this transient of kI(t) decreases with
the variance of the initial degree distribution: about 6, 4, and 2.5 infectious periods for
Poisson, exponential, and truncated SF, respectively.

This behaviour of kI(t) consisting in an initial increase followed by a progressive de-
crease towards a stationary value was well-known for heterogeneous networks without
rewiring (see, for instance, [1]). However, in the presence of rewiring, it appears a new
transient for [I], the total number of infected nodes, characterized by an initial increase
followed by the extinction of the epidemic, even for R0 > 1. This effect of rewiring is
more dramatic when the variance of the initial degree distribution is large enough, as in
exponential and scale-free networks. In this case, the fate of the epidemic can be extinc-
tion even for values of R0 clearly larger than 1. For instance, for exponential networks
with parameters values as in Fig. 5, it follows that R0 = 1.425 which implies that [I] must
increase at the beginning of the epidemic. Indeed, we obtain that [I] can be even 20-fold
greater than the number of infected nodes at t = 0. However, while this outbreak takes
place, rewiring causes the variance σ2

S of the degree distribution among susceptible nodes
to diminish, as showed by the value of z as a function of time. Consequently, the epidemic
potential for spread is drastically reduced. To illustrate this claim, we can use the value of
z observed after 10 infectious periods (z(10) = 1.33) instead of its initial value z(0) = 1.9,
to compute q which amounts to q = zk+1 = 1.33·10+1 = 14.3. For this value of q (which
is only approximate because the mean degree kS of susceptible nodes is not equal to k
when z = 1.33), it follows that R0 = 0.9975 which is in agreement with the extinction of
the epidemic in the four networks and, also, explains the variability in times to epidemic

extinction. Note that the variance of pS
k can be written as σ2

S = (z − 1)k
2

S + kS. So,
assuming that z(t) ≈ 1.33 for t > 10 (see the middle panel in Fig. 5), the variance of the
degrees in the network goes down from σ2

k(0) = 100 before the outbreak to σ2
k(∞) ≈ 43

after the outbreak (kS = k).

6 Discussion

In this paper we have analyzed the early transient of an epidemic model defined on a
dynamic network where connections between infected and susceptible nodes are broken
off by the latter. Moreover, the model assumes that each susceptible that looses a con-
nection establishes a new one with another susceptible chosen at random. This model
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was introduced in [12] and, since then, more sophisticated rewiring mechanisms have been
considered. However, the study of the early dynamics was not considered in all these pa-
pers which mainly focus on the numerical analysis of a Hopf bifurcation from the endemic
equilibrium, and on the existence of a bistability region which is absent when w = 0.
Moreover, in addition to the Poisson degree distribution considered in these papers, we
also considered exponential and scale-free degree distributions, the latter with exponent
γ = 3 and a finite cut-off. In fact, the variability of contact patterns found in several social
networks lies between the homogeneity assumed by homogeneous-mixing models and the
high heterogeneity of networks with power-law degree distributions with 2 < γ ≤ 3 [1],
which makes the exponential distribution a good candidate for modelling such patterns.
Indeed, in [1] the authors showed that the degree distribution in these social networks has
a nearly exponential shape.

From a modelling point of view, considering more heterogeneous degree distributions
is important because it shows that, when variance of the distribution increases, an im-
provement in the pair-approximation closure must be made in order to capture the initial
behaviour of the epidemic spreading. For instance, when R0 > 1 and a short time after the
beginning of the epidemic (about one infectious period), the mean degree of infected nodes
attains a maximum or a minimum value according to the degree distribution (Fig. 4). The
observed mean degree is coincident with the predicted value of k∗

I in Poisson networks,
and it is slightly lower for more heterogeneous networks. This difference, however, might
diminish as their size N increases (finite-size effect) for exponential networks because the
expression of k∗

I does not depend on N . After this initial stage, the effect of rewiring on
the degree distribution of susceptible nodes is reflected in a dramatic change in the value

of z, which is equal to (σ2
S −kS)/k

2

S +1, and so in the variance of this degree distribution,
especially in exponential and scale-free networks.

We have also established that, when R0 < 1, the extinction of an epidemic can occur
under two different scenarios. In the first one, the transmission process dominates the
progressive isolation of infected nodes. This fact is reflected by fluctuations around a
smoothly decreasing trend of the mean degree of the infected nodes during the exponential
decay of the infected population when a small fraction of nodes are randomly infected.
In particular, for a Poisson degree distribution and because of its low variance, there is
no room for noticeable changes in the value of z(t) by rewiring of susceptible nodes and,
consequently, the mean degree of infected nodes remains close to k∗

I , the predicted value
at the early epidemic stage, until the end of the outbreak (see right panel in Fig. 6).
Remarkably, when z(t) changes over a wider range of values, it is possible to have R0 > 1
when the value of z(0) is used, i.e., to have instability of the DFE under the initial network
configuration, whereas epidemic dies out once z(t) attains its (lower) asymptotic value.
For exponential networks, for instance, we have that z(0) = 1.9 when k = 10 whereas,
with the parameters values used in the simulations, z(t) → 1.33 (approx.) as time goes on
(see Fig. 5). In the second scenario, the epidemic dies out by isolation of infected nodes
which become singletons, i.e., nodes with no connections, at the end of the epidemic.
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Therefore, in this scenario, the mean degree of infected nodes decays quite monotonically
and tends to 0 (see left panel in Fig. 6).

The approach we have followed in this paper is similar to the one called “ordinary
pair approximation” in [2]. However, our state variables for the analysis of the early
behaviour of the model are the local densities (or local neighbourhood variables) [SI]/[I]
and 2[II]/[I], the mean number of susceptible and infected neighbours per infected node,
respectively. Other local variables involving the mean degree of the network, as the mean
fraction of infected neighbours of an infected node, 2[II]/(k[I]) = [I]CII/N , used in
[14, 2], are not suitable for heterogeneous networks because the mean degree of infected
and susceptible nodes are different from each other. On the other hand, the existence of a
quasi-equilibrium ([SI]/[I])∗ and (2[II]/[I])∗ for these local densities at the beginning of
the epidemic implies that the approximation given in [2] for the so-called “invasory pair
approximation”, is flawed because it assumes that [SI]/[I] = µ/β (cf. Eq. (36) in [2]),
i.e., it adopts the value of [SI]/[I] at the endemic equilibrium, which is clearly different
from ([SI]/[I])∗ .

Interestingly, applying the idea of invading clusters to contact networks, one can lin-
earize the original system (2) in a heuristical and straightforward manner. By definition,
such a cluster is formed by an initially infected node plus its susceptible neighbours.
Moreover, all triples with one of their nodes in a cluster will be also taken into account.
Therefore, if we restrict ourselves to one infectious period [6], add for all the invading
clusters in the network (provided that there several initially infected nodes), and consider
the expected degree of a neighbour, this leads to [I]inv = [I], [II]inv = [II], [SI]inv = [SI],
[ISS]inv = (q − 1)[IS], and [ISI]inv = 0. Introducing these approximations in (2) for
[ISS] and [ISI], we have that the early dynamics is governed by the following linear
system of differential equations:

d

dt
[I] = β[SI] − µ[I],

d

dt
[SI] = (β(q − 2) − µ − w)[SI] + 2µ[II],

d

dt
[II] = β[SI] − 2µ[II],

whose matrix of coefficients is equal to the Jacobian matrix (8). So, the same threshold
condition for the epidemic spreading follows under an invasory approach similar to the
one introduced in [2]. On the other hand, this idea of considering only network motifs
around new links connecting nodes in different states (active links) has been also used
in [4] to derive a linear model for estimating the fragmentation threshold in an adaptive
voter model. Such a threshold corresponds to the rewiring rate above which a network of
social contacts breaks into disconnected components, each of them having all their nodes
in the same state or opinion (consensus).
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Figure captions

Figure 1. Phase portrait of the limit system (7) for the case β q > w. The equation
in x given by (1 + β

µ
x)(w − β(q − 2) + βx) = 2β has a unique positive solution implying

the existence of a positive equilibrium
(

[SI]
[I]

)∗
< q − 2,

(
2 [II]

[I]

)∗
< 2 which is globally

stable. The origin is unstable. Solid curves are the nullclines of the system. Parameter:
µ = 1, w = 5, q = 10, β = 1. For these values, R0 = 1.5. Note that the same phase
portrait holds for R0 < 1 as long as inequalities w − β < β(q − 1) < w + µ are fulfilled.

Figure 2. Phase portrait of the limit system (7) for the case β q ≤ w. There only
exists the trivial equilibrium which is globally asymptotically stable. Solid curves are
the nullclines of the system. Parameter: µ = 1, w = 5, q = 5, β = 1. For these values,
R0 = 2/3.

Figure 3. Bifurcation diagram under low (left) and high (right) rewiring. Top: Pois-
sonian networks (wc = 1.22). Middle: Exponential networks (wc = 3.22). Bottom:
Scale-free networks (wc = 3.65). Dashed lines are fitted curves obtained from Eq. (10) by
changing the predicted initial value of z (used in solid lines) by the one that minimizes
the mean square error of the fit. Transcritical bifurcation at β0 = 0.2 and 0.6 (Poisson),
β0 = 0.105 and 0.316 (exponential), and β0 = 0.097 and 0.291 (scale free). Saddle-node bi-
furcation point (right column): (βc, ic) = (0.473, 0.531) (Poisson), (βc, ic) = (0.308, 0.169)
(exponential), and (βc, ic) = (0.288, 0.115) (scale free). Dots are averages over 5 gener-
ated networks. Parameters: µ = 1, w = 1 (left), w = 5 (right), k = 10 (Poisson and
exponential) and k = 9.86 (scale free). The initial fraction of infected nodes is 10%.

Figure 4. Evolution of the mean degree of infected nodes kI and z = (qS − 1)/kS

in Poisson (top), exponential (middle), and scale-free (bottom) networks with R0 > 1.
For each type of network, curves are obtained by averaging the value of kI and z over
epidemics generated from 50 sets of initially infected nodes of the same network. In each
realization, the initial fraction of infected nodes is 1%. Solid, dashed, and dot-dashed
curves correspond to averages on three different networks of N = 5000 nodes (in top
panels these curves are almost indistinguishable from each other). Parameters: µ = 1,
β = 0.3 and w = 1. In the left panels, the horizontal dashed line shows the predicted
value of k∗

I , the mean degree of the infected nodes at the early stage of the epidemic.

Figure 5. Epidemics in four exponential networks with k = 10 and N = 5000 nodes.
Top: Evolution of the mean degree of infected nodes kI . Middle: Evolution of the number
of infected nodes [I]. Bottom: Evolution of z = (qS − 1)/kS. Parameters: µ = 1, β = 0.3
and w = 3. The initial fraction of infected nodes is 1%. For these parameters values and
z = z(0) = 1.9, it follows that R0 = 1.425.
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Figure 6. Evolution of the mean degree of infected nodes kI in epidemics occurring
on four Poisson networks, with R0 < 1, in a rewiring-dominated scenario (left), and in a
transmission-dominated scenario (right). Parameters: µ = 1, β = 0.3, w = 5 (left) and
w = 3 (right). The initial fraction of infected nodes is 1% and N = 5000 nodes. In the
right panel, the dashed line corresponds to k∗

I = 1, the predicted value of mean degree of
infected nodes at the early stage of the epidemic.
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