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We review the progress in the field of front propagation in
recent years. We survey many physical, biophysical and cross-
disciplinary applications, including reduced-variable models
of combustion flames, Reid’s paradox of rapid forest range
expansions, the European colonization of North America dur-
ing the XIX century, the Neolithic transition in Europe from
13,000 to 5,000 years before present, the description of sub-
sistence boundaries, the formation of cultural boundaries, the
spread of genetic mutations, theory and experiments on virus
infections, models of cancer tumors, etc. Recent theoreti-
cal advances are unified in a single framework, encompassing
very diverse systems such as those with biased random walks,
distributed delays, sequential reaction and dispersion, cohabi-
tation models, age structure, systems with several interacting
species, etc. Directions for future progress are outlined.
PACS numbers: 89.20 -a, 87.23. Ge, 89.65. Ef, 89.75.Fb

I. INTRODUCTION

Fronts are observed in many systems with dynam-
ics driven by reaction and diffusion [1,2] (or reproduc-
tion and dispersal, in biophysical applications). They
describe propagating profiles for the particle concentra-
tion, individual number density, temperature, etc. They
are widely used in physical models of combustion flames
[3], population invasions [4], virus infections [5], tumor
growth [6], chemical waves [7], crystallization [8], super-
conductors [9] and many other interesting phenomena
in physical, biophysical, chemical and cross-disciplinary
systems [1,2,10].

In the last six years, many new analytical results on
front propagation have been published, dealing with se-
quential reaction and dispersion [11], fronts from bi-
ased random walks [12—15], age-structured systems [16],
distributed delays [17—22], dispersive variability [22,23],
interacting species [24,25], anomalous diffusion fronts
[26,27], dispersal kernel effects [28], convective systems
[29—31], etc. In this review we present these theoretical
advances into a single, unified framework.

We survey many specific physical, biophysical and
cross-disciplinary applications of front propagation mod-
els. For example, combustion flames is a very active
area of research [30—34]. They have been recently de-
scribed using a single, reduced variable, which makes
it possible to derive analytical lower and upper bounds
on the propagation speed [32]. We review these results
for flame propagation, as well as their extensions to en-

compass the effects of mass diffusion, heat convection,
and temperature-dependent parameters of heat and mass
transport [33,34].

We also discuss the recent explanation of Reid’s para-
dox of rapid forest recolonizations using bimodal kernels
with long-distance dispersal in two-dimensional space
[11,35].

Physical models are becoming widely applied to hu-
man population invasions, including Paleolithic waves of
advance in America [36] and Europe [37], as well as to
the European colonization of North America in the XIX
century [12] and the Neolithic transition in Europe (from
13,000 to 5,000 years before present) [4,16,20,25]. Such
applications are surveyed here. The description of sub-
sistence boundaries, as well as a recent model on the dy-
namics leading to the formation of cultural boundaries
[38], are also reviewed in this work.

We also review theoretical models and experimental
data on the speed of virus infections [5,21,39,40], the
spread of genetic mutations [41—43], a recent physical
model that describes the spread of cancer tumors by tak-
ing into account the lower proliferation rate of migratory
cells [44], etc.

Concerning numerical work, in addition to results
based on the discretization of differential equations
(which are appropriate to some systems, e.g. combus-
tion flames) and fast-Fourier transforms (which require
less computing time for integro-difference equations), we
also review recent numerical approaches based on reac-
tive random walks on grids (which are more reasonable
for biophysical systems in which there is a reproduction
process) [11].

Sequential models are an important part of this review.
They are necessary in some applications, e.g. to solve
Reid’s paradox of fast forest recolonizations. The main
difference between non-sequential and sequential mod-
els is the following. In non-sequential models (Sec. II),
reaction and dispersal (of particles or individuals) are
simultaneous processes. This is the most well-known ap-
proach, and is specially useful in purely physical systems,
e.g. in combustion flames (Sec. V). On the other hand,
in biophysical applications, the reproduction of individu-
als replaces the reaction process, and for some biological
species (e.g. trees) this is not simultaneous with dis-
persal. Then, sequential models are more appropriate
(Sec. VII). Further refinements are necessary in some
cases (e.g., human populations), leading to cohabitation
models (Sec. VIII), which are similar mathematically to
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sequential models but apply to different biological sys-
tems.

II. NON-SEQUENTIAL MODELS

This section surveys non-sequential models of front
propagation, for particles (or individuals) performing bi-
ased (or anisotropic) random walks. This leads to fronts
with speed depending on direction. An interesting ap-
plication of such anisotropic fronts is the recent explana-
tion (via computer simulations) of the non-homogeneous
speed of Neolithic fronts, based on anisotropic diffusion
due to enhanced transport along major rivers [15] (Sec.
III.B below). Recent theoretical results on anisotropic
fronts include a Hamilton-Jacobi derivation of the front
position [45], a propagation failure condition for random
walks biased in the opposite direction to that of the front
propagation [13], velocity-curvature relations [46], nucle-
ation of spiral waves [14], etc. In this section, we will
focus our attention on the speed of propagating fronts
arising from anisotropic random walks [12].

A. Microscopic derivation from non-isotropic
random walks

In many systems, particles (or individuals) move with
a direction-dependent probability, i.e. following a bi-
ased (or anisotropic) random walk. Such a behavior is
displayed in many phenomena, e.g. particle diffusion
in disordered lattices [47], diffusion-limited aggregation
[48], experimental populations of micro-organisms [49],
human populations invading a geographical region [15],
etc.

In order to avoid confusion, it is important to men-
tion that correlation between the directions of successive
jumps will not included in this review, because there is
no reason to think that such a correlation is relevant in
the applications we will tackle. Therefore, we will deal
with biased, uncorrelated random walks. In other words,
we will allow the probability of jump to depend on the
angle relative to a fixed direction. In contrast, in cor-
related (or persistent) random walks the probability of
jump depends on the angle relative to the direction of
motion before performing the jump (see, e.g., Sec. 2.2.
in [1]).

For the sake of definiteness and clarity, we will deal
with a 2-dimensional (2D) space in this section. Exten-
sion to 3D is straightforward, but the 2D case is relevant
to many of the applications that we shall discuss in this
review.

Let p(x, y, t) stand for the population (or particle)
number per unit area at position (x, y) and time t. We
define the dispersal kernel φ(△x,△y, x, y) as the proba-
bility per unit area that an individual (or particle) who
was at (x−△x, y−△y, t) jumps to (x, y, t+T ) [50]. Let

T stand for the mean time interval between two subse-
quent jumps (in biophysical applications, usually T = 1
generation [4,5]). Let R [p(x, y, t)] stand for the number
of new individuals (or particles) due to the reproduction
process (or chemical reactions), produced during the time
interval T per unit area centered at (x, y). From these
definitions, the evolution equation is usually written as

p(x, y, t+ T )− p(x, y, t) =

∫ +∞

−∞

∫ +∞

−∞
p(x−△x, y −△y, t)

φ(△x,△y, x, y) d△x d△y (1)

−p(x, y, t) +R [p(x, y, t)] ,

where the first and second terms in the right-hand side
correspond to the particles (or individuals) arriving mi-
nus those leaving an unit area centered at (x, y), and the
last one R [p(x, y, t)] is a source term due to chemical
reactions (or to the reproduction of individuals).

The so-called diffusion approximation is obtained if
second-order Taylor expansions in space and time are
performed. Then Eq. (1) becomes

∂p

∂t
+
T

2

∂2p

∂t2
= −Ux

∂p

∂x
− Uy

∂p

∂y
+Dx

∂2p

∂x2
(2)

+Dy
∂2p

∂y2
+Dxy

∂2p

∂x∂y
+ F +

T

2

∂F

∂t
.

Here F is the time derivative of p(x, y, t) due to repro-
duction, i.e. [4]

R [p(x, y, t)] = TF +
T 2

2!

∂F

∂t
+
T 3

3!

∂2F

∂t2
+ ..., (3)

Dx, Dy and Dxy are direction-dependent diffusion coef-
ficients,

Dx(x, y) =

〈
△2
x

〉

2T
, (4)

Dy(x, y) =

〈
△2
y

〉

2T
, (5)

Dxy(x, y) =
〈△x △y〉

T
, (6)

and we have defined

Ux(x, y) =
〈△x〉
T

, (7)

Uy(x, y) =
〈△y〉
T

, (8)

where the mean value of an arbitrary function of the jump
vector ζ(△x,△y) is defined as

〈ζ(△x,△y)〉 ≡
∫ +∞

−∞

∫ +∞

−∞
ζ(△x,△y) φ(△x,△y, x, y) d△x d△y.
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In general the dispersion kernel φ(△x,△y, x, y) can de-
pend on position (x, y) in addition to the jump vector
components (∆x,∆y). Then, the macroscopic parameters
above (Dx,Dy, etc.) also depend on position. However,
in the homogeneous case we can simply write φ(△x,△y)
instead of φ(△x,△y, x, y).

B. Macroscopic derivation of non-sequential models

This section gives a simple macroscopic derivation of
the same model that has been derived microscopically in
the previous section.

Let us assume that there is a maximum possible value
for the particle (or individual) number density, pmax. In
realistic systems, initially all particles (or individuals)
are confined into a finite region of space (if this region is
very small compared to the dimension of the system, it
may be approximated to a point and is called the origin
of dispersal). As time goes on, particles (or individuals)
will disperse into other regions and react (or reproduce),
until the saturation density pmax is locally reached (i.e.,
p(x, y, t) = pmax). The function p(x, y, t) may then be
called a front solution, in the sense that it leaves behind
a region full of particles or individuals (p(x, y, t) = pmax),
whereas there is an empty region (p(x, y, t) = 0) ahead.
Let us choose a local x−axis along the local propagation
direction of the front (for example, for a circular front
this direction would be a radial direction from the origin
of dispersal). For large enough values of time, we may
clearly consider a region centered about this x axis which
is sufficiently small so that the y−dependence of p(x, y, t)
can be neglected. Then Eq. (2) becomes simply

∂p

∂t
+
T

2

∂2p

∂t2
= −Ux

∂p

∂x
+Dx

∂2p

∂x2
+ F +

T

2

∂F

∂t
. (9)

It is easy to see that this equation can be also derived by
combining the following set of phenomenological equa-
tions

{
∂p
∂t + ∂J

∂x = F,

J + τ ∂J∂t = Uxp−Dx
∂p
∂x ,

(10)

where J is the diffusion flux and τ ≡ T
2 is called the

relaxation time. The first equation of this set is just a
mass balance equation, whereas the second one is a first-
order Taylor expansion for a time-delayed flux,

J(x, t+ τ) = Uxp−Dx
∂p

∂x
. (11)

From this equation, we can say that the macroscopic ef-
fect arising from a direction-dependent microscopic mo-
tion of the particles is to introduce an additional flux Uxp
to the usual diffusion flux −Dx

∂p
∂x . In contrast, the effect

of a finite jump time (τ �= 0) is to introduce a delay in
the whole flux J . Equation (11) for the non-delayed limit

τ = 0 is well-known to arise from biased random walks
[51].

This simple macroscopic derivation of Eq. (9) from the
set (10) is appealing because of its simplicity. However,
it is not enough in general to apply the model to experi-
mental data. The reason is that the set (10) is written in
terms of the macroscopic parameters τ , Ux and Dx. But
in specific applications, the identification of the relax-
ation time τ as half de time interval between successive
jumps (i.e. τ = T/2), the macroscopic ’speed’ as Ux as
Eq. (7), and the x−diffusion coefficient Dx as Eq. (4)
are usually necessary in order to estimate the numeri-
cal values of τ , Ux and Dx (Sec. III). And these three
key results can be derived only from microscopic mod-
els (e.g., that in the previous subsection) but not from
macroscopic ones such as the set (10).

The same model considered in this subsection and the
previous one has been recently derived also for the case
in which natality and mortality rates may depend on age
(Appendix A).

C. The speed of non-sequential fronts

A reproduction function that has been widely applied
in biophysics problems is the logistic function

F = rL p(x, y, t)

(
1− p(x, y, t)

pmax

)
, (12)

where rL is called the initial growth rate and pmax the
saturation density.

There are several ways to introduce Eq. (12). Usually,
experimental data for many biological populations [52,53]
are considered as a valid justification for its use. Inter-
estingly, Hall [53] has argued that the high-density limit
(corresponding to the last term) of Eq. (12) has been
repeatedly compared favorably to experimental data for
populations in the laboratory (specially of microorgan-
isms) but not for wild populations (however, this does
not change the front speed, which is our main aim in this
section).

Another way to introduce Eq. (12) is by means of age-
structured derivations, e.g. that presented in Appendix
A (this is more complicated mathematically, but it clearly
shows that Eq. (12) takes into account the net effect of
births and deaths of individuals).

As explained in Sec. II.A, up to second order the finite-
difference Eq. (1) becomes the partial differential Eq. (2)
and T (i.e., the rest time between two successive jumps
of particles or migrations of individuals) plays the role of
a diffusive delay time. As we shall now see, this second-
order approximation makes it possible to derive an ana-
lytical result for the front speed.

In this review we will not discuss the problem of the
dependence of the front speed on direction [46,14,54]. In-
stead, in order to deal with the applications we are in-
terested in, it will be simpler to focus our attention into
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the speed of fronts along the x direction. The front speed
can be found most easily by assuming that for t→∞ the
front curvature is negligible at scales much larger than
that of individual dispersal events [55]. In other words,
we consider a region centered about the x axis which is
sufficiently small so that the y−dependence of p(x, y, t)
can be neglected. Then Eq. (2) becomes simply Eq. (9),
i.e.

∂p

∂t
+
T

2

∂2p

∂t2
= −Ux

∂p

∂x
+Dx

∂2p

∂x2
+ F +

T

2

∂F

∂t
. (13)

Let c stand for the front speed. We look for constant-
shape solutions with the form

p = p0 exp[−λ (x− ct)] (14)

as x− ct→∞, with c > 0 and λ > 0. In this way, from
Eqs. (13) and (12) for p ≃ 0 (or x− ct→∞) up to first
order, we obtain the characteristic equation

λ2
(
Dx −

Tc2

2

)
− λ

(
c− Ux −

rL Tc

2

)
+ a = 0. (15)

Solving this equation for λ and requiring for it to be real,
we obtain the condition

f(c) ≡ c2(1 + rL T
2 )− 2cUx

(
1− rL T

2

)

−4rL Dx − U2
x ≥ 0.

(16)

It is easily seen that f(c) is convex from below, and that
the equation f(c) = 0 has one negative and one posi-
tive root for c, say c− and c+. Therefore, the minimum
possible value for c > 0 corresponds to c+. Let us now
assume, as usual, that this minimum possible speed c+ is
that selected by the front (this is usually called linear or
marginal stability analysis [1,2]). In this way we finally
obtain

c =
Ux
(
1− rL T

2

)
+ 2

√
aDx

(
1 + rL T

2

)2 − rL T
2 U2

x
(
1 + rL T

2

)2 .

(17)

Below we consider some limiting cases.

1. Non-biased, delayed fronts

The non-biased case corresponds to an isotropic kernel,
so < △x >= 0 and Ux = 0 from Eq. (7). In this limit,
we recover from Eq. (17) a result that has been referred
to as hyperbolic reaction-diffusion (HRD) [1], namely

lim c
Ux → 0

=
2
√
rL D

1 + rL T/2
, (18)

where, according to Eqs. (4)-(5) for isotropic kernels,

D ≡ Dx = Dy =

〈
△2
〉

4T
. (19)

For later use, we note that the corresponding (HRD)
evolution equation is Eq. (13) in the non-biased limit
(Ux → 0),

∂p

∂t
+
T

2

∂2p

∂t2
= D

∂2p

∂x2
+ F +

T

2

∂F

∂t
, (20)

with F given by the logistic reproduction rate (12).

2. Biased, non-delayed fronts

For a biased random walk with negligible delay time
(T ≪ 1

rL
), Eqs. (17) and (13) become

c = Ux + 2
√
rL Dx, (21)

∂p

∂t
= −Ux

∂p

∂x
+Dx

∂2p

∂x2
+ F, (22)

where F is again given by Eq. (12).

3. Non-biased, non-delayed fronts

In the latter two equations, if we consider the addi-
tional limit of a non-biased random walk (Ux → 0), we
come to Fisher’s speed

c→ 2
√
rL D, (23)

and

∂p

∂t
= D

∂2p

∂x2
+ F, (24)

which is Fisher’s well-known reaction-diffusion equation
[56], with F given by the logistic reproduction rate (12).

D. Connection between microscopic and
macroscopic dispersal parameters

In order to apply Eq. (17), we need to assume some
function for the kernel φ(△x,△y) appearing in Eqs. (4)
and (7). As explained in Sec. II.A, we consider uncor-
related random walks by assuming that the length and
direction of jumps are independent, i.e.

φ(△x,△y) = Ψ(△)Φ(θ), (25)

where △ =
√
△2
x +△2

y and θ = tan−1 △y

△x
. Correspond-

ingly, we write the normalization condition of the kernel,
namely

∫ +∞

−∞

∫ +∞

−∞
φ(△x,△y) d△x d△y = 1, (26)
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as a normalization condition for the length jump proba-
bility distribution,

∫ ∞

0

Ψ(△) ∆ d△ = 1, (27)

and another one for the probability distribution of the
jump direction,

∫ 2π

0

Φ(θ) dθ = 1. (28)

Several functions Φ(θ) have been used in the litera-
ture on biased random walks [49,57]. For the purposes of
the present review, it will be interesting to consider the
simple form [12]

Φ(θ) = a± b cos θ, (29)

where b ≥ 0 and a = 1
2π from the normalization condition

(28). Therefore

Φ(θ) =
1

2π
± b cos θ. (30)

The following two cases can be considered.
(i) The positive sign in Eq. (30) corresponds to the

case in which the random walk is biased towards the lo-
cal front propagation direction (recall that in the pre-
vious subsection, we have computed macroscopic front
speeds along this x−direction (θ = 0)). Then, the jump
probability along the front direction (θ = 0) is Φ = a+b.
It decreases with increasing values of |θ| , down to the
minimum Φ = a− b (which is attained for θ = π).

(ii) The negative sign in Eq. (30) corresponds to the
case in which the minimum jump probability is attained
along the local front propagation direction, namely Φ(θ =
0) = a− b. It increases for increasing values of |θ| , up to
the maximum possible value Φ(θ = π) = a+b. Note that
the kernel (30) is a probability distribution, so it must
be positive for all values of θ. Thus, in case (ii) we have
the condition

0 ≤ b ≤ 1

2π
. (31)

In both cases (i) and (ii), the dimensionless parameter

β ≡ b

a
= 2πb ≥ 0 (32)

may be called the bias of the random walk. In case (ii),
we see from Eq. (31) that

0 ≤ β ≤ 1. (33)

Note that we may have case (i) at one point of space
and case (ii) in another point because Ux, as defined by
Eq. (7), is space-dependent in general. This may be
interesting to describe systems with non-homogeneous

rates of front spread. For example, in biological inva-
sions individuals may have a preference to jump in the
local front direction at some areas (case (i), Ux > 0), e.g.
because they are attracted by more favorable habitats.
But if other regions are difficult to colonize, the random
walk of individuals may be strongly biased against the
local front invasion direction (case (ii), Ux < 0) and the
front speed will become slower. An application of case
(ii) (Ux < 0) is presented in the next Sec. III.A.

The diffusion coefficient Dx and the macroscopic bias
parameter Ux appearing in the front speed, Eq. (17), can
finally be related to the microscopic bias parameter b, by
using Eqs. (25) and (30) to perform the integrations in
Eqs. (4) and (7). This yields

Dx =

〈
∆2
x

〉

2T
=

〈
∆2
〉

4T
=

1

4T

∫ ∞

0

Ψ(△) ∆3 d△, (34)

Ux =
〈△x〉
2T

= ±πb 〈∆〉
T

= ±πb
T

∫ ∞

0

Ψ(△) ∆2 d△. (35)

III. APPLICATIONS OF NON-SEQUENTIAL
MODELS

A. European invasion of North America during the
XIX century

As an illustration, in this subsection we consider the
human population front colonizing North America in the
period 1790-1910 [12]. The front speed can be easily
determined, either from detailed population maps [58]
or from the center-of-mass population trajectory [59].
Both approaches yield essentially the same range for
the observed speed, namely (13.5± 0.8) km/yr (95%
confidence-level interval) [60]. On the other hand, mean
migration data of individuals are strongly biased in the
direction opposite to that of the front propagation [61].
Therefore, we are dealing with case (ii) discussed at the
end of the former section.

The parameter values for this application can be esti-
mated as follows. Lotka fitted a logistic growth function
(12) to the population of the United States and obtained
for the initial growth rate rL = 0.031 yr−1 [52]. It is
worth to note that this estimation agrees almost exactly
with independent estimations for human populations in
other places and time intervals [4]. Diffusion parameters
are more difficult to estimate. Sometimes a relatively
small sample of migration distances from genealogies are
combined with persistence data from other sources [60],
but demographers have pointed out that genealogy data
are not representative of the whole population [61]. Fer-
rie has analyzed migration distances for the United States
in the XIX century [61]. Using his data for regions with
more than 500 observations (i.e., a total of 3,804 individ-
uals) yields Dx = 6075 km2/yr using Eq. (34). Finally,
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we can estimate the macroscopic bias parameter Ux us-

ing Eq. (35) and values for 〈∆〉
T = 24.42 km/yr [62] and

b (or, equivalently, β),

Ux = −β
2

〈∆〉
T

. (36)

The value of β can be also estimated from Ferrie’s data
cited above, but we prefer to use the anisotropy para-
meter β as a free parameter (horizontal axes in Fig. 1)
because Ferrie’s data contain only a few directions, so it
does not seem possible to obtain a precise value for β
[63].

In Fig. 1 we present the speed predicted by Eq. (17) as
a function of the random walk bias β [see Eq. (33)]. The
HRD speed (18), which corresponds to the non-biased
limit (β = 0), is also shown. It is seen that the differ-
ence of the biased model relative to the HRD speed can
be substantial, as large as 30%. We also include Fisher’s
speed, Eq. (23). In Fig. 1, the biased model is seen to
be compatible with the observed speed for high enough
values of β. We would like to stress, however, that it is
difficult to estimate the bias parameter β precisely with
the data available [12]. At this stage the important con-
clusions are: (i) A bias in the random walk can have a
very important effect on the front speed (Fig. 1); (ii) The
biased model leading to Eq. (17) is free of some relatively
strong assumptions (concerning e.g. the fractal nature of
pathways) that are used in alternative physical models of
population invasions [60,36].

Note that in the biased model, there is an advection
term and a diffusion term (first and second terms in the
RHS of Eq. (13), respectively). Their relative impor-
tance as a function of distance can be estimated by means
of the Peclet number,

Pe =
UxL

Dx
, (37)

which for the human invasion application in this section
becomes of order 1 for distances L of the order of 500 km.
This is a distance scale to similar to that in which the
front speed is measured [58,59], so this illustrative ap-
plication supports our proposal that both advection and
diffusion can be important in biophysical applications of
front propagation models.

A more elaborated (cohabitation) model will be dis-
cussed in Sec. VIII.C.

B. Non-homogeneous dispersion kernels and
non-isotropic fronts

Davison, Dolukhanov, Sarson and Shukurov [15] con-
sidered the two-dimensional Eq. (2) with Dx = Dy ≡ D
and Dxy = 0 in the non-delayed limit (T → 0),

∂p

∂t
= −

(−→
U · −→∇

)
p+

−→∇
(
D
−→∇p
)

+ F, (38)

where F is given by the logistic reproduction rate (12). In

their model, the advective speed
−→
U , diffusion coefficient

D and carrying capacity pmax are position-dependent.
The motivation for this approach was the Neolithic tran-
sition in Europe, i.e. the invasion of Europe by farming
populations from the Near East in the period 13,000 to
5,000 years Before Present. Archaeological data imply
that the front of Neolithic humans (farming populations)
had an average speed of about 1 km/yr. However, there
are significant regional variations, e.g. a retardation of
the spread to the Alps and to latitudes above 54oN,
and increased propagation speeds along the Danube and
Rhine valleys and along the Mediterranean coast [64,65].
In order to model such regional variations, the term with
the advective speed

−→
U was included in Eq. (38) and

the parameter values were assumed non-uniform. The
term with advective speed

−→
U accounts for the enhanced

motivation of the population to move in some particu-
lar directions (e.g., along river valleys). As shown in
Sec. II above, this term arises naturally if the disper-
sion kernel is non-isotropic (see, e.g., Eqs. (2) and (7)-
(8)). So this model takes into account the effects of (i)
non-isotropic dispersion and (ii) non-homogeneous pa-
rameter values. Motivated by anthropological observa-
tions, the authors of Ref. [15] assumed that the initial
growth rate is uniform. They used the value rL = 0.02
yr−1. The advection speed

−→
U was assumed tangent to

the Danube and Rhine rivers, pointing to the direction
of locally decreasing population density, and restricted
to a strip of 20 km width around the river (assuming

a Gaussian shape), with a maximum value of
∣∣∣−→U
∣∣∣ = 5

km/yr (this value is motivated by the spread rate of the
Linear Pottery (LBK) culture along the Danube-Rhine
corridor [64]). Similarly, sea travel was included by as-

suming
−→
U tangent to the coast, with a maximum value

of
∣∣∣−→U
∣∣∣ = 10 km/yr (motivated by the spread rate along

the Mediterranean coast [65]). Since early farming was
not possible at altitudes higher than 1000m, both pmax

and D were assumed to decrease to zero smoothly from
900m to 1000m height. The effect of the harsh climate in
the north was modelled by assuming linear functions of

pmax,
∣∣∣−→U
∣∣∣ and D with latitude (in such a way that these

parameters where reduced by a factor approximately 1
2

from Greece to Denmark). The background diffusivity
assumed in Ref. [15] was D = 12.5 km2/yr and, to al-
low for sea travel (which is implied by the archaeological
data), D was assumed to reduce exponentially into the
seas with distance from the shore, over a length scale of
10km. By numerically integrating Eq. (38) on a spher-
ical surface (with larger horizontal mesh sizes for lower
latitudes), this non-homogeneous model was shown to
predict an accelerated spread via the Rhine-Danube val-
leys (Fig. 4 in Ref. [15]), in agreement with the archae-
ological data. Importantly, this key result was not ob-
tained if the term with the advective speed

−→
U in Eq.
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(38) was neglected, even for non-homogeneous parameter
values (Fig. 3 in Ref. [15]). Therefore, the role of advec-
tive speed in reaction-diffusion equations (due to non-
isotropic dispersal) seems to be of utmost importance
in this application. More recently, this model has been
also applied to a two-source description of the Neolithic
transition (including non-farming sites with ceramics in
North-Eastern Europe) with one source in the Near East
and a second source in the Urals [66].

C. Subsistence boundaries

Cohen [67] proposed a model for a single population,
e.g. Neolithic humans (i.e., farmers invading an area orig-
inally populated by Paleolithics, i.e. hunter-gatherers).
In this model birth and death rates, b(σ) and d(σ), de-
pend on land fertility σ, and thus on position. After
making some assumptions on the analytical forms of the
functions b(σ) and d(σ), Cohen’s final expression for the
contribution of the birth and death rates on the rate of
change of the population density has the form

∂n

∂t

∣∣∣∣
b,d

=
1

τ(n)
n(1− n), (39)

where n ≡ p/pmax, and the saturation density pmax also
depends on the land fertility σ, and thus on position.
Cohen also noted that, for such a position-dependent
saturation density pmax, the usual Fickian diffusion flux−→
J D = −D−→∇p would not vanish even at points where
the population density has already reached it maximum
possible value (p = pmax). In order to avoid this,

Cohen suggested to add a new flux
−→
J F to

−→
J D such

that (i)
−→
J F is proportional to the population density

p(x, y, t); and (ii) there is no total flux in points and times
where p reaches its saturation value pmax. This yields
−→
J F = D p

(−→∇pmax

)
/pmax, so the total flux is

−→
J =

−→
J D +

−→
J F = −D pmax

−→∇ (p/pmax) (40)

and its contribution to the rate of change of the popula-
tion density is

∂n

∂t

∣∣∣∣−→
J

= −
−→∇ · −→J
pmax

=

−→∇ ·
(
D pmax

−→∇n
)

pmax
. (41)

If in some region the land fertility is so low that farmers
cannot survive (e.g., a mountain), then pmax = 0 and

Eq. (40) yields
−→
J = 0. Therefore, there is no flux across

such a ’subsistence boundary’ and no Neolithic popula-
tion beyond it. Cohen suggests that this offers a possible
explanation for the persistence of isolated languages in
mountainous regions of Europe (e.g. the Basque, the
languages of the Caucasus and those of the Urals), in
the form of such subsistence boundaries around some

mountainous regions, across which no Neolithic popula-
tion advance would have occurred. In such cases, the Pa-
leolithics would have had time enough to adopt farming
(instead of being overwhelmed by a much more numerous
Neolithic population density, as it presumably happened
in most of Europe). An open problem is to find a mi-
croscopic, non-heuristic derivation for the additional flux−→
J F . This model is an interesting proposal, and its im-
plications on the description of subsistence boundaries
deserve further development.

Cohen’s final evolution equation is obtained by adding
up Eqs. (39) and (41),

∂n

∂t
=

1

τ(n)
n(1− n) +

−→∇ ·
(
D pmax

−→∇n
)

pmax
. (42)

This equation is an alternative to Fisher’s classical equa-
tion (24) in non-homogeneous spaces (for the homoge-
neous case, Cohen’s equation becomes equivalent to Fish-
er’s equation in practice, because the dependence τ(n) is
weak [38]). Cohen’s equation (42) will be generalized to
the important case of several interacting populations in
the next subsection.

D. Cultural boundaries

Recently, Ackland, Signitzer, Stratford and Cohen [38]
have generalized Cohen’s model to deal with several in-
teracting populations. Their model displays ’cultural
boundaries’ after which a population trait (e.g., language,
ceramics, etc.) does not extend because the advantageous
trait (farming) is thereafter no longer carried along by
the invading population (Neolithics) but by an indige-
nous one that has adopted it (Paleolithic communities
who have become farmers, instead of hunter-gatherers as
in the past). There is a crucial difference between cultural
and subsistence boundaries. Whereas subsistence bound-
aries (summarized in the previous subsection) can form
only around areas with too low land fertility to sustain
agriculture (e.g., mountainous regions), cultural bound-
aries can form even in homogeneous land. Thus, here we
will consider the case of uniform parameter values, which
is mathematically simpler. For simplicity, Ackland et al.
[38] consider equations of the form (42) with the same
diffusion coefficient for all populations. Following again
Cohen’s model [67] (see the previous subsection), they
obtain that the generalization of Eq. (42) to three inter-
acting populations is, for the case of uniform parameters,




∂nF
∂t = 1

τF
nF (1− nF − nFH − nFX)

+D ∂2nF
∂r2 + λnFnX (nF − nX) ,

∂nH
∂t = 1

τH
nH(1− nH − nHF − nHX)

+D ∂2nH
∂r2 − γnH (nF + nX) ,

∂nX
∂t = 1

τX
nX(1− nX − nXF − nXH)

+D ∂2nX
∂r2 + γnH (nF + nX)− λnFnX (nF − nX) ,

(43)
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where ni ≡ pi/pmax i and nij ≡ njpmax j/pmax i (with
i, j = F,H,X), pF is the population density of the invad-
ing Neolithic farmers, pH that of the invaded Paleolithic
hunter-gatherers, and pX that of acculturated hunter-
gatherers (i.e., individuals who were hunters but have
adopted farming and their descendants, so that they may
retain the Paleolithic language, cultural styles, etc.). The
interaction terms describe learning of farming by hunters
H (who thus become converts X) with strength γ, and
competition between F andX farmers (e.g., for a cultural
style or language) with strength λ (assumed proportional
to the frequency of encounters and the disparity in pop-
ulation size).

In general, the parameters τi depend on the total pop-
ulation density according to Cohen’s model (previous
subsection), but this dependence was found to be weak
in Ref. [38], so it is not included here for simplicity.

In Fig. 2 we present typical numerical integrations of
the model (43). It is seen that, even for uniform land
fertility, a halo of converts X forms (due to the learn-
ing process, i.e. the term with γ). This halo gradually
grows until the convert population (X) reaches satura-
tion, and the Neolithic farmers (F ) thereafter become
extinguished (due to the competition process, i.e. the
term with λ, that changes sign after nX becomes larger
than nF ). The role of the F−population is played by
the X−population after some point (t ≃ t8 = 2, 000 yr
or r ≃ 2, 400 km in Fig. 2). There, a cultural bound-
ary forms because farming is from that point on propa-
gated by converts X instead of Neolithics F (right of Fig.
2). After the cultural boundary, traits other than farm-
ing (e.g., a cultural style, language, etc.) are Paleolithic
and no longer Neolithic (as they were before the cultural
boundary had been reached, i.e. to the left of Fig. 2).

According to Ackland et al. [38], the parameter γ ap-
proximately sets the timescale for the formation of the
cultural boundary as 1/γ. This is confirmed for the pa-
rameter values used in Fig. 2, where 1/γ = 2, 000 yr.
The speed of the F−population front in Fig. 2 is c ≃ 1.2
km/yr (no analytical equation for it has been yet derived
for the three-population model (43)). The approximate
location of the boundary can thus be predicted as this
speed times 1/γ (r ≃ c/γ ≃ 2, 400 km in Fig. 2).

For λ = 0, the model due to Aoki et al. [68] is re-
covered and the cultural boundary does not form. In-
stead, coexistence of the F and X populations continues
throughout, and the genetic cline can be computed as
nF/(nF + nH + nX) [68].

For non-uniform geographies (space-dependent para-
meter values), the cultural boundary will of course form
sooner or later than for the case of uniform parameter
values (Fig. 2), but the final state is the same.

Ackland and co-workers suggest that their model may
explain important phenomena at a continental scale,
such as the boundary of the LinearBank Keramik (LBK)
style in Europe, the present-day distribution of Dravidian
speakers in India, or that of Bantu speakers in Africa.

Further progress on this line of research could include a

careful evaluation of the parameter values from indepen-
dent observations of interacting population dynamics, so
that the distance where the cultural boundary forms (rel-
ative to the origin of dispersal) could be predicted and
compared to the observed values. Also, it would be very
important to justify (using independent observations) the
form that the competition term λnFnX (nF − nX) , spe-
cially the assumption that it is proportional to the dispar-
ity of population sizes (nF − nX). Indeed, in this model
the prediction of cultural boundaries seems to require
that the sign of this term changes as the X population
becomes large enough (leading to the extinction of the F
population) .

E. The spread of genetic mutations

Some authors have considered a generalization of Fish-
er’s equation (24) for several species or populations i =
1, 2, ..., n given by the evolution equations [43]

∂pi
∂t

= (ρ+i − ρ−i )pi +Di∇2pi +
∑

j �=i
[kjipj − kijpi] (44)

where species i has number density pi, replication
and disappearance rates ρ+i and ρ−i , respectively (gen-
erally dependent on the composition vector −→p =
(p1, p2, ..., pn)), and diffusion coefficient Di, whereas kij
is the rate of transformation of species i into j.

Vlad, Cavalli-Sforza and Ross have analyzed the evo-
lution of the fractions of the different species or pop-
ulations, γi ≡ pi/p. For example, in chemistry γi are
molar fractions, whereas in population genetics they are
gene frequencies. After lengthy mathematical transfor-
mations, Eq. (44) leads to the following, very interest-
ing evolution equations for the total population density
p =

∑
pi and for the fractions γi [43]

∂p

∂t
= (
∑

γiρ
+
i −

∑
γiρ

−
i ) p+∇2

(
p
∑

γiDi

)

+
∑

j �=i
[kjipj − kijpi] , (45)

∂γi
∂t

+
−→∇ · (−→vi γi) = Ri +Di∇2γi + γi

−→∇ · −→vi

+
∑

j �=i
[kjipj − kijpi] , (46)

where

−→vi = −2Di
−→∇ ln p, (47)

Ri = γi
[
δρ+i − δρ−i

]

−γi
{∑

δDi

[
∇2γi + 2

(−→∇ ln p
)
· −→∇γi

]}

+δDi γi
∇2p

p
, (48)
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and

δρ±i = ρ±i −
∑

γiρ
±
i , (49)

δDi = Di −
∑

γiDi (50)

are deviations of the individual rate and transport coef-
ficients from the corresponding average values.

The important point here is that, when fractions γi
instead of population densities pi are considered, an ad-
vective term appears (the second term in Eq. (46)) with
a speed (47) opposite to the population gradient. Con-
sider, as usual, a population range with the population
density decreasing outwards (near the range edge). Then,
the gradient will have the inwards direction, and the ad-
vective speed −→vi will have the outwards direction. There-
fore, according to Eqs. (46)-(47), the corresponding hy-
drodynamic speed −→vi will enhance the transport of in-
dividuals outwards the population range (i.e., along the
front propagation direction). On the other hand, for a
shrinking population, according to Eqs. (46)-(47) the
speed −→vi would still have the outwards direction, but it
would slow down the transport of individuals (because
the front speed then has the inward direction). There-
fore, Vlad, Cavalli-Sforza and Ross argue that the phys-
ical origin of this advective speed is the net population
growth. The effect of −→vi will be specially important on
the front edge (because the speed (47) is proportional
to the gradient of the total population density). There-
fore, in addition to the front of the total invading popu-
lation, there is an additional advancing front (a mutant
cloud) of the subpopulation carrying the genetic muta-
tion. If the mutation has appeared in an individual born
on the front edge, transport will be most effective (then
the two fronts are synchronized). On the other hand,
if the mutation has appeared far behind the front, the
mutant cloud speed will be too low to follow the invad-
ing front (and the mutation will have poor chances to
spread). To apply this framework, Vlad, Cavalli-Sforza
and Ross [43] considered a simplified version of Eqs. (45)-
(50) for a single (n = 2) and neutral (ρ+1 = ρ+2 ≡ ρ+,
ρ−1 = ρ−2 ≡ ρ−, D1 = D2) mutation, logistic reproduc-
tion (i.e., ρ+ − ρ− = rL (1− p/pmax), see Eq. (12)) and
in one dimension,

∂p

∂t
= rL p

(
1− p

pmax

)
+D

∂2p

∂x2
, (51)

∂γ

∂t
+

∂

∂x
(vγ) = D

∂2γ

∂x2
+ εγ, (52)

where γ ≡ p1/p is the fraction of mutants and ε ≡ ∂v/∂x.
It is also assumed that the neutral mutation occurs at
some position and time, and afterward no further muta-
tions occur (so that k12 = k21 = 0). Note that Eq. (51)
is Fisher’s equation (24). It has an approximate solution
developed by Luther, Fisher and others, namely [56,69]

p(x, t) =
pmax

1 + exp
[√

rL
D z
] , (53)

where z ≡ x − cFishert is the coordinate at which the
front is at rest, and Fisher’s speed cFisher is given by Eq.
(23). Using this model, Vlad, Cavalli-Sforza and Ross
have estimated the speed of the center of gravity of the
mutant cloud as [43]

cmutant =
cFisher

2
. (54)

This speed is in agreement with the results of exten-
sive numerical simulations by Edmons, Lillie and Cavalli-
Sforza, in which they obtained a cloud of mutants arising
from a mutation appearing in the population and found
that cmutant ≃ cFisher/2.2 [42].

The models reviewed in this subsection also provide a
quantitative approach to Fisher’s proposal on the evo-
lution of the RH gene system, according to which the
ancestral, African haplotype Dce underwent three major
mutations which later mixed into additional haplotypes
(still now observed in lesser frequencies than the other
four). For example, in the range expansion from cen-
tral Asia towards west Asia and eventually Europe, the
mutation D → d took place, generating dce (the stan-
dard RH negative haplotype). Like the other two, dce
also reaches its maximum value near the farthest point
from the Asian center of the expansion (at the Basque
region for dce) [43]. Using this kind of reaction-diffusion
equations, simulations can produce gene-frequency geo-
graphic distributions that can be compared to those ob-
served today. Moreover, genetic analyses of prehistoric
human remains have also become possible very recently,
so in the near future it will probably become possible
to compare to past gene-frequency maps (in addition to
present ones). An additional application of such mod-
els is to infer the location and time of single mutational
events from present gene-frequency maps [43].

F. Dispersive variability

In the simplest population models with dispersive vari-
ability, two subpopulations with different birth rates are
considered: dispersers and non-dispersers, with individ-
ual number densities U(x, y, t) and V (x, y, t), respec-
tively. Harris has extended a classical model due to Cook
in order to take into account the effect due to the rest
time T between subsequent generations [23]. Then the
HRD evolution equation (20) is generalized into the set

∂U

∂t
+
T

2

∂2U

∂t2
= Dd

∂2U

∂x2
+ pd

(
F (U,V ) +

T

2

∂F (U, V )

∂t

)
,

(55)

∂V

∂t
= (1− pd)F (U,V ), (56)
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where

F (U, V ) = rL (U + V )

(
1− U + V

K

)
(57)

is the logistic reproductive function (12), pd is the prob-
ability that a newborn is a disperser, Dd is the diffusion
coefficient of the dispersive subpopulation, and K is the
carrying capacity. Cook’s model is recovered in the limit
T → 0, as is Fisher’s model (24) in the additional limits
pd → 1 and V → 0.

Following the same method as in Sec. II.C, the front
speed for Eqs. (55)-(56) has been derived and applied by
Harris [23]. Other recent models with dispersive variabil-
ity can be found in Ref. [22]. Future work in this direc-
tion could include a careful derivation of the evolution
equations, e.g. (55)-(56), from integro-difference equa-
tions similar to (1). For example, a comparison could
be made between a population made of dispersers and
non-dispersers (as in Cook’s and Harris’ models above)
and a single population in which individuals jump either
a single distance or zero distance. Also, some models in
the literature consider subpopulations of adults U and
juveniles V , that play the role of dispersers and non-
dispersers, respectively [71]. Then, (1−pd)F (U, V ) could
be replaced by rLU

(
1− U+V

K

)
in the evolution equation

(56) for the juveniles, and pdF (U, V ) could be replaced,
e.g., by −mV (with m the subadult mortality rate) in
the evolution equation (55) for the adults.

IV. THE SHAPE AND WIDTH OF FRONTS

The shape of a front is a relevant topic in several ar-
eas, e.g. in the study of virus infection fronts (because
their shapes or profiles can be directly measured exper-
imentally [70]), in fire front research (because the width
of the combustion zone is a relevant prediction [72]), etc.

The simplest reaction-diffusion evolution equation is
Fisher’s equation (24). Then, as mentioned in the pre-
vious section, the shape front is approximately given by
Eq. (53). This result is within a few percent of that
obtained from numerical simulations of Fisher’s equation
[56]. But Fisher’s equation is obviously a very special
case, and front shapes have been therefore analyzed for
more general evolution equations. The rest of this section
reviews such results.

A. The effect of dispersive variability on the front
shape

Harris has been able to solve the shape front prob-
lem for Cook’s model [23]. As mentioned in the previ-
ous section, in Cook’s model the effect of the waiting
time is neglected (T → 0) but two subpopulations are
considered: dispersers and non-dispersers, with number

densities U(x, y, t) and V (x, y, t), respectively, evolving
according to

∂U

∂t
= Dd

∂2U

∂x2
+ pd F (U, V ) , (58)

∂V

∂t
= (1− pd) F (U, V ) . (59)

where pd ≤ 1 is the probability that a newborn is a dis-
perser (Fisher’s equation (24) is recovered for pd = 1),
and F (U, V ) is given by Eq. (57). Assuming as in Sec.
II.C that U, V α exp[−λ(x − cCookt)], the front speed is
easily found to be [56]

cCook =
√
rLD (1 +

√
pd) , (60)

and Fisher’s speed (23) is recovered in the limit pd → 1,
as it should. Harris has derived analytical formulae for
the front shape by considering two cases:

(i) Low values of pd. In this case, expansions of

U(x, y, t) and V (x, y, t) on the small parameter p
1/2
d are

performed,

U(x, y, t) = U0(x, y, t) + p
1/2
d U1(x, y, t) + ...

V (x, y, t) = V0(x, y, t) + p
1/2
d V1(x, y, t) + ... (61)

and substitution into Eqs. (58)-(59) yields [23]

U0(x, y, t) = 0,

U1(x, y, t) = 0,

V0(x, y, t) =
K

1 + exp [z′]
, (62)

V1(x, y, t) =
K z′ exp [z′]

(1 + exp [z′])2
,

where z′ ≡
√

rL
D (x− cCookt) is the dimensionless coor-

dinate at which the front is at rest, and the front speed
cCook is given by Eq. (60).

(ii) Large values of pd. In this case, expansions of
U(x, y, t) and V (x, y, t) on the small dimensionless pa-
rameter ε ≡ rLDc

−2
Cook are performed, leading to the fol-

lowing results for the total population density p(x, y, t) =
U(x, y, t) + V (x, y, t) [23]

p(x, y, t) = p0(x, y, t) + ε p1(x, y, t) + ...,

p0(x, y, t) =
K

1 + exp [z′′]
, (63)

p1(x, y, t) =
K pd exp [z′′]

(1 + exp [z′′])2
ln

4 exp [z′′]

(1 + exp [z′′])2
,

where z′′ ≡ z′
√
rLD/cCook.

By plotting Eqs. (62) and (63) for several values of pd,
Harris has observed that the front shape is much steeper
for low values of pd [23]. As would be expected, then
there are fewer dispersers, so that the population towards
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the front edge is decreased and the front becomes nar-
rower and steeper.

Before closing the discussion of Cook’s model, it is
worth to mention that Eq. (60) implies that popula-
tions with very few dispersers (pd ≃ 0) have front speeds
about half the value for populations in which all individ-
uals disperse (pd = 1) [56]. So interestingly, even very
few dispersers are able to sustain the propagation of the
front without a huge reduction in its speed.

B. The effect of delay times on the front width

Fronts arise in many models involving time-delays.
Their properties depend on the choice of the underly-
ing, microscopic random walk. In order to see this, Fe-
dotov compared two different models for the evolution
of the population density ρ(x, t) in one-dimensional (1D)
space: model A, discrete in time, and model B, continu-
ous in time, as follows [73]

model A :

ρ(x, t+ τ) =

∫ ∞

−∞
ρ(x+ ∆, t)ϕ(∆)d∆ + τrf(ρ), (64)

model B :

∂tρ(x, t) = λ

[∫ ∞

−∞
ρ(x+ ∆, t)ϕ(∆)dz − ρ(x, t)

]
+ rf(ρ) , (65)

The 1D dispersion kernel ϕ(∆) is such that ϕ(∆) yields
the probability that a particle makes a jump of length
∆ (∆ may be positive or negative). In model A, the
particle moves at regular times intervals τ , whereas in
model B it spends a random time between subsequent
jumps with value exponentially distributed with rate λ
[74]. Also, new particles appear due to a nonlinear source
term F (ρ) = rf(ρ), where r is the characteristic rate of
reproduction. Results for logistic growth, f(ρ) = ρ(1−ρ),
are reviewed below. Note that model B with λ = 1/τ can
be obtained from model A for sufficiently small values of
the delay time τ. Then, Fisher’s equation (24) with D =〈
∆2
〉
/(2τ) is recovered for isotropic kernels by expanding

the first term in the right-hand side of Eqs. (64)-(65) up
to second order in ∆.

Fedotov observed that models A and B yield different
front propagation speeds for the simple case of all par-
ticles jumping the same distance [73]. The speed and
width of fronts have been also derived for two kernels
widely used in the ecological literature, namely a Lapla-
cian kernel,

ϕL(∆) =
1

2α
e−|∆|/α, (66)

and a Gaussian kernel,

ϕG(∆) =
1

α
√
π
e−∆

2/α2 . (67)

Using the method explained in Sec. II.C up to second
order in α, explicit formulae for the front speeds have
been derived [28],

model A :

cL ≃
α

τ

[
1 + (1 + 2β) ln(1 + β)

(1 + β) ln(1 + β)

]1/2
(68)

ln

[
1 + β + (1 + β)2 ln(1 + β)

1 + β ln(1 + β)

]
,

model A :

cG ≃
α

2τ

[
1 + β ln(1 + β)

(1 + β) ln(1 + β)

]1/2
(69)

ln
[
(1 + β)

1+β
1+β ln(1+β) + β

]
,

model B :

cL ≃ α
2λ+ γ

λ+ γ

√
γλ+ 2γ2, (70)

model B :

cG ≃
α

2

√
λ

γ

(
λeγ/λ − λ+ γ

)
. (71)

where

β ≡ rτf ′(0) ≡ τγ. (72)

The validity of these results has been checked by com-
paring them to the speed obtained from numerical simu-
lations using the fast-Fourier-transform method, which
makes it possible to derive precise results for integral
equations with a much shorter computer time [28]. The
width of fronts can be analyzed as follows. Figure 3
presents some simulated fronts according to both models.
It is seen that model B yields a wider (and faster) front.
From Fig. 3 we observe that there exists a inflection point
x∗ such that ∂xρ reaches a maximum value at x = x∗ and(
∂2nx ρ

)
x=x∗ = 0 for n = 1, 2, 3, ... Then one has from Eq.

(64) for isotropic kernels [i.e., ϕ(∆) = ϕ(−∆)],

ρ(x∗, t+ τ) = ρ(x∗, t) + τrf(ρ)|x=x∗ . (73)

We also have, in the limit τ ≪ t,

ρ(x∗, t+ τ) ≃ ρ(x∗, t) + τ∂tρ|x=x∗ , (74)

so that

∂tρ|x=x∗ ≃ rf(ρ)|x=x∗ , (75)

and the same result holds for model B with λ = 1/τ . We
change into a frame moving with the front by defining the
coordinate z ≡ x− ct. For x = x∗ we get −c ∂zρ|z=z∗ ≃
rf(ρ)|x=x∗ . The width of the front L is given by
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L−1 = − ∂zρ|z=z∗ ≃
r

c
f(ρ)|z=z∗ . (76)

In Fig. 4 we compare this prediction to the results
of numerical simulations for a logistic reactive process
(f(ρ)|z=z∗ = f( 12) = 1

4). The front width is estimated
from the simulated profiles by fitting a straight line to the
central range (ρ ≃ 1/2) of profiles such as those in Fig.
3 and, as mentioned above, the front width is estimated
as the inverse of the slope of the fitted line. From Fig. 4,
we see that there is good agreement with the theoretical
prediction given by Eq. (76). Note that from Eq. (76),
the front speed is proportional to the front width in both
models. A higher value of the delay time corresponds to
a slower, narrower front, as was to be expected. Figure
4 shows that, the higher the value of τ , the more error
results from using model B as an approximation to model
A, also as expected. This error is higher than 20% in
Fig. 4 and is the same for the front speed and the front
width, because they are proportional to each other [see
Eq. (76), which makes it possible to determine the speed
from any value of the front width in Fig. 4]. Therefore,
when using model B as an approximation to model A,
one should previously see if the error, computed in the
way explained here and illustrated by Fig. 4, is negligible
or not for the parameter values used.

V. COMBUSTION FLAMES

Flame propagation models are based on non-sequential
reaction-diffusion equations similar to (24), where the
source function F has a strong dependence on temper-
ature T [75]. A lot of work has been devoted to obtain
the propagation speed of flames by means of combustion
modeling through a variety of approaches and numeri-
cal simulation strategies. The problem is indeed daunt-
ing since an adequate account of the combustion process
must address transport properties, the chemistry of the
reacting mixture, and their coupling [76,77]. Very re-
cently, numerical simulations of highly complex models
have provided results which have been successfully vali-
dated against measurements obtained from experiments
[78,79]. However, these types of studies require a strong
computational effort and do not yield equations for the
influence of the system parameters on the flame speed.
In contrast, the application of some levels of simplifica-
tion to the governing equations leads to simple models
from which estimates for the propagation speed of the
flame are obtained by employing a variety of techniques
[80—82]. Here we review some recent developments on
this field [29—34], which provide good estimates for the
front propagation speed in some combustion processes.

A. Background flow at rest, no mass diffusion and
constant transport coefficients

In premixed gas flames, the fuel, oxidant and inert
gases are mixed on the molecular scale before combustion
is initiated [83]. Here we restrict our attention to one-
dimensional (1D) models of laminar premixed gas flames
with a single-step reaction mechanism

R(reactants)→ P (products) (77)

where the reaction rate w (i.e., the normalized reactant
consumption rate due to the chemical reaction) at ab-
solute temperature T is given by an Arrhenius expression

w(T ) = Ae−
Ea
RT (78)

with activation energy per mole Ea, universal gas con-
stant R, and preexponential factor A (i.e., the inverse of
a characteristic reaction time) [84].

Under these assumptions and neglecting mass diffu-
sion, advection, radiative heat losses and conductive heat
losses through the boundaries, the model reduces to the
following balance equations of energy and fuel density ρF
[32]

∂θ

∂t′
=

∂2θ

∂r′2
+ ρ′

(
e−

1
θ − e−

1
θ0

)
, (79)

∂ρ′

∂t′
= −Cρ′

(
e−

1
θ − e

− 1
θ0

)
, (80)

where we have used the dimensionless variables and pa-
rameters

θ ≡ T
R

Ea
, (81)

r′ ≡ r

√
RQA

D̃Eacp
, (82)

t′ ≡ t
RQA

cpEa
, (83)

ρ′ ≡ ρF
ρ
, (84)

C ≡ cpEa
RQ

, (85)

where T is the absolute temperature, r is the radial co-
ordinate, t is the time, Q is the heat produced by the
combustion reaction per unit mass of fuel, cp is the spe-
cific heat of the mixture at constant pressure, ρ is the
density of the mixture (which is constant, since here we
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neglect convection; see [33]) and D̃ ≡ λ/(cpρ) is the heat
diffusivity, where λ is the thermal conductivity (assumed
constant in this subsection).

Equation (80) corresponds to the consumption of fuel,
and prevents the temperature from increasing without
bound. The last term within the second parentheses in
Eqs. (79)-(80) is the so-called ’cold boundary layer’ heat

loss term, and it ensures steadiness ( ∂θ∂t′ = 0 and ∂ρ′

∂t′ = 0)
if all points of the system are at room temperature (θ =
θ0) [32,85].

This framework is essentially the model of a premixed
gas flame assumed by Zeldovich and Frank-Kamenentskii
[75,86].

Note that the dimensionless front speed v = dr′/dt′ is
related to its speed c = dr/dt as

v = c

√
C

D̃A
. (86)

The boundary conditions are θ → θ0 (room
temperature), ρ′ → 1 at r → ∞, and θ = θmax (maxi-
mum temperature), ρ′ → 0 at r = 0. The latter condition
would break down if heat losses were included (the solu-
tion would then be a pulse rather than a front [32]). A
recent mathematical procedure has reduced the system of
two partial differential equations (PDEs) (79)-(80) into a
single reaction-diffusion equation of a single variable [32].
For this purpose, the main requirement is that both ther-
mal and mass gradients reach non-zero values only in the
narrow region where the front arises. This leads to the
following equations, that have been tested by numerical
integrations of the system (79)-(80) [32],

θ = θ0 +
(1− ρ′)

C
, (87)

and

θmax = θ0 +
1

C
, (88)

These equations lead to the final result that the model
(79)-(80) (which neglects mass diffusion, advection, ra-
diative losses and conductive losses through the bound-
aries) is reduced to a single PDE, namely [32]

∂n

∂t′
=

∂2n

∂r′2
+ F (n), (89)

where a new dimensionless variable n is defined as

n =
θ − θ0

θmax − θ0
. (90)

This implies that the variable n varies from 0 to 1, which
is a requirement of some of the methods reviewed below.
The reaction term in Eq. (89) reads [32]

F (n) = C(1− n)
(
e
− 1
θ0+(θmax−θ0)n − e

− 1
θ0

)
. (91)

Equation (91) satisfies the condition F (n) � 0 for 0 �
n � 1 with F (n = 0) = 0 and F (n = 1) = 0, which
are also necessary conditions for applying some of the
methods here reviewed.

Equation (89) is a non-sequential reaction-diffusion
equation but with a source function, Eq. (91), that differs
from the logistic function (12) applied in many biophys-
ical problems. The nonlinearities in Eq. (91) avoid an
exact result for the front speed, in contrast to the ex-
act result (23) valid for the logistic source function (12).
This has lead to several authors to derive bounds on the
propagation speed of the flame front. In this subsection
we review the main expressions derived, both for lower
(vLB) and for upper bounds (vUB) [32,29].

1. Zeldovich-Frank-Kamenentskii (ZFK) lower bound

The method employed by Zeldovich and Frank-
Kamenentskii assumes a large thermal gradient in the
reaction zone. Then, the heat conduction term in Eq.
(79) dominates over the temporal derivative term, which
corresponds to heat convection in a frame moving with
the flame (z ≡ r−ct) and is positive in the absence of heat
losses. Therefore, using dimensional variables [75,86],

0 �
d

dz

(
λ
dT

dz

)
+QAρF

(
e−

Ea
RT − e−

Ea
RT0

)
. (92)

The integration of Eq. (92) in the variable y ≡ λdTdz
(so that 1

dz = y
λ dT ) from the boundary of the reaction

zone (T ≃ T0) to the burned zone (y ≃ 0, T = Tmax)
leads to [75]

λ
dT

dz
�

√
2QλAρF

∫ Tmax

T0

(
e−

Ea
RT − e−

Ea
RT0

)
dT . (93)

In addition, it is assumed that the heat flux at the
reaction zone must equal the energy released by combus-
tion

λ
dT

dz
= Qρc. (94)

Combining Eq. (93) with (94) and using (87) leads to
a lower bound for the propagation speed v of the front
flame

c �

√
2λ

Qρ
A (1−C (θ − θ0))

∫ Tmax

T0

(
e−

Ea
RT − e

− Ea
RT0

)
dT .

(95)

Using dimensionless variables and Eqs. (85) and (88),
this lower bound reads

v � vZFKLB =

√

2

∫ 1

0

F (n)dn. (96)
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2. Kolmogorov-Petrovski-Piskunov (KPP) lower bound

This method is based on the linearization of Eq. (89)
after introducing the variable z = r′ − vt′ with a solu-
tion of the type n(z) = n0e

−ζz with ζ > 0 for t → ∞
[87]. It therefore corresponds to the linearization method
reviewed in Sec. II. C. This leads to a second-order equa-
tion for ζ,

ζ2 + vζ +

(
dF (n)

dn

)

n=0

= 0, (97)

and the condition that ζ is real implies that the prop-
agation speed v must be greater than the lower bound
vKPP
LB ,

v � vKPPLB = 2

√(
dF (n)

dn

)

n=0

. (98)

However, as we shall review below, numerical integra-
tions of the set (79)-(80) have shown that for the function
(91) the bound (98) yields estimates that are several or-
ders of magnitude below the correct speed [32].

3. Benguria-Cisternas-Depassier (BCD) lower bound

Benguria et al. [85] have developed a variational tech-
nique which is very useful for providing estimates for
the front speed in a wide variety of 1D reaction-diffusion
equations. For the particular case of Eq. (89) with Eq.
(91), the lower bound vBCDLB for the dimensionless prop-
agation speed v is

v � vBCDLB =
4
√
i

2i+ 1

(∫ 1
0
F (n)dn

)i+1/2

∫ 1
0

(∫ 1
x F (n)dn

)i
dx

, (99)

and this bound holds for any value of i such that 1/2 �
i � 1. It is important to stress that Eq. (99) applies only
for those systems with ∂n/∂r′ � 0. This requirement re-
duces the application of Eq. (99) to fronts since in the
propagation of pulses, either the radiative or conductive
cooling lead to regions with ∂n/∂r′ � 0. Another con-
dition implicitly assumed in deriving Eq. (99) is that
F (n = 0) = 0, F (n = 1) = 0 and F (n) � 0 for
0 � n � 1.

4. Aronson-Weinberger (AW) upper bound

The upper bound vAWUB derived by Aronson and Wein-
berger [88] follows from mathematical analysis applied to
the phase space of Eq. (89). As explained in the KPP
method above, in the front reference frame (z = r′−vt′)
Eq. (89) becomes

n′′zz + vn′z + F (n) = 0, (100)

where the symbol ′ denotes derivative relative to z. Intro-
ducing q ≡ n, this equation is equivalent to the system

q′ = p, (101)

p′ = −vp− F (q).

The functions p(z), q(z) corresponding to a solution of
Eq. (100) give a trajectory in the q− p plane (or, as it is
usually called, the phase space) such that

dp

dq
= −v − F (q)

p
.

Plane wave solutions to Eq. (100) such that n → 0
as z → ∞ correspond to trajectories in the phase space
through the point (p, q) = (0, 0). For such solutions with
bounded support for t = 0, the theorems due to Aron-
son and Weinberger rigorously prove the existence of a
minimum speed vAWUB given by [88,89]

v � vAWUB = 2

√
sup

n∈[0,1]

(
F (n)

n

)
, (102)

where the supremum of the function F (n)/n is taken over
n ∈ [0, 1].

It is very important that the unique requirement im-
posed by Aronson and Weinberger in order to derive Eq.
(102) is F (n = 0) = 0 and F (n = 1) = 0, with F (n) � 0
for 0 � n � 1. This is very encouraging since it implies
that Eq. (102) is suitable for being applied to a large
variety of cases. Indeed, recently it has been applied not
only to fronts but also to flame pulses, which are physi-
cally more realistic (because flame extinguishment due to
heat losses is included) but mathematically much more
complicated [32—34].

5. Benguria-Depassier (BD) upper bound

Benguria and Depassier [81] applied a variational tech-
nique to derive the following upper bound for the dimen-
sionless propagation speed v,

v � vBDUB = 2

√
sup

n∈[0,1]

(
dF (n)

dn

)
, (103)

which is valid for any function F (n) that satisfies F (n =
0) = 0, F (n = 0) = 1 with F (n) � 0 for 0 � n � 1 and
∂n/∂r′|n=0 = 0 and ∂n/∂r′|n=1 = 0 with ∂n/∂r′ � 0 for
0 � n � 1 [81].

6. Benguria-Depassier-Méndez (BDM) upper bound

Finally, Benguria, Depassier and Méndez [29] have re-
cently found an upper bound by using the same vari-
ational technique as for the lower bound vBCDLB . Their
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result is valid for any function F (n) that satisfies F (n =
0) = 0, F (n = 1) = 0 and F (n) � 0 for 0 � n � 1. It
also requires that ∂n/∂r′ � 0. This bound reads [29]

v � vBDMUB = sup
n∈[0,1]

[
φ
F (n)

n
+

1

φ

]
, (104)

with φ any positive constant. By choosing φ =
1/ supn∈[0,1]

√
F (n)/n, Eq. (104) corresponds to the

classical Aronson and Weinberger bound (102).

7. Propagation speeds

Figure 5 shows a comparison of the five bounds de-
scribed above, as well as the propagation speeds obtained
by means of numerical integrations (circles) of the full
model that consists of the system of two PDEs (79)-(80),
for several values of the room temperature θ0 [32]. In
comparison with the full model, the best upper bound
is that due to Aronson and Weinberger (102). Con-
cerning lower bounds, Eq. (99) with i = 1 provides
the best estimate to the simulations. Both upper and
lower bounds give a realistic variation of the speed, and
they jointly lead to correct predictions for its order of
magnitude. Although a direct comparison to experiment
requires much more complicated, purely numerical ap-
proaches (i.e., a large set of differential equations involv-
ing a lot of chemical reactions and additional transport
phenomena [76—79]), relatively simple models yield ana-
lytical bounds (such as Fig. 5) that are a useful guide
of the kind of dependencies that should be expected, as
well as a practical check of more complicated numerical
codes.

B. Background flow, mass diffusion and transport
coefficients dependent on temperature

The previous subsection has analyzed a premixed gas
flame with a single-step reaction in a fluid at rest, without
mass diffusion and with constant transport coefficients.
Here we extend the model to include 1) advection, 2)
mass diffusion and 3) the dependence of transport coef-
ficients on temperature [33].

Advection arises through the presence of a background
flow or by the effect of buoyancy (in both cases, the influ-
ence of advection on the front speed may not be negligible
[90]). Mass diffusion, if the species have different specific
heats, leads to heat exchanges that may also influence the
propagation speed of the front [33]. Finally, temperature
greatly varies in combustion processes, which implies a
variation of both mass and heat transport coefficients
important enough to modify the propagation speed c.

These three effects (advection, mass diffusion and
transport coefficients as a function of temperature) are
now included in the evolution equations for dimensionless
temperature θ (81) and fuel density ρ′ (84) [33,34,91],

∂θ

∂t′
+

(
C

D̃0A

)1/2

U
∂θ

∂r′
=

∂

∂r′

(
λ

λ0

∂θ

∂r′

)

+Le0
D

D0

∆cp
cp

∂ρ′

∂r′
∂θ

∂r′
(105)

+ρ′
(
e−

1
θ − e

− 1
θ0

)
,

∂ρ′

∂t′
+

(
C

D̃0A

)1/2

U
∂ρ′

∂r′
=

∂

∂r′

(
Le0

D

D0

∂ρ′

∂r′

)

−Cρ′
(
e−

1
θ − e

− 1
θ0

)
, (106)

where the dimensionless time t′ is defined by Eq. (83),
the parameter C by Eq. (85) and the dimensionless radial
coordinate r′ now follows

r′ ≡ r

√
RQA

D̃0Eacp
, (107)

where D̃0 is the heat diffusivity at room temperature and
the other variables are defined below Eq. (82). In Eqs.
(105)-(106) U is the velocity field of the background flow,
cp is the specific heat at constant pressure of the mixture
(ρcp = cp,F ρF + cp,NFρNF ), ∆cp = cp,F − cp,NF , where
the subindex F stands up for fuel, and NF for non-fuel
(inert gases, oxidizers and products), and

Le0 =
D0

D̃0

, (108)

is the Lewis number at room temperature, where D0 is
the mass diffusivity at room temperature. The Lewis
number is a key parameter in flame dynamics, a fact
noted both experimentally and numerically [92], with a
wide variety of studies on flame dynamics carried out
for different values of Le (see, e.g., [90,93]). Thermal
conductivity λ and mass diffusivity D now follow

λ = λ0

(
T

T0

)α
, D = D0

(
T

T0

)β
, (109)

where T is the absolute temperature, T0 is the room tem-
perature and λ0 = λ(T = T0). Zeldovich et al. [75] use
Eq. (109) in the analysis of combustion processes with
α ≃ β ≃ 0.6.

Eqs. (105)-(106) implicitly assume a constant value
for the total density ρ, which holds either for the par-
ticular case of a background flow at rest (i.e., U = 0)
[33] or for the case of uniform advection (i.e., U = con-
stant). Note, however, that in the following subsection
we also analyze the case of convection produced from den-
sity changes across the flame front. Then, and following
Vladimirova et al. [31], we assume as a first approxima-
tion that density changes modify the flow velocity but
not appreciably the diffusion terms in Eqs. (105)-(106).
These diffusion terms, indeed, lead to a small correction
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(circles in Fig. 6), so the role of convection on these small,
diffusion terms is a second-order effect on the flame speed
and can be neglected [31].

The nonlinear term ∂ρ′/∂r′∂θ/∂r′ in Eq. (105) cor-
responds to the diffusion of fuel into the burned region
(i.e., that where fuel has been consumed by the combus-
tion reaction). Since fuel and non-fuel have different spe-
cific heats (i.e., cp,F �= cp,NF ), this term does not vanish.
Here we assume that cp,F > cp,NF , which is obviously ex-
pected to reduce the flame temperature and slow down
the flame speed in comparison with the cp,F = cp,NF case
(a speed decrease is indeed observed in Fig. 6).

The set (105)-(106) is in fact a generalization of Eqs.
(79)-(80) to include advection (U �= 0), mass diffusion
(Le0 �= 0) and transport coefficients dependent on tem-
perature (α �= 0, β �= 0). Recent work has reduced the
coupled set (105)-(106) to a single equation with a single
variable, namely [33,34]

∂n

∂t′
= −U

(
C

D̃0A

)1/2
∂n

∂r′
+A(n)

∂2n

∂r′2

+B(n)

(
∂n

∂r′

)2

+ F (n), (110)

where,

A(n) =

(
1 +

n

Cθ0

)α
, (111)

B(n) =
α

Cθ0

(
1 +

n

Cθ0

)α−1
− Le0

∆cp
cp

(
1 +

n

Cθ0

)β
,

(112)

and, again, n is defined by Eq. (90) and F (n) follows
the non-linearity (91). Eq. (110) arises by assuming a
linear dependence of temperature on fuel density, see Eq.
(87), which is again obtained after neglecting the contri-
butions of both temperature and fuel density first and
second order gradients compared to the combustion re-
action term in the integration of Eqs. (105)-(106) from
t′ = 0 to t′ [34]. Thus, Eq. (110) is indeed an approxima-
tion of the full combustion model of a laminar premixed
gas flame that consists of two coupled PDEs (105)-(106).
It can in principle break down for flames with a reaction
zone which is sufficiently wide, i.e. for sufficiently smooth
profiles of temperature and fuel density. However, the
validity of Eq. (110) for realistic parameter values has
been tested by means of numerical integrations of the
full model (110)-(112) [32—34].

Note that Eq. (89) corresponds to a limiting case of
Eq. (110) for Le0 = 0 (no mass diffusion), U = 0 (no
advection) and α = 0 (constant thermal conductivity).

1. The effect of convection

Neglecting mass diffusion (i.e., Le0 = 0), for non-
Arrhenius reaction rates and for constant values of trans-

port coefficients, Vladimirova et al. [31] have recently in-
vestigated the effects of using two relevant velocity fields
on the propagation speed of the combustion flame: 1) the
simple case of a uniform value for the background field
U, and 2) the case of taking the effect of the thermal ex-
pansion through the flame thickness into account. The
first case implicitly assumes an incompressible (constant-
density) fluid. Then the dimensionless front speed v sim-
ply becomes the sum of the dimensionless flow velocity(
C/(D̃0A)

)1/2
U and the front propagation speed ob-

tained for the particular case of no-convection (U = 0).
The second case analyzed by Vladimirova et al. con-

siders a compressible (variable-density) fluid. In other
words, density changes due to thermal differences across
the flame front are taken into account. The mass balance
equation in the front reference frame, namely ρ(U − c) =
ρ0(U0 − c), leads to the following velocity field U [31]

(
C

D̃0A

)1/2

U =

(
Pe

Da
C

)1/2
U

U0
=

(
Pe

Da
C

)1/2 [
ρ0
ρ

+
c

U0

(
1− ρ0

ρ

)]
, (113)

where ρ0 and U0 are the total density and the flow ve-
locity at the unburned region, respectively, and are used
to introduce the Péclet number Pe = U0L/D̃0, with L
a characteristic length scale, and the Damköhler number
Da = LA/U0. The Péclet number can be expressed in
terms of the Reynolds number Re = U0L/ν0, by using the

Prandtl number Pr = ν0/D̃0, where ν0 is the kinematic
viscosity at a reference point. In Eq. (113), note that c is
the propagation speed of the flame which, indeed, is the
value we seek to estimate, so in this case the simulation
of the full model (105)-(106) requires an iterative process
[34].

By assuming a constant-pressure process, densities in
Eq. (113) are easily related to temperatures and [34]

(
C

D̃0A

)1/2

U =

(
Pe

Da
C

)1/2 [
1 +

n

Cθ0

(
1− v

u0

)]
,

(114)

where n is again defined by Eq. (90), v is the di-

mensionless propagation speed (v ≡ c
√
C/

√
D̃0A) and

we have introduced the dimensionless reference flow as

u0 ≡
√
CU0/

√
D̃0A.

Vladimirova et al. [31] obtain the flame speed by the
linearization method employed in the KPP lower bound
procedure detailed above. Recent work [34] has analyzed
the same background fields for an Arrhenius reaction rate
(so that the KPP method breaks down, as explained
above) and by including the effect of both mass diffu-
sion (i.e., Le�= 0) and transport coefficients as a function
of temperature.
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2. Upper and lower bounds

The variational method developed by Benguria et al.
[81] has been recently applied to Eq. (110) in order to
obtain bounds on the propagation speed of flames [34].
For β below a critical value βc given by

Le0
∆cp
cp

(
1 +

1

Cθ0

)βc
=

(
1 +

1

Cθ0

)α−1

[
1 + (α+ 1)

1

Cθ0

]
(115)

+

(
C

D̃0A

)1/2

,

where

φ = sup
n∈[0,1]

√
F (n)

n
, (116)

the speed satisfies v � vUB, where the upper bound vUB
is [34]

vUB = sup
n∈[0,1]

{
F (n)

nφ
+ φ

(
1 +

n

Cθ0

)α−1 [
1 +

(α+ 1)n

Cθ0

]

−φLe0
∆cp
cp

(
1 +

n

Cθ0

)β
n (117)

+

(
Pe

Da
C

)1/2(
1 +

n

Cθ0

)}
.

Equation (117) only holds if F (0) = 0, F (1) = 0,
F (n) � 0 for 0 � n � 1 and ∂n/∂r′ � 0. It is important
to notice that the last condition applies for fronts but not
for pulses. This implies that the variational method as
developed by Benguria et al. [81,85,29] is not able to pro-
vide limits for the propagation speed when Eq. (110) is
generalized to include energy losses (that case is consid-
ered in Refs. [32,33]). Note that Eq. (117) for Le0 = 0,
U0 = 0 and α = 0 reverts to the Aronson and Weinberger
upper bound (102), which can be applied both to front
and to pulse solutions [32—34].

However, the variational method developed by Ben-
guria et al. [81,85,29] may be also used for finding the
lower bound of the propagation speed of the flame front
predicted by Eq. (110). By doing so, Pujol et al. [34]
derive v � vLB , with

vLB =

√
C

D̃0A

1∫
0

g(n)dn


2

1∫

0

dn

(
F (n)g(n)

[
−g′(n)

(
1 +

n

Cθ0

)α

−Le0
∆cp
cp

g(n)

(
1 +

n

Cθ0

)β])1/2 1∫

0

Ug(n)dn


 . (118)

where g(n) is an arbitrary positive function with
g′(n) = dg(n)/dn that satisfies the requirement

−g′(n)
(
1 + n

Cθ0

)α
−Le0

∆cp
cp

g(n)
(
1 + n

Cθ0

)β
> 0. We

evaluate vLB by using the following trial function g(n)

g =
√

1− n, (119)

that satisfies the requirement stated above when α ≥ β
for Le0∆cp/cp = 0.5.

3. Propagation speeds

Figure 6 shows the dependence of the propagation
speed of combustion flames on the Lewis number Le0
for a case without background flow (U = 0) and con-
stant values for the transport coefficients (α = 0, β = 0).
There is agreement between the simulations of the cou-
pled PDEs (105)-(106) (circles) and the lower and upper
bounds (118) and (117).

Figure 7 analyzes the dependence of the propagation
speed of combustion flames on α, so we neglect the effect
of mass diffusion in Fig. 7 (i.e., Le0 = 0, so the value of β
is irrelevant). Figure 7 compares the dimensionless speed
v obtained from the full model (105)-(106) (circles) with
the estimates provided by Eqs. (117) (solid lines) and
(118) (dashed line). In Figure 7, α ranges from α = 0
(constant thermal conductivity) to α = 1 (λ ∝ T ) for
two cases: (i) a background flow at rest (U = 0) and
(ii) a background flow with Re = 1000. The values of the
parameters are C = 2.5, θ0 = 0.072, which lead to a room
temperature T0 = 300 K and a flame temperature Tmax

= 1966 K, Prandtl number Pr = 0.7, ∆cp/cp = 0.5, Da
= 3.3× 108 and A = 3.3× 107 s−1 [34]. As expected, the
dimensionless propagation speed increases as α increases
(heat conduction increases). The agreement between the
simulations of the coupled PDEs (105)-(106) (circles) and
the lower (118) and upper bounds (117) is better at low
values of α.

The effect of mass diffusion on the flame propagation
speed for α �= 0 and β �= 0 is shown in Figure 8, where
Le0 = 1 and Re = 0 (background flow at rest), and the
other parameter values as above. Solid lines in Fig. 8
shown the values of the dimensionless propagation speed
as a function of α and β, whereas dashed lines correspond
to the upper bound values derived from Eq. (117). The
lower bound is not shown for clarity (and because if holds
only for α ≥ β). Results for the very same case but with
advection (Re = 1000) are shown in Fig. 9. The upper
bounds make it possible to predict the correct order of
magnitude of the flame front speed, as well as its varia-
tion with the system parameters.

C. Other combustion processes

(i) Here we have focused on front propagation, but
the AW method has also been shown to give reasonable
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results for all of the cases above but considering pulse
propagation instead (due to heat losses) [32—34].

(ii) Front propagation in heterogeneous media for dif-
ferent types of reaction rate functions are tackled by
Xin [80]. Xin applies variational principles similar to
those developed by Benguria, Depassier and others stated
above [81] in order to obtain bounds for periodic media
[80].

(iii) The analysis of random media is of great impor-
tance since it includes the effect of turbulent flows. Then,
the reaction-diffusion-advection equation contains a ran-
dom velocity of turbulent spectrum and zero mean en-
semble. Combustion research analyzing turbulent flows
in the limiting cas of thin flames compared to the largest
scale of the turbulence has reached a result for the front
speed of turbulent flames ST that reads

ST = SL
AT
AL

(120)

where SL is the laminar front speed, AT is the surface
area of the wrinkled front and AL is the cross-sectional
area with respect to the direction of front propagation
[80,30]. Eq. (120) is valid only if diffusive effects are small
compared to fluid dynamics effects on the front speed.
Then, the flame front is approximated by a surface wrin-
kled by the turbulent velocity. However, and as noted by
Xin, the dependence of AT on the background turbulent
flow is nontrivial [80]. Note that in turbulent media, the
flame has different characteristics depending on a variety
of chemical and background flow scales. Thus, flamelet
combustion corresponds to chemical reaction occurring
at fast time scales and short length scales relative to the
turbulence. In some laminar regimes, much of the inter-
action between combustion and turbulence is decoupled,
greatly simplifying the modeling task [92].

(iv) Here we have considered premixed gas flames. In
nonpremixed flames, two nonpremixed reactants (fuel
F and oxidant O) react to form product P [94]. The
exothermic energy released by the chemical reaction
causes variations in density that, in the presence of a
gravity field, may induce a buoyancy force. The behavior
of this type of processes is usually simulated by complex
numerical algorithms based on the governing equations of
energy and mass and no further simplifications are made
in order to derive limits for the propagation speed of the
front.

(v) Flame spread over beds of solid (or liquid) fuel
is essentially a 2D process. Indeed, the heat flux from
the front flame vaporizes the fuel from the surface of the
solid which will eventually react with an oxidant and gen-
erate the flame. This complex combustion process is not
suitable for being analyzed with a single 1D reaction-
diffusion-advection equation.

VI. DISTRIBUTED-DELAY MODELS

The models in Sec. II assume that all particles or indi-
viduals have the same rest time between two subsequent
jumps. In general, this is not the case. Therefore, several
authors have developed general reaction-dispersal mod-
els including a distribution of dispersal delay times. Such
models are usually referred to as reactive continuous-time
random walks (CTRWs). Vlad and Ross were the first
to apply such models to a specific example, namely a
gamma distribution of rest times [17]. Other examples
can be found in Refs. [18,19,22]. Here we present a model
that provides explicit analytical results for the effective
delay time and the front speed [20,21].

A. General model with a waiting-time distribution

The following model generalizes those in Sec. II to
several possible delays [20]. Let ds P (x, y, t) stand for
the number of particles per unit area that reach an area
ds centered at (x, y) at time t. Obviously the number
density of particles (or individuals) is given by those that
have reached the point considered and still not left,

p(x, y, t) =

∫ t

0

dt′ P (x, y, t′)Ψ(t− t′), (121)

where Ψ(t− t′) is the probability that any particle rests
for at least a time interval t − t′ before performing the
next jump,

Ψ(t− t′) =

∫ ∞

t−t′
dT ϕ(T ) = 1−

∫ t−t′

0

dT ϕ(T ), (122)

and the evolution equation for P (x, y, t) is clearly

P (x, y, t) =

∫ t

0

dT

∫ ∞

−∞
d∆x

∫ ∞

−∞
d∆y

P (x−∆x, y −∆y, t− T ) ϕ(T ) φ(∆x,∆y) (123)

+ρ0 δ(x = 0)δ(y = 0)δ(t = 0) + F (x, y, t),

where F (x, y, t) is the net number of particles (or individ-
uals) appearing per unit time due to chemical reactions
(or biological reproduction).

Fourier-Laplace transforming these three equations
and using the definitions (226)-(228), we come to

p̂(kx, ky, s)
[
1− φ̂(kx, ky)ϕ̂(s)

]
=

1− ϕ̂(s)

s

[
p0 + F̂ (kx, ky, s)

]
.

(124)

Now, in contrast to Sec. II.C, we do not assume a
Dirac delta for the distribution of rest times. Instead, we
consider an arbitrary distribution ϕ(T ) and proceed as
follows.

(i) For simplicity, we assume that the space ker-
nel is isotropic, i.e. φ(−∆x,∆y) = φ(∆x,∆y) =
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φ(∆x,−∆y) = φ(∆y,∆x), which using the normaliza-
tion of probability (

∫∞
−∞ d∆x

∫∞
−∞ d∆y φ(∆x,∆y) = 1)

leads to

φ̂(kx, ky) ≡
∫ ∞

−∞
d∆x

∫ ∞

−∞
d∆y e−ikx∆x−iky∆y φ(∆x,∆y)

=

∫ ∞

−∞
d∆x

∫ ∞

−∞
d∆y

[
1− i

−→
k · −→∆

−k2x
∆x2

2
− k2y

∆y2

2
+O

(−→
∆

3
)]

φ(∆x,∆y)

= 1−
〈
∆2
〉

4
(k2x + k2y) +O

(−→
∆

3
)
, (125)

where O
(−→
∆

3
)

stands for terms of third and higher pow-

ers of ∆x and ∆y. This approximation will be valid as-
suming that the dispersal kernel φ(∆x,∆y) is apprecia-
bly different from zero only for sufficiently small jumps
(∆x ≃ 0, ∆y ≃ 0). Otherwise, the second-order or ’diffu-
sion’ approximation above would break down (leading to
what is called long-range dispersal in Ecology [95—97]).

(ii) Analogously to Eq. (125), we assume that the
waiting-time probability distribution ϕ(T ) is appreciably
different from zero only for sufficiently small values of the
waiting time T , so that we can use again a second-order
Taylor expansion,

ϕ̂(s) ≡
∫ ∞

0

dT e−sT ϕ(T )

=

∫ ∞

0

dT

[
1− sT + s2

T 2

2
+O(T 3)

]
ϕ(T )

= 1− s 〈T 〉+ s2

2

〈
T 2
〉
+O

(
T 3
)
. (126)

Combining the three previous equations up to second
order yields

T̃ s

2
(sp̂− p0) + sp̂− p0 =

−D̃(k2x + k2y)p̂+ F̂ (kx, ky, s) +
T̃

2
F̂ (kx, ky, s), (127)

where we have defined the reduced diffusion coefficient

D̃ =

〈
∆2
〉

4 〈T 〉 (128)

and

T̃ ≡ 2 〈T 〉 −
〈
T 2
〉

〈T 〉

= 2

∫ ∞

0

dT ϕ(T )T −
∫∞
0 dT ϕ(T )T 2

∫∞
0 dT ϕ(T )T

. (129)

Antitransformation of Eq. (127) yields an hyperbolic
reaction-diffusion (HRD) equation, namely

T̃

2

∂2p

∂t2
+
∂p

∂t
= D

(
∂2p

∂x2
+
∂2p

∂y2

)

+F (x, y, t) +
T̃

2

∂F (x, y, t)

∂t
. (130)

In this way, we reach the very interesting result that
reaction-diffusion systems can be described by an HRD
equation (20), not only for a single value of the waiting
time (Sec. II), but also for any general waiting-time dis-
tribution ϕ(T ) [21]. According to Eq. (18), the speed of
front solutions to Eq. (130) is

c =
2
√
rL D

1 + rL T̃ /2
. (131)

Finally, T̃ defined by Eq. (129) is an effective delay time,
first introduced in Ref. [20], and its meaning can be un-
derstood by rewriting Eq. (129) as

T̃ = 〈T 〉 (1− ε), (132)

where

ε ≡

〈
(T − 〈T 〉)2

〉

〈T 〉2
=

〈
T 2
〉
− 〈T 〉2

〈T 〉2
(133)

is the dispersion of the waiting-time distribution. Physi-

cally, we can understand the fact that T̃ �= 〈T 〉 , i.e. the
presence of the last term in Eq. (132), as follows. Con-
sider two waiting time distributions with the same mean
〈T 〉 but different dispersion ε (Fig. 10). If the distri-
bution shape is wide (Fig. 10.a), some individuals will
have low values of the dispersive delay T , as compared
to the narrower distribution (Fig. 10.b). Intuitively, it is
obvious that a population front will travel faster if some
individuals move sooner, i.e. with a lower delay T (as
in Fig. 10.a as compared to Fig. 10.b). This is the

physical reason why the effective delay T̃ (which tends
to slow the front down, see Eq. (131)) will be lower for

Fig. 10.a. Thus, T̃ decreases with increasing values of
the dispersion ε, as predicted by Eq. (132). The distri-
butions depicted are discrete, but the argument applies
equally to continuous distributions.

It has been shown that Eq. (132) breaks down for
ε > 1 because then a second-order Taylor expansions are
not sufficient and additional terms should be included
(see Ref. [20] for details).

We conclude that, for any two waiting-time distribu-
tions with the same mean delay time 〈T 〉, for that with
higher dispersion ε some particles jump sooner (lower

value of T̃ ) and make the front move faster (higher value
of c). Conceptually, this effect is somehow similar to
long-range dispersal in Ecology [95—97]. There, a few
seeds dispersing at further distances can lead to a much
faster front. Here, a few particles dispersing sooner can
also lead to a faster front.
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B. Discrete delays. Application to the Neolithic
transition

The transition from hunter-gatherer (Paleolithic) into
agricultural (Neolithic) economics is a very important
process in human history. In Eurasia, it took place in
the period 13,000 to 5,000 years Before Present, in the
form of a range expansion of farming populations from
the Near East [98]. This process can be followed in space
and time by using the archaeological record [99]. In this
section we review this application of reaction-diffusion
fronts.

1. Fisher’s model

The first quantitative model of the Neolithic transition
came after Cavalli-Sforza noted that Fisher’s model (24)
could be applied to this process. Then the front speed is
predicted by Eq. (23) as

cFisher = 2
√
rL D, (134)

Ammerman and Cavalli-Sforza [98] gathered the archae-
ological data available and used them to estimate a ob-
served speed of about 1 km/yr (via linear regression).

They also estimated the diffusion coefficient asD ≈ 〈∆2〉
T ,

and found anthropological observations in the litera-
ture from which they obtained the characteristic values
rL = 0.032 yr−1,

〈
∆2
〉
= 1544 km2 and T ≈ 25 yr. Then

Fisher’s speed (134) yields c ≈ 2.8 km/yr. This predic-
tion is much faster than the observed speed that they
obtained from the archaeological record, namely 1.0±0.2
km/yr [98,4].

The two-dimensional formula (19) yields the more ac-

curate estimation D =
〈∆2〉
4T = 386 km2/gen= 15.44

km2/yr, leading to cFisher = 1.4 km/yr [4], but this is
still outside the observed range.

2. Single-delayed model

A more refined approach [4] noted that Fisher’s equa-
tion (24) does not take into account the fact that newborn
children spend some time T with their parents until they
become adults and can migrate. Therefore, it is reason-
able to use the HRD equation (20) instead of Fisher’s,
and the speed is given by Eq. 18)

csingle delay =
2
√
rL D

1 + rL
T
2

. (135)

Using the same parameter values as above, this yields
a speed of csingle delay = 1.0 km/yr, which is consistent
with the observed range.

3. Multidelayed model

More recently, Cavalli-Sforza suggested that a single
value for the rest time may not be a realistic descrip-
tion, because in real populations not all children will
leave their parents’ at the same age. In fact, this was
the original motivation to develop the general theory of
distributed delays presented in the previous subsection
[20]. According to Eq. (131),

cmultidelay =
2

√
rL D̃

1 + rL T̃ /2
, (136)

where D̃ and T̃ should be estimated from Eqs. (128) and
(129), respectively.

A careful examination of the original demographic ob-
servations of pre-industrial farmers [100] showed that the
observed rest time distribution is T1 = 27 yr, p1 = 0.46;
T2 = 35.5 yr, p2 = 0.51; T3 = 45.5 yr, p3 = 0.02;
T4 = 55.5 yr, p4 = 0.01 [101]. Then

〈T 〉 = 32.0 yr, (137)

Eqs. (128), (129) and (136) yield D̃ = 386 km2/gen=

12.06 km2/yr, T̃ = 31.1 yr and cmultidelay = 0.8 km/yr,
respectively (using, as above,

〈
∆2
〉
= 1544 km2 and rL =

0.032 yr−1). This implies a correction of 17% relative
to model (ii) above, so that this effect should not be
neglected a priori.

The detailed analysis above of the demographic data
is also interesting, because the estimation T ≈ 25 yr [98]
(used in models (i) and (ii) above) is essentially the mean
age at which individuals leave their parents [101], but the
multidelayed model (iii) shows that the relevant quanti-
ties are the mean time difference between the parents’
and the children migration (averaged over all children),

〈T 〉 , and the effective delay time, T̃ , given by Eq. (129).
To what extent does the prediction (136) of the multi-

delayed model depend on the uncertainties in the values
of the parameters? In Fig. 11 (continuous curves) we
see that, for many values of rL and

〈
∆2
〉
/ 〈T 〉 in the

range allowed by independent observations (hatched rec-
tangle), the predictions of the multi-delayed model are
consistent with the observed speed (0.8-1.2 km/yr from
the observations quoted above [98,4]; for additional data
see Ref. [99]). It is also seen in Fig. 11 that the cor-
rections relative to the single-delayed model are large,
about 20% (essentially because the reevaluation above of
the demographic dispersal data shows that the efective

delay T̃ ≃ 31 yr is higher than the value T = 25 yr used
in the single-delay model [4]).

This discrete multi-delayed model is also applicable to
physical [26,103] and biological systems [104,105] such
that observations imply several possible, discrete values
of the rest time in the random walks of particles or indi-
viduals.
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C. Continuous delays. Application to virus infections

In the previous subsection, we have considered a dis-
crete set of possible waiting times (between subsequent
jumps) because the data available for that application
were recorded as a discrete set. However, in many cases
the measured distribution of waiting times is continu-
ous. For example, in Fig. 12 we reproduce the so-called
one-step growth of the virus T7 infecting E. Coli bacte-
ria. This experiment refers to an homogeneous medium
of cells infected at t = 0. If all viruses took exactly the
same time to kill a cell and reproduce, Fig. 12 would be
a step function, and the waiting time distribution would
be a Dirac delta. Instead, the gradual rise in the virus
concentration in Fig. 12 indicates that it takes a differ-
ent time for each virus to kill the cell it has infected and
reproduce, and that a continuous distribution of wait-
ing times is appropriate for this application. This in-
terpretation of one-step curves is well-known in virology
[106]. For the case in Fig. 12, we see that the range of
waiting times (i.e., the rise in the curve) is between 14
and 23 minutes approximately, so the width of the rise
is about 7 minutes, i.e. almost 40% of the mean value of
18.4 minutes. This is not negligible, so the distribution
of waiting times should not be neglected a priori. This
subsection reviews the waiting-time distribution for this
system and its front speed [21].

As mentioned above, the experimental data in Fig. 12
were obtained for an homogeneous medium of cells in-
fected at t = 0. Then, since each virus disappears and
gives rise to a progeny (or yield) of Y viruses after a
time T with probability ϕ(T ), obviously the concentra-
tion of viruses will in that experiment evolve according
to

V = Vt=0 +

∫ t

0

dT ϕ(T )(Y − 1)Vt=0, (138)

so that the waiting-time probability distribution can be
obtained from the curve in Fig. 12 as

ϕ(T ) =
1

Vt=0(Y − 1)

dV

dt
. (139)

The inset in Fig. 12 shows the time derivative of the
main Fig. 12 (full curve), and a Gaussian fitted by least-
squares (dotted curve). It is seen that a Gaussian is a
very good description of the waiting-time distribution of
these viruses. Therefore, here we will use a Gaussian
waiting-time distribution,

ϕ(T ) =




A exp

[
−
(
T−〈T 〉
B

)2]
if T ≥ 0,

0 if T < 0,
(140)

so that the normalization constant (i.e., the value of A
such that

∫∞
0 dT ϕ(T ) = 1) and the mean squared wait-

ing time
〈
T 2
〉

are, respectively,

A =
2

B
√
π
(
1 +Erf

[
〈T 〉
B

]) (141)

〈
T 2
〉

=

∫ ∞

0

dT ϕ(T )T 2 =
B2

2
+ 〈T 〉2

+
B√
π

〈T 〉
1 +Erf

[
〈T 〉
B

] exp

[
−〈T 〉

2

B2

]
, (142)

where Erf [z] ≡ 2√
π

∫∞
0

exp[−t2]dt is the error function.

The former results become much simpler if we con-
sider the special case that all viruses have a waiting time
substantially different from zero. In other words, if we
consider the case in which the time between the arrival of
a virus and the departure of its progeny is not negligible
for any of the viruses (below we shall see that this is in-
deed realistic). Intuitively, we may express this condition
by means of the mathematical inequality

ϕ(T = 0) = A exp

[
−
(〈T 〉
B

)2
]

≪ ϕmax = ϕ(T = 〈T 〉) = A, (143)

or

exp

[
−
(〈T 〉
B

)2
]
≪ 1. (144)

In this special case, the first line in Eq. (140) is approx-
imately zero for T < 0, and we may approximate the
normalization condition as follows

1 =

∫ ∞

0

dT ϕ(T ) ≃
∫ ∞

−∞
dT A exp

[
−
(
T − 〈T 〉

B

)2
]
,

(145)

which yields

A ≃ 1

B
√
π
, (146)

and Eq. (142) becomes the very simple expression

〈
T 2
〉
≃
∫∞
−∞ dT A exp

[
−
(
T−〈T 〉
B

)2]

= B2

2 + 〈T 〉2 ,
(147)

which below we shall see that is realistic and very useful.
The Gaussian curve fitted to Eq. (140) is shown as a

dotted curve in the inset in Fig. 12. It has the para-
meter values 〈T 〉 = 18.38 min and B =1.634 min. Using
these values into Eq. (142) yields

〈
T 2
〉

= 339.1 min2.
The same result can be found from the approximation

(147) [because for these values exp

[
−
(
〈T 〉
B

)2]
∼ 10−55,
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so that the condition (144) holds]. Then, using Eq. (129)

we can estimate the effective waiting time, T̃ = 18.31
min.

For virus infections the diffusion coefficient D must
be replaced by an effective one to take into account the
presence of bacteria (which hinder virus diffusion, given
by Fricke’s equation [107]

Deff =
1− f

1 + f
x

D, (148)

where x takes proper care of the bacterial shape (for E.
Coli x ≃ 1.67 [5]) and f = B0/Bmax is the concentra-
tion of bacteria relative to its maximum possible value
(B0 is the initial bacteria concentration far from the in-
oculation origin, and it depends on the initial nutrient
concentration).

The uninfected bacteria number density B(x, y, t) and
infected bacteria density I(x, y, t) evolve according to the
following well-known equations

∂B

∂t
= −k1V B, (149)

∂I

∂t
= k1V B − k2I

(
1− I

Imax

)
, (150)

where k1is the rate constant of the virus adsorption re-
action [V +B → I], k2 the rate constant of the infected
bacteria lysis reaction [I → Y · V ] and Imax the satura-
tion density of infected cells, so the reaction kinetics for
viruses is

F (x, y, t) = −k1V B + Y k2I

(
1− I

Imax

)
. (151)

Therefore, using the HRD Eq. (130) we have a system
of three simultaneous partial differential equations,

Vt +
T̃

2
Vtt = DeffVrr − k1

{
V B +

T̃

2
(V B)t

}
+

Y k2

{
I

(
1− I

Imax

)
+
T̃

2

[
I

(
1− I

Imax

)]

t

}

Bt = −k1V B,

It = k1V B − k2I

(
1− I

Imax

)
, (152)

which generalize those considered in Ref. [5], where a
single delay (i.e., a Dirac delta distribution for ϕ(T )) was
considered.

The solution obtained by linearization in the front
frame z ≡ r − ct → ∞, (V,B, I) = (εV , εB, εI) =
−→ε0 exp[−λz] ≃ (0, B0, 0), is obtained by requiring the de-
terminant of the matrix corresponding to the linearized
form of Eqs. (152) to vanish. This yields

0 = (−1 +
˜̃
T

2
c̄2)c̄λ3 +


−1 +


1 +

˜̃
T

2
(κ1 + 1)


 c2


λ2

+


κ1c


1−

˜̃
T

2
(Y − 1)


+ c


λ− κ1 (Y − 1) , (153)

where κ1 ≡ k1B0/k2 and
˜̃
T ≡ T̃ k2 are dimension-

less parameters. This equation can be solved numeri-
cally in order to find out the dimensionless front speed
c̄ ≡ c/

√
Deffk2 such that c̄ = minλ>0 [c̄(λ)] , where c̄(λ)

is given by characteristic equation (153). Using the rest
of the parameter values from the literature [5] and solv-
ing Eq. (153) numerically gives the virus front speed
the predictions shown in Fig. 13 (curves), which agree
well with the experimental data from Refs. [108,70,109]
(symbols). No free or adjustable parameters have been
used.

From Fig. 13 it is clear that physical models can ex-
plain the virus front experiments, contrary to the wide-
spread misbelief that they are driven by unknown bio-
logical factors [109]. Very recently, the conditions under
which the shape of ϕ(T ) has an important effect on the
front speeds have been analyzed in detail [21]. Also, ap-
proximate explicit formulae for the front speed have been
recently derived [39].

Future research topics on this area could include (i)
computing virus concentration profiles, and (ii) analyzing
the transient after which a mutation induces a change in
the front speed. For both processes, there are experimen-
tal data available and models similar to that presented
here could be applied.

We stress that the general framework in Sec. VI.A can
be applied to any waiting-time distribution function.

D. Cancer tumors and anomalous transport

Fedotov and Iomin have recently applied exponential
and anomalous waiting-time distributions to model can-
cerous growth [44]. Experimental evidence shows the
lower proliferation rate of migratory cells. This is mod-
elled by means of two mutually exclusive cell states, one
of them corresponding to migration (state 1) and the
other one to proliferation (state 2). Fedotov and Iomin
assume that a cell remains in state 1 during a waiting
time T1 and then switches to state 2. After a waiting
time T2, it switches again to state 1. They derive front
speeds in one-dimensional (1D) space for two kinds of
waiting-time distributions.

(i) Exponential waiting-time distributions

ϕ(Ti) = βi exp(−βiTi), (154)

where βi is the switching rate from state i into the other
state. Then the evolution equation of the migratory cells
(with density n1) is
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∂n1
∂t

= D
∂2n1
∂x2

− β1n1 + β2n2, (155)

where n2 is the density of cells in the proliferation state.
(ii) The case in which the function Ψ(t), defined by Eq.

(122), is of the form

Ψ(t) ∼ t−1−γ(0 < γ < 1). (156)

This second case corresponds to anomalous transport (di-
verging mean waiting time 〈T 〉 ), leading to fractional
derivatives for the temporal operator, and it slows down
of the cancer spreading rate [44]. Anomalous reaction-
diffusion equations are also discussed in Ref. [26] for
power-law waiting-time distributions ϕ(T ).

This is a field of research to which physical models
can make in the future additional interesting contribu-
tions, e.g. (i) extending such 1D approaches to more
dimensions, and (ii) determining the parameter values
from independent observations to perform quantitative
predictions for the front speed.

Anomalous transport can also arise in the form of di-
vergent second-order moments

〈
∆2
〉

from a power-law
dispersion kernel (Lévy flights), leading to fractional spa-
tial derivatives [27]. Such kernels are not physically re-
alistic (because in real systems arbitrarily large jumps
are always truncated). But fractional derivatives aris-
ing from such kernels can provide a realistic description
during a transient time, before the effect of the trun-
cation becomes important [103]. Similarly, a waiting-
time distribution must be always truncated in real sys-
tems (because arbitrarily long waiting times are not pos-
sible). Therefore, fractional temporal derivatives aris-
ing from such distributions may again be useful in the
description of transient effects. Finally, very recently
dynamics compatible with fractional temporal deriva-
tives have been experimentally observed in the long-time
regime by analyzing the paths of migrating cells [110].
However, it must be stressed that such anomalous diffu-
sion effects (e.g., the mean-squared displacement

〈
r2(t)

〉

not being proportional to time) do not necessarily im-
ply infinite, non-physical values for some moments (〈T 〉,〈
∆2
〉
, etc.) neither fractional-derivative equations (be-

cause they are also predicted by other kinds of evolution
equations [111]).

VII. SEQUENTIAL MODELS

A. Temporal order of reproduction and dispersal

As surveyed in the previous sections, a lot of work
has been done based on models derived from the general
evolution equation (1). Such models are appropriate for
many physical systems (e.g., combustion flames) as well
as for biological species such that their dispersion and
reproduction are simultaneous and independent. How-
ever, this is not the case in some important biophysical

phenomena. For example, consider the dispersal of seeds
from trees. Such dispersal takes place during a specific
period of the year only (e.g., fall), always immediately af-
ter reproduction (seed production). Then, dispersal and
reproduction are clearly neither simultaneous nor inde-
pendent. For this reason, the following time-ordered (or
sequential) evolution equation for the adult tree number
density must be used [112,113], instead of Eq. (1),

p(x, y, t+ T ) = R0

∫+∞
−∞

∫ +∞
−∞ p(x−△x, y −△y, t)

φ(△x,△y)d△x d△y,

(157)

where R0 is the net reproductive rate (number of seeds
per parent tree and year which survive into an adult tree)
and T is the generation time. Note that the difference
with nonsequential models is that the reproduction rate
appears multiplicatively in Eq. (157) rather than addi-
tively as in the nonsequential Eq. (1).

Another way to introduce this important equation is
depicted in Fig. 14. Equation (157) is more realistic
than (1) because, as shown in Fig. 14(b), according to
(157) seeds (empty circles) are dispersed away from their
parent tree (full circle), which does not move. In contrast,
as Fig. 14(a) shows, non-sequential models based on Eq.
(1) assume that (i) trees move away and (ii) seeds stay
at the original location of their parent tree.

Equation (157) and Fig. 14 (b) are exact only for
species with non-overlapping generations (i.e., such that
parent trees reproduce only once and then die) [112,113].
But previous results in one-dimensional (1D) space show
that substantially more complicated models (with over-
lapping generations) do not change the order of magni-
tude of the front speed [114,115], so the approximate Eq.
(157) has been applied in recent work [12,25,11,35].

It has been noted that a macroscopic derivation of
sequential models (analogous to Sec. II.B for non-
sequential models) does not seem possible [12]. The rea-
son is that physical macroscopic equations (Sec. II.B and
Fig. 14(a)) do not take into account the fact that in bi-
ological populations, it is usually the new generation of
individuals that disperses away (Fig. 14(b)). Indeed, this
is the main feature of sequential models (Eq. (157)).

Appendix B contains an age-structured derivation of
the sequential evolution Eq. (157).

The front speed problem for Eq. (157) is well-known in
1D space [112—114]. In subsections B-C below, we shall
review some recent results in 2D space and a specific 2D
application [11].

B. Application to Reid’s paradox

Consider an isotropic kernel, i.e. such that φ(△x,△y)
depends only on

△ ≡
√
△2
x +△2

y. (158)
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Obviously the normalization of probability requires that

∫ ∞

−∞

∫ ∞

−∞
d∆xd∆y φ(∆) = 2π

∫ ∞

0

d∆ ∆ φ(∆) = 1

(159)

and this dispersal probability per unit area φ(∆) (i.e.
into a rectangular area d∆xd∆y) is related to that per
unit length ϕ(∆) (i.e. into a 2D ring of area 2π∆d∆) as

ϕ(∆) = 2π∆φ(∆), (160)

with the normalization condition
∫ ∞

0

d∆ ϕ(△) = 1. (161)

This is useful because the measured or computed kernels
are usually ϕ(∆) rather than φ(∆) [116].

Bimodal kernels have two components,

ϕ(△) = pLϕL(△) + pSϕS(△), (162)

with pL the probability of long-distance dispersal (LDD)
and pS that of short-distance dispersal, and ϕi(△) the
corresponding kernels (i = L,S). It has been long sus-
pected that such kernels (with characteristic distances
differing by several orders of magnitude) may explain a
very important, unsolved biophysical problem, namely
the fact that the observed speeds of forest postglacial re-
colonization fronts are much faster than those predicted
by single-kernel reaction-dispersal models. This disagree-
ment is called Reid’s paradox [114]. Many authors have
shown that hypothetical LDD events could solve Reid’s
paradox [114] using kernels fitted to short-distance data
and purely hypothetical LDD events [114,97] (and al-
most always using 1D models). However, Nathan and co-
workers derived and tested very interesting kernels with
two components: a short-distance component ϕS(△) (of
the order of 10 meters) and a second, very rare, LDD
component ϕL(△) (covering distances of 103−104m, but
observed for only about 0.2% of seeds released from the
parent tree, so pL = 1−pS ≪ pS). They derived such bi-
modal kernels by means of fluid dynamics simulations
of atmospheric transport including turbulent-uplifting
events that had been previously neglected. They also
checked their new kernels by comparing predicted ver-
tical deposition patterns and uplifting probabilities to
observed data [116—118]. This opened the possibility to
explain Reid’s paradox using kernels which are not hypo-
thetical, but derived from physical principles. Recently,
front speed formulae for such complex kernels have been
derived and tested by 2D simulations of reactive random
walks on grids, showing that the predicted front speeds
are about 102 − 103 m/yr (which are two orders of mag-
nitude higher than those obtained neglecting the LDD
component, i.e. for ϕS(△)) [11]. This possible solution
to Reid’s paradox is reviewed below.

1. Continuous-space random walk (CSRW) model

As in section II.C, assume that for t → ∞ the front
is approximately planar at scales much larger than that
of individual dispersal events, so that we can choose the
x−axis parallel to the local velocity of the front. Let
c ≡ |cx| stand for this speed (cy = 0 in the local frame
just introduced). We look for constant-shape solutions
with the form p = p0 exp[−λ (x− ct)] as x − ct → ∞
and, again, assume that the minimum speed is the one
of the front (we will check this assumption by means of
numerical simulations in Fig. 15). Then Eq. (157) leads
to the asymptotic (t→∞) speed of 2D fronts

c = min
λ>0

ln [R0 ϕ̂(λ)]

λT
, (163)

where the minimization is relative to λ,

ϕ̂(λ) ≡
∫ ∞

0

d∆ ϕ(∆) I0(λ∆), (164)

and

I0(λ∆) ≡ 1

2π

∫ 2π

0

dθ exp [λ∆cos θ] (165)

is the modified Bessel function of the first kind and order
zero. The kernel per unit length ϕ(∆) is related to that
per unit area φ(∆) by Eq. (160).

It is worth to mention that a lot of work on Reid’s
paradox [114,97] has applied the corresponding 1D result
instead of Eqs. (163)-(165). In fact, it is easy to see
that in 1D an equation similar to (163) holds but Eqs.
(164)-(165) do not. Thus, the speed c is different in 1D
than in 2D. Indeed, it has been shown recently that the
2D speed is always slower than in 1D one for the same
kernel ϕ(△) provided that it is isotropic [11]. Since in
this review we are interested in Reid’s paradox, which
refers to forest range expansions that took place in 2D,
we will focus on the 2D case here (a comparison to 1D
speeds will be included only in Fig. 15).

2. Reactive random-walk simulations on grids

Now we are not dealing with a differential equation,
such as Eq. (1), but with an integrodifference equation
in 2D, Eq. (157). Therefore, in sharp contrast to Sec.
V (combustion flames) and previous work [1], numerical
simulations here cannot use finite-step approximations
to derivatives. Thus, recent work [11,12,25] uses simu-
lations that may be called of random-walk or molecular
dynamics type (or cellular automata, in the continuous
limit for the possible values of p(x, y, t)). Such simula-
tions are performed on a 2D grid, with nearest neigh-
bors separated by a distance D. Initially p(x, y, 0) = 1 at
(x, y) = (0, 0) and 0 elsewhere. At each time step, the
new number density of trees p(x, y, t+ T ) at all nodes of
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the 2D grid is computed as follows. In agreement with
Eq. (157), the seed production R0p(x, y, t) at every node
is computed [119] and then redistributed among all grid
nodes using the kernel φ(∆). Such 2D simulations have
been performed [11] for values of R0 and T typical of the
yellow poplar (Liriodendron tulipifera) [120], because the
long- and short-distance kernel components [ϕS(∆) and
ϕL(∆), respectively] of this tree species were determined
[116].

Consider first a very simple, short-distance unimodal
kernel ϕS(∆) such that is approximately constant for dis-
persal distances ∆ < 15 m and zero for ∆ > 15 m [116].
Using a 2D grid with nearest neighbors separated by a
distanceD = 1 m, the simulations agree with the CSRW,
as shown in Fig. 15 [121]. This shows (i) the validity of
the minimum-speed conjecture [122], and (ii) the need to
take Eq. (160) into account in the simulations [123]. But
ϕS(∆) is a unimodal kernel. For bimodal ones the time
required for the simulations is prohibitively long [124].
Therefore, molecular dynamics simulations are not prac-
tical to test the 2D analytical result (163) for bimodal
kernels. In the next section we review a fast, efficient ap-
proach to test whether Eq. (163) holds or not for bimodal
kernels [11].

3. Discrete-space random walk (DSRW) model

This model is not exact. But it is necessary to check
the CSRW model for bimodal kernels. The DSRW is
closely analogous to the numerical simulations, in the
following sense. Both in the DSRW and the simulations,
the 2D continuous space is replaced by a grid of points
(nodes) with nearest neighbors separated by a distance
D along the x and y axes. The nodes are the only points
available for seeds and trees. First consider the very
simple, highly-idealized case in which any tree disperses
seeds only to its 8 nearest neighbors on the grid. Obvi-
ously, these 8 final dispersal nodes lie on a square with
side 2D and center at the parent tree, as follows. The
closest 4 nodes are a distance ±D away along the x or
y directions, and the next 4 are at distance ±D away
along both directions, i.e. on the vertices of the square
(at distance

√
D2 +D2 = D

√
2 from the parent tree).

Then Eq. (157) becomes simply

p(x, y, t+ T ) = R0

{
P (D)

4
[p(x−D, y, t)

+p(x+D, y, t)

+p(x, y −D, t)

+p(x, y +D, t)]

+
P (D

√
2)

4
[p(x−D, y −D, t) (166)

+p(x−D, y +D, t)

+p(x+D, y −D, t)

+p(x+D, y +D, t)]} ,

where the first 4 terms correspond to horizontal and ver-
tical ’jumps’, whereas the last 4 terms are due to diagonal
jumps, and the jump probabilities are, from Eq. (160),

P (∆i) =
φ(∆i)∑n
j=1 φ(∆j)

=
ϕ(∆i)/(2π∆i)∑
j ϕ(∆j)/(2π∆j)

. (167)

For the simple case of Eq. (166), n = 2 and the only
possible dispersal distances are ∆1 = D and ∆2 = D

√
2.

To derive the speed, we use again the same approach
as that applied to the CSRW model above, but now to
the DSRW Eq. (166). This yields

c = min
λ>0

ln
[
R0

(
P (D) [cosh(λD)+1]

2 + P (D
√

2) cosh(λD)
)]

λT
.

(168)

Note that Eq. (168) is a very simple approxima-
tion (DSRW) but is completely analogous to the exact
(CSRW) speed (163). It has been found (e.g., for ϕS(∆)
above) that this extremely simple DSRW yields a speed
(168) which disagrees with that from the CSRW [11].
Therefore, consider dispersal to nodes not on a single,
but on many squares (j = 1, 2, 3...) centered at each par-
ent tree. A square with side 2jD will obviously have 8j
nodes, namely 4 at distance jD, 4 at distance jD

√
2,

and also (except for the simple case j = 1 above) 8 nodes

at distance
√

(jD)2 + (iD)2 for i = 1, 2, ..., j − 1. Fi-
nally, in order to use the measured kernels [116] we need
to restrict dispersal to a maximum distance in whatever
direction, rmax. Then it is not difficult to write the ana-
logue to Eq. (166) for bimodal kernels (162) and see that
the speed (168) is generalized into

c = min
λ>0

1

λT
ln


R0 pL

NL∑

j=0

(PL(jDL)

[cosh(λjDL) + 1]

2
+ PL(jDL

√
2) cosh(λjDL) +

j−1∑

i=1[
PL

(√
(jDL)2 + (iDL)2

) cosh(λiDL) + cosh(λjDL)

2

])

+pS

NS∑

j=0

(PS(jDS) (169)

[cosh(λjDS) + 1]

2
+ PS(jDS

√
2) cosh(λjDS) +

j−1∑

i=1[
PS

(√
(jDS)2 + (iDS)2

) cosh(λiDS) + cosh(λjDS)

2

])]
,

where NL = rmaxL/DL, NS = rmaxS/DS, and the terms

with
√

(jDS)2 + (iDS)2 arise from jumps in directions
different from 0o, ±45o, 180o and±90o. The probabilities
are related by Eq. (167) to the corresponding dispersion
kernel, for example
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PL(jDL) = ϕL(jDL)
2πjDL

/

∑NL

j

[
ϕL(jDL)
2πjDL

+ ϕL(jDL

√
2)

2πjDL

√
2

+
∑j−1

i=1

ϕL
(√

(jDS)2+(iDS)2
)

2π
√

(jDS)2+(iDS)2

]
.

(170)

For the yellow poplar (Liriodendron tulipifera), the
LDD component of the kernel derived (and favorably
compared to observations) in Refs. [116—118] can be fit-
ted to a curve of the form

ϕL(∆) =





0 ∆ < 103m
103.903∆−2.301 103m ≤ ∆ ≤ 104m
0 ∆ > 104m,

(171)

so rmaxL = 104m, whereas, as mentioned above, its
short-distance component ϕS(∆) can be taken as approx-
imately constant for ∆ < 15 m and zero for ∆ > 15 m,
so rmaxS = 15 m.

4. Propagation speeds

Figure 16 presents the results for the bimodal kernel
(162), where pL = 0.00202 and pS = 1 − pL are the
probabilities of long-distance and short-distance disper-
sal (obtained from Ref. [116]). The results for the uni-
modal kernels ϕL(r) and ϕS(r) are also presented for
comparison.

Both the 2D DSRW and the 2D CSRW models show
conclusively that the front speeds for the bimodal ker-
nels (162), using the parameter values derived in [116],
are about 102 − 103 m/yr, i.e. two orders of magnitude
faster than those for the unimodal, short-range compo-
nent ϕS(r) (Fig. 16). Speeds of 102 − 103 m/yr are, in
fact, those required to solve Reid’s paradox [114].

Note from the upper curve in Fig. 16 (100% of seeds
with LDD, ϕL) that the same order of magnitude (102

m/yr) is obtained as with only 0.2% of seeds with LDD
(middle curve).

It is worth to stress that short-distance kernels ϕS(r)
have been measured experimentally many times. But bi-
modal kernels with a long-distance dispersal (LDD) com-
ponent ϕL(r) were derived by a mechanistic (or physical)
model for the first time in Ref. [116].

We close this section with the conclusion [11] that Rei-
d’s paradox of rapid forest range expansions can be solved
(as far as the order of magnitude is concerned), by tak-
ing into account the bimodal dispersal kernels derived
and favorably compared to data in Refs. [116—118].

Similar results (and detailed comparisons between pre-
dicted speeds in 2D and 1D) have been very recently ob-
tained for a list of tree species such that their invasion
spread rates have been measured from the paleorecord
(using reproductive rates and dispersal kernels appropri-
ate to each species). The predicted rates are again of
similar magnitude to the measured ones [35].

VIII. COHABITATION MODELS

A. Special features of human populations

In section II we have introduced non-sequential models
(see Fig. 14(a) and Eq. (1)). They are useful in many
physical and biophysical systems. But in Sec. VII we
have reviewed the fact that such models are known to
be inappropriate in some cases (e.g. for tree species).
Then sequential models can be applied [97,112—114] (see
Fig. 14(b) and Eq. (157)). This crucial point shows the
importance of taking into account biological factors when
applying physical models to systems composed of living
organisms.

In some cases further considerations are necessary. For
example, consider human populations. Non-sequential
models based on Eq. (1) have a drawback because they
would imply that newborn children (empty circles in Fig.
14(a)) stay at their birth location, whereas their parents
(full circles) migrate away from them. A more realistic
framework is provided by sequential models based on Eq.
(157), because according to them migrating parents live
at their final location with their newborn children (Fig.
14(b)). But below we will see that a more detailed dis-
cussion is necessary before applying Eq. (157) to human
populations.

As explained in Sec. VII.A, the non-overlapping gen-
erations model (Fig. 14(b)) does not take into account
the yearly reproduction and dispersal of seeds: all trees
reproduced only once and then die. Also, the time step
is one generation, and it is the same for all trees (e.g.
T = 20 yr for the yellow poplar, from the previous sec-
tion). Similarly we can consider (again as an approxima-
tion) a model in which all humans take the same time
interval to reproduce (e.g. T =32 yr, from Sec. VI.B).
But there is a fundamental difference between trees and
humans. Trees produce seeds at the location of the par-
ent tree, and the parent tree cannot move. In contrast,
humans can have children not only before migration, but
also after or during it (Fig. 17). Mathematically, we have
the following three main cases.

(a) Migration before reproduction (Fig. 17(a)). The
evolution equation is

p(x, y, t+ T ) =

∫ +∞

−∞

∫ +∞

−∞
p(x−△x, y −△y, t)

φ(△x,△y)d△x d△y

+R

[∫ +∞

−∞

∫ +∞

−∞
p(x−△x, y −△y, t) (172)

φ(△x,△y)d△x d△y] ,

with R [...] an appropriate reproduction function (as dis-
cussed below). The first term in the RHS corresponds to
the parents (black circles in Fig. 17(a)) and the last one
to their children (empty circles). Note that the integral
within the parentheses [...] gives the population density
at the arrival location.
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(b) Reproduction before migration. Then the appro-
priate equation is (see Fig. 17(b))

p(x, y, t+ T ) =

∫ +∞

−∞

∫ +∞

−∞
p(x−△x, y −△y, t)

φ(△x,△y)d△x d△y

+

∫ +∞

−∞

∫ +∞

−∞
R [p(x−△x, y −△y, t) ] (173)

φ(△x,△y)d△x d△y.

Now within the parentheses [...] the population density
at the origin location appears (instead of an integral).

(c) Reproduction during migration. None of the former
two equations applies in general. Instead, according to
Fig. 17(c) [125]

p(x, y, t+ T ) =

∫ +∞

−∞

∫ +∞

−∞
p(x−△x, y −△y, t)

φ(△x,△y)d△x d△y

+

∫ +∞

−∞

∫ +∞

−∞
R [p(x′, y′, t′) ] (174)

φ(△x,△y)d△x d△y.

Consider the following reproduction function [16],

R [p(x, y, t)] =

{
(R0 − 1) p(x, y, t) if p < pmax

0 if p ≥ pmax
.

(175)

If the net reproduction rate R0 is assumed to be inde-
pendent of the jump length vector (△x,△y), position
(x, y) and time t, then at the leading edge of the front
(p≪ pmax) all three cases yield the same linearized equa-
tion, namely

p(x, y, t+ T ) = R0

∫ +∞
−∞

∫+∞
−∞ p(x−△x, y −△y, t)

φ(△x,△y)d△x d△y,

(176)

so the front speed will be the same for the three cases
above [126].

Obviously, Eq. (176) is nothing but Eq. (157). There-
fore, although some species (e.g., humans) have special
features relative to those considered in the previous sec-
tion (e.g., trees), the former careful analysis shows that it
is still reasonable to apply Eq. (157) if the net reproduc-
tion rate R0 is constant [16]. But in the case of human
populations it seems clearer to refer to Eq. (176) as a co-
habitation model, rather than a sequential one (because
unlike trees, for humans the time order of reproduction
and dispersal is not fixed, see Fig. 17). The term cohab-
itation refers to the fact that newborn children have to
spend some time with their parents until they can survive
on their own, a behavior that is not captured by classical
models (Fig. 14(a) and Secs. II-III). Below we review
some recent work on this topic [12,16,25].

B. Cohabitation reaction-diffusion (CRD) fronts

Performing Taylor expansions up to second order in
space and time, Eq. (176) becomes

1−R0

T
p+ pt +

T

2
ptt = R0 (−Uxpx − Uypy

+UxyPxy +Dxpxx +Dypyy) , (177)

where Ux, Uy, Dx, Dy and Uxy are given by Eqs. (4)-(6).
Equation (177) is a cohabitation analogue to Eq. (2).
As in Sec. II.C, we look for solutions with the form

p = p0 exp[−λ (x− ct)] as x − ct → ∞, with c > 0 and
λ > 0. Then Eq. (177) yields the characteristic equation

λ2
(
DxR0 −

Tc2

2

)
+ λ (−c+ UxR0) +

R0 − 1

T
= 0.

(178)

Solving this equation for λ and requiring for it to be real,
we obtain the condition

g(c) ≡ c2 (1 + 2 (R0 − 1))− 2cUxR0

+U2
xR

2
0 − 4R0

R0−1
T Dx ≥ 0.

(179)

It is easily seen that g(c) is convex from below, and that
the equation g(c) = 0 has one negative and one positive
root for c, say c− and c+. Therefore, the minimum pos-
sible value for c > 0 corresponds to c+, and we finally
obtain the speed

c =
R0Ux +

√
R0 (R0 − 1)

[
4
T (2R0 − 1)Dx − 2R0Ux

]

(2R0 − 1)
.

(180)

For the special case of a non-biased random walk, this
becomes

lim c
Ux → 0

=

√
4R0D

T

R0 − 1

2R0 − 1
, (181)

where we have introduced D ≡ Dx.
In order to compare to the non-cohabitation model in

Secs. II-III, it is necessary to establish the connection
between the low-density population number growth pa-
rameters, namely rL (see Eq. (12)) in classical models
and R0 (see Eq. (176)) in cohabitation models. This
relationship can be obtained most easily as follows. In
the absence of dispersal, the classical model becomes the
logistic equation (237). For low values of p(x, y, t), it
yields

p(x, y, t+ T ) = p(x, y, t) exp[rLT ], (182)

whereas, also in the absence of dispersal, φ(△x,△y) is a
Dirac delta centered at the origin and the cohabitation
Eq. (176) becomes
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p(x, y, t+ T ) = R0p(x, y, t), (183)

so that the reproduction function (175) and the logistic
(12) are consistent with each other at low values of the
population density, provided that

rL =
1

T
lnR0. (184)

On the other hand, the reproduction function (175)
and the logistic (12) will give different results for high
values of the population density p(x, y, t). However, the
high-density behavior is not accurately known for biolog-
ical populations outside the laboratory, because there are
no experimentally well-established trends in the popula-
tion numbers versus time (except at low population den-
sities) [53]. Moreover, the high-p behavior of reproduc-
tion does not affect the speed of fronts, as is obvious from
both the sequential speed (180) and the non-cohabitation
one (17).

Although a comparison to the non-cohabitation model
does not seem possible for an arbitrary bias Ux [127], it
is possible in the non-biased limit (Ux = 0). For this pur-
pose, using Eq. (184) into (181) it is easily seen that the
speed from the cohabitation or sequential model (181)
will be higher than that from the classical model, Eq.
(18), provided that

exp[τ ](exp[τ ]− 1)(1 + τ/2)2 − τ(2 exp[τ ]− 1) > 0,

(185)

where τ ≡ TrL > 0. Plotting the left-hand-side for τ > 0,
it is easily seen that this condition is always fulfilled. The
physical interpretation is that the classical model corre-
sponds to simultaneous dispersal and reproduction (Fig.
14(a)). Intuitively, this should clearly lead to slower in-
vasion fronts that the sequential or cohabitation model
(Fig. 14(b)). This is the physical interpretation of the
fact that cohabitation models lead to faster front speeds
than classical ones.

C. European invasion of North America in the XIX
century

In Fig. 18 we present the speeds predicted by the non-
cohabitation model (Eq. (17), lower curve, also shown in
Fig. 1) and the cohabitation model (Eq. (180), upper
curve) as a function of the random walk bias β, see Eq.
(33).

In Fig. 18, the non-cohabitation model seems compat-
ible with the observed speed for high enough values of β,
whereas the cohabitation model seems not. In principle,
we expected the cohabitation model to perform better
than the classical model for this application (because it
involves a biological population). But from Fig. 18, it
appears that it does not [12]. However, this may be too
strong a conclusion in view of the uncertainty of the val-
ues of the parameters. We think that dispersion data in

many directions should be analyzed in order to estimate
the mobility (Dx) and bias (Ux) parameters for this hu-
man population accurately, as well as their error ranges
and their dependence on position. This would yield a
nonhomogeneous framework which, in contrast to that
in Ref. [60], would be free of some relatively strong as-
sumptions (e.g., the fractal nature of pathways, the use of
adjustable parameters, etc.). Such a project would cer-
tainly require very tedious work and discussions, which
we feel more appropriate for a specialized demography
publication. In this review, our aim is not to present
an in-depth analysis of the demographic data. Rather,
the main point is to show that cohabitation models can
be useful to describe such kind of biophysical processes.
Indeed, they yield quite different speeds than classical
models (Fig. 18). We also think that this is an im-
portant lesson showing that physical models cannot be
applied straightforwardly to systems of living individu-
als without taking proper care of their biological features
(e.g., sequential reproduction and dispersion for trees;
cohabitation of non-adults with adults for humans; etc.).

D. The Neolithic transition in Europe

Here we summarize some recent work on cohabitation
models beyond the CRD (or second-order) approxima-
tion [Eqs. (177)-(181)], and their application to the Ne-
olithic transition [16].

1. Continuous-space random walk (CSRW) model

As stressed above, the final cohabitation equation
(176) is the same as the sequential one (157). Therefore,
Eqs. (163)-(165) can be applied. In order to perform the
integrals in Eqs. (163)-(165), an expression for the ker-
nel ϕ(△) is necessary. There are many possible choices
of the kernel. For the purposes of this subsection, it will
be clearer to assume simply that an individual will either
remain at rest (with probability pe, which is called the
persistence in demography) or move a distance r (with
probability 1− pe),

ϕ(△) = peδ
(1)(∆) + (1− pe)δ

(1)(∆− r), (186)

where δ(1)(∆ − r) is the 1-dimensional Dirac delta cen-
tered at ∆ = r. Hence, this simple model assumes that
all moving individuals travel the same distance r. This
makes it possible to find relatively simple analytical re-
sults and to run relatively fast random-walk simulations.

Performing the integrals in Eqs. (163)-(165), an ex-
plicit expression for the speed is obtained,

c = min
λ>0

ln [R0 (pe + (1− pe)I0 (λr))]

Tλ
, (187)
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where the minimization is relative to λ, I0(λr) is the
modified Bessel function of the first kind and order zero,
given by Eq. (165).

Figure 19 shows the speed predicted by the CSRW (full
line), Eq. (187), for the following values of T , R0, pe and
r typical of human Neolithic populations. The gener-
ation time is T = 1 generation= 32 yr (see Eq. (137)).
The net reproductive rate R0 can be estimated from pop-
ulation numbers versus time for two human populations
that settled in previously unpopulated areas [128]. What
is impressive of those data is that, when plotted against
the elapsed time in generations, both datasets yield al-
most exactly the same curve of population number P (t)
(divided by its initial value) versus time. From those
data and Eq. (176) integrated over the area available,
we can estimate the value of R0 = P (t + T )/P (t) for
several values of t = T, 2T, 3T... This yields an average
of R0 = 2.2. The lowest value is R0 = 1.9, and the high-
est one is R0 = 2.6. Thus, in Fig. 19 we compute front
speeds for values of R0 in the range 1.6 − 3.0. On the
other hand, the population persistence pe (i.e., the frac-
tion of the population that does not move appreciably)
can be estimated directly from the mobility data in Ref.
[100], p. 139, for three different populations of preindus-
trial agriculturalists. The corresponding values of pe are
0.54, 0.40 and 0.19. In Fig. 19, we use the mean value
pe = 0.38 (the dependence of the front speed of pe shall
be analyzed later, in Fig. 21). Finally, the value of r is
estimated directly from that of the persistence and the
mean-squared displacement [129].

In Fig. 19, the front speed predicted by the CSRW
(full line), Eq. (187), is seen to increase with increasing
values of the population net reproductive rate R0, as ex-
pected intuitively. Before analyzing the implications for
the Neolithic transition and comparing to previous work,
we first review the use of numerical simulations in order
to check the validity of the result (187), which in turn
relies on several assumptions (as mentioned above).

2. Reactive random-walk simulations on grids

We consider a 2D grid with 103·103 nodes and initially
p(x, y, 0) = 1 at the central node and 0 elsewhere. At
each time step (corresponding to T = 1 generation), we
compute the new population number density p(x, y, t+T )
at all nodes of the 2D grid as follows.

(i) First we compute the new local population density
due to reproduction at every node as R0p(x, y, t) if this
result is lower than pmax (Eq. (176)) and pmax otherwise
(second line in Eq. (175)).

(ii) Then we redistribute this result among all grid
nodes using the kernel (186), i.e. we consider that a
fraction pe of the population stays at the original node,
and the remaining fraction is distributed equally among
the nearest neighbors, i.e. a fraction (1− pe)/4 jumps a
distance ±r along each horizontal or vertical direction.

In the horizontal/vertical directions, the speed ob-
tained from the simulations (circles in Fig. 19) is up to
5% higher than that predicted by the CSRW (full line).
But if we measure the speed along a diagonal (45o) direc-
tion (squares in Fig. 19), it is lower than the CSRW. The
average of both results (triangles) agrees within about 2%
with the analytical result from the CSRW (full line) [130].
Why does the speed from the random-walk simulations
depend on the direction? Because unlike the CSRW, they
are not isotropic (motion is only allowed in the horizontal
and vertical directions). As shown in Fig. 20, after two
generations (dashed arrows), the dispersal distance along
the diagonal direction (r

√
2) is lower than that in the hor-

izontal direction (2r). This is the intuitive reason why
the simulation speeds in the diagonal directions (squares
in Fig. 20) are lower than in the horizontal/vertical di-
rections (circles in Fig. 20). An analytical approach to
this problem is reviewed in the next subsection.

3. Discrete-space random walks (DSRWs)

Here we summarize a discrete-space model (similar to
that in Sec. VII.B.3 but for the kernel (186)) that is use-
ful in order to test direction-dependent speeds observed
in the simulations above [16].

First choose the X and Y axes shown in Fig. 20. Then,
for the kernel (186), particles can jump into point (x, y)
from points (x±r, y) and (x, y±r). Therefore, Eq. (176)
becomes

p(x, y, t+ T ) = R0

{
pep(x, y, t) + (1− pe)

[
1

4
p(x− r, y, t)

+
1

4
p(x+ r, y, t) +

1

4
p(x, y − r, t) (188)

+
1

4
p(x, y + r, t)

]}
.

As in Sec. II.C, we look for solutions with the form p =
p0 exp[−λ (x− ct)] and assume that the minimum speed
is the one of the front. In this way we obtain the speed

c = min
λ>0

ln
[
R0

(
pe+1
2 + 1−pe

2 cosh(λr)
)]

λT
, (189)

where the minimization is relative to λ. This equation
has no analytical solution. However, for given values of
R0, pe, r and T it is easy to find its minimum numer-
ically. In this way we obtain the x-crosses in Fig. 19.
They agree almost perfectly with the horizontal/vertical-
direction simulations, performed in the previous section
(circles in Fig. 19).

Now we choose X’ and Y’ axes shown in Fig. 20. Then,
for the same kernel, it is easily seen that particles can
jump into point (x′, y′) from points (x′ ± r√

2
, y′ ± r√

2
).

Therefore, instead of Eq. (188) we have
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p(x′, y′, t+ T ) = R0 {pep(x′, y′, t) + (1− pe)[
1

4
p(x′ +

r√
2
, y′ +

r√
2
, t)

+
1

4
p(x′ +

r√
2
, y′ − r√

2
, t) (190)

+
1

4
p(x′ − r√

2
, y′ +

r√
2
, t)

+
1

4
p(x′ − r√

2
, y′ −− r√

2
, t)

]}
.

which leads us, in the same way, to the speed

c = min
λ>0

ln
[
R0

(
pe + (1− pe) cosh(λ

r√
2
)
)]

λT
, (191)

instead of (189). This speed, shown as crosses (+) in
Fig. 19, agrees perfectly with the diagonal-direction sim-
ulations (squares in Fig. 19).

The agreement between the DSRW model and the sim-
ulations (Fig. 19) confirms the validity of the simulations
on grids reviewed in the previous subsection, as well as
the direction-dependence of the front speed on discrete
spaces for the kernel (186).

4. Propagation speed of the Neolithic transition

The front speed predicted from the second-order non-
cohabitation (HRD) approximation (20) and logistic pop-
ulation number growth (12) is given by Eq. (18),

cHRD =
2
√
rLD

1 + rLT/2
, (192)

where D is given by Eq. (19). The prediction from Eq.
(192) is shown in Fig. 19 as a dashed curve (HRD).
It is seen that this second-order (HRD) approximation
(which was derived and used in Ref. [4]) is not reliable,
since its predicted speed is up to 31% less than that of
the CSRW developed and tested above [131]. This shows
very clearly the limitations of the HRD equation in Ref.
[4], even for the very simple kernel considered (namely,
that in which all moving individuals jump the same dis-
tance). We stress that we have chosen this kernel because
we wanted to review the limitations of the approach in
Ref. [4] for a single, the simplest possible case. Clearly,
in future work it would be interesting to extend these
methods (CSRW, random-walk simulations on grids and
DSRWs) to a variety of kernels appropriate for preindus-
trial agriculturalist societies.

Previous work [4] did not consider explicitly that some
individuals or particles can remain at rest. Instead, all in-
formation about the dispersal kernel was ’averaged’ into
a single parameter, namely the diffusion coefficient (19).
Therefore, those models did not make it possible to ana-
lyze the effect of persistence on the predicted speed [132].

In contrast, the approaches reviewed above make this
possible [16]. In Fig. 21, we compare the CSRW and
simulation results for a range of values of the persistence
consistent with the observed intergenerational mobility
data of preindustrial farmers (see Sec. D.1 above).

Originally the speed of the Neolithic transition in Eu-
rope was estimated as 0.8-1.2 km/yr, using a dataset
of only 53 archaeological sites [133]. Over the years, a
much larger dataset has become available. Very recently,
the 95%-confidence level speed was estimated as 0.6-1.3
km/yr using a dataset of 735 sites [99]. The speeds pre-
dicted by the cohabitation, more accurate model (full
curves in Figs. 19 and 21) are consistent with this ob-
served range.

The reason why the speed increases with increasing
values of the persistence pe (Fig. 21) is that, for a given
value of the diffusion coefficient (19), a higher value of
the persistence implies that some individuals or fami-
lies move larger distances per generation -so the reac-
tion front moves faster, due to these long-range migration
events.

Figure 21 also shows that, over a wide range of persis-
tence values, there is again good agreement between the
CSRW model (full curves) and the random-walk simu-
lations (triangles), for three different values of the net
reproductive rate R0.

Finally, the second-order approximation to the CSRW
result is given by Eq. (181),

cCRD =

√√√√ 2R0D

T
(
1 + 1

2(R0−1)

) . (193)

This may be called the cohabitation reaction-diffusion
(CRD) speed, and is included in Figs. 19 and 21 (dashed-
dotted curves). It is a good approximation to the exact
cohabitation speed (CSRW, full curves in Figs. 19 and
21).

As in Fig. 19, we see from Fig. 21 that the HRD ap-
proximation (which was used in Ref. [4]) largely underes-
timates the results from the exact, cohabitation model.
Differences between the cohabitation model and the HRD
equation [4] are as large as 70% (see Fig. 21). This
percentage is important, and enough to be measurable,
because it is twice as large as the uncertainty in the ob-
served speed of the Neolithic front. Cohabitation models
are therefore relevant. Moreover, their interest is not
restricted to the Neolithic transition, because they can
be applied to other human range expansions, biological
invasions, the spread of epidemics and plagues, cultural
fronts, etc.

E. Several-population models

Interaction effects between several species or popula-
tion types lead to important changes in the dynamics
of physical, chemical and biophysical systems [1,98]. In
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this subsection we review recent work on such effects for
integro-difference evolution equations [25]. For definite-
ness we shall discuss them in the context of the Neolithic
transition.

1. Continuous-space random walk (CSRW) model

Let pN(x, y, t) stand for the population number den-
sity of the Neolithic population, per unit area centered
at position (x, y) and time t. The dispersal kernel
φN(△x,△y) is the probability per unit area that an indi-
vidual who was at (x−△x, y−△y, t) jumps to (x, y, t+T )
and T is the time interval between two subsequent jumps
(T = 1 generation ≃ 32 years, see Sec. VI.B). Let
RN [pN(x, y, t)] stand for the net effect of reproduction
(births minus deaths) of the Neolithic population during
the time interval T . The cohabitation evolution equation
(176) is generalized into

pN(x, y, t+ T ) = R0N

∫ +∞

−∞

∫ +∞

−∞
pN(x−△x, y −△y, t)

φN(△x,△y)d△x d△y

+Γ

∫ +∞

−∞

∫ +∞

−∞
(194)

pN(x−△x, y −△y, t)

pP (x−△x, y −△y, t)

φN(△x,△y) d△x d△y,

where the last term corresponds to the interaction (with
strength Γ) of the invading Neolithic humans with the
indigenous Paleolithics. The latter have number density
pP (x, y, t), driven by an analogous equation,

pP (x, y, t+ T ) = R0P

∫ +∞

−∞

∫ +∞

−∞
pP (x−△x, y −△y, t)

φP (△x,△y)d△x d△y

−Γ

∫ +∞

−∞

∫ +∞

−∞
(195)

pN(x−△x, y −△y, t)

pP (x−△x, y −△y, t)

φP (△x,△y) d△x d△y.

The interaction (last term in both equations) leads to an
increase in the population density of species N and a de-
crease in that of P (so we may represent this process as
N+P → N+N). This effect is observed in anthropology
and may be due to a variety of causes, such as interbreed-
ing or acculturation [98]. In any case, (i) parents will
not migrate away from their newborn children (cohabi-
tation), so that it is more appropriate to use an integral
over the dispersal kernel also for the interaction term; (ii)

the number of new N individuals at (x−△x, y −△y, t)
equals the number of P individuals disappearing at the
same space-time point, namely Γ pN(x −△x, y −△y, t)
pP (x−△x, y −△y, t).

For later use, we rewrite the previous set as

pN(x, y, t+ T ) = R0N

∫ +∞

−∞

∫ +∞

−∞
[1 + γ pP (x−△x, y −△y, t)]

pN(x−△x, y −△y, t) (196)

φN(△x,△y) d△x d△y,

pP (x, y, t+ T ) = R0P

∫ +∞

−∞

∫ +∞

−∞[
1− γR0N

R0P
pN(x−△x, y −△y, t)

]

pP (x−△x, y −△y, t) (197)

φP (△x,△y) d△x d△y,

where

γ ≡ Γ

R0N
. (198)

We assume that the invasion front of the population N
spreads in a region where the density of the indigenous
one P is initially equal to its maximum possible value,
pmax P . This is appropriate for the Neolithic transition
(i.e., the invasion of Neolithic farmers N into a space
populated by indigenous Paleolithic hunter-gatherers P )
[98]. Thus, in the leading edge of the invasion front we
may write

pN(x, y, t) ≃ ε(x, y, t) +O(2),

pP (x, y, t) ≃ pmax P − δ(x, y, t) +O(2), (199)

where O(2) stands for second and higher-order terms,

ε(x, y, t)≪ pmax N (200)

and

δ(x, y, t)≪ pmax P . (201)

Therefore, up to first order we have for the interaction
term

γ pN(x, y, t) pP (x, y, t) ≃ γ pN(x, y, t) pmax P +O(2).

(202)

Such an approach has been applied to several sets of evo-
lution equations [24,25,134]. It is useful here because it
reduces Eq. (196) to an evolution equation in which only
the variable pN(x, y, t) appears,

pN(x, y, t+ T ) ≃ R0N (1 + γ pmax P )
∫ +∞

−∞

∫ +∞

−∞
pN(x−△x, y −△y, t) (203)

φN(△x,△y) d△x d△y.
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The front speed of the invading species (farmers in
the case of the Neolithic transition) can be found most
easily as in Sec. II.C, i.e. by assuming that pN =
p0 exp[−λ (x− ct)] as x−ct→∞. For an isotropic kernel
φN(△), we obtain from Eq. (203)

exp [cTλ] = R0 (1 + γ pmax P ) (204)
∫ ∞

0

d∆∆φN(△)

∫ 2π

0

dθ exp [−λ∆cos θ] ,

where θ ≡ tan−1 △y

△x
. As in the previous subsection, we

are interested in the simplest possible kernel such that
we can derive analytical formulae, so we again assume
Eq. (186),

ϕN(△) = ϕP (△) = peδ
(1)(∆) + (1− pe)δ

(1)(∆− r),

(205)

where the kernel per unit length ϕ(∆) is related to that
per unit area φ(∆) according to Eq. (160). In fact,
there are some small differences between the observed
dispersal kernels of pre-industrial farmers, ϕN(△), and
hunter-gatherers, ϕP (△), but these differences are small
[37]. Therefore, we assume simply φN(△) ≃ φP (△) in
Eq. (205). This will avoid substantially more compli-
cated simulations and analyses (which we do not expect
to change the results appreciably).

After integrating Eq. (204), we assume as usual that
the minimum speed is the one of the front (in the
next section, we will check this assumption by means
of numerical simulations of the two-species system (196)-
(197)). In this way we obtain the front speed

c = min
λ>0

ln [R0N (1 + γ pmax P ) (pe + (1− pe)I0 (λr))]

Tλ
,

(206)

where I0(λr) is the modified Bessel function of the first
kind and order zero, given by Eq. (165). For the case
in which a single species invades the habitat without in-
teraction (γ = 0 or pmax P = 0), we recover the single-
species result (187).

In Fig. 22, we show the speed predicted by the CSRW
(full line) for parameter values appropriate for the Ne-
olithic transition (T = 32 yr, R0P = 1.8/gen, pe = 0.38
and pmax P = 0.064/km2) [25]. In Fig. 22, the front
speed predicted by the CSRW (full line), Eq. (206), is
seen to increase with increasing values of the interaction
parameter γ, as expected intuitively because the higher
its value, the more hunter-gatherers become farmers per
generation (see, e.g., Eq. (203)).

2. Cohabitation reaction-diffusion (CRD) approximation

Equation (206) is not easy to apply in practice be-
cause it requires plotting a function and/or finding its

minimum numerically for each set of parameter values.
Therefore, here we derive a simpler approximation. We
approximate Eq. (203) by using Taylor expansions in
space and time up to second order (assuming again an
isotropic kernel),

pN + T
∂pN
∂t

+
T 2

2

∂2pN
∂t2

≃ R0N (1 + γ pmax P )pN

+R0N (1 + γ pmax P ) (207)

DT

(
∂2pN
∂x2

+
∂2pN
∂y2

)
,

where D is given by Eq. (19). The speed of this CRD
equation may be derived, again, by assuming solutions
with the form

p ≃ p0 exp[−λ (x− ct)] (208)

with λ > 0. This yields

λ =
(
Tc+

[
(Tc)2 − 4(R0N (1 + γ pmax P )− 1)

(
R0N (1 + γ pmax P )DT − T 2c2

2

)] 1
2

)
(209)

/
(
2R0N (1 + γ pmax P )DT − T 2c2

)
.

Requiring λ to be real and assuming that the minimum
speed is that of the front, we obtain the speed

cCRD =

√√√√ 2R0N (1 + γ pmax P )D

T
(
1 + 1

2(R0N (1+γ pmax P )−1)

) . (210)

In Fig. 22 we have also included this speed (dotted
curves). It is seen to be a useful approximation, and it
is much simpler to use than the exact result (206). The
approximate result (210) has been also applied to esti-
mate the coexistence time between the invading and the
invaded populations [25]. For the special case in which
a single species invades the habitat without interaction
(γ = 0 or pmax P = 0), we recover the single-species
result (193).

3. Reactive random-walk simulations on grids

We consider a 2D lattice with 103·103 nodes. Ini-
tially the invading population (N) is restricted to the
central node of the grid (where pN(x, y, 0) = pmax N),
and pN(x, y, 0) = 0 elsewhere. For the indigenous pop-
ulation (P ), initially pP (x, y, 0) = 0 at the central node
and pP (x, y, 0) = pmax P elsewhere.

At each time step (corresponding to T = 1 generation=
32 yr), we compute the new population number densities
pN(x, y, t+ T ) and pP (x, y, t+ T ) at all nodes of the 2D
lattice as follows.

(i) First, according to the factor [1 + γ pP ] pN in Eq.
(196), at every node we add to the pN the term γ pN pP .
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And according to the factor
[
1− γR0N

R0P
pN

]
pP in Eq.

(197), we subtract to pP the term γR0N

R0P
pN pP , unless a

negative value for pP is obtained. In the latter case we
set pP = 0 (local extinction of the invaded population).

(ii) Second, the dispersion of the population densities
obtained in step (i) are performed using the kernel (205).
Thus, a fraction pe = 0.38 of each population (N and
P ) stays at the original node, and the remaining fraction
is distributed equally among the nearest neighbors, i.e.
a fraction (1 − pe)/4 jumps a distance ±r along each
horizontal or vertical direction. In the analytical model,
this corresponds to the integrations in Eqs. (196)-(197).

(iii) Finally, we compute pN(x, y, t + T ) by multiply-
ing pN(x, y, t) (obtained from step (ii)) by the factor
R0N (see Eq. (196)), unless a value pN > pmax N is
obtained. In the latter case we set pN = pmax N (to
avoid biologically unrealistic population densities over
the saturation value implied by the environment). Analo-
gously, pP (x, y, t+T ) is computed as R0P times the value
of pP (x, y, t) from step (ii) (unless a value pP > pmax P

is obtained; in such as case we again set pP = pmax P ).
For the net reproductive rate of hunter-gatherers, we

use the characteristic value R0P =1.8 [135]. Satura-
tion population densities for pre-industrial farmers and
hunter-gatherers have been measured for several popula-
tions. In Fig. 22 we use the same values as those ap-
plied by Currat and Excoffier [136] in their genetic simu-
lations of the Neolithic transition, namely pmax N = 1.28
farmers/km2 and pmax P = 0.064 hunter-gatherers/km2.

We repeat this 3-step cycle many times, until we ob-
serve that the front speed is constant (this happens before
500 cycles or generations).

Along the horizontal/vertical directions of the lattice,
the speed obtained from the simulations (circles in Fig.
22) is faster that measured along the diagonal directions
[±45o relative to the horizontal axis] (squares). This is
similar to Fig. 19, and again due to the reason explained
in Fig. 20. The average of both speeds from the sim-
ulations (triangles in Fig. 22) agrees with the CSRW
(full curves). We could try to attain better agreement
by computing the simulated speeds along many other di-
rections. Although the validity of the analytical result
is clear from Fig. 22 (curves versus triangles), one ex-
pects such calculations to further improve the agreement
between the model and the simulations.

The small differences are not unexpected after all, be-
cause on a continuous surface jumps take place into all in-
finite points of a circle (CSRW model) but in simulations
they necessarily take place into the nodes of a square
(i.e., on a discrete surface). This also explains the as-
ymptotic behavior of the diagonal simulations (squares)
forR0N = 3.0 in Fig. 22 [137]. We check these simulation
results analytically in the next subsection.

4. Discrete-space random walks (DSRWs)

For a grid in 2D space and the kernel (205), individuals
can jump into point (x, y) from points (x±r, y) and (x, y±
r). Therefore, in discrete space Eq. (203) is replaced by

pN(x, y, t+ T ) = R0N(1 + γ pmax P )

{pe pN(x, y, t) + (1− pe)[
1

4
p(x− r, y, t) +

1

4
p(x+ r, y, t) (211)

+
1

4
p(x, y − r, t) +

1

4
p(x, y + r, t)

]}
.

As in Sec. II.C, we look for solutions with the form p =
p0 exp[−λ (x− ct)] and assume that the minimum speed
is the one of the front. In this way we come to the speed

c = min
λ>0

ln
[
R0N(1 + γ pmax P )

(
pe + 1−pe

2 [cosh(λr) + 1]
)]

λT
.

(212)

This equation has no analytical solution. However,
for given values of R0, pe, r, T and γ it is easy to
find its minimum numerically. In this way we ob-
tain the x-crosses in Fig. 22. They agree perfectly
with the horizontal/vertical-direction random-walk simu-
lations, performed in the previous section (circles in Fig.
22).

Now we choose X’ and Y’ forming 45o with the X and
Y axes (see Fig. 20). Then, individuals jump into point
(x′, y′) from points (x′ ± r√

2
, y′ ± r√

2
) so, instead of Eq.

(211) we have

p(x′, y′, t+ T ) = R0(1 + γ pmax P )

{pep(x′, y′, t) + (1− pe)[
1

4
p(x′ +

r√
2
, y′ +

r√
2
, t)

+
1

4
p(x′ +

r√
2
, y′ − r√

2
, t) (213)

+
1

4
p(x′ − r√

2
, y′ +

r√
2
, t)

+
1

4
p(x′ − r√

2
, y′ −− r√

2
, t)

]}
.

which leads us, in the same way, to the speed

c = min
λ>0

ln
[
R0(1 + γ pmax P )

(
pe + (1− pe) cosh(λ

r√
2
)
)]

λT
,

(214)

instead of (212). This speed is shown as crosses (+) in
Fig. 22. It agrees perfectly with the diagonal-direction
simulations (squares in Fig. 22).

33



5. Effect of the interaction on the front propagation speed

Both the analytical results and the simulations (Fig.
22) are seen to be consistent with the observed speed of
the Neolithic transition in Europe, namely 0.6≤ c ≤1.3
km/yr [99], provided that the interaction parameter γ
is low enough, e.g. γ < 5 km2 for R0N = 3.0. Such
a high value for R0N is usually regarded as the high-
est possible net reproduction rate for pre-industrial agri-
culturalists, and it is considered reasonable for Neolithic
range expansions [138]. In principle, however, lower val-
ues could apply to regions less favorable for agriculture
(e.g. R0N = 1.6, which is the lowest value consistent
with the population number series in Ref. [128], so we
also include it in Fig. 22).

The interaction parameter γ determines the strength of
the interaction between the two species (or populations,
in the case of the Neolithic transition). This parameter
is important to predict the range expansion speed (Fig.
22). It is also of crucial importance in models of the
geographic distribution of genes after a range expansion
[136]. Computer simulations of Eqs. (196)-(197) and an-
alytical formulae have recently shown that the values of
γ used in Fig. 22 are in reasonable agreement with the
values of the coexistence time between the Neolithic and
Paleolithic populations, as estimated from archaeological
observations [25]. This line of research opens the way to-
wards regional analyses in which: (i) observed geographic
differences in the coexistence times [136] could be used
to estimate non-homogeneous values for the interaction
parameter γ and therefore for the front speed (Fig. 22);
(ii) regions less suitable for agriculture may correspond
to lower values for R0N and thus have a slower front
speed (Fig. 22), which is consistent with the empirical
observation that the Neolithic front slowed down as it
approached colder regions in Northern Europe [139].

IX. CONCLUSIONS AND PERSPECTIVES

We have presented microscopic, macroscopic and
age-structured derivations of reaction-dispersion and
reaction-diffusion equations arising from biased random
walks, distributed delays, sequential models, dispersive
variability, etc. For all cases, we have derived formu-
lae for the speeds of their front solutions. Applications
here surveyed include diffusive and convective effects on
the front propagation speed of combustion flames, Reid’s
paradox of rapid forest spread, the colonization of North-
America in the XIX century, the Neolithic transition in
Europe, the spread of genetic mutations, subsistence and
cultural boundaries, virus infections, cancer tumors and
anomalous transport, etc.

Several approaches have been reviewed and compared
for some relevant cases, including the use of Fourier-
Laplace transforms for distributed delays, continuous-
space and discrete-space random-walk models (CSRW

and DSRWs, respectively), reactive random-walk simu-
lations on 2-dimensional grids, etc.

For combustion flames (Sec. V), research results pub-
lished during the last five years have made it possible to
reduce a system of coupled equations to a single equa-
tion for a reduced temperature variable, which in turn
has made it possible to derive lower and upper bounds
on the flame front speed. This framework has been ex-
tended to include mass diffusion, convective effects and
temperature-dependent transport coefficients (Figs. 5-9).

For distributed delays (Sec. VI), a reduced hyperbolic
reaction-diffusion equation (130) and an effective delay
time (132) have been derived and applied to the Neolithic
transition (Fig. 11) and to virus infections (Figs. 12-13).

Sequential models (Sec. VII) take into account the
fact that dispersal and biological reproduction are not
simultaneous (Fig. 14). In recent years, work on such
models in two-dimensional spaces has provided a possible
solution to Reid’s paradox of rapid forest range expansion
(Figs. 15-16).

Cohabitation models have the same mathematical form
as sequential models, but in contrast to the latter, they
do not imply any specific order between dispersal and
reproduction. They do take into account that newborn
humans have to spend some time with their parents until
they can survive on their own. This effect is important
when computing human population front speeds (Figs.
19 and 21).

The models and formulae here reviewed can be useful
in a lot of applications. Many possible lines of future
research have been proposed in several sections of this
review. Moreover, biased front models can be useful for
a variety of physical and biophysical applications dealing
with biased fronts, such as particle diffusion in disordered
lattices [47], nucleation of spiral waves [14], human and
nonhuman population invasions [104], the spread of epi-
demics [140], cultural fronts [38], etc.

The 2D sequential model of non-overlapping genera-
tions (Sec. VII.A) could be extended to allow for over-
lapping generations, and applied to Reid’s paradox (Sec.
VII.B).

Another field of future research should be the use of co-
habitation models (Sec. VIII) with a variety of dispersal
kernels, as appropriate for specific applications.

The two-species model reviewed in the last subsection
could be applied to competition systems (in which both
species have a detrimental effect on the other one).

An additional, especially augurious field of research on
reaction-diffusion fronts is that of microorganisms, be-
cause in such systems experiments can be easily repli-
cated and the parameter values are simpler to estimate
[5].

We close this review by stressing that for purely phys-
ical applications [14,47] (not involving biological repro-
duction), non-sequential models (Secs. II-V) are more
appropriate. For biophysical ones [104,140], distributed-
delay (Sec. VI), sequential (Sec. VII) and cohabitation
models (Sec. VIII) seem more reasonable (depending on
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the features of the underlying random walks and repro-
ductive processes).
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XI. APPENDIX A. AGE-STRUCTURED
DERIVATION OF NON-SEQUENTIAL MODELS

Here we present a more detailed derivation of the
model in Secs. II.A-B, by taking the possibility of age-
dependent mortality and natality into account. Using
recent results by Vlad [17], the classical approach by
Othmer, Dunbar and Alt [141] has been generalized to
include reproductive processes which may depend on the
age structure of the population [16].

A. Age-structured derivation of Eqs. (1), (3) and
logistic growth (12)

Let Σ(a, x, y, t) stand for the number density (per unit
area) of individuals aged a that reach an area centered
at point (x, y) at time t. The total number of individuals
P (x, y, t) reaching the same location at t is

P (x, y, t) =

∫ ∞

0

da Σ(a, x, y, t). (215)

Let ρ(a, x, y, t) stand for the number density (per unit
area) of individuals aged a at point (x, y) at time t. The
total number of individuals p(x, y, t) at the same location
at t is

p(x, y, t) =

∫ ∞

0

da ρ(a, x, y, t). (216)

These definitions imply the following evolution equations
for Σ(a, x, y, t) and ρ(a, x, y, t)

Σ(a, x, y, t) =
∫ t
0
dT ϕ(T )

∫+∞
−∞

∫ +∞
−∞ d△x d△y

Σ(a− T, x−△x, y −△y, t− T )φ(△x,△y)
+ρ0(a)δ(x)δ(y)δ(t) + δ(a)

∫∞
0
da′ λ(a′)ρ(a′, x, y, t)

−µ0(a) ρ(a, x, y, t)− µ1 p(x, y, t) ρ(a, x, y, t),

(217)

ρ(a, x, y, t) =

∫ t

0

dt′ Σ(a, x, y, t′)Ψ(t− t′), (218)

where, as in Sec. II.A, the dispersal kernel φ(△x,△y) is
the probability per unit area that a particle (or individ-
ual) who was at (x−△x, y−△y, t) jumps to (x, y, t+T ).

The distribution ϕ(T ) is the probability that it rests for
a time between T and T + dT before performing the
next jump, divided by dT. The term ρ0(a)δ(x)δ(y)δ(t)
corresponds to assuming that initially the density of in-
dividuals aged a is ρ0(a) at the origin, and it vanishes
elsewhere. λ(a) and µ0(a) are the aged-dependent natal-
ity and mortality rates per individual, respectively. Fi-
nally, µ1 is an additional mortality term which avoids an
unbounded growth of the population density, as shown
below (additional, higher-order terms could be included,
but are not necessary for our purposes). Note that, in
contrast the death terms (last two terms in Eq. (217)),
the birth term is an integral over age a involving the na-
tality rate λ(a), because individuals of different ages may
reproduce, i.e. contribute to the population with 0-aged
individuals (thus the factor δ(a) within this term). In
Eq. (218) we have introduced the probability that a par-
ticle (or individual) rests for at least a time interval t− t′
before performing the next jump,

Ψ(t− t′) =

∫ ∞

t−t′
dT ϕ(T ) = 1−

∫ t−t′

0

dT ϕ(T ), (219)

so that Eq. (218) simply states that the particles at
(x, y, t) are those that have arrived at some earlier time
and still not left.

Integrating Eq. (218) over age a yields

p(x, y, t) =

∫ t

0

dt′ P (x, y, t′)Ψ(t− t′). (220)

Vlad [142,143,17] has shown that, after a transient of
a few generations, the age structure of the population
reaches a stationary distribution cst(a) which is also uni-
form in space, i.e.

ρ(a, x, y, t) = p(x, y, t)cst(a). (221)

The following parameter, introduced by Lotka [144],

rL =

∫ ∞

0

da [λ(a)− µ0(a)] cst(a) (222)

is called the intrinsic or initial growth rate of the pop-
ulation number density (the reason of these names will
become clear at the end of this Appendix).

Although this is not necessary for the purposes of the
present review, Vlad [142,143,17] has also shown that
cst(a) is given by Lotka’s distribution [144],

cst(a) =
e−rLae−

∫
a

0
da′µ0(a

′)

∫∞
0
da e−rLae−

∫
a

0 da′µ0(a′)
, (223)

so that rL satisfies Lotka’s transcendental equation

∫ ∞

0

da λ(a) e−rLae−
∫
a

0
da′µ0(a

′) = 1. (224)

Integration of Eq. (217) over age leads to
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P (x, y, t) =
∫ t
0
dT ϕ(T )

∫+∞
−∞

∫ +∞
−∞ d△x d△y

P (x−△x, y −△y, t− T )φ(△x,△y)
+p0δ(x)δ(y)δ(t)
+rL p(x, y, t)− µ1 p

2(x, y, t),

(225)

where p0 =
∫∞
0 da ρ0(a) and we have used Eqs. (221)-

(222).
In order to solve Eq. (225), we introduce the Fourier-

Laplace transforms of the corresponding space-time fields
[145,146],

P̂ (kx, ky, s) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

0

dt e− i
−→
k ·−→x −stP (x, y, t),

(226)

p̂(kx, ky, s) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

0

dt e− i
−→
k ·−→x −stp(x, y, t).

(227)

ϕ̂(s) φ̂(kx, ky) =

∫ ∞

0

dT e−sTϕ(T )

∫ ∞

−∞
d∆x

∫ ∞

−∞
d∆y e− i

−→
k ·
−→
∆x φ(∆x,∆y). (228)

We now Fourier-Laplace transform the Eq. (225) (see
e.g. Ref. [145], formulae (F.5b,k) and (F.11g,n)) ,

P̂ (kx, ky, s) = P̂ (kx, ky, s)φ̂(kx, ky)ϕ̂(s) + p0 + F̂ (kx, ky, s),

(229)

where

F̂ (kx, ky, s) = rLp̂(kx, ky, s)− µ1 p̂2(kx, ky, s). (230)

Second, we Fourier-Laplace transform Eq. (220) (see Ref.
[146], formulae (32.13,25)),

p̂(kx, ky, s) = P̂ (kx, ky, s)
1− ϕ̂(s)

s
. (231)

Combining the two latter equations we get rid of the
field P̂ (kx, ky, s). Assuming a Dirac-delta distribution for
ϕ(T ), we have

1

ϕ̂(s)
= exp[sT ] = 1 + Σ∞n=1

Tnsn

n!
, (232)

and we obtain

Σ∞n=1
Tnsn−1

n! (sp̂(kx, ky, s)− p0)

=
[
φ̂(kx, ky)− 1

]
p̂(kx, ky, s)

+Σ∞n=1
Tnsn−1

n! F̂ (kx, ky, s).

(233)

Antitransforming this equation yields

Σ∞n=1

Tn

n!

∂np

∂tn
=

∫ +∞

−∞

∫ +∞

−∞
p(x−△x, y −△y, t)

φ(△x,△y) d△x d△y (234)

−p(x, y, t) + Σ∞n=1

Tn

n!

∂n−1F (x, y, t)

∂tn−1
.

From Eq. (230) we obtained the so-called logistic growth
function,

F (x, y, t) = rL p(x, y, t)− µ1 p
2(x, y, t). (235)

Therefore, we reach the final result

p(x, y, t+ T )− p(x, y, t)

=
∫+∞
−∞

∫+∞
−∞ p(x−△x, y −△y, t)

φ(△x,△y) d△x d△y

−p(x, y, t) + Σ∞n=1
Tn

n!
∂n−1F [p(x,y,t)]

∂tn−1 ,

(236)

so that using equation (3), we obtain Eq. (1) with
R[p(x, y, t)] given by (3) and F given by (235) or (12).
This completes the age-structured derivation of Eq. (1).
The advantages of the derivation presented in this sub-
section are: (i) It shows that the evolution equation (1) is
valid for biologically reasonable situations (in the sense
that natality and mortality rates may depend on age);
(ii) Using Eq. (222), one can compute the effect of age-
dependent natality and mortality rates on the evolution
equation, and thus on the front speed (this latter problem
is analyzed in the next subsection D).

B. Special cases

Note that in the absence of dispersal, the first and
second terms in the RHS of Eqs. (234), (236) and (1) do
not appear. Then, either Eq. (234) or (1) leads to

∂p(x, y, t)

∂t
= rL p(x, y, t)− µ1 p

2(x, y, t). (237)

The solution of this equation is the well-known logistic
growth [52],

p(x, y, t) =

rL
µ1
p0(x, y)

p0(x, y) + (rLµ1 − p0(x, y)) exp [−rLt]
→ rL

µ1
≡ pmax,

t→∞
(238)

where p0(x, y, ) ≡ p(x, y, t = 0).
However, in the special case µ1 = 0 Eq. (237) is re-

placed by

∂p(x, y, t)

∂t
= rL p(x, y, t) (239)

and then the growth of the population (238) becomes
exponential,
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p(x, y, t) = p0(x, y) exp [rLt] →∞
t→∞

, (240)

which leads to an unbounded growth of the population.
This is not observed in any real biophysical system. A
widely-used, simple way to avoid this divergence is just to
include the last term (µ1 �= 0) in Eq. (217) -so that Eq.
(238) is obtained instead of (240). Vlad [143] has noted
that this term (with characteristic parameter µ1) can be
viewed as describing the interactions between the individ-
uals and the environment (in the sense that it sets a limit
pmax for the population density, Eq. (238)). Clearly, such
a role is not played by the terms in Eq. (217) with charac-
teristic (age-dependent) parameters λ(a) and µ0(a). For
this reason, rL given by Eq. (222) is sometimes called
the intrinsic growth rate of the population. Assuming
that p0(x, y) ≪ pmax, for low enough values of p(x, y, t)
and t Eq. (239) will be a good approximation to the full
logistic evolution equation (237). This is why rL is some-
times also called the initial growth rate of the population
number density p(x, y, t).

XII. APPENDIX B. AGE-STRUCTURED
DERIVATION OF SEQUENTIAL MODELS

In Appendix A, the non-sequential evolution Eq. (1)
has been derived using mortality and natality instanta-
neous rates (µ0(a) and λ(a), respectively). Recently it
has been shown that using rates per generation (µ̃0(a)

and λ̃(a), respectively) instead, a simple derivation of
the sequential evolution Eq. (157) is possible [16]. To see
this, we begin by noting that we can clearly consider the
following sequential equation

ρ(a+ T, x, y, t+ T )− ρ(a, x, y, t) =

+
∫ +∞
−∞

∫+∞
−∞ d△x d△yρ(a, x−△x, y −△y, t)φ(△x,△y)

−ρ(a, x, y, t)
−
∫ +∞
−∞

∫+∞
−∞ d△x d△y µ̃0(a)

ρ(a, x−△x, y −△y, t)φ(△x,△y).

.

(241)

Note that in the last term, the mortality and the dispersal
effects are applied sequentially (because the integral and
the dispersal kernel are included). Integrating this equa-
tion over age (a = 0 to a = ∞) and defining a′ ≡ a+ T
we obtain

p(x, y, t+ T )−
∫ T
0
da′ρ(a′, x, y, t+ T ) − p(x, y, t) =

+
∫+∞
−∞

∫+∞
−∞ d△x d△yp(x−△x, y −△y, t)φ(△x,△y)

−p(x, y, t)
−
∫∞
0

da µ̃0(a)
∫+∞
−∞

∫ +∞
−∞ d△x d△y

ρ(a, x−△x, y −△y, t)φ(△x,△y).

.

(242)

The second term corresponds obviously to individuals
with ages between 0 and T, i.e. born between t and t+T,
namely

∫ ∞

0

da

∫ +∞

−∞

∫ +∞

−∞
d△x d△y λ̃(a)

ρ(a, x−△x, y −△y, t)φ(△x,△y), (243)

because T is 1 generation and λ̃(a) is the birth rate per
generation. Again, the natality and the dispersal effects
are applied sequentially (i.e., the integral and the disper-
sal kernel appear). Using also Eq. (221) leads us finally
to Eq. (157), where we have defined R0 as

R0 − 1 ≡
∫ ∞

0

da
[
λ̃(a)− µ̃0(a)

]
cst(a). (244)

It is interesting to note that the condition R0 > 1,
which Weinberger [112] showed that is necessary for the
population not to extinguish and front solutions to Eq.
(157) to exist, corresponds to the effect of natality being
stronger than that of mortality, which makes biological
sense.

Finally, let us mention that is possible to add a
quadratic term, e.g.

−µ̃1
∫ +∞

−∞

∫ +∞

−∞
d△x d△yp(x−△x, y −△y, t)φ(△x,△y)

∫ +∞

−∞

∫ +∞

−∞
d△x d△yρ(a, x−△x, y −△y, t)φ(△x,△y), (245)

to Eq. (241), which yields a logistic discrete-time repro-
duction function, i.e. an additional term

−µ̃1
[ ∫ +∞

−∞

∫ +∞

−∞
d△x d△yp(x−△x, y −△y, t)φ(△x,△y)

]2

(246)

to Eq. (244). However, the speed of fronts would be the
same and, more importantly, such a logistic discrete-time
reproduction function is known from non-spatial models
to yield negative population densities [56], which makes
no physical sense (numerical simulations show that the
same happens for spatial models [16]). This is the reason
why, as we review in Sec. VII.B, Eq. (157) has been
recently applied together with the simple assumption of
a vanishing net reproduction above saturation density.

[1] J. Fort and V. Méndez, Rep. Progr. Phys. 65, 895
(2002).

[2] W. van Saarloos, Phys. Rep. 386, 29 (2003).
[3] J. Merikoski, J. Maunuksela, M. Myllys and J. Timonen,

Phys. Rev. Lett. 90, 024501 (2003).

37



[4] J. Fort and V. Méndez, Phys. Rev. Lett. 82, 867 (1999).
[5] J. Fort and V. Méndez, Phys. Rev. Lett. 89, 178101

(2002).
[6] A. L. Garner, Y. Y. Lau, T. L. Jackson, M. D. Uhler,

D. W. Jordan and R. M. Gilgenbach, J. Appl. Phys. 98,
124701 (2005).

[7] V. S. Zykov and K. Showalter, Phys. Rev. Lett. 94,
068302 (2005).

[8] V. Ferreiro, J. F. Douglas, J. Warren, and A. Karim,
Phys. Rev. E 65, 051606 (2002).

[9] B. Rosenstein, B. Ya Shapiro and I. Shapiro, Europhys.
Lett. 70, 506 (2005).

[10] J. F. Douglas, K. Efimenko, S. A. Fischer, F. R. Phelan
and J. Genzer, Proc. Nat. Acad. U.S. 104, 10324 (2007).

[11] J. Fort, J. Appl. Phys. 101, 094701 (2007).
[12] J. Fort and T. Pujol, New J. Phys. 9, 234 (2007).
[13] V. Méndez, S. Fedotov, D. Campos and W. Horsthemke,

Phys. Rev. E 75, 011118 (2007).
[14] H. Wei, G. Lilienkamp, J. Davidsen, M. Bär and R.

Imbihl, Phys. Rev. E 73, 016210 (2006).
[15] K. Davison, P. Dolukhanov, G. R. Sarson and A.

Shukurov, J. Arch. Sci. 33, 641 (2006).
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FIGURE CAPTIONS

Fig. 1 Predicted speeds for the human invasion front
of the United States in the XIX century, as a function
of the random walk bias β in the migration of individ-
uals. The observed speed range is shown as a hatched
rectangle.
Fig. 2 Invading front of Neolithic farmers (F ) into

a region originally full of Paleolithic hunter-gatherers
(H), and formation of a cultural boundary. Popula-
tion densities (relative to their maximum possible val-
ues) of invading Neolithic farmers (F ), indigenous Pale-
olithic hunter-gatherers (H) and Paleolithic populations
converted into farmers (X) for t1 = 250 yr, t2 = 500
yr, ... , t10 = 2500 yr, from Eqs. (43) with ini-
tial conditions (nF , nH , nX) = (1, 0, 0) at r = 0 and
(nF , nH , nX) = (0, 1, 0) elsewhere. The parameter val-
ues used are pmaxF/pmaxH = pmaxX/pmaxH = 50,
τF = τX = τH = 18.3 yr, D = 7 km2/yr, γ = 0.0005
yr−1and λ = 0.2 yr−1, as suggested in Ref. [38].
Fig. 3 Front profiles for r = 0.1 and the Laplacian

kernel with α2 = 700. In model B λ = 1/τ , with τ = 2.
Note that model B yields a faster front, which also has a
wider reaction zone.
Fig. 4 Front width versus delay time. The rhombs

are the results from the numerical simulations, and the
curves are the theoretical predictions. In model B, λ =
1/τ so that model B is a first-order approximation to the
full dynamics described by model A. The front speed is
proportional to the front width L (see Eq. (76)).
Fig. 5 Comparison between the predicted bounds

(curves) and the speeds of combustion fronts obtained
from numerical integrations of Eqs. (79)-(80) (circles),
for several values of the dimensionless room temperature
θ0. Lower bounds plotted are those from the BCD and
ZFK methods. The KPP case gives values well below
the lower value shown in the y-axis. Upper bounds are
those from the BD and AW methods. The combustion
dimensionless parameter is C ≡ cpEa/(RQ) = 0.5.
Fig. 6 Upper bound (solid line) and lower bound

(dotted line) for the dimensionless propagation speed
of the flame front obtained from Eq. (117) and Eq.
(118), respectively, as a function of the Lewis number
at room temperature, without background flow (U = 0)
and with temperature-independent transport coefficients
(α = 0, β = 0). Circles are the front speeds from numer-
ical integrations of Eqs. (105)-(106). In Eq. (118), the
function g(n) =

√
1− n has been used. The parameter

values are C = 0.5 and ∆cp/cp = 0.5.
Fig. 7 Comparison between lower and upper bounds

for the propagation speed of the flame and the val-
ues obtained by numerical simulations of the full model
(105)-(106), as a function of α for different values of the
Reynolds number Re in a combustion model with no mass
diffusion (Le0= 0).
Fig. 8 Contours of the propagation speed of the flame

obtained by numerical simulations of the full model (solid
lines) and from the upper bound Eq. (117) (dashed lines)
as a function of α and β. Re = 0 (background flow at
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rest) and Le0 = 1. The hatched region corresponds to
β > βc, so the method used to derive the upper bound
breaks down.
Fig. 9 As in Fig. 8 but for Re = 1000.
Fig. 10 This figure is useful in understanding why

the effective delay time T̃ of the random walk depends
not only on the mean 〈T 〉 but also on the dispersion ε of
the delay time distribution. Both distributions depicted
have the same mean delay

〈
∆2
〉
. But that in (a) has

a greater dispersion ε, implying that a few particles (or
individuals) jump (or migrate) sooner (low values of T ),
which must lead to a faster front, i.e. to a lower effective

delay T̃ . This explains that T̃ decreases with increasing
values of the dispersion ε, as predicted by Eq. (132).
Fig. 11 Predictions for the speed of the wave of ad-

vance of farmers in the Neolithic transition according to
the model with a single delay (dashed curves) and to
the more realistic model with several discrete delays (full
curves). The predictions of both the multidelayed model
and the single-delayed one are consistent with the front
speed from the archaeological data (1.0 ± 0.2 km/yr) in
this particular case. However, the multidelayed model is
more accurate, and its corrections relative to the single-
delayed model are large (about 20%).
Fig. 12 Virus concentration versus time in an ho-

mogeneous medium of cells infected at t = 0. The fit to
the main plot is a logistic. Its time derivative (inset, full
curve) makes it possible to note that a Gaussian (dotted
curve) is a good description to the waiting-time distrib-
ution of the T7 bacteriophage.
Fig. 13 Predictions from the continuous-distribution

waiting-time model (curves) versus experimental data
(symbols with error bars) for the front speeds of T7
viruses infecting E. Coli bacteria.
Fig. 14 A filled circle represents a tree, and each

empty circle stands for a seed produced by it. Reproduc-
tion is represented by the dashed arrow, dispersal by the
continuous arrow. (a) Non-sequential model, Eq. (1). (b)
Sequential model, Eq. (157). Model (b) is more realistic
than (a), because in model (a) the parent tree disperses
away, instead of its seeds. Therefore, in Sec. VII the
sequential Eq. (157) is applied to tree species instead of
Eq. (1).
Fig. 15 Front speed in 2D versus net reproductive

rate, for an unimodal short-distance kernel ϕS(∆) [11].
Stars: 2D computer simulations. Full curve: analyti-
cal 2D CSRWs, Eqs. (163)-(165). There is good agree-
ment. The 1D speed for the same kernel is included
for comparison (dotted curve). For bimodal kernels it
is found that computer simulations cannot yield accu-
rate results within a reasonable computing time, but the
DSRW model overcomes this limitation (Fig. 16).
Fig. 16 Front speeds in 2D versus net reproductive

rate [11]. Curves: CSRWs, Eqs. (163)-(165). Symbols:
DSRWs, Eq. (169), using the values of DL and/or DS in
the legend (in meters) and the corresponding kernel(s).
The bimodal kernel for the yellow poplar, from Ref. [116],

leads to the middle curve. It thus predicts speeds of
about 102−103 meter/generation (in contrast, the short-
range unimodal kernel (lower curve and stars, the same
as in Fig. 15) predicts front speeds several orders of mag-
nitude lower). This may solve Reid’s paradox.
Fig. 17 A filled circle represents a couple of parents

(a father and a mother) and each empty circle stands
for one of their sons or daughters. (a) Migration before
reproduction, Eq. (172). (b) Reproduction before migra-
tion, Eq. (173). (c) Reproduction during migration, Eq.
(174).
Fig. 18 Predicted speeds for the human invasion of

the United States in the XIX century, as a function of the
random walk bias β in the migration of individuals. The
speeds shown are that according to the non-cohabitation
biased model, Eq. (17), and to the cohabitation biased
model, Eq. (180). The observed speed range is shown as
a hatched rectangle.
Fig. 19 Neolithic front speed in 2D versus net popu-

lation reproductive rate. The numerical simulations lead
to different speeds in the horizontal or vertical direc-
tions (circles) than in the diagonal directions (squares),
but their average (triangles) agrees with the CSRW. The
DSRW results (x and + crosses) agree perfectly with the
corresponding simulations
Fig. 20 Jump of individuals (or particles) for the

square lattice in the simulations and the kernel (186),
from an initial point P. Continuous arrows correspond to
the first generation, whereas dotted arrows correspond to
the second generation.
Fig. 21 The effect of dispersion persistence on the

speed of the Neolithic transition. As in Fig. 19, the
CRD equation is seen to be a better approximation than
the HRD equation (which was used in Ref. [4]).
Fig. 22 Predicted speeds as a function of the interac-

tion parameter γ between the invading species N (farm-
ers) and the indigenous species P (hunter-gatherers).
They are seen to be consistent with the observed speed of
the Neolithic transition in Europe, namely 0.6≤ c ≤1.3
km/yr [99].
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