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El ritmo exponencial de crecimiento en la generación de datos digitales ha
convertido la escalabilidad en un factor clave en el diseño de sistemas de
información. Aunque esta es un área aún emergente, ya empiezan a existir
paquete que permiten extender la infraestructura de Big Data a los datos
espaciales.  Algunas preguntas que se plantean ante esta situación son:
¿cuándo  cambiar  las  soluciones  tradicionales  de  RDBMS  por  estas
soluciones?  ¿Qué  configuraciones  de  arquitectura  utilizar?  Estas
decisiones no sólo se relacionan con el volumen de datos y la velocidad
requerida, sino también con los costes económicos asociados al consumo
de estos servicios en la nube. 
El estudio que se presenta en este documento tiene como objetivo hacer
un  análisis  comparativo  entre  diferentes  soluciones  de  persistencia  y
explotación de datos geoespaciales en la nube, basadas en software libre
y de código abierto. En concreto, el análisis se centra en la comparación
entre el sistema relacional Postgres, ampliado con la extensión espacial
PostGIS,  y  un  sistema  altamente  escalable de  almacenamiento  y
procesamiento basado en clusters, Hadoop. A este ultimo hemos añadido
el paquete “Spatial Framework for Hadoop”, que permite crear un almacén
de datos espaciales sobre MapReduce,  y extender la sintaxis nativa de
tratamiento de datos (Hive) para permitir gestionar estos datos. 
 En  nuestro  análisis  comparamos  la  duración  de  ejecución  de  varias
operaciones  espaciales  en  los  diferentes  entornos  de  prueba:  una
instancia de Postgres/PostGIS desplegada sobre Amazon Web Services
(AWS)  y  diferentes  configuraciones  de  clusters  de  Hadoop+Spatial
Framework for Hadoop, también desplegada sobre AWS.
Finalmente  terminamos  con  un  breve  análisis  de  costes  económicos
asociados, un factor que puede ser determinante para la adopción de la
solución.
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INTRODUCTION

In  recent  years  the  increase  in  scale  in  traditional  data  sources  due  to  global
changes in business and transportation, plus the explosion in the availability of sensor
data, in part caused by the Internet of Things (IoT),  resulted in massive volumes of
data [1]. Supported by cheaper and widely adopted positioning technologies, a great
deal of this data is now geo-located. 

Spatial crowd-sourcing movements such as OpenStreetMap[2] or Ushahidi[3], have
played an important role in increasing the generation of massive spatial information by
the community of users. Being able to digest these large amounts of spatial data in
order  to  understand  human  behaviour  and  drive  informed  decisions,  is  a  current
challenge for areas such social sciences or geo-marketing. 

According  to  [4],  there  are  two  major  requirements  for  data  intensive  spatial
applications:

• fast query response, which requires a scalable architecture.
• Support to clusters on a cost-effective architecture, such as commodity clusters

or cloud environments.

 Spatial  queries  are  often  computationally  intensive  [4]  since  they  rely  on
geometrical  operations,  not  only for  computing measurements and generating  new
objects,  but  also  as  logical  operations  for  topology  relationships  (e.g.:  contains,
intersects,  touches).  The increasing volume of  spatial  information,  coupled with the
computationally  intensive  nature  of  spatial  queries  demand  scalable  and  efficient
solutions. 

In  this  paper  we  tracked  the  performance  of  different  spatial  warehouse
environments  on the cloud,  regarding  a particular  set  of  spatial  queries.  We have
followed a practical approach by focusing on queries that we are currently using, or
have been using, rather than queries that may present a specific set of properties, but
are not interesting in terms of application. We have also selected datasets that we are
currently working with, which although can arguably not be considered “Big Data”, do
present  some performance challenges, and due to its particular nature,  will require
scalability in the near future. In this way, we hope to provide a useful comparison of
SQL and NoSQL environments running on the cloud.

BENCHMARKING SETUP

All  benchmarking  environments  described  in  this  paper  were  deployed  on  the
cloud, using the Amazon Web Services (AWS) infra structure [5]. The main idea was
to compare a centralized Relational Database Management System (RDBMS) with a
distributed cluster infra-structure.

Amazon provides the Relational Database Service (RDS), which allows to pick an
RDBMS and have it running on a dedicated server, with an optimized configuration. As
RDBMS, we have selected PostgreSQL[6],  which is  widely known and used since
1995. It features its own Free and Open Source License, called PostgreSQL[7]. The
rationale behind this choice was the ability to use PostGIS[8], a PostgreSQL extension
that adds support for geographic objects allowing location queries to be run in SQL.
PostGIS has been widely known as one of the most complete spatial extensions for
databases, with a very long list of implemented features and a large number of Extract
Transform Load (ETL) tools and software, specifically designed to work with it. It is
licensed under GPLv2.
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Amazon provides different hardware configurations for RDS, according to the price

tier. In this benchmarking we used a standard instance from the current generation,
which is by no means optimized for heavy work, standing in the bottom end of the
scale. The motivation for choosing this configuration was mainly a question of costs.
Specifically, we used a  db.m3.medium machine, which has a single CPU, 3.75 GB
RAM and a 100 GB hard-drive. Amazon describes the performance of this server
across the network as “moderate”. 

As a distributed system we used Elastic Map Reduce (EMR), an Amazon service
that  uses Hadoop as framework.  Apache Hadoop[9]  is  a Free and Open Source
Software  (FOSS),  licensed  under  Apache  2.0[10],  for  distributed  storage  and
processing in computer clusters. It was specifically designed to manage very large
data  sets.  Hadoop  is  widely  adopted  in  the  “Big  Data”  world,  and  it  features
prominent user such as Facebook or Yahoo! Another reason that drove this choice
was the fact that there is a spatial toolkit available for Hadoop[11], provided by ESRI
under an Apache License [12]. More specifically we used the spatial framework for
Hadoop (SFH), that extends Hive syntax to use a set of  geometric functions and
types [11].

Amazon offers a very flexible way of setting up the clusters, allowing to choose
the  number  of  nodes,  and  to  select  the  configuration  of  the  master  and  worker
nodes, from a list of fixed hardware configurations. It is only a question of price. Our
baseline configuration was a cluster with three nodes, since anything smaller than
that does not take much advantage of the parallelism. As a master instance we have
selected a general purpose, current generation, machine (m3.xlarge),  and as cores
we  have  chosen  slightly  weaker  machines:  general  purpose,  previous  generation
(m1.medium). Again, in an effort to obey price constraints, we are standing near the
bottom end of the scale. To evaluate how the performance changes with the number
of machines, we have also created a setup with six nodes, and another one with nine
nodes (with similar hardware configurations for master and cores). Finally, to have an
idea of the influence of the hardware on the performance, we have created another
scenario  of  a  cluster  with  three  nodes,  but  this  time  using  slightly  more  powerful
instances  for  the  cores.  The  hardware  configuration  of  the  systems  used  in  the
benchmarking, is summarized in the table bellow (table 1).

Table 1:  Hardware Description

Designation Description
RDS db.m3.medium:  100  GB,  1

CPU, 3.75 RAM
EMRx3 master:  m3.xlarge;  cores:

m1.medium (3)
EMRx6 master:  m3.xlarge;  cores:

m1.medium (6)
EMRx9 master:  m3.xlarge;  cores:

m1.medium  (3)master:
m3.xlarge;  cores:
m1.medium (3)

EMRx3Large master:  m3.xlarge;  cores:
m3.xlarge (3)
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The exact software versions used in the benchmarking, are summarized bellow

(table 2).

Table 2:  Software Description

System Software
RDS PostgreSQL 9.3.3,  PostGIS

2.1
EMR Hadoop  2.4.0,  Hive  0.13.1,

GIS tools for Hadoop 2.0

DATASET AND QUERY DESCRIPTION

The list of layers used in the queries is presented in table 3 and figure 1. Since we
wanted to  perform  measurements,  all  geometry  was transformed into  a  Projected
Coordinate System (PCRS), Google Mercator (3857).

Table 3:  Layer Description

Name Description Geometry Crs Other
attributes

No  of
features

tweets_387 Geo-
located
tweets

point 3857 timestamp
, content

18536

grid_10k* 10 km grid
enclosing
tweets

polygon 3857 10530

points_3857 Bicing
stations  in
Barcelona

point 3857 420

coastline World
coastline

polyline 3857 542216

* PostGIS only

In  the  following  sections  we  describe  each  of  the  four  queries  used  in  the
benchmarking. Although both Hadoop GIS and PostGIS have a lot of functions that
are SQL/MM compliant [13] and therefore similar, the syntax from Hive and Postgres
is not exactly the same; thus some queries had to be adapted in order to achieve an
equivalent result. For those cases, we present both versions of the query.
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Figure
1: Layers used in the queries.

Create Density Grid

Transforming a point cloud into a density surface, is a very common and useful
query. It  involves defining a grid with a certain resolution,  and counting how many
points fall within each cell. The results can be stored in a new table.

In this scenario we wanted to create a grid  for  displaying the density of  tweets
(grid_cnt). For this particular scale we adopted a grid with a pixel of 10 Km.

Figure 2: Density grid for tweets.

In  PostGIS,  this  query  uses two layers:  the  tweets  layer  (tweets_387)  and  the
overlay grid (grid_10k), used to generate the counts.
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create table grid_cnt as SELECT grid_10k.id, grid_10k.geom, count(grid_10k.id) as 
ptcnt FROM grid_10k, tweets_3857 WHERE 
ST_Contains(grid_10k.geom,tweets_3857.geom) GROUP BY 
grid_10k.geom,grid_10k.id;

In SFH, it is possible to create the grid as a set of cells (ST_BIN), and fill them with the
results (counts) in two-queries.

CREATE TABLE grid_cnt(id bigint, geom binary, count BIGINT);
FROM (SELECT (ST_Bin(10000, geom)) bin_id, * FROM tweets_3857) bins
INSERT OVERWRITE TABLE grid_cnt
SELECT bin_id, ST_BinEnvelope(10000, bin_id), count(*) count GROUP BY bin_id;

Buffers

Buffers are another common spatial query. In this scenario we wanted to count how
many points lie within 100 m of a bicing station (1079); bicing is a bike sharing system
in the city of Barcelona[14].This would give us an idea if people tweet a lot, just before
or after they use the bicycle.

This query uses the functions ST_CONTAINS and ST_BUFFER, and is similar in
PostGIS and SFH. 

select count(*) from tweets_3857 join points_3857 where 
ST_CONTAINS(ST_BUFFER(points_3857.geom,100),tweets_3857.geom)=true; 

Figure 3: Buffers around the 420 bicing stations of Barcelona (detail);
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Select Maximum Distance

Measurements such as areas or distance are another common operation in spatial
analysis.  In  this  scenario  we wanted  to  measure  the  maximum distance  between
tweets mentioning New Years, on New Years Day (01/01/2015). This query involves a
couple of operations; first we filter the dataset for the selected time period and content
(hashtag  “#2015”);  then  we calculate  the  distance  between all  tweets,  and  finally
select the maximum distance.

Figure 4: The most apart tweets regarding New Years, are located in North Africa and the
UK;the distance between the two points is 2871.893 Km.

The key spatial operation in this case is ST_Distance, and the query is exactly the
same in PostGIS and SFH:

select max(ST_Distance(a.geom,b.geom)) from tweets_3857 a, tweets_3857 b where 
a.ts2 > '2014-01-31 00:01:00' and a.ts2 < '2015-01-01 23:59:00' and b.ts2 > '2014-01-
31 00:01:00' and b.ts2 < '2015-01-01 23:59:00' and a.content like '%2015%' and 
b.content like '%2015%';

Import Layer

Importing a layer into the system is a fundamental operation, that happens prior to
any other query. In this scenario we wanted to evaluate how long it takes to load a
relatively  large  spatial  dataset  into  the  spatial  warehouse.  The  layer  is  a  polyline
definition of the world coastline in Well-Known Text (WKT) format, and it has a disk
size of 1.5GB.
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Figure 5: World coastline.

The process of importing data from flat files into the system, is relatively different in
PostGIS and SFH. In PostGIS we start by creating a table (coastline) to accommodate
the text definitions of the geometry; the next step is to fill it  from the file, using the
\copy  directive;  then  we  add  a  column  to  store  the  geometry  and  update  it,
instantiating the geometry from WKT (using ST_GeomFromText).

CREATE TABLE coastline(wkt varchar);
\copy coastline from 'coastline.csv' with DELIMITER ' ' CSV QUOTE AS '"' header;
alter table coastline add column geom geometry;
update coastline set geom=ST_GeomFromText(wkt);

To finalize the definition of the spatial table, we would still need to create a spatial
index and update the SRID of the geometry.

CREATE INDEX idx_coastline_geom ON coastline USING GIST (geom);
select updategeometrysrid('coastline','geom', 3857);

On the other hand, the import of the layer into SFH, can be performed in two simple
steps; first we create an external table that maps the WKT value into a string (from
Hive 0.14 it is possible to create a TEMPORARY table instead, which will only live
during that session); then we create a new table that instantiates the geometry from
that string, at the same time it sets the SRID.

create external table tmp_coastline (wkt string) row format serde 
'com.bizo.hive.serde.csv.CSVSerde'
with serdeproperties(
"separatorChar" = "\;",
"quoteChar" = "\"")
stored as textfile LOCATION 's3n://bdigital-benchmarking/coastline/';
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create table coastline as select ST_SetSRID(ST_GeomFromText(wkt),3857) as 
geom from tmp_coastline where WKT NOT LIKE 'WKT';

Note that in both cases the SRID is not optional, since we need it to correctly
perform measurements and relate spatial layers.

Since the most expensive query from this set is the one where we update the
geometry from WKT, in both systems we focused our benchmarking in this query.

DISCUSSION OF RESULTS

We  perform each  one  of  the  queries  presented  in  the  previous  section,  in  our
benchmarking  environments:  RDS  and  the  different  cluster  setups  discussed  on
section “Benchmarking setup”.

On PostGIS, we run the “explain analyse” function in order to have an idea of what
was involved in the query, and the estimated time. 

On the clusters we noticed a large variability in query time, that could reach as
much as 20 seconds difference. To limit the influence of this variability in the scope of
the results, we performed each query 10 times, and used the average value.

On Figure 6, we can see an overview of the results.

Figure 6: Results of the benchmarking of the different queries, on different setups on the cloud;
query duration is shown in seconds.

The most expensive query in terms of time, is by far the buffers query. This is also
the  query  where  the  difference  in  performance  between RDS and  the  clusters  is
higher  (figure  7).  The  output  of  “explain  analyse”  shows the nested  loop involved
within  ST_CONTAINS as an extremely expensive operation for PostGIS.
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Figure 7: Average duration of the buffer query.

The same could be said regarding the import query (figure 8), where the process of
importing is quite different in PostGIS and the SFH (see section “Dataset and query
description”). Although the best results are also achieved with the cluster with more
powerful  machines (EMRx3Large),  this is the only case where,  in average,  adding
more nodes to the cluster actually results in a gain of performance.

Figure 8: Average duration of the import query.

A discussion on Stack Overflow [15] pointed out some different ways of importing
large spatial datasets into RDS. The conclusion was that copying features using /copy
and update geometry is not the most efficient way; thus for a matter of completeness,
we  also  run  an  import  of  an  equivalent  Shapefile  using  “shp2pgsql”  and  the  -D
directive, a method pointed as more efficient. This is the exact query, that in one go,
imports the Shapefile into a new table and sets the SRID:

shp2pgsql -D -s 3857 lines.shp coastline | psql -d benchmarking

This  query finishes just  under  3 minutes  (179 s),  being faster  than the  EMRx3
cluster.
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But RDS is not always slower than the clusters. In creating the density grid, RDS is
20 to 50 times faster (figure 8), which could be at least partly explained by the fact that
the queries are slightly different in both systems. 

Figure 8: Average duration of the density grid query.

The cluster with 3 large machines (EMRx3Large) consistently performs better than
the  other  clusters  in  every  query, and better  than  RDS in  most  queries  (with  the
exception of the density grid).  Regarding the other 3 clusters (EMRx3,  EMRx6 and
EMRx9) the results are not so clear. Generally speaking, there are small differences
between the query times in these three setups. In three of the queries (density grid,
buffers and distance) there is a small gain in using 6 nodes rather than 3, but using 9
workers  actually  results  in  larger  response  times.  This  could  be due  to  the  extra
overhead of marshalling the tasks between clusters.

The distance query (figure 9) is the second less expensive query and in this case
PostGIS also performs better than the smaller cluster (EMRx3).

Figure 9: Average duration of the distance grid query.

This benchmarking would not be complete without an analysis of the costs. In order
to extract some practical lessons from these results and evaluate potential solutions,
we need to know how much it costs to setup this infra-structure on the cloud.
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Figure 10: Cost in dollars, for deploying each benchmarking environment in AWS (1
hour/1month).

Amazon uses a model that relies on the type of service, machine, and in the case
of cluster, number of nodes, to calculate the price. The Amazon Web Services Price
Calculator[16] allows us to calculate the exact prices, based on the number of hours
per month that we need to rent the infra structure (figure 10). In this benchmarking all
the queries could be completed in less than one hour, which means we only need to
use one hour of each environment. 

CONCLUSIONS

These  results  have  a  value  within  their  scope:  a  working  benchmarking,  build
around the systems we typically use (low cost), the sample sizes that we commonly
find  (not  huge)  and the typical  operations  that  we do (measurements,  relationship
tests,  imports).  They cannot  be easily extrapolated to huge sample sizes,  or  more
powerful  systems.  Nevertheless  relevant  lessons,  some  of  them  not  completely
obvious, could be inferred from these experiments.

The first conclusion is that a cluster is not always preferable to a RDBMS. This will
actually depend on the query type and we suspect, on the sample size. In theory for
an  extremely  large  sample,  RDBMS  would  not  work,  and  much  before  that  the
differences in performance would start to be noticed; that is not the case for smaller
sample sizes. This idea is confirmed by the fact that RDS performed better in the least
expensive queries.

Another conclusion is that adding nodes to a cluster does not necessarily result in a
better performance. In the type of query and sample size used in this benchmarking,
often smaller clusters outperformed the cluster with more nodes. Adding more nodes
to the system increases the overhead in terms of having to distribute the workload; to
compensate for that the system has to be more efficient, something that can be only
achieved by taking advantage of the parallelism. One possible explanation is that the
SFH is not taking full advantage of the MapReduce paradigm; this should be further
investigated, since it could result in a bottleneck in an Hadoop-based system. On the
other  hand  having  a  small  cluster  (3  nodes)  with  more  powerful  machines
(EMRx3Large), achieved always a better performance. This gain in performance was
more noticeable than the gain in adding more nodes,  when it  existed (the queries
responses for clusters with 3, 6 and 9 nodes were quite similar). This is mostly a gain
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through vertical scalability, rather than through horizontal scalability, which is what we
would normally expect from a cluster.

Regarding prices for one hour usage, RDS is much cheaper  (about 4x) than the
cheapest cluster presented in the benchmarking. Regarding clusters, the system with
9 nodes (EMRx9) should be left out, as it is more expensive and it generally does not
perform better than the ones with 3 and 6 nodes (EMRx3, EMRx6). The system with
more  powerful  nodes  (EMRx3Large)  has  a  small  price  difference,  that  is  largely
justified by its gain in terms of performance.

The  differences  in  query  syntax  are  a  reminder  that  Postgres/PostGIS  and
Hadoop/SFH process things differently, and that  alone should force us to evaluate
carefully which option is more appropriated for the particular problem we are dealing
with.
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