
Fronts from integrodifference equations and persistence effects on the Neolithic transition

Joaquim Fort, Joaquim Pérez-Losada, and Neus Isern
Departament de Física, Universitat de Girona, 17071 Girona, Catalonia, Spain

�Received 5 January 2007; revised manuscript received 31 July 2007; published 14 September 2007�

We extend a previous model of the Neolithic transition in Europe �J. Fort and V. Méndez, Phys. Rev. Lett.
82, 867 �1999�� by taking two effects into account: �i� we do not use the diffusion approximation �which
corresponds to second-order Taylor expansions�, and �ii� we take proper care of the fact that parents do not
migrate away from their children �we refer to this as a time-order effect, in the sense that it implies that
children grow up with their parents, before they become adults and can survive and migrate�. We also derive
a time-ordered, second-order equation, which we call the sequential reaction-diffusion equation, and use it to
show that effect �ii� is the most important one, and that both of them should in general be taken into account
to derive accurate results. As an example, we consider the Neolithic transition: the model predictions agree
with the observed front speed, and the corrections relative to previous models are important �up to 70%�.
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I. INTRODUCTION

Reaction-diffusion fronts are important in many areas of
physics, including biological and cross-disciplinary systems
�1,2�. Some examples are Neolithic transition fronts �3–9�,
virus infection fronts �10,11�, biological invasions �12�, com-
bustion flames �13–16�, tumor growth �17–19�, etc.

As in previous work �1,3,10,11�, we shall here consider a
two-dimensional �2D� space. This will be necessary in order
to apply our results to a specific example, namely, the
Neolithic transition.

Up to now, most of the front solutions analyzed come
from evolution equations that rely on the assumption that
second-order Taylor expansions are valid approximations.
This may be seen as follows. Let p�x ,y , t� stand for the
population �or particle� number per unit area at position
�x ,y� and time t. The dispersal kernel ���x ,�y� is the prob-
ability per unit area that an individual �or particle� who was
at �x+�x ,y+�y , t� jumps to �x ,y , t+T�. Here T is the time
interval between two subsequent jumps �in biophysical ap-
plications, usually T=1 generation �3,10��. Let R�p�x ,y , t��
stand for the new individuals �or particles� due to the repro-
duction process �or chemical reactions�, produced during the
time interval T per unit area centered at �x ,y�. From these
definitions, the evolution equation is typically written as fol-
lows �3�:

p�x,y,t + T� − p�x,y,t�

= �
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�d�xd�y

− p�x,y,t� + R�p�x,y,t�� , �1�

where the first and second terms on the right-hand side cor-
respond to population dispersal, and the last one to reproduc-
tion. An age-structured derivation of Eq. �1� is included in
Appendix A. There, it is also shown that R�p�x ,y , t�� in Eq.
�1� includes the effect of deaths besides reproduction. Thus,
R�p�x ,y , t�� is a net reproductive term.

Usually second-order Taylor expansions in space �diffu-
sion� and time are performed. Then, assuming an isotropic
kernel, i.e., that ���x ,�y� depends only on

� = ��x
2 + �y

2, �2�

the integrodifference equation �1� becomes a partial differen-
tial equation, namely �3�,

�p

�t
+

T

2

�2p

�t2 = D� �2p

�x2 +
�2p

�y2� + F +
T

2

�F

�t
. �3�

Equation �3� is called the hyperbolic reaction-diffusion
�HRD� equation �1� �it becomes the telegraph equation if F
=0�. F is the time derivative of p�x ,y , t� due to reproduction,
i.e., �3�

R�p�x,y,t�� = TF +
T2

2!

�F

�t
+

T3

3!

�2F

�t2 + ¯ , �4�

and we have also introduced the diffusion coefficient

D =
1

4T
�

−�

+� �
−�

+�

�����2d�xd�y 	

�2�
4T

. �5�

Usually, front speeds derived analytically from a partial dif-
ferential equation such as �3� are compared to the numerical
simulations of the same differential equation. Agreement be-
tween both approaches is considered a useful check of the
results �3,10�. It is true that almost all papers on front propa-
gation follow Eq. �3� �or its parabolic limit, i.e., T→0, which
yields Fisher’s equation and corresponds to Fickian diffu-
sion�. However, such a procedure has two main limitations.

�i� On the one hand, there is no reason a priori to expect
that Eq. �3� is a valid approximation to the original Eq. �1�.
Therefore, in the present paper we will go beyond the
second-order �HRD� approximation.

�ii� We will also take into account an additional point that
will make our results more realistic than previous ones, as
follows. According to the last term in Eq. �1�, the population
at �x ,y , t� reproduces causing a population number increase
at the same space point �x ,y� one generation later �t+T�.
But, in fact, that parent population will have migrated out of
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�x ,y� at time t+T because of the second term on the right-
hand side of Eq. �1�. In other words, parents migrate away
from their children according to Eq. �1�. This is appropriate
for some biological species �e.g., fish� but not for humans.
Indeed, according to anthropological observations, children
typically live with their parents until they become adults and
can survive �and migrate�. Therefore, for human populations
it is more realistic to replace Eq. �1� by

p�x,y,t + T� = �
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�d�xd�y

+ R��
−�

+� �
−�

+�

p�x + �x,y

+ �y,t����x,�y�d�xd�y� , �6�

so that after the individuals of the population move �once per
generation, from �x+�x ,y+�y� into �x ,y�, first line in Eq.
�6��, they reproduce at the arrival location �x ,y� �second line
in Eq. �6��. An age-structured derivation of Eq. �6� is in-
cluded in Appendix B.

Equation �6� assumes that parents first migrate and then
reproduce. An alternative to Eq. �6� is to assume that parents
first reproduce and then migrate carrying their children with
them �not leaving them alone as it happened with Eq. �1��. In
this case we have, instead of Eq. �6�,

p�x,y,t + T� = �
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�d�xd�y

+ �
−�

+� �
−�

+�

R�p�x + �x,y + �y,t��

����x,�y�d�xd�y . �7�

However, we shall see in Sec. II A that for our purposes,
both Eqs. �6� and �7� give the same front speed �this can be
also shown for another case, namely, simultaneous migration
and reproduction, but it has a negligible effect since this
happens very rarely for humans—because migrations have a
duration of hours or days, whereas the time scale of repro-
duction is 1 generation�32 years �5��.

The important difference is that for Eq. �1� parents mi-
grate away from their children, whereas for Eqs. �6� and �7�
they do not. So the latter are more realistic for humans.

Some recent work on front speeds goes beyond the
second-order approximation �22–24� �point �i� above�. But
those papers use evolution equations of the form �1� instead
of �6�. Thus, the fact that children grow up with their parents
�point �ii� above� was not properly taken into account in
those references.

Concerning the function R�p�x ,y , t��, which corresponds
to the effect of population reproduction, we next summarize
some of the many choices that have been considered in the
literature.

�i� The so-called exponential growth function for F ap-
pearing in Eq. �4�, namely �3� �see also Appendixes A and B
of the present paper�,

F = rL p�x,y,t� ,

where rL is called the intrinsic rate of growth. This case leads
to population densities increasing in time without any bound,
which is not realistic biologically.

�ii� The logistic growth function for F appearing in Eq.
�4�, namely �3�,

F = ap�x,y,t��1 −
p�x,y,t�

pmax
� , �8�

where a is called the initial growth rate. This case predicts a
bounded population growth, but it is extremely troublesome
for numerical implementation, because it involves an infinite
number of terms �see Eq. �4��. Since we want to check our
results numerically, we will not use this choice for F in the
present paper.

�iii� The logistic form �8� cannot be applied for
R�p�x ,y , t�� instead of F neither, because it is known from
nonspatial models �40� that it would then yield negative val-
ues for the population number density p�x ,y , t�, which is
unphysical.

�iv� We think that a very reasonable choice is to assume
reproduction proportional to the population density, but
bounded by a maximum value, pmax, due to the environmen-
tal limitations, i.e.,

R�p�x,y,t�� = 
�R0 − 1�p�x,y,t� if p � pmax,

0 if p � pmax,
� �9�

where R0 is called the net reproductive rate �or fecundity� per
generation, and pmax is the saturation density �25�.

The difference between an exponential F, a logistic F �8�
and Eq. �9� is not significant concerning invasion front
speeds. Concerning reproduction, they all imply an exponen-
tial increase at low values of p �26�, and both �8� and �9�
imply that population growth ceases as p→pmax

− . The manner
in which the latter happens does not change the speed of
fronts �27�. It has not been determined from observations
�28�. Also, Eq. �9� is simpler for numerical implementation
�Sec. III�. For these reasons and the difficulties mentioned
for the choices �i�–�iii�, we use here Eq. �9�.

The rest of the paper is organized as follows. In Sec. II we
derive the speed of fronts for Eq. �6� using a continuous-
space random-walk �CSRW� model using parameter values
appropriate for the phenomenon we are interested in, namely,
the Neolithic transition in Europe �3�. In Sec. III we shall
develop computer simulations and discrete-space random
walks �DSRWs� to check the results from the CSRWs. In
Sec. IV we discuss the implications of the results to a spe-
cific example, namely the Neolithic transition in Europe. We
also compare the predictions of Eqs. �6� and �3�. In Sec. V
we derive a reaction-diffusion equation. We call it the se-
quential reaction-diffusion �SRD� equation. It is analogous to
the HRD equation �3� but improves it, by taking care of the
time order of events �in the sense that children grow up with
their parents until they become adults and can survive and
migrate�. Section VI is devoted to concluding remarks.
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II. CONTINUOUS-SPACE RANDOM-WALK MODEL

A. The speed of fronts

For low values of the population density, i.e., for first line
in Eq. �9�, Eq. �6� becomes

p�x,y,t + T� = R0�
−�

+� �
−�

+�

p�x + �x,y

+ �y,t����x,�y�d�xd�y �10�

�for an age-structured derivation of this equation, see Appen-
dix C�.

Note that using Eq. �7� instead of �6�, we again obtain Eq.
�10� provided that the net reproductive rate R0 is independent
of the jump length vector ��x ,�y�. We think this is a reason-
able assumption, and are not aware of any anthropological
data suggesting otherwise. Therefore, our model is valid both
for migration preceding reproduction, and for reproduction
preceding migration �as well as for reproduction simulta-
neous with migration—this is easily seen but it is very rare in
humans, as explained below Eq. �7��.

Equations similar to �6� have been previously considered
and applied to predict front speeds, but only in one-
dimensional space �20,21�. Here we will deal with the two-
dimensional case, as necessary for application to the
Neolithic transition. Also, for the first time we shall apply the
integrodifference Eq. �6� to the Neolithic transition, and com-
pare the results to those from the differential �HRD� equation
�3�, which was used in previous work on the Neolithic tran-
sition �3�.

In order to derive analytical results, we first recall that the
speed �for azimuthally symmetric front solutions� can be
found most easily by assuming that for t→� the front cur-
vature is negligible at scales much larger than that of indi-
vidual dispersal events. In other words, we assume that we
can choose the x axis parallel to the local velocity of the
front, an approach that has been successful in previous work
�1,22�. Let c	�cx� stand for the front speed �cy =0 in the local
frame just introduced�. We look for constant-shape solutions
with the form p= p0 exp�−��x−ct�� as x−ct→�. Then, as-
suming an isotropic kernel ����, we obtain from Eq. �10�,

exp�cT�� = R0�
0

�

d�������
0

2	

d
 exp�− �� cos 
� ,

�11�

where we have introduced


 	 tan−1�y

�x
. �12�

In order to perform the integrals, we need an expression for
the kernel ����. There are many possible choices of the
kernel. Here we are interested in a single, the simplest pos-
sible kernel such that we can perform numerical simulations
and derive analytical formulas. For this reason, we simply
assume that an individual will either remain at rest �with
probability pe, which is called the persistence in demogra-
phy� or will move a distance r �with probability 1− pe�,

���� = pe�
�2���� + �1 − pe���2��� − r�

= pe
��1����
2	�

+ �1 − pe�
��1��� − r�

2	�
, �13�

where ��2���−r� is the two-dimensional Dirac � centered at
�=r, whereas ��1���−r� is the one-dimensional Dirac � cen-
tered at �=r �29�.

Therefore, in this simple model we assume that all mov-
ing individuals travel the same distance r. This will make it
possible to find relatively simple analytical results and to run
relatively fast random-walk simulations.

We perform the integrals and, as usual, assume that the
minimum speed is the one of the front �1,2� �we will check
this assumption by means of numerical simulations in Sec.
III�. In this way an explicit expression for the speed is ob-
tained,

c = min
��0

ln�R0�pe + �1 − pe�I0��r���
T�

, �14�

where

I0��r� 	
1

2	
�

0

2	

d
 exp��r cos 
� �15�

is the modified Bessel function of the first kind and order
zero.

B. Parameter estimates and predicted speed

In Fig. 1, we show the speed predicted by the CSRW �full
line�, Eq. �14�, for values of R0, pe, T, and r typical of human
Neolithic populations. The parameter values have been esti-
mated as follows. The generation time has been carefully
estimated, in a very recent paper �5�, as T=1 generation
=32 yr. To estimate R0, we recall that Birdsell was able to
collect population number growth data on two human popu-
lations that settled in previously unpopulated areas �30�.
What is impressive of those data is that, when plotted against
the elapsed time in generations, both data sets yield almost
exactly the same curve of population number, relative to the
initial value �i.e., p�x ,y , t� / p�x ,y , t=0�� versus time. From
Eq. �10� in the absence of dispersion effects, we can estimate
the value of R0= p�x ,y , t+T� / p�x ,y , t� for several values of
t=T ,2T ,3T , . . .. This yields an average of R0=2.2. The low-
est value is R0=1.9, and the highest one is R0=2.6. Thus, in
Fig. 1 we compute front speeds for values of R0 in the range
1.6–3.0. On the other hand, we have estimated the popula-
tion persistence pe �i.e., the fraction of the population that
does not move appreciably� directly from the mobility data
in Ref. �31�, p. 139, for three different populations of prein-
dustrial agriculturalists. The corresponding values of pe are
0.54, 0.40, and 0.19. In Fig. 1, we use the mean value pe
=0.38 �the dependence of the front speed of pe shall be ana-
lyzed later, in Fig. 3�. Finally, the value of r is estimated
directly from that of the persistence and the mean-squared
displacement �32�.

In Fig. 1, the front speed predicted by the CSRW �full
line�, Eq. �14�, is seen to increase with increasing values of
the population fecundity, as it was to be expected intuitively.
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Before analyzing the implications for the Neolithic transition
and comparing to previous work, we first perform numerical
simulations in order to check the validity of the result �14�,
which in turn relies on several assumptions �as mentioned
above�.

III. DISCRETE-SPACE APPROACHES

A. Reactive random-walk simulations

Obviously we must follow a very different approach to
that in Refs. �1,33–36�. In all of those references, differential
equations �e.g., �3�� were numerically integrated, by replac-
ing derivatives by finite differences �e.g., �p

�t → �p
�t �. But in the

present paper, we are no longer dealing with any approxi-
mate differential equation. Instead, Eq. �10� is an exact inte-
grodifference equation. In other words, no derivatives appear
at all because Taylor expansion approximations have not
been performed. Therefore, our approach here cannot be
based on finite differences. Instead, we must follow the
space-time evolution of individuals, or of the population den-
sity p�x ,y , t�, without making any such approximation. We
shall, in this sense, refer to molecular-dynamics simulations,
to distinguish the simulations in the present work from the
finite-difference simulations in previous literature �1,33–36�.

We consider a 2D grid with 103�103 nodes. Initially
p�x ,y ,0�=1 at the central node, and 0 elsewhere. At each
time step �corresponding to T=1 generation�, we compute
the new population number density p�x ,y , t+T� at all nodes
of the 2D grid as follows.

�i� First we compute the new local population density due
to reproduction at every node as R0p�x ,y , t� if p� pmax �Eq.

�10�� and pmax otherwise �second line in Eq. �9��. This may
be referred to as the reactive step of the simulations.

�ii� Then we redistribute this value among all grid nodes
using the kernel �13�. Thus, in this dispersive step, we con-
sider that a fraction pe of the population stays at the original
node, and the remaining fraction is distributed equally
among the nearest neighbors, i.e., a fraction �1− pe� /4 jumps
a distance ±r along each horizontal or vertical direction.

In the horizontal and/or vertical directions, the speed ob-
tained from the simulations �circles in Fig. 1� is up to 5%
higher than that predicted by the CSRW �full line�. But if we
measure the speed along a diagonal �45°� direction �squares
in Fig. 1�, it is lower than the CSRW. The average of both
results �triangles� agrees within about 2% with the analytical
result from the CSRW �full line� �37–39�. Why does the
speed from the random-walk simulations depend on the di-
rection? Because unlike the CSRW, they are not isotropic
�motion is only allowed in the horizontal and vertical direc-
tions�. As shown in Fig. 2, after the first-generation jumps
�full arrows�, individuals reproduce. After two generations
�dashed arrows�, the dispersal distance along the diagonal
direction �r�2� is lower than that in the horizontal direction
�2r�. We think this is the intuitive reason why the simulation
speeds in the diagonal directions �squares in Fig. 1� are lower
than in the horizontal and/or vertical directions �circles in
Fig. 1�. Indeed, we proof this statement analytically in the
next section.

B. Discrete-space random walks

Here we present a discrete-space analog to the
continuous-space analytical approach in Sec. II. It will be
useful in order to test direction-dependent speeds observed in
the simulations above.

1. Horizontal/vertical direction (0°)

We first choose the X and Y axes shown in Fig. 2. Then,
for the kernel �13�, particles can jump into point �x ,y� from
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FIG. 1. Front speed in 2D versus population net reproductive
rate. The numerical simulations in Sec. III lead to different speeds
in the horizontal or vertical directions �circles� than in the diagonal
directions �squares�, but their average �triangles� agrees with the
CSRW derived in Sec. II �full curve�. Figure 2 explains intuitively
why the speeds obtained from the simulations depend on the direc-
tion considered. The DSRW results �� and + crosses� agree per-
fectly with the simulations in the corresponding direction. This pro-
vides an accurate check of the simulation results. The prediction
from the HRD approximation, derived in Ref. �3� �dashed curve�,
and that of the SRD one, derived in Sec. V �dashed-dotted curve�,
are shown for comparison.
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FIG. 2. Jump of individuals �or particles� for the square lattice
in the simulations and the kernel considered, from an initial point P.
Continuous arrows correspond to the first generation, whereas dot-
ted arrows correspond to the second generation. After two genera-
tions, it is seen that the distance in the diagonal direction �r�2� is
lower than that in the horizontal direction �2r�. This is the intuitive
reason why the random-walk simulation speeds in the horizontal or
vertical direction �dots in Fig. 1� are observed to be higher than
those in the diagonal direction �squares in Fig. 1�. Analytically, we
prove this statement by means of the DSRW �Sec. IV�, which
closely agrees with the simulations �see Fig. 1�.
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points �x±r ,y� and �x ,y±r�. Therefore, Eq. �10� is replaced
by

p�x,y,t + T� = R0�pep�x,y,t� + �1 − pe��1

4
p�x − r,y,t� +

1

4
p�x

+ r,y,t� +
1

4
p�x,y − r,t� +

1

4
p�x,y + r,t��� .

�16�

As in Sec. II, we look for solutions with the form p
= p0 exp�−��x−ct�� and assume that the minimum speed is
the one of the front �1,2�. In this way we obtain the speed

c = min
��0

ln�R0� pe+1

2 +
1−pe

2 cosh��r���
�T

. �17�

This equation has no analytical solution. However, for given
values of R0, pe, r, and T it is easy to find its minimum
numerically. In this way we obtain the crosses in Fig. 1. They
agree almost perfectly with the horizontal- and/or vertical-
direction simulations, performed in the preceding section
�circles in Fig. 1�. This confirms the validity of the simula-
tions in Sec. II.

2. Diagonal direction (45°)

Now we choose X� and Y� axes shown in Fig. 2. Then, for
the same kernel, it is easily seen that particles can jump into
point �x� ,y�� from points �x�± r

�2
,y�± r

�2
�. Therefore, instead

of Eq. �16� we have

p�x�,y�,t + T�

= R0
pep�x�,y�,t� + �1 − pe��1

4
p�x� +

r
�2

,y� +
r

�2
,t�

+
1

4
p�x� +

r
�2

,y� −
r

�2
,t� +

1

4
p�x� −

r
�2

,y� +
r

�2
,t�

+
1

4
p�x� −

r
�2

,y� − −
r

�2
,t��� , �18�

which leads us, in the same way, to the speed

c = min
��0

ln�R0�pe + �1 − pe�cosh��
r

�2���
�T

, �19�

instead of �17�. This speed is shown as crosses �+� in Fig. 1.
It agrees perfectly with the diagonal-direction simulations
�squares in Fig. 1�.

The agreement between the DSRW model and the simu-
lations �Fig. 1� confirms the validity of the lattice simulations
in Sec. III A, as well as the direction dependence of the front
speed on discrete spaces.

IV. APPLICATION TO THE NEOLITHIC TRANSITION
IN EUROPE

For the Neolithic transition, in Ref. �3�, the second-order
approximation �3� was applied. In contrast, the models in the
present paper do not use any second-order approximation.

The front speed predicted from the second-order �HRD� ap-
proximation �3� and logistic population number growth �8� is
�3�

cHRD =
2�aD

1 + aT/2
, �20�

where D is given by Eq. �5�. We use Eq. �20� to compute the
second-order �HRD� prediction, using the same parameter
values as above �5,26�. The result is shown in Fig. 1 as a
dashed curve �HRD�. It is seen that this second-order �HRD�
approximation is not reliable, since its predicted speed is up
to 31% less than that of the CSRW developed in Sec. II �and
tested in Secs. III and IV� �3�. This shows very clearly the
limitations of the HRD equation in Ref. �3�, even for the very
simple kernel considered �namely, that in which all moving
individuals jump the same distance�. We stress that we have
chosen this kernel because we wanted to enquire the limita-
tions of the approach in Ref. �3�. for a single, the simplest
possible case. Clearly, in future work it would be interesting
to extend our methods �CSRW, molecular-dynamics simula-
tions and DSRW� to a variety of kernels appropriate for pre-
industrial agriculturalist societies.

In Ref. �3�, we did not consider explicitly that some indi-
viduals or particles can remain at rest. Instead, all informa-
tion about the dispersal kernel was averaged into a single
parameter, namely, the diffusion coefficient �5�. Therefore, it
was not possible to analyze the effect of persistence on the
predicted speed. In contrast, our new approach makes this
possible. In Fig. 3, we compare the CSRW and simulation
results for a range of values of the persistence consistent with
the observed intergenerational mobility data of preindustrial
farmers �see Sec. II B�.

Originally the speed of the Neolithic transition in Europe
was estimated as 0.8–1.2 km/yr, using a data set of only 53
archeological sites �41�. Over the years, a much larger data
set has become available. Very recently, the 95%-confidence-
level speed was estimated as 0.6–1.3 km/yr using a data set
of 735 sites �42�. The speeds predicted by our more accurate
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FIG. 3. The effect of dispersion persistence on the speed of the
Neolithic transition. As in Fig. 1, the SRD equation is seen to be a
better approximation than the HRD equation �which was used in
Ref. �3��. The reason is that the SRD equation, derived in the
present paper, takes proper care of the time order of events, whereas
the HRD equation does not.
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model �full curves in Figs. 1 and 3� are consistent with this
observed range.

Figure 3 also shows that, over a wide range of persistence
values, there is again good agreement between the CSRW
model �full curves� and the molecular-dynamics simulations
�triangles�, for three different values of the net reproductive
rate R0. As in Fig. 1, we see from Fig. 3 that the HRD
approximation �which was used in Ref. �3�� underestimates
the exact results. This shows the interest of the work reported
in this paper. Let us mention that its relevance is not re-
stricted to the Neolithic transition, but it can also be of inter-
est for other human range expansions, biological invasions,
the spread of epidemics, etc.

The reason why the speed increases with increasing val-
ues of the persistence pe �Fig. 3� is that, for a given value of
the diffusion coefficient �5�, a higher value of the persistence
implies that some individuals or families move larger dis-
tances per generation—so the reaction front moves faster,
due to these long-range migration events. Similarly, the HRD
speeds in Figs. 1 and 3 are lower because then the dispersion
kernel is not considered except in an averaged way �as ex-
plained above�, which ignores the fast component due to
long-range dispersal events, thereby yielding a slower front.

V. SEQUENTIAL REACTION-DIFFUSION EQUATION

If we expand Eq. �10� up to second order in space and
time, we will obtain the time-ordered analog to the HRD
equation �3�. We shall refer to the resulting equation as the
SRD equation. If the SRD and the HRD results are similar,
then we will conclude that the effect �ii� in Sec. I is negli-
gible. If the SRD and the exact �CSRW� results are similar,
then the effect �i� in Sec. I will be negligible. If the SRD
result is substantially different from both the HRD and the
exact results, then both effects �i� and �ii� will be important.

In order to derive the SRD equation, we approximate Eq.
�10� by using Taylor expansions in space and time up to
second order for isotropic kernels,

p + T
�p

�t
+

T2

2

�2p

�t2 = R0p + R0DT� �2p

�x2 +
�2p

�y2� , �21�

where D is given by Eq. �5�. Equation �21� is the SRD equa-
tion we wanted to derive. It is the time-ordered analog of the
HRD equation �3�. The speed of the SRD equation may be
derived, as in Secs. II and IV, by assuming solutions with the
form p= p0 exp�−��x−ct�� with ��0. This yields

� =
Tc + ��Tc�2 − 4�R0 − 1��R0DT − T2c2

2 �
2�R0DT − T2c2

2 � . �22�

As in Secs. II and IV and Ref. �3�, we assume that the
minimum speed is the one of the front �1,2�. In this way we
obtain the speed

cSRD =� 2R0D

T�1 + 1
2�R0−1� �

. �23�

In Figs. 1 and 3, we have also included this SRD speed
�dashed-dotted curves�. It is substantially different from both
the HRD �dashed curves� and the exact, CSRW �full curves�
speeds. We conclude that both effects �i� and �ii� are impor-
tant for the purpose of analyzing the Neolithic transition. In
fact, the SRD speed in Figs. 1 and 3 is closer to the exact
speed �full curves� than the HRD equation used in Ref. �3�
�dashed curves�. This shows that the most relevant of both
effects is not that of using second-order approximations
�point �i� in Sec. I�. The most relevant effect is that of the
time order or sequence of events �point �ii� in Sec. I�. There-
fore, it is indeed important to take this effect into account, as
done in the present paper.

VI. CONCLUDING REMARKS

In this paper we have taken two effects into account: �i�
not using second-order Taylor approximations and �ii� taking
proper care of the order of events �i.e., the fact that children
grow up with their parents before they become adults and
can survive and migrate�. We have presented three ap-
proaches to compute front speeds from the resulting inte-
grodifference evolution equation: CSRWs �Sec. II�,
molecular-dynamics simulations, and DSRW �Sec. III�. All
of these approaches have lead us to front speeds consistent
with each other �Figs. 1 and 3�, as well as with the observed
speed of the Neolithic transition in Europe. In contrast to
previous work �3�, which averaged the dispersal kernel into a
single parameter �the diffusion coefficient�, the models go
beyond the second order �point �i� above� and thus allow us
to analyze the speed of fronts as a function of the dispersion
persistence of the population �Fig. 3�.

We have also derived a time-ordered, second-order evolu-
tion equation, and called it the SRD equation. It has allowed
us to conclude that the effect �ii� of the time order of events
is more important than the effect �i� of the second-order Tay-
lor approximations, but that both events should be consid-
ered in general.

The SRD equation agrees better with the exact, time-
ordered results than the HRD equation �Figs. 1 and 3�. The
SRD equation is therefore more realistic than the HRD equa-
tion �which was derived and applied in Ref. �3��. The reason
is simply that the SRD equation is nothing but the time-
ordered equivalent to the HRD equation.

Differences between the new time-ordered model and the
previously derived HRD equation �3� are as large as 70%
�see Fig. 3�. This percentage is important, and enough to be
measurable, because it is 2 times as large as the uncertainty
in the observed speed of the Neolithic front �see Sec. IV�.
Moreover, our results are also relevant to many biophysical
phenomena other than the Neolithic transition, such as other
human population range expansions, biological invasions,
the spread of biological plagues, cultural fronts, tumor
growth models, etc.

Let us finally stress that in this paper we have considered
a simple kernel. In future work, it would be nice to extend
the methods presented to a variety of dispersion kernels,
which will in turn depend on the specific application consid-
ered.
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APPENDIX A: AGE-STRUCTURED DERIVATION
OF EQ. (1)

Here we derive the nonsequential evolution equation �1�
using an age-structured model. We generalize the framework
in Ref. �5� to allow for age-dependant mortality and natality.
For simplicity, here we consider a single value for the rest
time T between two successive migrations �i.e., T
�1 generation�32 years �3,5��.

Let 
�a ,x ,y , t� stand for the number density �per unit
area� of individuals aged a that reach an area centered at
point �x ,y� at time t. The total number of individuals
P�x ,y , t� reaching the same location at t is

P�x,y,t� = �
0

�

da
�a,x,y,t� . �A1�

Let ��a ,x ,y , t� stand for the number density �per unit area�
of individuals aged a at point �x ,y� at time t. The total num-
ber of individuals p�x ,y , t� at the same location at t is

p�x,y,t� = �
0

�

da��a,x,y,t� . �A2�

Clearly, the generalizations of Eqs. �1� and �2� of Ref. �5� to
include age structure are


�a,x,y,t� = �
0

t

dT��T��
−�

+� �
−�

+�

d�xd�y
�a − T,x + �x,y

+ �y,t − T����x,�y� + �0�a���x���y���t�

+ ��a��
0

�

da���a����a�,x,y,t�

− �0�a���a,x,y,t� , �A3�

��a,x,y,t� = �
0

t

dt�
�a,x,y,t����t − t�� , �A4�

where, as in Ref. �5�, ��T� is the probability that the particle
or individual rests for a time between T and T+dT before
performing the next jump, divided by dT. We have assumed
that initially the density of individuals aged a is �0�a� and
vanishes outside the origin. ��a� and �0�a� are the natality
and mortality rates. Higher-order mortality terms could be
included, but are not necessary for our purposes �and there is
not enough anthropological data to estimate them; anyway
the front speed would be the same�. We have also introduced
�5�

��t − t�� = �
t−t�

�

dT��T� . �A5�

Integrating Eq. �A4� over age yields

p�x,y,t� = �
0

t

dt�P�x,y,t����t − t�� . �A6�

Following Vlad �43,44,4�, we assume that the age structure
reaches a stationary distribution cst�a� which is also uniform
in space, i.e.,

��a,x,y,t� = p�x,y,t�cst�a� . �A7�

Integration of Eq. �A3� over age leads to

P�x,y,t� = �
0

t

dT��T��
−�

+� �
−�

+�

d�xd�yP�x + �x,y

+ �y,t − T����x,�y� + p0��x���y���t� + rLp�x,y,t� ,

�A8�

where p0=�0
�da�0�a�, and following Vlad �43,44�, we have

introduced

rL = �
0

�

da���a� − �0�a��cst�a� . �A9�

We now follow the same steps as in Ref. �5�. First, we
Fourier-Laplace transform the previous equation,

P̂�kx,ky,s� = P̂�kx,ky,s��̂�kx,ky��̂�s� + p0 + N̂�kx,ky,s� ,

�A10�

where

N̂�kx,ky,s� = rLp̂�kx,ky,s� . �A11�

Second, we Fourier-Laplace transform Eq. �A6�,

p̂�kx,ky,s� = P̂�kx,ky,s�
1 − �̂�s�

s
. �A12�

Combining the two latter equations we get rid of the field

P̂�kx ,ky ,s�. Assuming a Dirac � distribution for ��T�, we
have

1

�̂�s�
= exp�sT� = 1 + �

n=1

�
Tnsn

n!
, �A13�

and we obtain

�
n=1

�
Tnsn−1

n!
�sp̂�kx,ky,s� − p0�

= ��̂�kx,ky� − 1�p̂�kx,ky,s� + �
n=1

�
Tnsn−1

n!
N̂�kx,ky,s� .

�A14�

Antitransforming this equation yields
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�
n=1

�
Tn

n!

�np

�tn = �
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�d�xd�y

− p�x,y,t� + �
n=1

�
Tn

n!

�n−1N�x,y,t�
�tn−1 . �A15�

From Eq. �A11�,

N�x,y,t� = rL p�x,y,t� . �A16�

Using this and introducing the so-called exponential growth
function F�p�x ,y , t��=rLp�x ,y , t�, we obtain

p�x,y,t + T� − p�x,y,t� = �
−�

+� �
−�

+�

p�x + �x,y

+ �y,t����x,�y�d�xd�y − p�x,y,t�

+ �
n=1

�
Tn

n!

�n−1F�p�x,y,t��
�tn−1 , �A17�

so that using Eq. �4�, we obtain

p�x,y,t + T� − p�x,y,t� = �
−�

+� �
−�

+�

p�x + �x,y

+ �y,t����x,�y�d�xd�y − p�x,y,t�

+ R�p�x,y,t�� . �A18�

This completes the age-structured derivation of Eq. �1�.
It is possible to add a quadratic mortality term, e.g.,

−�1 p�x ,y , t� ��a ,x ,y , t� �44�, to Eq. �A3�, which yields Eq.
�1� with a logistic �instead of an exponential� growth func-
tion F�p�x ,y , t��. However, this is not necessary for the pur-
poses of the present paper �and the speed of front solutions
would be the same�.

APPENDIX B: AGE-STRUCTURED DERIVATION
OF EQ. (6)

Here we derive the sequential �or time-ordered� evolution
Eq. �6� using an age-structured model. For this purpose, we
modify Appendix A to take into account that for human
populations, parents do not leave their sons and daughters
until the latter become adults and can survive �and migrate�.
Then Eq. �A3� is replaced by


�a,x,y,t� = �
0

t

dT��T��
−�

+� �
−�

+�

d�xd�y
�a − T,x + �x,y

+ �y,t − T����x,�y� + �0�a���x���y���t�

+ ��a��
0

�

da���a���
−�

+� �
−�

+�

d�xd�y

���a�,x + �x,y + �y,t����x,�y�

− �0�a��
−�

+� �
−�

+�

d�xd�y

���a,x + �x,y + �y,t����x,�y� , �B1�

so that net reproduction �last two terms� takes place at the
arrival location. It is thus clear that the difference between
Eqs. �B1� and �A3� is precisely the same as that between
Eqs. �6� and �1�.

It is easy to repeat all steps in Appendix A. The only
difference is that Eq. �A11� is replaced by

N̂�kx,ky,s� = rLp̂�kx,ky,s��̂�kx,ky� , �B2�

and Eq. �A14� remains valid. However, instead of Eq. �A15�
we obtain

�
n=1

�
Tn

n!

�np�x,y,t�
�tn

= �
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�d�xd�y

− p�x,y,t� + rL�
−�

+� �
−�

+�

d�xd�y���x,�y�

��Tp�x + �x,y + �y,t�

+
T2

2!

�p�x + �x,y + �y,t�
�t

+ ¯� . �B3�

As in Appendix A, we introduce the exponential growth
function F�p�x ,y , t��=rLp�x ,y , t�. From the previous equa-
tion we obtain

p�x,y,t + T� − p�x,y,t�

= �
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�

�d�xd�y − p�x,y,t�

+ TF��
−�

+� �
−�

+�

d�xd�y���x,�y�p�x + �x,y + �y,t��
+

T2

2!

�F

�t ��−�

+� �
−�

+�

d�xd�y���x,�y�

�p�x + �x,y + �y,t�� + ¯ �B4�

and, using Eq. �4� as in Appendix A, we obtain now

p�x,y,t + T� − p�x,y,t�

= �
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�

�d�xd�y − p�x,y,t�

+ R��
−�

+� �
−�

+�

p�x + �x,y + �y,t����x,�y�d�xd�y� .

�B5�

This completes the age-structured derivation of Eq. �6�.
As in Appendix A, it is possible to add a quadratic

mortality term, e.g., −�1�−�
+��−�

+�d�xd�yp�x+�x ,y
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+�y , t����x ,�y��−�
+��−�

+�d�xd�y��a ,x+�x ,y+�y , t����x ,�y�,
to Eq. �B1�, which yields Eq. �6� with a logistic �instead of
an exponential� growth function F�p�x ,y , t��. But again, this
is not necessary for the purposes of the present paper �and
the speed of front solutions would be the same�.

APPENDIX C: AGE-STRUCTURED DERIVATION
OF EQ. (10)

In Appendixes A and B, we have used mortality and na-
tality instantaneous rates, �0�a� and ��a�, respectively. Here
we show that using mortality and natality rates per genera-

tion, �̃0�a� and �̃�a�, respectively, it is possible to derive Eq.
�10�. Using such rates, we may write down the following
simple sequential equation

��a + T,x,y,t + T� − ��a,x,y,t�

= + �
−�

+� �
−�

+�

d�xd�y��a,x + �x,y + �y,t����x,�y�

− ��a,x,y,t� − �̃0�a��
−�

+� �
−�

+�

d�xd�y�

��a,x + �x,y + �y,t����x,�y� , �C1�

so that mortality �last term� takes place at the arrival location
�as in Appendix B and Eq. �6��.

Integrating this equation over age �a=0 to a=�� and de-
fining a�	a+T, we obtain

p�x,y,t + T� − �
0

T

da���a�,x,y,t + T� − p�x,y,t�

= �
−�

+� �
−�

+�

d�xd�yp�x + �x,y + �y,t����x,�y�

− p�x,y,t� − �
0

�

da�̃0�a��
−�

+� �
−�

+�

d�xd�y

���a,x + �x,y + �y,t����x,�y� . �C2�

The second term corresponds obviously to individuals with
ages between 0 and T, i.e., born between t and t+T, namely

�0
�da�̃�a��−�

+��−�
+�d�xd�y��a ,x+�x ,y+�y , t����x ,�y� �be-

cause T is one generation and �̃�a� is the birth rate per gen-
eration�. Again as in Appendix B and Eq. �6�, reproduction
takes place at the arrival location, so that parents do not
migrate away from their children. It means that children
grow up with their parents, before becoming adults and able
to survive and migrate themselves �in this sense, this is a
sequential or time-ordered model—as is Appendix B�. Using
also Eq. �A7� leads us finally to Eq. �10�, namely,

p�x,y,t + T�

= R0�
−�

+� �
−�

+�

d�xd�yp�x + �x,y + �y,t����x,�y� ,

�C3�

where we have defined R0 as

R0 − 1 	 �
0

�

da��̃�a� − �̃0�a��cst�a� . �C4�

We note that the condition R0�1, which Weinberger �20�
showed that is necessary for the population not to extinguish
and front solutions to Eq. �10� to exist, corresponds to the
effect of natality being stronger than that of mortality, which
makes biological sense.

As in Appendixes A and B, it is possible to add a
quadratic term, e.g., −�̃1�−�

+��−�
+�d�xd�yp�x+�x ,y

+�y , t����x ,�y��−�
+��−�

+�d�xd�y��a ,x+�x ,y+�y , t����x ,�y�,
to Eq. �C1�, which yields a logistic discrete-time reproduc-
tion function R�p�x ,y , t��, i.e., an additional term
−�̃1��−�

+��−�
+�d�xd�yp�x+�x ,y+�y , t����x ,�y��2 to Eq. �C4�.

However, this is not necessary for the purposes of the present
paper, the speed of fronts would be the same and, more im-
portantly, a logistic discrete-time reproduction function
R�p�x ,y , t�� is known from nonspatial models to yield nega-
tive population densities �40�, which makes no physical
sense �we have found via numerical simulations �similar to
those in Sec. III A� that the same happens for spatial mod-
els�. This is the reason why we use Eq. �10� and vanishing
net reproduction above saturation density �see the second
line in Eq. �9� and point �i� in Sec. III A�.
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