Image classification for a large number of object categories

DSpace/Manakin Repository

Show simple item record

dc.contributor Universitat de Girona. Institut d'Informàtica i Aplicacions
dc.contributor.author Bosch Rué, Anna
dc.date.issued 2007-09-25
dc.identifier.isbn 9788469115398
dc.identifier.other DL Gi.1407-2007
dc.identifier.uri http://www.tdx.cat/TDX-0122108-123938
dc.identifier.uri http://hdl.handle.net/10803/7884
dc.identifier.uri http://hdl.handle.net/10256/4822
dc.description.abstract L'increment de bases de dades que cada vegada contenen imatges més difícils i amb un nombre més elevat de categories, està forçant el desenvolupament de tècniques de representació d'imatges que siguin discriminatives quan es vol treballar amb múltiples classes i d'algorismes que siguin eficients en l'aprenentatge i classificació. Aquesta tesi explora el problema de classificar les imatges segons l'objecte que contenen quan es disposa d'un gran nombre de categories. Primerament s'investiga com un sistema híbrid format per un model generatiu i un model discriminatiu pot beneficiar la tasca de classificació d'imatges on el nivell d'anotació humà sigui mínim. Per aquesta tasca introduïm un nou vocabulari utilitzant una representació densa de descriptors color-SIFT, i desprès s'investiga com els diferents paràmetres afecten la classificació final. Tot seguit es proposa un mètode par tal d'incorporar informació espacial amb el sistema híbrid, mostrant que la informació de context es de gran ajuda per la classificació d'imatges. Desprès introduïm un nou descriptor de forma que representa la imatge segons la seva forma local i la seva forma espacial, tot junt amb un kernel que incorpora aquesta informació espacial en forma piramidal. La forma es representada per un vector compacte obtenint un descriptor molt adequat per ésser utilitzat amb algorismes d'aprenentatge amb kernels. Els experiments realitzats postren que aquesta informació de forma te uns resultats semblants (i a vegades millors) als descriptors basats en aparença. També s'investiga com diferents característiques es poden combinar per ésser utilitzades en la classificació d'imatges i es mostra com el descriptor de forma proposat juntament amb un descriptor d'aparença millora substancialment la classificació. Finalment es descriu un algoritme que detecta les regions d'interès automàticament durant l'entrenament i la classificació. Això proporciona un mètode per inhibir el fons de la imatge i afegeix invariança a la posició dels objectes dins les imatges. S'ensenya que la forma i l'aparença sobre aquesta regió d'interès i utilitzant els classificadors random forests millora la classificació i el temps computacional. Es comparen els postres resultats amb resultats de la literatura utilitzant les mateixes bases de dades que els autors Aixa com els mateixos protocols d'aprenentatge i classificació. Es veu com totes les innovacions introduïdes incrementen la classificació final de les imatges.
dc.description.abstract The release of challenging data sets with ever increasing numbers of object categories is forcing the development of image representations that can cope with multiple classes and of algorithms that are efficient in training and testing. This thesis explores the problem of classifying images by the object they contain in the case of a large number of categories. We first investigate weather the hybrid combination of a latent generative model with a discriminative classifier is beneficial for the task of weakly supervised image classification. We introduce a novel vocabulary using dense color SIFT descriptors, and then investigate classification performances by optimizing different parameters. A new way to incorporate spatial information within the hybrid system is also proposed showing that contextual information provides a strong support for image classification. We then introduce a new shape descriptor that represents local image shape and its spatial layout, together with a spatial pyramid kernel. Shape is represented as a compact vector descriptor suitable for use in standard learning algorithms with kernels. Experimental results show that shape information has similar classification performances and sometimes outperforms those methods using only appearance information. We also investigate how different cues of image information can be used together. We will see that shape and appearance kernels may be combined and that additional information cues increase classification performance. Finally we provide an algorithm to automatically select the regions of interest in training. This provides a method of inhibiting background clutter and adding invariance to the object instance's position. We show that shape and appearance representation over the regions of interest together with a random forest classifier which automatically selects the best cues increases on performance and speed. We compare our classification performance to that of previous methods using the authors'own datasets and testing protocols. We will see that the set of innovations introduced here lead for an impressive increase on performance.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Universitat de Girona
dc.rights ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.source TDX (Tesis Doctorals en Xarxa)
dc.subject.other Categorias de objetos
dc.subject.other Object categories
dc.subject.other Modelo discriminativo
dc.subject.other Model discriminatiu
dc.subject.other Discriminative model
dc.subject.other Random forest
dc.subject.other Modelo generativo
dc.subject.other Model generatiu
dc.subject.other Generative model
dc.subject.other Regiones de interés
dc.subject.other Regions d'interès
dc.subject.other Region of interest
dc.subject.other Clasificación de imágenes
dc.subject.other Classificació d'imatges
dc.subject.other Image classification
dc.subject.other Categories d'objectes
dc.subject.other pLSA
dc.subject.other Probabilistic Latent Semantic Analysis
dc.title Image classification for a large number of object categories
dc.type info:eu-repo/semantics/doctoralThesis
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.contributor.director Zisserman, Andrew
dc.contributor.director Muñoz Pujol, Xavier
dc.subject.udc 004 - Informàtica
dc.subject.udc 68 - Indústries, oficis i comerç d'articles acabats. Tecnologia cibernètica i automàtica
dc.type.version info:eu-repo/semantics/publishedVersion


Files in this item

 

Show simple item record

Search DUGiDocs


Browse

My Account

Statistics