Labile and Recalcitrant Organic Matter Utilization by River Biofilm Under Increasing Water Temperature

Text Complet
Labile-and-Recalcitrant-Organic.pdf embargoed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs250/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC processing ​
​Tots els drets reservats