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Abstract

Vehicle operations in underwater environments are frequently compromised by poor visibility
conditions. The perception range of optical devices is heavily constrained in turbid waters, thus
often complicating navigation and mapping tasks in environments such as harbors, bays, or rivers.
A new generation of high-frequency forward-looking sonars that provide acoustic imagery at
near-video frame rates have recently emerged as a promising alternative for working under these
challenging conditions.

In this thesis, we propose an end-to-end mosaicing framework tailored to the characteristics
of forward-looking sonar imagery in order to build consistent overviews of planar underwater
areas regardless of water visibility. Our solution targets versatility: it enables the generation of
acoustic mosaics that involve roto-translational motions and comprise di�erent vehicle tracklines;
it is suitable for a wide range of scenarios, from feature-rich areas to environments with scarcity
of features; it can be applicable on data collected with minimally instrumented vehicles; and it
allows both o�ine and real-time operation.

The �rst problem to address is the pairwise registration of sonar images which is a key step in
the mosaicing pipeline. The characteristics of the forward-looking sonar data, such as low and
inhomogeneous resolution, low signal-to-noise ratio and intensity variations due to viewpoint
changes, become a challenge for traditional feature-based registration techniques. For that reason
we propose a Fourier-based methodology that, by involving all image content into the registration,
o�ers robustness to noise and the di�erent artifacts associated with the acoustic image formation.
The approach relies on the phase correlation principle to estimate the image shifts and it is further
adapted to cope with the multiple noise sources that can in�uence the registration, by providing
speci�c masking, frequency �ltering and rotation estimation procedures. When quantitatively
compared, the proposed registration method shows superior performance to state-of-the-art
feature-based approaches, while o�ering at the same time the possibility to be implemented
e�ciently.

Next, we address the global alignment of the mosaic in order to enforce consistency between
consecutive and non-consecutive image pairs. We lay out the problem as a graph optimization
over the image poses, integrating spatial constraints from pairwise registrations as well as from
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navigation data when available. We provide a front-end to determine the constraints that should
be included in the graph according to an initial estimation of the trajectory and a selection of
potential overlapping candidate pairs. The work�ow followed to build the graph is provided for
both o�ine mosaicing and the online approach, where constraints are added incrementally and
under stringent restrictions to warrant real-time operation. In addition, we propose an uncertainty
measure derived from the registration method to weigh appropriately the contribution of the
registration constraints in the optimization.

Finally, we explore the blending of the acoustic images into a smooth and informative mosaic
while improving the signal-to-noise ratio and resolution of the �nal composition with respect
to the individual frames. Furthermore, we identify the di�erent photometric irregularities that
can arise from the sonar imaging con�guration and provide a set of strategies to minimize their
impact both at frame and mosaic level.

To validate the full proposed pipeline, an extensive experimental section is reported showing
successful results in relevant �eld applications such as ship-hull inspection, harbor mapping and
archaeological exploration.
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Resum

Freqüentment, les operacions amb vehicles en entorns submarins estan condicionades a la vis-
ibilitat de l’aigua. El rang de percepció dels sensors òptics és molt limitat en aigües tèrboles
i sovint fa complicades les tasques de navegació i mapeig en entorns com ara ports, badies o
rius. Recentment han aparegut al mercat una nova generació de sonars de visió frontal, d’alta
freqüència i amb la capacitat de generar imatges acústiques a un alt ritme de refresc, convertint-se
així en una alternativa prometedora per a operar en aquestes difícils condicions.

En aquesta tesi, proposem un sistema complet per a la construcció de mapes subaquÃătics
adaptat a les característiques d’aquest tipus de sonars, per tal de construir mosaics d’imatges
acÃžstiques independentment de la visibilitat de l’aigua. La solució proposada té la versatilitat
com a eix central: permet la generació de mosaics acústics que involucren moviments roto-
translacionals i múltiples transectes, és adequada per un ampli ventall d’escenaris, des d’àrees
amb alta presència de punts d’interès �ns a entorns mancats de característiques signi�cants,
és aplicable a dades adquirides des de vehicles equipats amb poca instrumentació i permet la
generació de mosaics tant en mode post-processat com en temps real.

El primer problema que s’adreça és el registre d’imatges sonar, que és un pas clau en el sistema
de construcció de mosaics. Les característiques de les imatges dels sonars de visió frontal, com
ara la baixa resolució, la baixa relació senyal-soroll, o les variacions d’intensitat a causa dels
canvis de punt de vista, causen moltes complicacions a les tècniques que típicament s’utilitzen per
registrar imatges òptiques. Per aquesta raó proposem un mètode basat en el domini freqüencial,
el qual té en compte tot el contingut de les imatges en el procés de registre aconseguint així
més robustesa davant del soroll i dels diferents artefactes associats amb la formació de la imatge
acústica. El mètode es basa en el principi de la correlació de fase per computar els desplaçaments
de la imatge i s’ha adaptat per fer front a les múltiples fonts de soroll que poden in�uenciar el
registre proporcionant procediments especí�cs d’emmascarament, �ltratge freqüencial i estimació
de la rotació. Comparacions quantitatives demostren que el mètode proposat té un rendiment
superior a altres tècniques de registre de l’estat de l’art basades en punts d’interès i ofereix, al
mateix temps, la possibilitat de ser implementat e�cientment.

A continuació s’ha adreçat l’alineament global del mosaic per tal d’imposar consistència entre
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parelles d’imatges consecutives i no consecutives. S’ha plantejat el problema com la optimització
d’un graf on els nodes són les posicions de les imatges i les restriccions espacials entre ells
provenen del registre de les diferents parelles o de les dades de navegació, en cas de disposar
d’aquestes. Detallem l’estratègia a seguir per determinar quines restriccions s’han d’incorporar al
graf d’acord amb una estimació inicial de la trajectòria del vehicle i una selecció de les parelles
d’imatges que poden tenir solapament. El procediment per a la construcció del graf es descriu tant
per l’elaboració de mosaics o�ine com online. En aquest darrer cas, les restriccions s’afegeixen
incrementalment i sota estrictes límits per garantir l’execució en temps real. A més a més,
proposem una mesura d’incertesa derivada del mètode de registre per tal de donar el pes adequat
a cada restricció dins de la optimització.

Finalment, s’explora la fusió de les imatges acústiques en un únic mosaic d’aparença nítida i
informativa, aconseguint al mateix temps una relació senyal-soroll i una resolució millorades re-
specte les de les imatges individuals. També s’identi�quen les diferents irregularitats fotomètriques
que poden sorgir degut a la con�guració i col·locació del sonar en l’entorn i es proporcionen un
seguit d’estratègies per minimitzar el seu impacte tant a nivell d’imatge com a nivell de mosaic.

Per tal d’avaluar la totalitat del marc de treball proposat, es presenta una extensiva secció
experimental demostrant resultats satisfactoris en aplicacions rellevants com ara inspecció de
cascos de vaixells, mapeig de ports o exploracions arqueològiques.
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Resumen

Frecuentemente, las operaciones con vehículos en entornos submarinos se ven condicionadas a
la visibilidad del agua. El rango de percepción de los sensores ópticos es muy limitado en aguas
turbias y a menudo complican las tareas de navegación y mapeo de entornos tales como puertos,
bahías o ríos. Recientemente han aparecido en el mercado una nueva generación de dispositivos
sónar de visión frontal, de alta frecuencia y con la capacidad de generar imágenes acústicas a una
alta tasa de actualización, convirtiéndose así en una alternativa prometedora para operar en estas
difíciles condiciones.

En esta tesis, proponemos un sistema completo para la construcción de mapas submarinos
adaptado a la características de este tipo de sónars, con el objetivo de construir mosaicos de
imágenes, independientemente de cual sea la visibilidad del agua. La solución que proponemos
tiene la versatilidad como eje central: permite la generación de mosaicos acústicos que involucren
movimientos roto-translacionales y múltiples transectos; es adecuada para un amplio rango
de escenarios, desde áreas con alta presencia de puntos de interés hasta entornos faltos de
características signi�cantes; es aplicable en datos adquiridos desde vehículos equipados con poca
instrumentación y permite la generación de mosaicos tanto en modo pos-procesado como en
tiempo real.

El primer problema que se trata es el registro de imágenes de sonar, que constituye un paso
clave en el sistema de construcción de mosaicos. Las características de las imágenes de un
sonar de visión frontal, como la baja resolución, la baja relación señal-ruido o las variaciones de
intensidad debido a los cambios de punto de vista, suponen muchas complicaciones a las técnicas
que típicamente se usan en el registro de imágenes ópticas. Por esta razón, proponemos un
método basado en el dominio frecuencial, el cual tiene en consideración todo el contenido de las
imágenes en el proceso de registro consiguiendo así mejor robustez contra el ruido y los distintos
artefactos asociados con la formación de la imagen acústica. El método se basa en el principio
de la correlación de fase para computar los desplazamientos de la imagen y se ha adaptado para
hacer frente a las múltiples fuentes de ruido que pueden in�uenciar el registro, proporcionando
procedimientos especí�cos de enmascaramiento, �ltraje frecuencial y estimación de la rotación.
Comparaciones cuantitativas demuestran que el método propuesto tiene un rendimiento superior
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a otros técnicas de registro del estado del arte basadas en puntos de interés y ofrece, al mismo
tiempo, la posibilidad de ser implementado e�cientemente.

A continuación se ha tratado el alineamiento global del mosaico con el �n de imponer consis-
tencia entre parejas de imágenes consecutivas y no consecutivas. Se ha planteado el problema
como la optimización de un grafo donde los nodos son las posiciones de las imágenes y las
restricciones espaciales que se integran entre ellos provienen del registro de las distintas parejas
o de los datos de navegación en el caso que se disponga de ellos. Detallamos la estrategia a seguir
para determinar cuales son las restricciones que se deben incorporar al grafo de acuerdo con una
estimación inicial de la trayectoria del vehículo y una selección de las parejas de imágenes que
pueden tener solapamiento. El procedimiento para la construcción del grafo se describe tanto para
la elaboración de mosaicos o�ine como online. En este último caso, las restricciones se añaden
incrementalmente y bajo estrictos límites para garantizar la ejecución en tiempo real. Además,
proponemos una medida de incertidumbre derivada del método de registro con el �n de dar el
peso adecuado a cada restricción dentro de la optimización.

Finalmente, se explora la fusión de las imágenes acústicas en un único mosaico de apariencia
nítida e informativa, consiguiendo, al mismo tiempo, una relación señal-ruido y una resolución
mejoradas respecto a las imágenes individuales. También se identi�can las diferentes irregulari-
dades fotométricas que pueden aparecer debido a la con�guración y la colocación del sónar en el
entorno y se proporcionan una serie de estrategias para minimizar su impacto tanto a nivel de
imagen como a nivel de mosaico.

Para evaluar la totalidad del marco de trabajo propuesto, se presenta una extensiva sección
experimental demostrando resultados satisfactorios en aplicaciones relevantes como inspección
de casco de barcos, mapeo de puertos o exploraciones arqueológicas.
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1 Introduction

In this chapter we present the main problem that has motivated this thesis: mapping of underwater
environments under low visibility conditions. The motivations behind this problem are introduced in

Section 1.1, relating them to the the requirements of real-world applications and the limitations of current
approaches. Next, we state the objectives of the thesis in Section 1.2 and we brie�y describe, in Section 1.3,
the context in which this work has been carried out. Finally, the organization of the thesis document is
presented in Section 1.4.

1



Chapter 1. Introduction

1.1 Motivation

Over the past few years, unmanned underwater vehicles have greatly improved as a tool for
undersea exploration, inspection and intervention. Remotely Operated Vehicles (ROVs) have
reduced the need for manned submersibles, increasing the safety and the duration of underwater
operations. This type of vehicles are nowadays routinely used in o�shore industries as well
as in science applications. However, the need for a large and expensive support vessel to be
able to handle the crane, the tether and the involved ROV crew and operators has stimulated
research towards the development of Autonomous Underwater Vehicles (AUVs). Free from the
limitation of a physical connection to a surface ship, AUVs allow for extended operations at
lower costs, providing stand-alone platforms that can gather data close to the sea�oor without
human supervision and avoiding the risks associated to the umbilical cable. Nonetheless, the
autonomy of these vehicles presents challenges on multiple levels, beginning with its autonomous
navigation and localization. Since ubiquitous absolute measurements such as those provided by
Global Positioning System (GPS) are not available underwater, AUV navigation and localization
must rely on other solutions. A range of di�erent possibilities has been explored throughout the
years: arrays of acoustic beacons deployed on the sea�oor; dead reckoning using a combination
of depth, inertial and Doppler velocity sensors; terrain based navigation against an a priori known
map or Simultaneous Localization And Mapping (SLAM) approaches that allow to concurrently
build a map of the vehicle’s environment and use it to obtain estimates of its location. The research
conducted during past decades on these and other areas such as vehicle control, path planning
or mission planning has led to a successful use of AUVs in many applications including marine
geology [Yoerger et al.1998,Kelley et al.2005,German et al.2008,Paduan et al.2009], marine biology,
[Armstrong et al.2006, Williams et al.2010], underwater archaeology [Foley et al.2009, Bingham
et al.2010], �sheries management [Clarke et al.2009], under-ice exploration [Kunz et al.2009],
disaster response [Camilli et al.2010] or even, more recently, intervention tasks [Ribas et al.2012].

Integral to all these unmanned platforms, image acquisition plays a major role to most un-
derwater applications (see Figure 1.1). Virtually all missions performed with ROVs require some
form of visual data gathering, not only for the sake of observing and collecting information but
to provide visual feedback to the pilot. In regard to AUVs, navigation, localization, and mapping
through optical imaging have been key topics for researchers in both underwater robotics and
marine science communities. Underwater navigation has bene�ted from video imagery in visual
odometry and visual SLAM approaches [Gracias et al.2003,Eustice et al.2008,Salvi et al.2008,Wirth
et al.2013] to provide drift-free navigation by using motion estimates obtained from onboard
camera frames. Optical imagery has been also used to construct two-dimensional (2D) underwater
photomosaics that enable the overview of extended areas through the registration of individually
collected images. 2D photomosaics have become a key tool to locate and map areas or objects
of interest, detect changes or plan subsequent missions in an area with applications in dam in-
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1.1 - Motivation

(a) ROV piloting (b) Visual-aided navigation

(c) 2D photomosaicing (d) 3D reconstruction

Figure 1.1: Example of procedures requiring the underwater acquisition of visual data.

spection [Ridao et al.2010], marine geology [Escartín et al.2008], underwater archaeology [Singh
et al.2004, Bingham et al.2010], environmental monitoring [Elibol et al.2011b] and damage as-
sessment [Lirman et al.2010]. Furthermore, in scenarios with a high three-dimensional (3D)
component, optical data has also been used to model 3D reconstructions of relevant underwater
structures through structure from motion approaches using monocular video sequences [Pizarro
et al.2004, Nicosevici et al.2009] or through the deployment of stereo camera systems [Zhang and
Negahdaripour2010, Johnson-Roberson et al.2010].

Though unquestionably useful, the acquisition of optical images in the underwater domain
is not without challenges. Light attenuation, water turbidity, and the inability to get within
proximity of the target are but a few of the di�culties. It is well known that propagation of
light underwater su�ers from exponential attenuation [Duntley1963] and thus sunlight can only
penetrate to a limited extent. Therefore, the inclusion of arti�cial lighting systems becomes a
requirement to acquire optical images when operating in non-shallow areas. Although today’s
vehicles are equipped with increasingly improved optical cameras and powerful lighting systems,
visibility is still often compromised due to water turbidity. In the presence of suspended particles,
light wavelenghts, which are small compared to the particle sizes, are blocked, de�ected and
scattered yielding poor or no visibility of the underlying sea �oor (see Figure 1.2). This becomes a
critical issue in a signi�cant number of underwater surveying and mapping tasks that are carried
out in turbid waters and murky environments. Mapping of harbors, dam inspections, ship-hull
inspections or monitoring of bays and estuaries are a few applications typically conducted under
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Figure 1.2: Di�erent examples of optical images a�ected by backscatter and/or turbid water conditions.

poor visibility conditions. In those scenarios vehicles equipped only with optical systems (i.e.
cameras or lasers) are heavily constrained by their limited visibility range. Furthermore, when a
vehicle needs to perform an inspection close to the seabed, the action of its thrusters may quickly
stir up suspended sediments which can also a�ect the quality of the acquired images. In the case
of ROVs, the operator is forced to wait for the sediment to settle down and get back a video visual,
which slows down the overall inspection task and consequently increases the associated costs.

Knowing the limitations of optical devices, underwater operations have long relied on sonar
technology. Acoustic waves are signi�cantly less a�ected by water attenuation, facilitating
operation at greater ranges and allowing work in turbidity conditions thanks to larger wavelenghts.
Thus, sonar devices address the main shortcomings of optical sensors though at the expense of
providing, in general, noisy data of lower resolution and more di�cult interpretation.

Sonars delivering range measurements, such as single beam echosounders (Figure 1.3a),
pro�ling sonars (Figure 1.3c) or multibeam echosounders (Figure 1.3e), have been successfully
employed for obstacle avoidance, navigation, localization and mapping [Leonard et al.1998, Tena
et al.2003, Roman and Singh2005, Fair�eld et al.2007, Kinsey et al.2006], the latter being especially
popular for the creation of sea�oor bathymetric charts. Imaging sonars, such as mechanically
scanning imaging sonars (Figure 1.3g) or side-scan sonars (Figure 1.3i), have also been widely used
in obstacle-avoidance, localization and particularly in mapping applications [Mallios et al.2014b,
Ribas et al.2008, Tena Ruiz et al.2003, Aulinas et al.2010] thanks to its ability to represent the
returning acoustic intensities from an insoni�ed area.

Recently, a new generation of imaging sonars [Soundmetrics Corp.2013,BlueView Technologies
Inc.2013, Tritech Gemini2013], namely the two-dimensional Forward-Looking Sonars (FLSs)
(Figure 1.3k) are emerging as a strong alternative for those environments with reduced visibility
given their capabilities of delivering high quality acoustic images at a near-video frame rate.
FLS provide signi�cant advantages over other imaging sonars, thanks to the use of advanced
transducer arrays that allow simultaneous sampling of multiple acoustic returns and render them
in a 2D image. For instance, mechanically scanning sonars require the rotation of an acoustic
beam through di�erent steps to gather the returning re�ections along an angular sector. Therefore,
the acquisition of a scan image involves a relatively long time and introduces distortions as a
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consequence of the vehicle motion during the scan. Likewise, when using side-scan sonars, the
seabed re�ections of the two side beams are recorded in a series of cross-track slices that must be
stitched along the motion direction in order to generate an overview of the scene and facilitate its
interpretation. Hence, side-scan sonars are also subject to geometric distortions due to di�erent
instabilities of the deploying platform, thus requiring a correction either by using navigational
and attitude information or through statistical techniques applied directly on the scan lines [Cobra
et al.1992]. FLSs, on the other hand, directly deliver 2D acoustic images, which provide a closer
rendition of what the eye naturally sees and thus minimize the required level of processing and
interpretation.

Hence, FLS can be seen as an analogous tool of optical cameras in turbid waters. Immediate
applicability is found in ROV operations, where FLSs are a valuable tool towards more e�cient
maneuvers in low to zero visibility. However, beyond that, applications are numerous and
diverse. Being an excellent tool to observe and identify targets in poor visibility, FLS imagery
has been employed in monitoring of �sh populations [Baumgartner and Wales2006], inspection
of underwater structures [Chen et al.2011] and automated detection of targets on the sea�oor
[Galceran et al.2012].

Several researchers have also drawn attention to the use of FLS either as a substitute or as a
complementary device for optical cameras in sonar-aided navigation or mapping applications. The
integration of FLS data in a visual SLAM framework to constrain the navigation drift of AUVs has
been tackled within the context of ship hull inspection [Walter2008, Johannsson et al.2010, Hover
et al.2012]. Even more straightforward is the sensor parallelism for mapping purposes: FLS can
be exploited to mosaic the sea�oor through the registration of FLS frames, following the same
concept of 2D photomosaicing. Even though the range of FLS is greater than that of optical
cameras, their Field of View (FOV) is also limited. Thus, it is often not possible to image a target
area within a single frame or at least to do so without sacri�cing a great deal of resolution by
pushing the device’s range to the limit. In such circumstances, mosaicing of FLS images allows
obtaining an extended overview of an area of interest regardless of the visibility conditions and
without compromising the resolution. However, despite the problem analogy, it must be noted
that the particularities of FLS imagery, such as low resolution, low Signal-to-Noise Ratio (SNR)
and intensity alterations due to viewpoint changes, pose a signi�cant challenge to the techniques
typically used in photomosaicing. Figure 1.4 illustrates the typical work�ow to create an image
mosaic. The process usually starts by computing frame to frame transformations using an image
registration method. Then, consecutive images are aligned by transforming them to a common
reference frame through compounding of the di�erent transformations. Small misalignment
errors that accumulate along the trajectory can be corrected by means of global optimization
techniques that make use of the transformations between non-consecutive images. Finally, the
images are blended together in a smooth mosaic. Each of these steps, and in particular image
registration, is heavily conditioned by the inherent di�erences between optical and acoustic cues
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(a) Single beam echosounder (b) Map elaborated from single beam echosunder readings.

(c) Pencil beam pro�ler sonar. (d) Data from a 360°scan of a pencil beam pro�ler.

(e) Multibeam sonar. (f) Bathymetry map obtained from multibeam data.

(g) Mechanically scanning imaging sonar. (h) 360° scan from a mechanically scanning imaging sonar.

(i) Side-scan sonar. (j) Waterfall view of side-scan data.

(k) 2D Forward-looking sonar. (l) 2D image from a forward-looking sonar

Figure 1.3: Di�erent underwater sonar types and its data.

and therefore issues arise in trying to leverage the techniques used on optical images.

These di�culties, together with the still recent proliferation of high-resolution FLS devices
on the market and their high cost when compared to other sonars, are perhaps to be blamed for
the reduced e�orts on FLS mosaicing. During the last decade, the speci�c problem of mosaicing
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Figure 1.4: Typical mosaicing pipeline.

FLS imagery has only been tackled by a handful of researchers [Kim et al.2005, Negahdaripour
et al.2005, Negahdaripour et al.2011]. Related state of the art includes also few works dealing
with FLS image registration [Johannsson et al.2010, Aykin and Negahdaripour2012], which, as
introduced, is an integral step in mosaicing. However, the �eld is still remarkably incipient and the
existing mosaicing approaches have shown very limited results in terms of scale and complexity.
Although it would be desirable to create consistent mosaics undergoing both translational and
rotational 2D motions, extending along various vehicle tracklines, and applicable in a wide variety
of environments, most of the reported mosaics in the literature are restricted to only a few frames
gathered in a single trackline while imaging feature-rich scenarios (see Figure 1.5).

On the commercial side, some companies have also envisaged the potential of the FLS mosaicing
capability. A spin-o� company [AcousticView2014] which arose from previous research in
the �eld [Kim et al.2005] is providing an initial mosaicing software for DIDSON sonar images
[Sound Metrics DIDSON2013] su�ering also from the aforementioned limitations. Some FLS
manufacturers [BlueView Technologies Inc.2013] and other third party companies [Oceanic
Imaging Consultants, Inc.2014] are providing software to mosaic FLS data in real-time through
the use of absolute positioning sensors. These systems are conceived to work with FLSs deployed
from surface boats so that GPS measurements can be used as the underlying positions to project
the acoustic images and obtain a mosaic composition. Hence, they do not perform registration
of FLS images and their results totally depend on the availability and accuracy of an absolute
positioning system, thus not being a good option for underwater vehicles.

Therefore, the development of a full, versatile, and e�cient mosaicing pipeline for FLS images
would clearly push the envelope of vehicle mapping capabilities in low-visibility underwater
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(a) (b)

(c) (d)

Figure 1.5: Example of FLS mosaics reported in previous works.(a) Shipwreck mosaic elaborated from 38
DIDSON sonar images, in [Kim et al.2005]. (b) Mosaic from few DIDSON images shown in [Negahdaripour
et al.2011]. (c) Mosaic of 16 DIDSON images, in [Negahdaripour et al.2005]. (d) Small mosaic of an
archaeological site, from [AcousticView2014].

environments. Moreover, it would contribute to the progress of other challenging subjects such as
sonar-aided navigation or, in general, to any application that may bene�t from context-awareness
in poor visibility conditions.

1.2 Objectives

Once the motivations have been set forth, we state the overall goal of this thesis as follows:

To develop a complete mosaicing pipeline, tailored to the characteristics of forward-looking sonar

imagery, for the generation of acoustic mosaics that provide a consistent overview of

approximately-planar underwater environments regardless of the visibility conditions.

This general goal can be broken down to the following more speci�c objectives:

Registration method for FLS images: To propose a 2D registration methodology for the robust
alignment of FLS frames coping with the challenging characteristics of this type of imagery,
dealing with translational and rotational motions, being amenable to be implemented in
real-time and applicable to a wide variety of environments.

Integration inside a global alignment framework: To develop a front-end to integrate the pro-
posed registration method into a global alignment framework in order to achieve a consistent
set of image poses based on the registration of consecutive and non-consecutive frames
along the vehicle trajectory. We aim to enable the mosaicing capability without the require-
ment of absolute positioning sensors and, when possible, with minimally instrumented
vehicles.

Rendering of smooth acoustic mosaics: To propose a blending strategy to render visually pleas-
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ant and informative acoustic mosaics by correcting the photometrical irregularities that may
be encountered when fusing FLS frames and provide a �nal composition with enhanced
SNR and resolution with respect to the individual sonar frames.

Real-time mosaicing: To design and implement each of the pipeline steps in an e�cient way,
enabling the online construction of maps that can contribute to applications requiring
vehicle (or pilot) situational awareness.

Experimental validation with real data: To validate the proposed methodology with multiple
experiments in the context of relevant �eld applications and using data gathered through
di�erent FLS devices.

1.3 Context

The research of this thesis has been conducted at the Underwater Robotics Research Center, Centre
d’Investigació en Robòtica Submarina (CIRS) of the Computer Vision and Robotics (ViCOROB)
Institute of the University of Girona. Research in underwater robotics has been ongoing there
since 1992, supported by several Spanish and European research programs. The group has
developed several AUV prototypes: GARBI [Amat et al.1999], a vehicle originally conceived as a
ROV that was restyled as an AUV; URIS [Batlle et al.2005], a lightweight AUV; Ictineu [Ribas
et al.2007], which won the �rst Student Autonomous Underwater Challenge - Europe (SAUC-E)
competition in 2006; Sparus, which championed SAUC-E in 2010 and has recently been restyled
and presented as a commercial platform [Carreras et al.2013]; and GIRONA 500 [Ribas et al.2012],
a recon�gurable AUV that has been used in the experimental part of this thesis. Research
at CIRS revolves around AUV applications, and has focused on control architectures [Ridao
et al.2002] [Palomeras et al.2012], model identi�cation [Carreras et al.2003], machine learning
[Carreras et al.2001, El-Fakdi and Carreras2013], mission control [Palomeras et al.2006], AUV
intervention [Prats et al.2012b, Ribas et al.2012], SLAM [Ribas et al.2008, Mallios et al.2014b] and
path planning [Hernández et al.2011, Galceran Yebenes2014]. Together with recent e�orts in
bathymetry mapping [Zandara et al.2013] and sonar scan matching [Mallios et al.2014a], this
thesis represents one of the �rst endeavors of the group in acoustic mapping, opening not only
a new research direction but providing new navigation and mapping capabilities to the CIRS
vehicles.

Of special relevance to this thesis is also the work developed at the Underwater Vision
Lab (UVL) from ViCOROB Institute. Outstanding research on underwater computer vision has
been carried out at UVL during recent years, covering topics such as large-scale underwater
mosaicing [Ferrer et al.2007], global alignment techniques for optical mapping [Elibol et al.2011a],
image blending [Prados et al.2014], 3D scene modelling [Nicosevici et al.2009] and image-based
classi�cation [Shihavuddin et al.2013]. The joint work between the two labs has lead to successful
results in real-world applications such as dam inspection [Ridao et al.2010], AUV mapping of
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archaeological sites [Gracias et al.2013], or AUV mapping and intervention in a harbor scenario
[Prats et al.2012a], which are operations in demanding environments that have stimulated as well
the work presented in this doctoral dissertation.

Moreover, the work presented herein has contributed to the following projects in which CIRS
has participated:

• CICYT Project AQUAVISION: Vision Systems for computer cartography and underwater
aquaculture (Ref DPI2007-66796-C03-02), from which this thesis was supported through
the FPI grant BES-2008-006095, funded by the Spanish Ministry of Education and Science.

• FP7 EU Project TRIDENT: Marine robots and dexterous manipulation for enabling au-
tonomous underwater multipurpose manipulation (Ref FP7-ICT-2009-248497), funded by
the European Commission.

• FP7-7 EU Project PANDORA: Persistent Autonomy through Learning, Adaptation, Observa-
tion and Re-planning (Ref FP7-ICT-2011-7-288273), funded by the European Commission.

• MINECO Project RAIMON: Autonomous Underwater Robot for Marine Fish Farms In-
spection and Monitoring (Ref CTM2011-29691-C02-02), funded by the Spanish Ministry of
Science and Innovation.

• MINECO Project COMAROB: Robótica cooperativa Marina para el mapeo acústico y la
intervención (Ref DPI2011-27977-C03-02), funded by the Spanish Ministry of Science and
Innovation.

Finally, this thesis has also bene�ted from a research stay in the Ocean Systems Lab (OSL)
of Heriot-Watt University (Edinburgh, UK). OSL is a science and engineering research centre
distinguished for its innovations in autonomous systems and underwater acoustic sensors theory
and processing [Petres et al.2007, Petillot et al.2001, Tena Ruiz et al.2004, Reed et al.2004, Coiras
et al.2007].

1.4 Document Roadmap

The reminder of this doctoral dissertation is organized as follows (see Figure 1.6). Chapter 2
describes the principle of operation of a FLS together with the geometry model that describes
its image formation and the challenges involved in processing FLS imagery. The information
compiled in this chapter is the basis of FLS imaging and is essential to contextualize the methods
and procedures presented in the following chapters.

The next three chapters contain the main stages of the proposed FLS mosaicing pipeline.

Chapter 3 addresses the pairwise registration of overlapping FLS images. After reviewing the
state-of-the-art of FLS registration techniques, we propose a Fourier-based technique to register
FLS images in a robust and e�cient way. The di�erent steps of the method are thoroughly detailed,
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emphasizing the particularities that have been adapted to cope with the noise and artifacts of
acoustic images. Finally, in order to validate the method’s performance we present quantitative
comparisons against other state of the art registration techniques.

Chapter 4 deals with the global alignment stage by means of a pose-based graph optimization.
We describe the pose constraints that are introduced to the graph and we propose a method
to estimate the uncertainty of a pairwise registration in order to appropriately weight these
constraints in the optimization. We also present the work�ow to construct the graph, involving
the candidate selection criteria that is followed to attempt frame registrations along the vehicle
trajectory, for both o�ine and online mosaicing.

Chapter 5 covers the rendering of the individual FLS frames into a smooth, visually-pleasant
and informative mosaic. An analysis of the di�erences between the optical and acoustic image
blending problem sets the basis for the adopted approach. We identify the photometric irregulari-
ties that might be encountered in FLS mosaicing and we present a series of strategies to diminish
their impact in the �nal mosaic. Moreover, we discuss upon other rendering-related issues such
as the mosaic’s SNR improvement and the super-resolution possibilities.

Chapter 6 presents the experiments and results that validate the full mosaicing pipeline.
Experiments with real datasets including relevant �eld applications such as ship hull inspection,
harbor mapping or the exploration of an archaeological shipwreck are presented and analysed.

Lastly, the document is concluded in Chapter 7 summarizing the main contributions and the
future research directions to be explored.

Two accompanying appendices are found at the end of the main thesis body. Appendix A is
a recap, from a user point of view, of good practices and general guidelines to collect FLS imagery
in a way that facilitates its posterior mosaicing. Appendix B encloses an example of object
detection algorithm on FLS images in the context of an underwater chain inspection scenario.
The algorithm takes advantage of the mosaicing capability to perform detection on FLS images
with a higher degree of reliability.

Figure 1.6: Chapter organization outline.
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2 Background on

Forward-Looking

Sonar Imagery

Before moving on to the di�erent stages of the mosaicing pipeline, it is essential to understand the FLS
image formation and establish a suitable model to describe the imaging geometry of the sonar. In this
chapter, we �rst describe the operational principles of FLS devices (Section 2.1) by explaining the basics
behind its acoustic image formation. Section 2.2 provides a description of the FLS geometry models used
in the related state of the art, followed by a discussion on our model choice and its limitations. We also
provide a summary of the main challenges to be faced when dealing with FLS imagery to better understand
how they can in�uence subsequent processes such as image registration or blending.
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Chapter 2. Background on Forward-Looking Sonar Imagery

2.1 FLS operation

Two-D FLSs, sometimes also referred to as acoustic cameras, are a novel category of sonars
that provide high-de�nition acoustic imagery at a fast refresh rate. Although the speci�cations
regarding operating frequency, acoustic beamwidth, frame rate, and the internal beamforming
technology depend on the speci�c sonar model and manufacturer, the principle of operation
is the same for all. The sonar insoni�es the scene with an acoustic wave, spanning its FOV in
the azimuth (θ) and elevation (φ) directions, and then the intensity of the acoustic return is
sampled by an array of transducers as a function of range and bearing (Figure 2.1). Because
of the sonar construction, it is not possible to disambiguate the elevation angle of the acoustic
return originating at a particular range and bearing. In other words, the re�ected echo could have
originated anywhere along the corresponding elevation arc. Therefore, the 3D information is lost
in the projection into a 2D image.

Figure 2.1: FLS operation. The sonar emits an acoustic wave spanning its beam width in the azimuth (θ)
and elevation (φ) directions. Returned sound energy is sampled as a function of (r, θ) and can be interpreted
as the mapping of 3D points onto the zero elevation plane (shown in red).

Following the nature of the transducer readings, the images are arranged and represented in
polar coordinates. Therefore the dimensions of a raw frame correspond to the number of beams
in the angular direction and the number of range samples in the range axes. This representation
is then converted to the �nal 2D image in Cartesian coordinates for an easier interpretation. It is
worth noting that this process produces images with non-uniform resolution as one pixel in polar
domain is mapped to multiple pixels with the same intensity in the Cartesian coordinates as the
range increases.

Beyond this operation principle, FLSs are being manufactured in a variety of speci�cations.
There are di�erent internal beamforming techniques, from electronic beamformers, that use
frequency-steered arrays, to lenses beamformers using a set of lenses to focus the acoustic beams.
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The use of lens simpli�es the electronics and reduces power consumption though it requires more
space and possible calibration procedures [Negahdaripour et al.2005] in order to rectify the lens
distortion and ensure data to model consistency. Across the di�erent available models we can �nd
the well-known trade-o� between operating frequency and range as well as a variety of FOV and
beam angle widths. To give a �avor of typical numbers, table 2.1 summarizes the speci�cations of
the main FLS models found in the market nowadays. During the development of this thesis we
have worked with data from the �rst �ve listed devices.

2.2 Imaging geometry model

In this section we analyse the imaging geometry of FLSs and identify the transformation that
relates two acoustic images under di�erent models.

According to the described principle of operation, a 3D point P with spherical coordinates
(r, θ, φ) can be de�ned in the sensor frame {S} by the following Cartesian coordinates:

P =


Xs

Ys

Zs

 =


r cos θ cosφ
r sin θcosφ
r sinφ

 (2.1)

This 3D point P is projected in a point p = (xs, ys) on the image plane (XsYs) following a
nonlinear model:

p =
[
xs

ys

]
=
[
r cos θ
r sin θ

]
= 1

cosφ

[
Xs

Ys

]
(2.2)

As can be seen in Equation 2.2, the projection is introduced as a function of the elevation
angle. Depending on the treatment of this projection, we can distinguish two di�erent ways
of approaching FLS geometry, based on whether the 3D points are approximated through an
orthogonal projection or not.

2.2.1 Orthographic projection approximation

Given the narrow elevation angle that typically characterizes FLS devices (around 7-10 deg), the
nonlinear component de�ned by φ is tightly bound. Approximating this narrow elevation to the
limit (i.e., considering only the zero-elevation plane), we end up with a linear model in which the
sonar can be seen as an orthographic camera [Walter2008]. Hence, the projection p of a 3D point
P is approximated by the orthogonal projection p̂ as shown in Figure 2.2.

Analogously to the parallax problem in optical views, this approximation holds as long as the
scene’s relief in the elevation direction is negligible compared to the range, as the error introduced
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SONAR MODEL OPERATING RANGE FOV NUM.OF BEAMWIDTH MAX.UPDATE MAX.RANGE ANGULAR

FREQUENCY (m) (deg) BEAMS (θ × φ) (deg) RATE (Hz) RESOLUTION (m) RESOLUTION (deg)

ARIS Explorer 3000 1.8/3 MHz 0.5-20 30° 128 0.25°×14° 15 0.003 0.25°

BlueView P900-130 900 kHz 1-100 130° 768 1°×20° 15 0.025 0.18°

BlueView P900-45 900 kHz 1-100 45° 256 1°×20° 15 0.025 0.18

DIDSON 1.1/1.8 MHz 0.4-40 29° 96 0.3°×14° 21 0.0025 0.3°

Tritech Gemini i720 720 KHz 0.2-120 120° 256 1°×20° 30 0.008 0.5°

Imagenex 965 260 KHz 0.5-300 120° 480 1.5°×20° 10 0.0025 0.25°

Kongsberg M3 500 KHz 0.2-150 140° 256 0.95°×30° 40 0.01 0.95°

R2Sonar Sonic2024 200-400 KHz 1-400 160° 256 1°×20° 60 0.0125 0.5°

RESON Seabat 7128 200/400 KHz 1-500 128° 256 0.54°×31° 50 0.025 0.5°

Table 2.1: Speci�cations of main FLS devices present in the market during the elaboration of this thesis.



2.2 - Imaging geometry model

by the projection approximation is a function of the distance in the XsYs plane and the vertical
distance to the point [Johannsson et al.2010] (see Figure 2.3). The imaging geometry under a
typical operation scenario falls within this consideration since the sonar device is normally tilted
to a small grazing angle to cover a large portion of the scene.

Figure 2.2: Sonar projection geometry. A 3D point P(r, θ, φ) is mapped into a point p on the image plane
along the arc de�ned by the elevation angle. Considering an orthographic approximation, the point P is
mapped into p̂, which is equivalent to consider that all scene points rest on the plane XsYs (in red).

Figure 2.3: Projection error due to the orthographic approximation. Example computed for a sonar with
a range up to 20 m and an elevation angle of 14 deg. As can be observed, the error increases with the
range and extreme elevation angles. However, thanks to the narrow elevation angle of the FLS sonars, the
projection error is bounded within few centimetres for typical parameters.

On the other hand, the projection preserves the change in azimuth angles, i.e., if the sonar
rotates with respect to its vertical axis, the projection on the image rotates by the same angle.
Rotation around pitch, usually not present or controlled by a tilt unit, a�ects the limits of the
imaged area and its re�ected intensities but does not introduce a change in the projection of the
points. Changes in roll would a�ect the y-axis of the projections, but we consider it negligible
due to the usual stability of underwater vehicles in this Degree of Freedom (DOF). Finally, notice
also that changes in z will only change the insoni�ed area and its intensities but will not have
any impact in the scale of the images as long as the device’s range is not changed.

Therefore, by using this model, a point in the space represented by p and p′ in two di�erent
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(a) (b) θ = −12 deg (c) θ = 0 deg (d) θ = 10 deg

(e) (f) α = 5 deg (g) α = 15 deg (h) α = 25 deg

(i) (j) β = −20 deg (k) β = 0 deg (l) β = 20 deg

(m) (n) x = −0.4 m (o) x = 0 m (p) x = 0.25 m

(q) (r) y = −0.6 m (s) y = 0 m (t) y = 0.6 m

(u) (v) z = 0.5 m (w) z = 1 m (x) z = 1.5 m

Figure 2.4: E�ect of rotations and translations on FLS images. Each row shows an example sequence
under the motion indicated in the �rst column.

images, can be related through a global a�ne homography H. This homography describes the
2D motion from one position to the next in terms of a 2D rigid transformation comprising the x
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and y translations (tx,ty) and the plane rotation (θ):

p′ = Hp =


cos(θ) − sin(θ) tx

sin(θ) cos(θ) ty

0 0 1

p (2.3)

2.2.2 Non-approximated projection

Other approaches in the literature [Sekkati and Negahdaripour2007,Aykin and Negahdaripour2012]
work on the exact model, without considering the narrow elevation approximation. Then, the
homography H relating two image points p and p′ becomes an a�ne homography whose
elements vary across the image depending on the range and the unknown elevation angles [Ne-
gahdaripour2012b]:

p′ = Hp =


γq11 γq12 ψq13

γq21 γq22 ψq23

0 0 1

p (2.4)

where γ = cosφ/ cosφ′ , ψ = r sinφ/ cosφ′ and qij denotes the i, j components of a matrix
Q = R − tnT that is the rigid body motion transformation for features lying on a plane with
normal n. Hence, the imaging model is a non-uniform function of the image coordinates and
the surface normal of the assumed underlying plane, with H encoding all the information about
the 3D sonar motion and surface parameters. The di�erential version of this model, dealing
with rotational and translational velocity components [Negahdaripour2012a], has also been
used in the context of 3D sonar motion estimation [Aykin and Negahdaripour2013]. In theory,
it allows handling all 6 DOF of the sonar motion, while in practice the pitch and roll motion
components are not estimated due to sensitivity to various sources of error and noise in the sonar
data [Negahdaripour2012a].

However, these models require the knowledge of the elevation angles at every image location,
which are not provided by the sonar. Negahdaripour has shown that an elevation map of the
imaged plane can be determined from its surface normal. An estimation of the surface normal
can be computed from the sonar range settings and the imaging con�guration relative to the
scene as shown in [Negahdaripour2012a]. The estimation is obtained using the sonar pitch, the
sonar height (provided by an altimeter) and assuming that the points located at the leading and
trailing edges of the images correspond to the minimum and maximum set ranges (as shown
in Figure 2.5a) and therefore they are located at the extreme φmin and φmax values. Moreover,
Aykin and Negahdaripour [Aykin and Negahdaripour2012] have shown that this estimation of
the elevation map can be de�ned with higher accuracy by incorporating the elevation angles of
prominent features. To that end, they make use of object-shadow pairs extracted from detected
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blob regions to estimate the elevation angle of 3D features.

2.2.3 Selecting a FLS geometry model for 2D mosaicing

The use of the exact geometry model provides two main advantages when compared to the
approximated version (Equation 2.3). On one hand it allows the estimation of the sonar motion in
the vertical direction (z). However, for 2D mapping purposes this estimate is not required and
in case the sonar motion were to be estimated, the translations in the vertical direction can be
reliably obtained from pressure sensors. It is thus su�cient to estimate the x,y translations and
yaw rotation, which are the measures a�ected by drift and bias respectively.

The other advantage comes from the incorporation of the elevation angles in the registration
process, which reduces the errors introduced by the orthographic approximation and has proved
to enhance the local image alignment [Negahdaripour2012a]. Nevertheless, this improvement is
subject to the ability of robustly estimating the elevation angles on the imaged surface which may
not be a trivial procedure depending on the imaging con�guration or the type of features present in
the environment. There are many cases that the elevation angles cannot be reliably estimated from
the imaging con�guration as proposed in [Negahdaripour2012a]. Although imaging parameters
can be adjusted, it is di�cult that in a real scenario the image limits correspond to minimum and
maximum set ranges (see Figure 2.5). Moreover, the detection of the actual leading and trailing
edges on the images in order to establish this point-elevation correspondence can be complex and
inaccurate. On the other hand, we cannot rely on a robust shadow detection to derive the elevation
angles of image features as shown in [Aykin and Negahdaripour2012]. The distinctiveness of a
shadow area is subject to intensity patterns that depend on the topology and the re�ectivity of
the imaged environment. Therefore, shadow detection can become ambiguous and introduce
errors in the estimation of the elevation angles (see Figure 2.6).

All in all, we chose to adopt the simpli�ed 2D model, though being an approximation, it is
suitable to describe the image formation process and set the basis for the subsequent registration
process. Moreover, using a model of only 3 DOF allows us to consider global-area registration
techniques that resolve only �xed transformations applied to the entire image. As it will be argued
in Chapter 3 this is of special interest for acoustic images where the inclusion of all the image
information will minimize ambiguities in the registration.

It is worth emphasizing that the main limitation of the FLS imaging geometry, namely the
assumption of the imaged scene being nearly planar, can be relaxed thanks to the range extent of
the FLSs, which can vary from tens to hundreds of meters depending on the device. These ranges
o�er the �exibility of adopting a more appropriate imaging con�guration so that the assumption
of the projections lying on a plane becomes more realistic, i.e imaging from a farther distance
or at a narrower grazing angle, while still achieving an acceptable resolution. Note that in the
optical case, this �exibility is constrained by the light attenuation and the short visibility ranges
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(a)

(b)

(c)

Figure 2.5: Elevation angle estimation from leading and trailing image edges. (a) Ideal case where the set
ranges correspond to the leading and trailing image edges and have the extreme values φmin and φmax.
(b) Example of a trailing edge not corresponding to φmax and minimum range not corresponding to the
real leading edge of the image. In this situation, the real leading edge could be detected in the image. (c)
Example of a leading edge with a φ angle bigger than the φmin that is assumed for the minimum range.
The actual trailing edge is on φmax but its location would have to be detected in the image as it does not
correspond to the maximum range.

of underwater cameras. Besides, the use of a pan and tilt unit together with sensors that can
provide an estimation of the underlying plane (e.g. pro�ling sonars or multibeam systems) could
be considered to accommodate the imaging con�guration so as to match the planar assumption
as closely as possible.

2.3 Challenges in FLS imagery

As introduced in Chapter 1, acoustic images o�er the ability to see through turbid environments at
the expense of dealing with a much more challenging type of data. There are some particularities
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(a) (b) (c)

Figure 2.6: Feature shadow detection for elevation estimation. (a) For certain isolated features it is easy
to detect and measure shadow cues to estimate its elevation angle. Example extracted from [Aykin and
Negahdaripour2012]. However shadow detection can be ambiguous in many environments, for instance in
surfaces with mixed re�ectivity (b) or in the presence of holes (c).

closely related to the nature of sonar image formation that may impact subsequent processing
steps. In the following we provide a summary of the most relevant ones.

• Low resolution: Although they are considered high resolution sonars, 2D FLS image resolution
is far from the resolution of today’s standard cameras that make use of 2D array sensors with
millions of pixels. The cross-range or angular resolution is limited by the number of transducers
that can be physically packed in the device while the down-range one depends on the operating
transducer frequency. Both cross-range and down-range resolutions are important for image
quality and discriminating between closely spaced objects/targets. As can be seen on table 2.1,
the highest resolution sonar nowadays [Sound Metrics ARIS2013] is capable of delivering a
down-range resolution of 3 mm and a cross-range around 3 cm at 10 m range. However most of
the devices have larger beam widths and lower frequencies that translate to lower resolutions.

Moreover, as a consequence of the sensor’s polar nature, measurement sparseness increases
with the range when represented in a Cartesian space (see Figure 2.7). For instance, for the
ARIS sonar con�gured at 3 MHz where the minimum range is 1 m and the maximum range is
10 m, the ratio between the largest and the smallest pixel size can be up to 10 which means that
a pixel in the polar image can occupy from 1 to 10 pixels in the Cartesian image. Therefore,
as mentioned before, this results in a non-uniform resolution that contributes to degrade the
visual appearance of the image.

• Low signal-to-noise ratio:

As with other coherent imaging systems such as radar or ultrasound imaging, 2D FLS su�ers
from low SNR. This is mainly due to the presence of speckle noise introduced by the mutual
interference of the sampled acoustic returns. As will be seen in Chapter 5, this SNR can be
enhanced by registering and averaging multiple frames of the same scene. Therefore mosaicing
intrinsically provides a way to alleviate this problem.
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(a) (b) (c)

Figure 2.7: Inhomogeneous resolution in FLS images. (a) Example of a random polar frame. (b) Corre-
sponding Cartesian frame where the e�ect of the domain transformation can be clearly appreciated (pixels
being more sparsely mapped as the range increases). (c) Example image where content located at farther
ranges exhibits lower resolution.

• Inhomogeneous insoni�cation:

FLS devices typically include a Time Varying Gain (TVG) mechanism that compensates for
the transmission loss (i.e., the spreading and/or attenuation of the sound pulse on its travel
to the target and back). In this way, similar targets located at di�erent ranges are perceived
with similar intensities. However, due to the imaging geometry, a change on the FLS incidence
angle and/or the inclination of the imaged surface can introduce variations in the image
illumination either within a sequence or within a single frame (see Figure 2.8a). Besides, other
inhomogeneous intensity patterns can arise due to di�ering sensitivity of the lens or transducers
according to their position in the sonar’s FOV [Negahdaripour et al.2005] (see Figure 2.8b).
When strongly present, these inhomogeneous intensities can a�ect the image registration step
and they obviously have an impact on the image blending step as well. As will be described in
Chapter 5, these artifacts can be alleviated by estimating the inhomogeneous intensity pattern
from the averaging of a su�cient number of images or through some image equalization or
regularization method [Kim et al.2005].

• Viewpoint changes:

Intensity variations due to a change in the sonar’s viewpoint are inherent in the image formation
process. Imaging the same scene from two di�erent vantage points can cause the movement
of shadows in the images, occlusions and, in general, signi�cant alterations in the visual
appearance of the content that complicate the registration process. To minimize these e�ects, it
is preferable to image the area always from the same sonar point of view, though this might
not be always feasible. Hence, it is desirable that the registration algorithm can cope with
alterations caused by substantial viewpoint changes.

• Other artifacts:

Under some circumstances, spurious content can appear in the sonar images causing ambiguity
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(a) (b)

Figure 2.8: Inhomogeneous insoni�cation in FLS images.(a) Example of inhomogeneous insoni�cation
in a planar terrain due to sonar tilt angle. (b) Inhomogeneous insoni�cation due to the overlapping of
transducer beams across the FOV.

in the registration: reverberation artifacts, acoustic returns from the water surface, cross-talk
between beams, or multipath that generates ghosting artifacts. However, these artifacts can
generally be minimized by adopting a proper con�guration and imaging setup.

(a) (b) (c)

(d) (e)

Figure 2.9: Other artifacts present in FLS images. (a) Aliasing of tank reverberation overlaid in the image
as black stripes on the background. (b) Crosstalk. Bright returns of the chain links repeated in the sidelobes
of the main beam resulting in bright arcs. (c) Top part of the image exhibiting water surface re�ections.
(d-e) Ghosting e�ects of main structures due to multipath.
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3 Registration of

Forward-Looking

Sonar Images

The pairwise registration of frames is a key step in mosaicing. Given a pair of images gathered from
di�erent viewpoints it allows to �nd the planar transformation that properly aligns them into a

single and common reference frame. The computer vision community has proposed numerous registration
methods over the last few decades [Zitova and Flusser2003], however most of them have been designed to
deal with optical images. As seen in the previous chapter, FLS images are a�ected by di�erent problems,
tightly related to their mode of operation. Therefore, there is the need to �nd a suitable technique for
performing FLS registration. In this chapter we start by analyzing the di�erent methods that are employed
in previous works to register FLS imagery. We then propose a registration technique that can overcome
their limitations and cope with the challenging characteristics of the acoustic data. Finally, we provide
quantitative comparisons of the proposed method to testify its performance against two other registration
techniques used in earlier works.
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3.1 Related work on FLS Image Registration

3.1.1 Feature-based registration at pixel level

Feature-based methods are arguably the most popular type of registration methods existing
in the literature. They are based on establishing correspondences between a limited set of
well localized and individually distinguishable points (i.e., features) detected in each of the
images [Tuytelaars and Mikolajczyk2008]. The traditional pipeline for feature-based registration
is sketched in Figure 3.1. The process begins with the detection of image features or salient points
that are relevant according to content of their surroundings. In order to later establish correct
correspondences across the images, these points need to be repeatable, so they can be located again
in other images, and discriminative, so they can be correctly identi�ed. The feature detection is
followed by a description process that computes feature descriptors, i.e., a compact representation
of the neighborhood of a feature. Descriptors can be a simple �xed-size window of pixels
around the feature point or more complex descriptor vectors that characterize the gradients of the
surrounding texture. After that, there is a matching step where the point-to-point correspondences
from the two images are established. To that end, similarity measures are evaluated on the
descriptors of the two images to rank the goodness of a particular match. Typical approaches use
the similarity between statistics computed in a window around the feature point (e.g., normalized
cross-correlation or sum of squared di�erences) or the similarity between feature descriptors
vectors (through some distance measure). In order to avoid wrong correspondences, this process is
usually followed by an outlier rejection step that discards wrong matches using a robust estimation
algorithm (e.g., RANdom SAmple Consensus (RANSAC) [Fischler and Bolles1981]). Finally, the
matches that are deemed as correct (i.e., inliers) are used to estimate the transformation that
relates the images through orthogonal regression.

Some of these feature-based approaches have been applied to the registration of FLS images.
In general, reported results come from small and feature-rich datasets and registrations are
performed only between consecutive frames. In [Negahdaripour et al.2005], a few image pairs
from a DIDSON sonar are registered using Harris corner detector [Harris and Stephens1988]
and matched by searching over small local windows. Similarly, in the work of Kim et al. [Kim
et al.2005, Kim et al.2006], Harris features extracted at the third and fourth level of a Gaussian
pyramid scale are matched with cross-correlation of local patches. Once correspondences are
established, the transformation estimation is performed with a RANSAC-alike method that uses
the least square error between correlations as a criterion for determining outliers. Negahdaripour
et al. [Negahdaripour et al.2011] highlight the complexities of mosaicing benthic habitats with
FLS images and show the di�culty of registering DIDSON frames from a natural environment by
using the popular Scale-Invariant Feature Transform (SIFT) detector and descriptor [Lowe2004].
Results report a very low percentage of inliers in the matching step (about 8%) and only small
displacements of features located in the shortest ranges of the images could be e�ectively matched.
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Figure 3.1: Feature-based registration pipeline.
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In general, due to the inherent characteristics of sonar data, pixel-level features extracted in
sonar images su�er from low repeatability rates [Hurtós et al.2013] as it will be shown later in
Section 3.3. Consequently, extracted features lack stability and are prone to originate erroneous
matches and yield wrong transformation estimations. Moreover, the di�culties in accurately
extracting and matching stable features are exacerbated when dealing with spatially or temporally
distant sonar images found in loop closure situations. This is a key issue since the registration
of revisited locations is crucial to bound the error accumulated over time and achieve global
consistency in mosaicing or motion estimation applications.

3.1.2 Feature-based registration at region level

The unreliable behavior of the pixel-level features over acoustic images has not gone unnoticed by
other researchers who have proposed alternatives involving features at region level rather than at
pixel scale. Johannsson et al. [Johannsson et al.2010] proposed the extraction of features in local
regions located on sharp intensity transitions (i.e., changes from strong to low signal returns as in
the boundaries of object-shadow transitions). In their approach the sonar images are �rst smoothed
with a median �lter, then their gradients are computed, and points exceeding a given threshold
are �nally clustered into features (see Figure 3.2a). These features are presumably more stable
than those computed at pixel level. Feature alignment is formulated as an optimization problem
based on the Normal Distribution Transform (NDT) algorithm [Biber and Straßer2003]. The
NDT adjusts the clustered regions in grid cells, removing the need to get exact correspondences
between points, thus allowing for possible intensity variations. However, the registration accuracy
becomes strongly dependent on the selected grid resolution. The same feature-based registration
has been later used in [Hover et al.2012].

A similar approach has been recently presented by Aykin and Negahdaripour [Aykin and
Negahdaripour2012, Aykin and Negahdaripour2013]. Instead of thresholding on the gradient
domain, blob features are clustered from two types of pixels in the image: on one hand, the
highest intensity values (i.e., brighter pixels assumed to be objects or structures on the ground
surface) and on the other, those pixels with a negative vertical gradient that ensure object-shadow
transitions and not viceversa (see Figure 3.2b). As an alternative to the NDT algorithm, Aykin
and Negahdaripour propose the use of an adaptive scheme where a Gaussian distribution is �tted
to each blob feature. Afterwards, an optimization is formulated to seek the motion that best �ts
the blob projections from one Gaussian map to the other.

3.1.3 Taking it a step further: area-based registration

Following the trend observed in the state of the art, it seems natural to explore area-based meth-
ods that instead of using sparse feature information make use of the entire image content. By
incorporating more information in the registration process, we expect to be able to handle more
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(a) (b)

Figure 3.2: Feature-based registration at region level. (a) Example of extracted features from [Hover
et al.2012]. (b) Example of extracted features from [Aykin and Negahdaripour2013]. Points with higher
intensities are in blue and points with negative gradients in green.

changes in the visual appearance of the image and minimize the ambiguities in the registration.
The common shortcoming of area-based techniques is their inability to handle complex trans-
formations, being limited to the estimation of similarity transforms. However, and according
to the simpli�ed FLS geometry model that we adopted in Section 2.2.3, the registration of two
FLS images falls inside its scope of applicability, thus turning the area-based methods into a
candidate solution for FLS image alignment. From all existing area-based approaches, including
spatial-correlation, Fourier-based methods and mutual information methods, we propose the use
of Fourier-based techniques. The particularities of these kind of methods suggest that they can be
appropriate for the registration of FLS imagery since, by design, they o�er some robustness to
noise, illumination changes and occlusions [Foroosh et al.2002] while being more computationally
e�cient than spatial correlation or mutual information approaches [Zitova and Flusser2003].

3.2 Fourier-based registration for FLS

Fourier transforms and frequency domain analysis are a cornerstone of signal processing. It is
not surprising then that Fourier-based methods, and in particular the phase correlation algorithm
[De Castro and Morandi1987,Reddy and Chatterji1996] that will be introduced hereafter, have been
widely employed in many image processing tasks such as image registration, pattern recognition,
motion compensation and video coding, to name a few. These techniques allow registrations up to
similarity transformations with a high computational e�ciency due to the implementation of the
Fast Fourier Transform (FFT) algorithm to compute the Fourier transforms. In a similar problem
to the one we tackle in this thesis, phase correlation has been applied to register underwater
optical images in order to build photomosaics [Eustice et al.2002, Bülow et al.2009]. However,
when dealing with video images, feature-based methods are generally more popular since their
high resolution and SNR allow to easily extract stable features and use them to estimate more
general transformations such as projective homographies.
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On the other hand, the literature regarding the application of Fourier-based methods on
sonar imagery is not extensive. Some authors have pointed out the phase correlation method as
potentially useful in the registration of side-scan sonar images [Chailloux2005,Vandrish et al.2011]
while other researchers employed it in the registration of 2D and 3D sonar range scans [Bülow
et al.2010, Bülow and Birk2011]. However, to the best of the author’s knowledge, its use on FLS
data has never been explored.

In the following we introduce the main principle of Fourier-based registrations for estimating
translational shifts. Later, in section 3.2.2, we will see how this is extended to obtain also rotational
estimates and �nally we will provide the complete outline of the proposed registration method
for FLS images.

3.2.1 Phase correlation for the estimation of translational shi�s

The principle of the Fourier-based registration techniques resides in the Fourier shift property.
This property establishes that a shift between two functions (e.g., images) is transformed in the
Fourier domain into a linear phase shift. Let i1(x, y) and i2(x, y) be two images related by a 2D
shift (tx, ty), namely

i1(x, y) = i2(x− tx, y − ty). (3.1)

Then their 2D Fourier transforms, denoted by I1(u, v) and I2(u, v), are related as follows:

I1(u, v) = I2(u, v)exp−j(utx+vty). (3.2)

As can be seen in Equation 3.2, the phase information contains the shift of spectral content
between the images, whereas the amplitude information will convey the amount of energy within
a particular frequency.

The phase term can be factored out by:

C(u, v) = I1(u, v)I∗2 (u, v)
|I1(u, v)I∗2 (u, v)| = exp−j(utx+vty) (3.3)

where I∗ denotes the complex conjugate of I . This can be regarded as a special type of
correlation, in which the images cross-spectrum is normalized, so that the frequency components
have all unity amplitude while retaining the original phase values, thus decoupling the signal
energy from the structure. Hence, the normalizing denominator is equivalent to a pre-whitening
of the signals, making the phase correlation method inherently robust to noise that is correlated
with the images, such as uniform variations of illumination or o�sets in average intensity [Foroosh
et al.2002].

30



3.2 - Fourier-based registration for FLS

The most common way to solve Equation 3.3 for (tx, ty) is to apply the inverse Fourier
transform to the phase correlation matrix C(u, v). In the ideal case, this corresponds to a 2D
impulse (Dirac function) centered on (tx, ty), that directly leads to the identi�cation of the integer
displacements. In the presence of noise or other image perturbations, the Dirac pulse of the phase
correlation matrix deteriorates, but as long as it contains a dominant peak the o�sets can be
retrieved. Moreover, after determining the maximum correlation peak with integer accuracy,
sub-pixel displacements can be estimated through the �tting of di�erent functions on the vicinity
of the peak [Foroosh et al.2002, Ren et al.2010].

Figure 3.3: Basic phase correlation work�ow.

A di�erent group of approaches, initiated by the work of Hoge et al. [Hoge2003], try to recover
the o�sets in Eq. 3.3 by working only in the frequency domain. Following their formulation, the
image shifts can be computed as the slopes of a plane �tted to the phase di�erence data, which
corresponds to the phase angle of C(u, v). Computing these slopes implies the 2D unwrapping
of the phase data which is a notoriously ill-posed problem [Hoge2003]. To avoid this step, Hoge
et al. proposed to perform a subspace approximation of the noisy phase correlation matrix
imposing Rank-1 constraint. In this way the 2D unwrapping problem is reshaped into two 1D
unwrappings of the phase correlation dominant eigenvectors. Later on, Balci and Foroosh [Balci
and Foroosh2006] have shown that actually no phase unwrapping is needed as the discrete phase
di�erence matrix of two images corresponds to a 2D sawtooth signal whose cycles determine the
shift parameters. Therefore, it is only necessary to robustly count the number of cycles along each
frequency axis to retrieve the translational o�sets. While there are several publications reporting
successful results on optical images and Magnetic Resonance Imaging (MRI) [Hoge2003, Balci
and Foroosh2006], the implementation of these methods does not seem feasible on FLS images.
Figure 3.4 shows an example of the phase di�erence matrices obtained from two optical images
(Figure 3.4a) and two FLS images (Figure 3.4b). While it is possible to compute reliably the width
of a sawtooth cycle in the optical case, the cycles are hardly distinguishable in the FLS example.
Even after attempting �ltering operations on the phase di�erence matrix, the robust estimation
of the o�sets from the phase di�erence cycles is impracticable.

In our experience, working directly in the frequency domain o�ers a much higher sensitivity
to noise compared to computing the inverse transform of the cross power spectrum and �nding
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(a) (b)

(c) (d)

Figure 3.4: Example of the Balci and Foroosh method. (a) Phase di�erence matrix corresponding to a pair
of shifted optical images. (b) Phase di�erence matrix corresponding to a pair of shifted sonar images. (c-d)
One row of (a) and (b) respectively. Notice the di�culty of detecting the cycles (i.e., the shifts) in the sonar
case.

the peak in the spatial domain, reason for which we developed on the standard approach.

3.2.1.1 Edge-e�ects

There are some factors not linked to the image nature itself, but to the computation process of
the Fourier transform, that can overshadow the phase correlation matrix and lead to failure in
detecting the peak if not handled properly. The most critical one, are the so-called edge e�ects.
The phase correlation theory described in the previous section holds for periodic signals and
continuous Fourier transforms. In the discrete case, the FFT algorithm is used to approach the
in�nite Fourier transform, by imposing a cyclic repetition of �nite-length images by tiling them.
Then, the abrupt transitions generated between the image edges when the images are tiled result
in undesired frequency components appearing in the Fourier spectrum, which is also known as
spectral leakage. These introduced frequency components may alter the subsequent computation
of the phase correlation matrix and the overall registration result. In order to minimize the
spectral leakage, it is typical to perform a windowing operation before the FFT computation. This
is achieved by applying an apodization function (e.g., Blackman, Cosine, Gaussian, Hamming,
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Hanning) that provides a smooth transition at the image boundaries.

In a similar manner, the fan-shaped footprint edges of the FLS images in Cartesian coordinates
introduce frequency components which are independent from the image content (see Figure 3.7e).
Hence, the registration can latch and those components and not on the real image information.
Back in the spatial domain, this causes a strong false peak around the origin of the matrix (tx = 0
and ty = 0) that can easily hide the location of the true peak. Thus, to avoid these e�ects in FLS
images, we should apply a mask that tapers out the boundaries of the FLS Cartesian footprint
prior to the FFT computation (see Figure 3.5). The image masking is performed through the
following procedure, where n is a percentage of the maximum image size (typically around 3%):

1. Compute the footprint f of the input sonar image i.

2. Apply a shrink morphological operation to f by n pixels obtaining fs.

3. Create a Gaussian �lter k of size 6n× 6n and σ = n.

4. Create mask m convolving fs ∗ k.

5. Apply the mask to get the �nal masked image im = i ·m .

Note that this process will always result in the loss of some boundary image information.
However, as shown in Figure 3.7, it is essential to preserve the spectrum of the image content and
be able to detect the real shift.

Figure 3.5: Phase correlation work�ow with masking. The block labelled as "Mask" applies the procedure
described in Figure 3.6 to avoid edge e�ects.

Figure 3.6: Image masking procedure.

3.2.1.2 Filtering operations in the phase correlation of FLS images

Besides the edge-e�ects, there are a number of factors that may result in arbitrary peaks when
applying the inverse Fourier transform to the phase correlation matrix, thus reducing the ability
of detecting a clear dominant peak.
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(a) i (b) im, n = 1% (c) im, n = 2% (d) im, n = 3%

(e) FFT(i) (f) FFT(im), n = 1% (g) FFT(im), n = 2% (h) FFT(im), n = 3%

Figure 3.7: Masking of edge e�ects. The FFT (e) of the input image (a) exhibits strong patterns due to the
footprint boundaries of the image (notice its perpendicularity to the image edges). By masking the image
edges with a Gaussian kernel (b-d) the e�ect on the FFTs is alleviated (f-i). The smoother the transition,
the higher the attenuation of the pattern present in the spectra. Notice how after diminishing the edge
e�ects other components related to the image content gain relevance, such as the vertical edge due to the
across-range shadow in the center of the image.

Due to the homogeneous treatment of all the frequency spectrum, phase correlation is highly
sensitive to low SNR. Certain frequencies with very low SNR are given the same weighting as
high signal content areas, thus leading to potential erroneous correlations and therefore spurious
peaks. This is for instance the case of some high frequencies where an edge signal may be buried
under speckle noise or the jagged pixel appearance product of the non-homogeneous resolution.

Other factors, such as intensity alterations caused by di�erent viewpoints, errors introduced
by the approximated geometry model or the image content of non-overlapping areas are likely to
give rise also to multiple local maxima and reduce the amplitude of the true registration peak.
Typically, the method itself is quite resilient to some of these noise sources, such as for instance
the noise due to non-overlapping content. This is because the correlation signal (which can
be approximated as a 2D Drichlet distribution [Foroosh et al.2002]) is highly localized in the
spatial domain while the Gaussian noise due to non-overlapping images is di�used, therefore
being fairly easy to identify the peak even in low overlap conditions. However, as introduced in
Section 2.3, FLS images are challenging and may often present a combination of all the abovesaid
noise sources together, leading to a correlation surface with an unrecognizable main peak (see
Figure 3.8). It becomes then fundamental to perform some �ltering operations to attenuate the
noise as much as possible and be able to recover the correlation peak with maximum reliability.
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(a) (b)

(c) (d)

(e)

Figure 3.8: Examples of obtained peak surfaces when applying phase correlation to overlapping FLS
images. Unfortunately, due to di�erent noise sources it is often not possible to detect a clear dominant
peak like in (a) or (b). Surfaces with scattered peaks (c-e) are common and compromise the detection of the
true registration peak.

It is common practice to �lter the image’s spectra in order to attenuate unwanted frequencies
that can lead to a noisy phase correlation matrix [Stone et al.2003] (see Figure 3.9a). However this
requires a precise estimation or a priori knowledge of the spectra of the input images. Without
such, determining these �lters becomes critical as there is a risk of attenuating not only the
unwanted components but also the discriminating phase components. Although the nature of the
sonar images, as with most natural images, is of low-frequency, we cannot know beforehand the
frequency responses that we might encounter when exploring a new environment. In general,
we want to retain both low frequency characteristics, such as the re�ectivity transition from a
sandy area to vegetation, as well as high frequency components that arise from object edges or
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(a)

(b)

(c)

Figure 3.9: Diagrams of pre�ltering and post�ltering operations. (a) The Fourier transforms of the image
are �ltered before the correlation is computed. (b) The �ltering takes place after the correlation, once
back in the spatial domain. (c) The �ltering takes place on the phase correlation matrix, in the frequency
domain.

protruding seabed features. Therefore, in order not to limit the potential bene�t arising from
the correlation of these frequencies we chose to keep the input images un�ltered. Instead, we
advocate for computing the cross power spectrum �rst and deal with the noise afterwards, once
the phase of all frequencies has contributed (either for good or for bad) to the computation of
the correlation matrix. From that point, two main approaches can be envisaged to deal with the
noise: from the spatial (Figure 3.9b) or the frequency domain (Figure 3.9c).

Filtering of the correlation surface in the spatial domain. The most straightforward ap-
proach to minimize the noise e�ects is to apply a �lter in the spatial domain, essentially enhancing
the robustness of the peak detection. Once the phase correlation matrix is inverted, there will
typically be several scattered peaks around the highest peak due to a combination of the aforemen-
tioned factors. Eventually, the vicinity of the highest peak contains peaks of smaller amplitude
than the neighborhood of other peaks. The intuitive idea is that we should select as the highest
correlation point the highest peak that is within a high neighborhood. A simple way to achieve
this is by applying an averaging �lter. Therefore before looking for the peak we can perform the
convolution with an averaging kernel that will essentially smooth the noisy surface. However,
choosing the right size for this kernel is critical and can severely condition the output of the
registration: from selecting a totally wrong peak to loosing a great deal of accuracy with a large
�lter that heavily smears the data (see Figure 3.10). Moreover, the appropriate size will vary
depending on the topology of each obtained peak surface, and it is di�cult to tune it in a precise
and e�cient way.
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Figure 3.10: E�ect of the averaging �lter applied on the correlation surface for di�erent kernel sizes.

Frequency domain �ltering of the phase correlation matrix. Another approach can be
devised by �ltering in the frequency domain, before applying the inverse Fourier transform to
the phase correlation matrix. The idea is to �lter the noisy components of the phase correlation
matrix so that they are not converted to spurious peaks in the spatial domain. Hence we will
achieve a much cleaner surface where the �nal correlation peak can be detected in a more reliable
manner. Moreover, the application of the �lter in the frequency domain will be presumably faster
than the convolution in the spatial domain for most of the kernel sizes. As stated earlier, the
frequencies that are more likely to introduce problems are the high frequencies. Therefore, we
start by considering the application of a low pass �lter, such as a Butterworth �lter (Figure 3.11).
The Butterworth �lter is a commonly used �lter whose frequency response is described by:

H(u, v) = 1

1 +
(
r
fc

)2
k
, u = 1, 2, ...,M − 1, v = 1, 2, ..., N − 1 (3.4)

where r =
√
m2 + n2 is the frequency radius in normalized coordinates m = (u−M/2)/M

and n = (v−N/2)/N within range [−0.5, 0.5], k is the �lter order and fc is the cuto� frequency
in the range (0, 0.5].
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Figure 3.11: Butterworth �lter.

Again, and analogously to the spatial case, we face the problem to tune the cuto� frequency
of the �lter. In this case, this is equivalent to �nding the proper radius from the origin of the
spectral plane in which the frequency components will begin to attenuate. In the literature there
are few precedents suggesting the application of �lters in order to mask the noisy components
of the phase correlation matrix [Stone et al.2001, Eckstein and Vlachos2009, Pap et al.2012].
Stone et al. [Stone et al.2001] introduce a masking procedure to cut the noisy terms of the
phase correlation matrix when estimating subpixel displacement, once integer pixel shifts have
already been solved. They establish a �xed mask of radii r = 0.6(L/2) from the frequency
origin, where L is the minimum number of samples in the x and y directions. Pap et al. [Pap
et al.2012] adopt a brute-force style approach, performing a range of simulations to compute the
shifts with a discretization of all possible �lter radius to �nally keep the best one. Eckstein and
Vlachos [Eckstein and Vlachos2009] presented a robust phase correlation �lter in the context
of a particle image velocimetry application. Given the speci�c characteristics of the involved
imagery they can accurately extract an analytical model of the SNR and therefore they can apply
a Gaussian �lter optimal for the spectral characteristics of the problem at hand.

Despite the brute-force approach, that we discard for obvious e�ciency reasons, the other
solutions are not versatile enough for our purposes. We are facing a more open problem, where
we should deal with images that undergo a di�erent amount of pixel shifts, that might have
signi�cantly di�erent spectral characteristics depending on the observed content and di�erent
noise artifacts depending on the situation. Therefore, the phase correlation matrices that we can
encounter can present substantial changes, and establishing a �xed �lter cannot be regarded as a
good solution. A too high cuto� may result in the e�ect of the unwanted correlations not being
minimized. On the other hand, a too low cuto� can end up with a diluted peak centred at the
origin, due to the correlation of the lowest frequency components such as the average intensity
image (DC term). Hence, we propose an adaptive solution that adjusts the �lter cuto� according
to noise present in the phase correlation matrix. The key point is to automatically determine
the cuto� frequency so that it minimizes those components that will lead to spurious spikes in
the spatial domain, while preserving the location of the true delta of the correlation. Although
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we do not have beforehand an idea of how the noise impacts the phase correlation matrix, we
do have an idea of how it should look in the ideal noise-free case. If we recall the derivations
of [Hoge2003] and [Balci and Foroosh2006], the discrete phase di�erence matrix (i.e., ∠C(u, v))
corresponds to a 2D sawtooth signal whose cycles determine the image shifts. Indeed, the phase
di�erence matrix of a pure delta (see Figure 3.12) corresponds to a totally striped matrix according
to the shifts in the spatial domain. As we have observed in the tests performed at the beginning
of Section 3.2, the noise present in FLS images does not allow for a reliable estimation of the
sawtooth cycles as they are typically corrupted by noise and cannot be accurately measured.
The key idea here is that the area where the sawtooth pattern is perceivable (even if the stripes
themselves are not "measurable") gives a good estimate of the frequencies that contribute to the
correlation peak while the rest can be considered noise that will yield to spurious peaks once
the phase correlation matrix is inverted back to the spatial domain. Therefore, assuming that
we can somehow delimit the stripped pattern area, we could place the cuto� frequency of the
low-pass �lter in its boundary in order to get a good trade-o� between the minimization of noisy
frequencies and the preservation of the peak.

(a) (b)

Figure 3.12: (a) 2D Delta in the spatial domain centered at (10,10) (dilated for visualization purposes). (b)
Its corresponding FFT.

In order to circumscribe the area of support of the correlation peak we take advantage of the
fact the visible pattern will always emanate from the frequency origin. Hence we propose to use
a simple but e�ective watershed type of segmentation [Meyer and Beucher1990] from the central
point of the matrix ∠C(u, v). The �ood-�ll segmentation spreads through the central stripe until
the noise contaminates the pattern enough to prohibit its expansion. Thus, we will select the
maximum coordinate of the segmented region as the radius to establish the �lter cuto�.

In order to check that the described mechanism leads to the proper adaptation of the cuto�
frequency, we have selected a hundred pairs of overlapping FLS images from di�erent datasets
and we have computed the phase correlation by applying the described frequency �ltering. We
have compared the correlation peak after the �ltering with the automatically determined cuto�
and the �ltering using a range of all possible cuto� frequencies (expanding from 0 to 0.5 in 0.01
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Figure 3.13: Adaptive determination of the �lter cuto� frequency. A �ood-�ll segmentation from the
origin of ∠C(u, v) establishes the �lter cuto� radius.

intervals). For comparison purposes, we have de�ned a measure to quantify the peak sharpness
through the Peak-to-Sidelobe Ratio (PSR):

PSR = peak − µ
σ

(3.5)

which essentially measures how many standard deviations above the mean is the peak in the
correlation output. Hence we de�ne the optimal cuto� frequency as the one that leads to a higher
PSR measure, indicating that we have reached the maximum compromise between suppressing
the noisy frequencies and preserving the ones that contribute to determine the correlation. The
average di�erence of the automatically selected cuto� with respect to the optimal one over the
hundred pair-wise correlations is only of 0.027± 0.06. Figure 3.14 shows some examples of the
obtained PSR curves for the di�erent cuto� values, where it can be seen that the automatically
selected cuto� falls very close to the maximum PSR. Moreover, we can see that the method leans
toward the conservative side: it is always preferable to select a cuto� that does not �lter the noise
as optimally as possible (still being possible to detect the peak) rather than �ltering more than
necessary. Last column shows an example of two images that are actually not overlapping. In
that case we can see that the selected cuto� is very small. However, since the images are totally
di�erent and there is no correlation (as indicated by the low PSR value), the actual peak result is
irrelevant in this case.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14: Examples of automatically determined cuto� values (top row) for di�erent pairs of overlapping
images (a-c) and a non-overlapping pair (d). Second row evaluates the obtained peak sharpness once the
corresponding phase correlation matrices have been �ltered with a range of possible cuto� values. The
green star shows the optimal cuto� leading to a highest PSR value and the red star shows the PSR value
for the automatically detected cuto�.

3.2.2 Rotation estimation

Up to this point, we have covered the phase correlation approach for the estimation of linear shifts
between FLS images. However, the recovery of rotation between frames must also be addressed.
The inherent nature of sonar image formation suggests that mapping an area while maintaining
the same orientation increases the chances of successful registration as intensity alterations due to
viewpoint changes are minimized. In this sense, a lawn mower pattern where the transition from
track to track is performed by sway displacement instead of rotation, would be a good mapping
strategy. However, this approach might not always be feasible. The vehicle deploying the sonar
device may not allow for the sway degree of freedom, or perhaps the area to cover does not
conform to a rectangular layout and requires some orientation changes in order to be e�ciently
covered. Moreover, if we think not only about autonomous surveys, but inspections carried out
with ROVs as well, the pilot will most likely undertake a great number of rotational movements.
Therefore, it is important to �nd a robust solution to estimate the rotation between pairs of FLS
images so as to enable FLS mapping in more general situations and diverse environments.

Indeed, since most of the FLS registration techniques existing in the literature are feature-
based (recall Sections 3.1.1 and 3.1.2), FLS rotation estimation has not received explicit treatment
as it is intrinsically estimated from the feature matching step. Following the same reasoning
introduced in Section 3.1.3 we want to explore global techniques that involve the use of all the
image information without requiring the extraction of features, and at the same time, o�er better
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tolerance to noise and inhomogeneous intensity artifacts.

Hence, given two images f and g related by a roto-translation:

i1(x, y) = i2(xcosθ0 + ysinθ0 + tx,−xsinθ0 + ycosθ0 + ty), (3.6)

where θ0 and [tx, ty] are the relative rotation and translations respectively, we seek θ0 so that
we can correct the rotation between the images and afterwards solve for the translational shifts
with the phase correlation introduced in the previous section.

It should be noted that in using this scheme, the accuracy of the rotation estimation step is
crucial, as the translation estimation depends on the preceding rotation compensation.

In the following sections we describe four potential registration algorithms to solve the rotation
estimation problem in a global manner.

3.2.2.1 The brute-force approach

According to the Fourier rotation property, a rotation of a function by θ implies that its Fourier
transform is also rotated by the same angle:

I1(u, v) = I2(ucosθ0 + vsinθ0 + x0,−usinθ0 + vcosθ0 + y0)exp−j(utx+vty). (3.7)

Then, the rotation angle between i1 and i2 can be computed as the angle θ for which I1 and
I2 yield to the maximum correlation. However this implies the computation of an image rotation,
its Fourier transform, and the subsequent correlation for every angle hypothesis, becoming
computationally expensive.

Similar approaches have been explored in the domain of the Radon transform [Li et al.2007,
Costello2008], where the dimensionality of the rotation estimation problem is reduced to 1D
projections. In order to estimate a rotation between two images, it is required to compute
1D correlations between the reference Radon transform vector and all the di�erent vectors
corresponding to each of the potential rotation angles. Again, this would require to evaluate a
range of angle hypothesis covering all the sonar’s FOV, generating a hardly satis�able trade-o�
between accuracy and computation time.

Hence, although these kind of approaches could certainly be valid to estimate the rotation
between two FLS frames, they are opposed to our objective of �nding an e�cient FLS registration
method and they are not further considered.
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3.2.2.2 Fourier-Mellin transform

One of the most popular global registration methods dealing with the estimation of rotational
alignments is based on the polar magnitude of the Fourier transform, often referred to as the
Fourier-Mellin transform [Chen et al.1994, Reddy and Chatterji1996]. This method is indeed an
extension of the phase correlation to estimate rotation and scale changes by using the log-polar
domain. In our case we will disregard the log factor since, as stated earlier, there is not scale
ambiguity between FLS images.

The Fourier transform of Equation (3.7) can be expressed in polar coordinates as:

I1(r, θ) = I2(r, θ + θ0)e−i(utx+vty). (3.8)

As can be observed in Equation (3.8), the rotation in the spatial domain is mapped as a linear
shift in the angular direction of the polar domain. According to the Fourier shift property, we can
see also that the translational displacements a�ect only the phase spectrum, so the rotation can
be determined independently using the magnitude of the polar Fourier transform. The rotation
estimation problem is then converted to a shift estimation where the input images are the polar
representations of the Fourier transform magnitudes. This shift estimation can be solved by phase
correlation as described in Section 3.2.1, and leads to two possible solutions (θ and θ + π) that
can be disambiguated by solving in both cases for the subsequent translation and keeping the
rotation that leads to the highest correlation peak.

As introduced in Section 3.2.1.1 it is necessary to mask the images to avoid edge e�ects caused
by the sonar fan-shaped footprint, as well as to window, in this case, the polar magnitudes of
the Fourier transforms. Under this approach, phase correlation is not applied on the original
images, but on the polar magnitude of the Fourier transforms which are images characterized
by a low structural nature (particularly in the case of sonar modality). Moreover, these images
are su�ering from inaccuracies introduced by the conversion to the polar domain as the data
from the Cartesian grid needs to be sampled to obtain a regular r − θ grid. For low frequencies,
which generally contain most of the energy, the sampling is based on very few values and thus
can introduce signi�cant approximation errors.

Given that Fourier-Mellin transform is considered a reference technique for global rotation
estimation and is widely popular on optical images [Bülow et al.2009, Schwertfeger et al.2010], its
performance on FLS images will be evaluated in Section 3.3.1.

3.2.2.3 Angular Di�erence Estimation

Lucchese and Cortelazzo introduced another Fourier-based method for rotation estimation [Luc-
chese and Cortelazzo2000]. Their approach is not based on a correlation strategy but on a speci�c
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property that enables the estimation by working directly in the Cartesian domain, bypassing the
need for any polar conversion. Given two images, they have shown that the di�erence between
the magnitudes of the Fourier transforms of the �rst image and the mirrored version of the second
has a pair of orthogonal zero-crossing lines. The orientation of these lines with respect to the
frequency axis is shown to correspond to half the rotational angle [Lucchese and Cortelazzo2000].
The authors acknowledge that the method works better for images that are fully overlapping,
although they show that the orthogonal lines can still be recovered (with decreased accuracy)
when using images with less overlap such as in the presence of translations combined with
rotations.

Several techniques have been proposed for the detection of this cross-pattern including the
use of a multiscale Hough transform [Lucchese and Cortelazzo2000] or the detection through the
de�nition of an Angular Di�erence Function [Keller et al.2005].

Figure 3.15 shows an example from [Lucchese and Cortelazzo2000] with two input images
(�ipped accordingly) and its corresponding Fourier transform magnitude di�erence. The cross
pattern is distinctive and thus the rotation angle can be easily computed. Figure 3.15b shows the
same operation on two FLS images (previously masked to avoid edge e�ects). The contour of the
di�erence image around the center reveals an intricate pattern where the cross pattern cannot be
appreciated, even though the input images have a high overlap. The noise and the weak structure
of FLS images dilute the presence of the orthogonal crossing and therefore rotation estimation
through these types of techniques do not seem a valid option for FLS imagery.

(a) (b)

Figure 3.15: Contour plot of the angular di�erence between the Fourier magnitude of one image and the
mirrored version of the other. Example extracted from [Lucchese and Cortelazzo2000] (b) Example on two
FLS images.

3.2.2.4 Direct Polar Estimation

The previously described Fourier-Mellin approach disassociates rotation from translation and
converts it to a shift by utilizing the polar magnitude of the Fourier spectrum. In general, the
Cartesian-to-polar coordinate transformation of the Fourier spectrum is a numerically sensitive
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operation which is subject to approximation errors. In view of that, approaches have appeared
[Averbuch et al.2006] to directly compute the Discrete Fourier Transform (DFT) on a pseudo-polar
grid without requiring interpolation on the Fourier magnitude spectra. However, regardless of
how the polar conversion is computed, this still implies performing phase correlation on the
Fourier magnitude data. While video images typically present dominant edges and accentuated
features that give rise to strong components in the magnitude spectra, FLS images exhibit, in
general, a low structural spectral magnitude. This lack of distinctive traits combined with the fact
that the Fourier magnitude is, by itself, a representation of oscillatory nature, does not lead to
solid foundation on which to perform phase-correlation.

Considering all this, we examine the option of applying phase correlation directly on the
spatial domain data, estimating the rotation as a shift displacement in the across-range direction
of the polar images. In this way, the estimation is performed on the raw data delivered by the
sensor, thus avoiding any interpolation or the need to work with the magnitude of the Fourier
transform. Two important considerations must be highlighted here. First, rotation about the
sonar origin becomes translation along the angle axis in the polar images delivered by the sonar.
However, if the center of rotation is not located on the sonar coordinate frame {S} (e.g., in the
center of the vehicle), the polar image must be recomputed so as the origin of its axes takes into
account the 2D transformation that relates {S} with respect to the center of rotation. Second,
regardless of the case of pure rotations, this scheme allows only to recover the rotation in an
approximate manner: when working directly with the polar images, rotation is not decoupled
from translational displacements and shifts in Cartesian space create distortions in the polar
domain. If the translational displacements are relatively small compared to the image’s size, the
induced distortions in the polar image still allow for the recovery of the rotation by computing
the shift in the angular direction. The high frame rate of FLS devices facilitates large overlaps
and therefore small translations between consecutive and near-consecutive frames thus not
introducing signi�cant errors under this scheme. Moreover, there are many cases where rotations
are not combined with translations (the vehicle stops, rotates and then continues) yielding a pure
translation in the polar domain. The major drawback arises when attempting to match temporally
distant frames that present signi�cant shifts such as in loop-closing situations. In these cases,
the proposed strategy for rotation estimation is prone to introduce inaccuracies in the estimated
angle. This, in turn, has an impact in the number of encountered loop closures, being the loop
closures that involve more overlap and smaller orientation changes more likely to be successfully
registered.

It is important to note that, by construction, this method does not allow for the estimation of
an angle di�erence higher than the FOV of the sonar. This limit becomes even more restricted if
we take into account that a minimum overlap is required in order to establish the correlation. For
instance, in cases of pure rotation and aiming for a minimum overlap of 50%, the limits of the
rotations that can be estimated are within [−FoV

2 : FoV2 ] degrees. If translations are also involved,
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the overlap will decrease, thus reducing even more the possibilities of estimating the rotation
correctly. This is a fairly strong restriction, especially in sonars with narrow FOV. However, due
to the high frame rate of FLS devices, sequential and near-sequential images typically undergo
small rotations easily falling inside those limits and, therefore, guaranteeing the establishment of
local constraints under the presence of rotations. In loop closure situations, it is more di�cult
to conform to that restriction. However, it is to our advantage to choose a mapping strategy
that allows revisiting locations with orientations comprised within these limits. Furthermore, if
information of the path topology is known in advance, we can determine beforehand if the images
belong to tracks with reciprocal headings. When this is the case, the polar frames are �ipped
before performing the phase correlation, thus leading to the estimation of rotations comprised
within [−FoV

2 + 180 : 180 + FoV
2 ] degrees.

(a) (b) (c)

Figure 3.16: Distortions on the estimation of the rotation angle as a shift in the polar images. (a) Reference
frame. (b) Frame undergoing a pure rotation, observe that regardless of the intensity artifacts, the rotation is
mapped to a shift in the horizontal direction. (c). Frame undergoing both a rotation and a large translation.
Note that although it is still possible to compute the displacement in the horizontal direction, the translation
has induced more changes on the image content and therefore the estimation of the rotation will certainly
be less accurate.

In Section 3.3.1, the performance of this approach will be quantitatively compared to the
traditional Fourier Mellin technique that estimates rotation by using the polar Fourier transform
magnitudes of the images. We will see that despite the mentioned limitations, it outperforms the
Fourier Mellin methodology when applied on FLS images, and therefore is the rotation estimation
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Figure 3.17: Overall registration pipeline.

mechanism employed in our registration pipeline.

3.2.3 FLS Registration Outline

After describing the phase correlation approach to estimate the translation and rotation for FLS
images, we summarize here the full process to register two frames. The �owchart of Figure 3.17
outlines the proposed registration method. The sonar frames in polar coordinates (ip1, i

p
2) are �rst

masked by a cosine window to avoid edge-e�ects arising from the image’s boundaries. Using as
input the transforms of these images, phase correlation is applied following the process described
in Figure 3.9c. The shift detected in the x direction provides an estimate of the rotation angle
θ between the images in Cartesian coordinates. Afterwards, i2 is rotated to compensate for the
detected angle and after masking both i1 and the rotated i2 with the corresponding Cartesian
mask, phase correlation is applied again to �nally obtain the translations in the x and y directions
that align the two images.

3.3 �antitative Comparisons

In this section, we provide quantitative comparisons to prove the performance of the proposed
registration method. Two aspects are analyzed: �rst, the performance of the proposed rotation
estimation method against the traditional Fourier-Mellin transform, and second, the performance
of the proposed Fourier-based registration method compared against other state-of-the art FLS
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registration techniques, including a feature-based method at pixel level and one at region level.

In order to carry out the comparisons, we have used three datasets in which the ground truth
is available. These datasets allow us to test the registration under di�erent conditions, including
di�erent sonar models and di�erent motion types. An example frame of each dataset can be seen
in Figures 3.18a-3.18c. The �rst dataset is comprised of 944 sonar frames gathered with an ARIS
sonar [Sound Metrics ARIS2013] inside a harbor. The FLS was mounted on a pole together with
GPS and attached to a boat. The sequence follows a straight transect with mainly translational
displacements in the x direction. According to the sonar’s con�guration, range resolution is
8 mm/pixel and angular resolution 0.2 deg. The second dataset consists of 1176 sonar frames gath-
ered with a DIDSON [Sound Metrics DIDSON2013] in a dock environment. The sonar performed
a 360 deg scan with steps of 0.3 deg mounted on a tripod. These rotational increments correspond
to the sonar’s angular resolution, while the range resolution is approximately 1.9 cm/pixel. The
last dataset was gathered with a BlueView P900-130 [BlueView Technologies Inc.2013] in a harbor
environment with an Autonomous Surface Vehicle (ASV) performing both rotational and transla-
tional motions. Similar to the �rst dataset, the FLS was pole-mounted together with a GPS unit.
Range and angular resolution are 6 cm/pixel and 0.3 deg respectively. Therefore, the estimated
translations and rotations will be compared using as ground truth the GPS positions in the �rst
and third dataset and the �xed mechanical tripod step in the second dataset. It is worth noting
that the employed GPS units are high-precision Real-Time Kinematic (RTK) GPS that also deliver
an accurate heading by employing a setup with two antennas. Moreover, the reported errors are
the average of large number of registration results. In this way, we consider that the e�ect of any
possible GPS errors over the reported mean errors is negligible.

3.3.1 Comparison of the simplified rotation estimation method versus the Fourier-

Mellin Transform

We have used the described datasets to compare the proposed rotation estimation method (Sec-
tion 3.2.2.4) with the traditional Fourier Mellin approach (Section 3.2.2.2). For each dataset, two
di�erent tests have been performed. The �rst one consists of registering each sonar frame with
its consecutive in the sequence. The second test aims to compare the performance of the methods
when dealing with spatially and temporally distant images. Given that not all available datasets
comprise trajectories with loop closures, the test attempts the registration of a frame with a
distant neighbor frame in the sequence. The interval between frames is chosen for each dataset
in order to reduce the overlap to approximately 60%. Although the changes induced in the images
may not be as severe as in an actual loop closure situation, they are su�cient to evaluate the
trends of the methods when dealing with distant images.

Table 3.1 presents the mean and maximum rotation errors with respect to the ground truth
when estimating the rotation between consecutive frames while Table 3.2 shows the results for
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the case of distant images.

Fourier-Mellin Directly on Polar Images
Mean error(deg) Max error(deg) Mean error(deg) Max error(deg)

Dataset 1 0.92 1.40 0.51 0.61
Dataset 2 0.64 0.83 0.03 0.42
Dataset 3 1.08 7.51 0.54 7.60

Table 3.1: Comparison experiments between rotation estimation methods when registering consecutive
frames.

Fourier-Mellin Directly on Polar Images
Mean error(deg) Max error(deg) Mean error(deg) Max error(deg)

Dataset 1 1.46 4.30 1.15 3.91
Dataset 2 2.13 4.07 0.09 5.52
Dataset 3 3.02 21.7 1.72 29.5

Table 3.2: Comparison experiments between rotation estimation methods when registering distant frames.

In all cases, even when estimating the rotation of distant frames, the estimation through
direct phase correlation on the polar images leads to lower average errors than performing the
estimation on the polar magnitude of the image’s Fourier transforms. The di�erences are especially
signi�cant for the second dataset in which clearly the proposed method is highly accurate due to
the presence of pure rotations. Nevertheless, the mean errors in the other cases are also lower
for the proposed method. This testi�es to the fact that the noise and the low structural nature of
sonar images impede the robust correlation of the polar spectrum magnitudes carried out in the
Fourier-Mellin approach. Therefore, as argued in Section 3.2.2.4 the use of the simpli�ed rotation
estimation method is better in most of the cases.

3.3.2 Comparison against feature-based registration

The performance of the proposed Fourier-based method (as sketched in Figure 3.17) is compared
against two other state-of-the art FLS registration techniques: one feature-based method at pixel
level and one feature-based method at region level. Regarding the former, we have implemented an
approach similar to the one of [Kim et al.2005] and [Negahdaripour et al.2005] where Harris corners
are used as a feature detector and the matching is performed through correlation of local sub-
patches around the features. Finally, the transformation estimation is performed after a RANSAC
process to reject outliers. Although there are many modern feature detectors that have been
developed to work under severe viewpoint changes and estimate more complex transformations
(e.g., SIFT [Lowe2004] Speeded-Up Robust Features (SURF) [Bay et al.2006]) it is recommended
to use the lowest degree of invariance required for the application at hand [Tuytelaars and
Mikolajczyk2008]. Therefore, the selection of Harris detector is appropriate in this sense as it is
only translation and rotation invariant. It is important to note that although several researchers
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have pointed out that feature-based registration at pixel level does not perform well on FLS
images, we make the e�ort to include it in this comparison as to the best of our knowledge there
is no quantitative evidence of that claim in the literature.

Regarding the feature-based approach at region level, we have selected, from the two existing
methods in the literature [Johannsson et al.2010, Aykin and Negahdaripour2012], the method of
Johansson et al.. This selection is motivated by the geometry model under consideration: Aykin
and Negahdaripour assume a 3D sonar motion model that incorporates the unknown elevation
angles in the registration process, while Johannsson et al. work with the same 2D simpli�ed
model that we adopt.

We have implemented the technique of Johannsson et al. following their steps as described
in [Hover et al.2012]. The feature extraction process applies median smoothing on the image
followed by gradient computation. The gradient is computed as the di�erence between a value
and the mean of its n previous values along its azimuthal line. Then, a �xed fraction of points
with negative gradient are segmented and clustered in features. The registration of these features
is performed using the NDT algorithm with 4 overlapping grids shifted half a cell. The NDT
implementation of the Point Cloud Library (PCL) [Point Cloud Library2013] has been used for this
step. Following the same procedure as the authors, the NDT optimization is performed several
times with di�erent initialization points.

Before applying the method of Johannsson et al. to each sequence, several tests have been
performed to tune its parameters according to the dataset’s characteristics and the image content.
Therefore, the value n, the gradient threshold and the number of extracted points have been
adjusted to achieve a good balance of extracted features. Likewise, the grid size of the NDT
algorithm has been modi�ed appropriately.

Figure 3.18 shows three images illustrative of each dataset together with examples of extracted
features. Again, for each dataset two di�erent tests have been performed, one attempting the
registration of consecutive frames and one with more distant frames.

Mean error Max error
% of non-computed pairs Repeatability rate

tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg)
Dataset 1 3.9 3.6 2.8 14.5 12.5 18.9 43 0.71
Dataset 2 3.6 2.2 3.2 17.1 15.6 23.6 18 0.79
Dataset 3 4.5 3.8 4.5 15.8 16.8 14.1 28 0.71

Table 3.3: Results of the feature-based registration at pixel level when registering consecutive frames.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.18: Example of dataset frames used in the quantitative comparisons. (a)-(c) Original frames.
(d)-(f) Example of extracted features with Johannsson et al. method. (g)-(i) Example of extracted features
with Harris detector.

Mean error Max error
% of non-computed pairs Repeatability rate

tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg)
Dataset 1 4.2 3.9 5.8 16.1 18.5 14.3 74 0.56
Dataset 2 3.6 3.7 4.5 14.9 13.6 20.4 80 0.58
Dataset 3 6.6 4.9 7.3 22.2 38.8 41.1 75 0.48

Table 3.4: Results of the feature-based registration at pixel level when registering distant frames.
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Chapter 3. Registration of Forward-Looking Sonar Images

Tables 3.3 and 3.4 summarize the results of both tests for the feature-based registration at
pixel level, showing the mean and maximum errors for the rotation and translations in each
dataset. In a high percentage of cases it has been impossible to compute the transformation
relating the two frames due to an insu�cient number of inlier matches, especially in the case of
distant frames. Therefore the error results in tables 3.3 and 3.4 refer only to the cases where the
transformation could be computed. In view of this poor number of inlier matchings, an interesting
parameter to evaluate is the repeatability of the feature detector on FLS images. Repeatability is an
important characteristic of a feature detector, which indicates the ability to detect the same feature
in two di�erent images (e.g., if the scene is revisited from a di�erent viewpoint or under di�erent
illumination conditions). In order to perform this evaluation, we have computed the repeatability
rate following the measure described in [Schmid et al.2000]. By knowing the homography that
relates one image to the other according to the ground truth, the detected features of the common
image area are searched in a small neighborhood to determine whether they are repeated features
or not. In our tests we have set this neighborhood to 5 pixels, which ensures that the probability
of two points falling accidentally within this neighborhood is very low. In order to prevent biased
measures when the number of features is di�erent in the two images, the measure is divided by
the minimum number of detected features in the common area.

The repeatability rates for each dataset are presented in the last columns of tables 3.3 and 3.4.
The rates are relatively low compared to usual values reported in video images for the same Harris
detector (which are typically above 90% [Schmid et al.2000]). It can also be observed that the
repeatability decreases in the case of distant frames. This suggests that the inhomogeneous resolu-
tion, the low signal to noise ratio and the intensity variations due to viewpoint changes complicate
the detection of the same corner points in two di�erent views. Moreover, in some occasions even
though the same feature is correctly located in both images, they are not matched together as
there exist other features in similar image areas that eventually have a higher correlation score,
leading to incorrect matches.

This combination of low repeatability and low distinctiveness generates a high number of
outliers. Although RANSAC does a good job in rejecting them, that leads often to a situation
where very few inliers persist, not being enough to estimate the underlying transformation. In
other cases, not all outliers can be �ltered thus producing erroneous estimations which yield the
high errors shown in tables 3.3 and 3.4.

Tables 3.5 and 3.6 summarize the results of the two tests for the registration at region level
and the proposed Fourier-based registration.
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Region-based Fourier-based
Mean error Max error Mean error Max error

tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg)
Dataset1 0.11 0.06 1.01 2.91 1.63 9.56 0.09 0.06 0.51 1.29 0.23 0.61
Dataset2 0.02 0.01 0.50 0.25 0.14 2.46 0.02 0.02 0.03 0.22 0.13 0.42
Dataset3 0.44 0.42 1.08 13.9 8.33 14.6 0.23 0.15 0.54 3.20 2.25 7.60

Table 3.5: Comparison experiments between the Fourier-based and region-based registration methods
when registering consecutive frames.

Region-based Fourier-based
Mean error Max error Mean error Max error

tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg) tx(m) ty(m) θ(deg)
Dataset 1 0.60 0.26 1.34 5.62 3.63 12.5 0.35 0.24 1.15 1.05 1.11 3.91
Dataset 2 0.45 0.21 1.03 1.63 4.93 18.5 0.11 0.23 0.09 0.22 0.13 5.52
Dataset 3 0.81 0.92 2.80 17.9 11.5 27.6 0.34 0.18 1.72 15.0 5.14 29.5

Table 3.6: Comparison experiments between the Fourier-based and region-based registration methods
when registering distant frames.

We start by analyzing the registration of consecutive frames. In the case of the �rst two
datasets, both methods present low errors, with a slightly better performance of the Fourier-
based method. The high resolution of the sonar together with the prominent features in the
environment allow for an accurate estimation of alignments along the two sequences. The third
dataset presents higher errors due to the lower resolution of the acquisition. The Fourier-based
registration outperforms the region-based technique both in translation and rotation estimation.
In general, the features in this dataset -sparse and weak- are likely to generate unstable regions.
However, since the images are spatially close, the error remains reasonably low.

Regarding the second test in which the registered frames are more distant, we observe that, as
expected, the results tend to have higher error rates. In particular, the errors for the region-based
method have especially increased with respect to their counterparts in the �rst experiment. In
the �rst two datasets, the smaller overlap and the narrow aperture of the sonar in the azimuth
direction (∼ 30◦) causes signi�cant features to eventually drop out of the �eld of view, leading to
an insu�cient number of common features to perform the NDT alignment in a reliable manner.
Moreover, when the features are initially far apart and a good initial prior is not available, the
NDT algorithm may converge to a local minima, giving rise to erroneous estimations. On the
other hand, the content of the overlapping area, although smaller than in the �rst test, is su�cient
to �nd the correct correlation with the Fourier-based method, thus yielding a lower mean error.

Regarding the third dataset, the errors have also increased under both registration method-
ologies compared to the previous test. For the region-based method, the error of the rotation
estimation, is especially high, which also has an impact in the translation errors. Indeed, when
comparing distant frames rotation is the motion most a�ected by intensity alterations. Note that
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Chapter 3. Registration of Forward-Looking Sonar Images

Figure 3.19: (a)-(b) Example frames of a featureless dataset.(c)-(d) Registration performed by the Fourier-
based method: (c) Overlay of the two registered images in di�erent colour channels. Note the correct
alignment in the yellow area. (d) Di�erence image of the registered frames. Note that almost all content in
the registered area has been subtracted as a consequence of the alignment.

the feature extraction algorithm targets the transitions from protruding objects to the shadows
or the background plane. With the change in the sonar’s vantage point, these transitions can
vary substantially and therefore the extracted features from both views exhibit di�erent layouts
and fail to be correctly aligned. In our proposed method, since the information incorporated in
the registration process is not only limited to the object transitions, other areas in the image can
contribute to the anchoring to the correct registration point. The lower error of the Fourier-based
technique when compared to the Johannsson et al. method testi�es to its better performance in
these situations.

As all the analyzed sequences presented feature-rich environments, a di�erent example is
introduced to highlight the di�culties of region-based techniques in environments with a scarcity
of features. Figure 3.19 shows two images in a sequence lacking strong features. The method of
Johannsson et al. is unable to extract any robust features as the thresholded negative gradients
cannot be clustered in a su�cient number of points. On the other hand, the Fourier-based
registration is able to align the views correctly by taking into account the frequency information
embedded in the di�erent textures of the image. Although a ground-truth is not available, a
composite overlay of two images in di�erent color channels allows us to see that the correct
alignment between the images has been found.

Hence, the proposed Fourier-based registration shows a superior performance in the alignment
of both consecutive and non-consecutive frames and higher robustness in di�cult environments.
As a result, the possibility of establishing registration constraints between two views is increased
with the bene�ts that this implies inside a mosaicing framework.

3.3.3 A note on computational cost

The performance of the methods with regards to the computational cost is also worth noting.

The most demanding operation of the proposed registration method is the computation of
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the DFTs. This computation, implemented through the FFT algorithm, requires O(MNlog2MN)
operations for each 2D transform, where M and N are the number of pixels in each image axis.
The current implementation of the registration algorithm, coded in Python and making use of the
ANFFT libraries [ANFFT Package2013], consumes approximately 60 ms per pairwise registration
in an Intel i7 at 3.4 Mhz, considering typical image sizes under 1024x1024 pixels and a single-
threaded execution. Under the same machine, the feature-based registration using Harris corners
takes an average of per 150 ms per registration. Finally, our implementation of the Johannsson et

al. technique takes approximately 6 times longer than the Fourier-based registration, the major
part of the time being consumed by the NDT optimization process.

A further advantage of the Fourier-based registration is that given an image size the computa-
tion time is constant, while in feature-based methods computation time �uctuates depending on
the number of found features.
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4 Global Alignment

The registration method described so far is intended to compute the relative transformation between
pairs of overlapping FLS images. In order to generate a mosaic, it is necessary to map all the images
into a common reference frame. This is normally accomplished by concatenating the transformations of
successive images so that the transformation between non-consecutive views is obtained. However, it is
well-known that chaining relative transformations over long sequences is prone to cumulative error [Smith
and Cheeseman1986]. Therefore, we apply a global alignment technique to obtain a consistent set of
absolute transformations that will enable the subsequent mapping of the images in a composite mosaic.
We start the chapter by providing a brief overview of related work in global alignment, from which we
determine that the most suitable approach is to face our problem as a pose-based graph optimization. We
then present the general formulation of the pose graph and we give insights of the type of constraints
that might be incorporated. Next, we describe two key aspects of the graph optimization front-end: �rst,
the uncertainty estimation of the registration constraints and second, the methodology to select which
registrations should be attempted and which links are to be included in the graph for both o�ine and
real-time processing.
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4.1 Related work

Global alignment techniques have been extensively studied to constrain the cumulative registration
error in mosaicing applications [Elibol2011]. Global alignment usually requires the minimisation
of an error term, which is de�ned from image correspondences between overlapping image pairs.
Bundle Adjustment (BA) [Triggs et al.2000] is arguably the most popular method to perform
global alignment for both photomosaicing and 3D reconstruction applications. BA methods
simultaneously optimize a set of camera poses and feature points using non-linear least square
methods to �nd the optimal camera motion parameters from which absolute homographies can
be computed. A similar idea is applied in [Kim et al.2006], which to the best of the author’s
knowledge is the only work applying the notion of global alignment in a FLS mosacing example.
In there, the authors minimize the registration error of subsequences of the main image stream
by registering all its frames to a selected anchor frame in the subsequence. The alignment of
these sequence portions is optimized by minimizing the reprojection of feature points between
the images. However, note that this process can not be fully considered global alignment as only
ensures local consistency between the anchored neighborhood and registration error can still be
accumulated between subsequences.

Bundle adjustment techniques from the computer vision community can be seen as an equiv-
alent to the smoothing and mapping approaches employed in solving landmark-based SLAM:
they are both based in the join estimation of poses (either from a vehicle or from a camera)
together with landmarks/visual image features. Indeed, globally aligning a set of image poses in
the mosaic plane tightly connects to the classical SLAM problem where the pose of the vehicle
along a trajectory is to be estimated according to measures on the environment.

During the past decades, �ltering approaches, including Kalman �lter and its variants [Smith
and Singh2006], have been proved very successful in that purpose. However they are designed
to track the current pose at a given time and can not provide an accurate estimate of the full
trajectory, which is an essential requirement for mosaicing purposes. Actually, the strength of
the global alignment arises from re-visiting an already mapped area, in the so-called loop-closure
situations. Even that delayed information can be also handled by some implementations [Zhang
and Bar-Shalom2011, Ranganathan et al.2007], standard �ltering solutions cannot back-propagate
the information of loop closure constraints to previous pose estimates as these loop closures may
impact states far back in time that are no longer represented.

Instead, smoothing approaches keep past states in the estimation, solving the so-called full
SLAM problem or view-based SLAM. These algorithms were introduced back in the 90’s by Lu
and Milios [Lu and Milios1997], and have been further explored by many researchers [Dellaert
and Kaess2006, Eustice et al.2006, Kaess et al.2008]. It has been shown that although the state
space is extended by incorporating the trajectory, the structure of the problem remains sparse and
can be solved very e�ciently. We refer the reader to [Dellaert and Kaess2006] for an excellent
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explanation about the problem sparsity and how the structure of SLAM problems in general
lead to e�cient smoothing solutions. One relevant example to this thesis is the work of Walter
et al. [Walter et al.2008], in which a feature-based SLAM is implemented based upon features
manually selected from FLS images. The authors use an Exactly Sparse Extended Information
Filter (ESEIF) in order to keep track of the features and the robot poses along all the trajectory.

A method that has recently gained a lot of popularity are the so-called pose-based graphs,
which o�er a natural representation for smoothing problems. Pose graphs are abstract represen-
tations of an optimization problem consisting of pose nodes, which represent the variables to
be estimated, and edges, that represent constraints on the variables they connect (Figure 4.6).
Essentially, the graph nodes (or vertices) encode the trajectory map while the edges encode
measurements constraints. Therefore the explicit estimation of landmark locations is omitted by
integrating relative constraints between pairs of poses. The pose graph structure has usually a
sparse connectivity and its optimization can be e�ciently implemented. Indeed their increase in
popularity is partly thanks to the new availability of e�cient algorithms to solve the underlying
graph optimization problems.

Pose graphs have been shown to produce consistent maps due to their ability to correct prior
navigation error and re-linearize around the correct trajectory opposite to �ltering approaches
that are prone to introduce linearization errors. Successful examples of pose-based graphs in
the underwater domain include photomosaicing [Beall et al.2011], combination of visual and
multibeam sonar measurements [Kunz and Singh2013], 3D sonar reconstructions of complex
environments [VanMiddlesworth2014] and, more compelling to the work presented in this thesis,
SLAM using FLS image registration constraints [Hover et al.2012].

Altogether, a pose-based graph formulation seems the more suitable approach for performing
global alignment in our FLS mosaicing pipeline. First, because of the ability of estimating the full
trajectory and handle loop closures which are essential to achieve global alignment and map all
images into a consistent mosaic. Second, because of the suitability of the representation. Since we
use an area-based registration method we can not use the feature reprojection error for optimizing
the image alignment and therefore an optimization that omits explicitly the environment features
becomes convenient. And �nally, because of their e�ciency when dealing with a large number of
poses (in our case image poses) which is the key to achieve better results in terms of coverage
and SNR of the �nal mosaic.

4.2 Pose-based Graph Definition

We de�ne a graph whose vertices represent the position of observed sonar images and whose
edges are pose constraints obtained either from pairwise image registrations or from vehicle
odometry measurements (if navigation sensors are available).
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Figure 4.1: Depiction of the pose-based graph structure. In our case, nodes or vertices are image poses.
Red edges represent constraints derived from the pairwise registration between FLS frames and blue edges
are navigation constraints, that may or may not be available.

We consider two di�erent situations throughout the global alignment procedure presented here:
working exclusively with FLS imagery or also being able to incorporate odometry measurements
from navigation sensors. The high frame rate -and therefore the large overlap- of FLS imagery
allows us to contemplate the case of dealing only with image constraints. Under common refresh
rates and vehicle speeds, multiple consecutive and non-consecutive constraints can be potentially
found. Eventually, there are enough to link all images and ensure consistency in the path without
requiring other type of edges. This extends the applicability of the mosaicing pipeline to situations
where the sonar is deployed from vehicles with reduced sensor suites, which is usually the case
in ROVs operations. Besides, there are other situations where acquiring correct navigation data
might be di�cult (e.g. using a compass close to magnetic disturbances) and being able to generate
a mosaic only out of FLS data can be of interest.

Let v = (v1, ...,vn)T be a set of vertices, where vi = (xi, yi, θi) describes the position and
orientation of sonar image i. When relying solely on image data, the initial positions of the
vertices are estimated using the chained transformations between consecutive image pairs. If
navigation data is available, the vertices can be initialized using the pose estimates from the
vehicle dead-reckoning information.

Let zi,j and Ωz
i,j be the mean and information matrix respectively of the spatial transformation

from image i to image j obtained from:

• applying the registration algorithm on the image pair (i, j)
or

• the vehicle odometry increments between the acquisition times of image i and j.

Let ẑij(vi,vj) be the expected transformation given the con�guration of vi and vj .

Then, we can de�ne an error function of the following form:

E(vi,vj , zi,j) = zi,j 	 ẑi,j(vi,vj) (4.1)
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where 	 is the inverse of the usual motion composition operator for rigid body motions in the
2D Euclidean space [Smith et al.1987].

Essentially, the error function measures how well the position blocks vi and vj satisfy the
constraint zi,j . Therefore, to �nd the most consistent spatial arrangement for all the image poses
we seek the con�guration of the vertices v∗ that minimizes the negative log likelihood of the set
of all existing constraints C :

F (v) =
∑
〈i,j〉εC

E(vi,vj , zi,j)TΩz
i,jE(vi,vj , zi,j), (4.2)

v∗ = arg min
v

(F (v)) (4.3)

If a good initial guess of the parameters is known, a numerical solution of Equation 4.3 can
be obtained using a non-linear least squares solver such as the popular Levenberg-Marquardt
algorithm [Moré1978]. The �rst order Taylor expansion around the current guess v∗ is used
iteratively to approximate Equation 4.3 and optimize the local v increments by solving the resulting
sparse linear system. The starting point for the next iteration is obtained by adding the optimized
increments to the initial guess using the motion composition operators and the process is repeated
until the increments are smaller than a prede�ned threshold a prede�ned number of iterations
has been completed.

In the last years, the SLAM community has begun to provide many graph back-ends that
contain optimizers to solve the nonlinear optimization problem expressed by pose graphs: TORO
[Grisetti et al.2009],

√
SAM [Dellaert and Kaess2006], iSAM [Kaess et al.2008], Sparse Pose

Adjustment [Konolige et al.2010], iSAM2 [Kaess et al.2011], SLAM++ [Polok et al.2013] are some
of the examples. In our implementation the minimization of Equation 4.3 is solved using the
General Framework for Graph Optimization (G2O) back-end [Kummerle et al.2011], which is
designed to provide an easily extensible yet e�cient implementation. While there is a large body
of ongoing research devoted to provide more e�cient and robust graph back-ends, it is not the
focus of this thesis to contribute in this area. Instead, we make use of the selected back-end
as a tool and we direct our e�orts in providing a reliable graph front-end (see Figure 4.2). The
graph front-end is the responsible to construct a topologically correct graph from the available
sensor information, in our case the FLS images and, if present, the vehicle navigation data. If that
fails, for instance due to the introduction of erroneous loop closure constraints, the subsequent
optimization is likely to produce de�cient solutions.

Thus, in order to provide a well-de�ned graph to the optimization back-end there are two key
tasks to be addressed by the the front-end:

• Compute an information matrix (Ωz) for each measurement so that it will appropriately
weight the contribution of the edge constraint in the overall error function.
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Figure 4.2: Interaction between graph front-end and back-end.

• Decide which constraints must be included in the graph. This requires the prior selection
of candidates to explore data association, i.e., the candidate frames on which registration
will be attempted.

Next sections will provide insights in each of these tasks.

4.3 Estimation of the Constraints Uncertainty

The described pose-graph formulation requires establishing an information matrix Ωz for every
edge constraint in the graph. In the following, we show how this matrix is computed for both
registration and odometry constraints.

4.3.1 Registration Constraints

In order to quantify the degree of con�dence in the pairwise alignment we derive a heuristic
from the proposed Fourier-based registration method. Recalling the description of the method in
Section 3.2, the inverse Fourier transform of the phase correlation matrix can be used to measure
the degree of congruence between two images. The key insight is that the amplitude and extent of
values surrounding the main peak of the correlation surface account for localization inaccuracies
in the registration.

Our approach consists in thresholding the phase correlation surface at a given amplitude and
compute the standard deviations of the x and y coordinates of the matrix cells that exceed the
threshold, as depicted in Figure 4.3. The threshold is set to half the power of the main peak, so
that only signi�cant values are taken into account.

This procedure is applied to the phase correlation matrices obtained from both the rotation
and the translation estimation steps, resulting in three di�erent uncertainties (σx, σy, σr) . These
values, obtained in pixels, are then converted to meters and radians by using the range resolution
of the sonar δr (pixels/m) according to the experiment’s con�guration, and the angular resolution
of the polar sonar images δθ (pixels/rad). Finally the values are reshaped in a covariance matrix,
which is inverted, yielding the information matrix Ωz of the measurement:
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Figure 4.3: Representation of the proposed heuristic to compute the uncertainty of the registration from
the phase correlation matrix values.

Ωz =


(σxδr)2 0 0

0 (σyδr)2 0
0 0 (σrδθ)2


−1

(4.4)

A similar heuristic was proposed in earlier work by P�ngsthorn et al. [P�ngsthorn et al.2010].
Their heuristic �ts a 2x2 covariance matrix to a window of size K around the registration result
(i.e., the main peak of the correlation matrix). The heuristic weights the squared distance to the
mean of the values inside the window by the normalized amplitudes of the phase correlation. The
outcome is then strongly dependent on window size K although how this value is selected is not
shown in their experiments nor are the typical values for this parameter reported. Contrary to this,
our strategy readily o�ers a way to adapt the values that contribute to the variance computation
by taking into account only those values that are above half power of the main peak (i.e., values
within 3dB below the peak).

Since we do not have the means of computing the true uncertainty of a registration, it is di�cult
to assess the performance of the proposed heuristic against that of P�ngsthorn et al. The solution
we adopt is to use a dataset with available ground truth to evaluate how the di�erent uncertainties
adapt to the real registration results. Hence, if a measure explains well the uncertainty of the data,
the ground truth registration result will be within the σ bounds of the determined covariance
matrix with a given con�dence interval. We have selected 4000 frames from a dataset with
available GPS ground truth and we have computed the pairwise registration of each frame against
20 other neighbor frames with our proposed Fourier-based method. This amounts a total of 80000
pairwise registrations, involving cases of high overlap where the resulting peak surface has a
pronounced peak and registrations with more distant frames which lead to more weak peaks.
For each of this registrations, four uncertainty estimates have been computed on the correlation
matrix: our proposed heuristic and the heuristic of P�ngsthorn et al. for three di�erent values of
K. The values have been selected by taking into account the dimensions of the phase correlation
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matrix, which for the dataset’s images is 1024x1024. In this way, we have chosen small K = 30,
medium K = 60 and large K = 120 values.

The �rst parameter to evaluate is the percentage of times the true registration result falls
within the σ bounds of the di�erent uncertainty measures, computed at a con�dence interval of
99%. The second, is the average area of the computed uncertainty ellipses. As shown in Table 4.1,
the uncertainty computed with the metric of P�ngsthorn et al. is clearly dependant on the window
size parameter K.

Method % within 3σ bounds Average ellipse area(m2)
P�ngsthorn, K=30 63% 2.42
P�ngsthorn, K=60 89% 26.08
P�ngsthorn, K=120 95% 195.08
Proposed 88% 5.86

Table 4.1: Evaluation of uncertainty measures. Percentage of true registration results comprised inside 3σ
bounds of the di�erent uncertainty estimates and the corresponding average of the uncertainty ellipse
areas.

If K is too small, the obtained uncertainty measures might eventually be limited to values that
do not represent the uncertainty of the main peak, leading to too optimistic uncertainty measures
(as depicted in the schematic in Figure 4.4a). As can be seen, the uncertainty computed with the
small K is clearly overoptimistic as only 63% of the times it encompasses the true registration
result.

On the other hand, picking large K values might seem a better strategy, given that covariances
are weighted by the corresponding intensities (which are expected to be low if the values are
far apart from the main peak). In this case, even if a high number of values take part in the
computation, they would have a low weight in it. However, if the values located far from the main
peak do not have such low intensities (as may happen in noisy sonar images where the correlation
matrix has a lot of scattered noise peaks) it could lead in some cases to an over-pessimistic
computation of the uncertainty (as illustrated in the schematic in Figure 4.4b). Likewise, the fact
of considering a squared window may also lead to over-pessimistic estimates (Figure 4.4c). If the
shape of the main peak has, for instance, an elliptical contour (as is common under one-directional
displacements where the peak is smeared in the motion direction), a large number of contributions
will unnecessarily increase the uncertainty in the other direction (even though their weight in
the computation is small). This two facts can explain the large values obtained for medium and
large K values. While these measures explain a large percentage of the true registration results,
they do so by overestimating the uncertainty, as it is indicated by their large average areas of the
uncertainty ellipse. On the other hand, our proposed technique takes into account only the peaks
surpassing the half power threshold and that are signi�cant enough to condition the registration
result, implicitly taking into account how they are spatially arranged. Therefore it o�ers the
best trade-o�, explaining a high percentage of the true registration results with an adjusted
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Figure 4.4: (a) Example of a small K value that is not able to represent the uncertainty of the registration
peak. (b) Example of a situation where P�ngsthorn et al. heuristic. would provide a pessimistic uncertainty
as a consequence of all the small contributions inside the K window. (c) Scheme of a phase correlation
matrix seen from the top view, illustrating a typical case where the main peak is spread in one direction as
a consequence of the motion direction. The drawn limits represent the values that would be considered
for the variance computation: while our method would consider only the ones over the threshold, thus
adapting to the approximate elliptical shape of the main peak, the method of P�ngsthorn et al. would use
the squared window and therefore all the values in the grey area would also contribute to increase the
uncertainty in the y direction.

Figure 4.5: Uncertainty of an unsuccessful registration not containing the true registration point. The
black ellipse represents the uncertainity computed with the proposed heuristic at a con�dence interval of
99%. The blue line with the star depicts the ground truth registration point.

uncertainty area. Indeed, it is important not to introduce too relaxed constraints in the graph
as the optimization may quickly converge to a local minima and therefore miss the expected
solution.

Note that any of the uncertainty measures reaches the theoretical 99% that should be expected.
This is mainly due to the cases where the registration algorithm is unable to �nd a correlation
point, leaving a matrix of low amplitude scattered peaks. When computing the uncertainty as
described, a large value is obtained, but it is computed, and therefore centred, with respect to a
peak that does not necessarily represent the registration point. Hence, in these cases, it can easily
be limited out of the area where the true registration lies, as shown in Figure 4.5.

To check that e�ect, we recall the PSR measure described by Equation 3.5, in order to quantify
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how much the peak stands with respect to the rest of the data and be able to identify those cases.
The PSR has been computed for all 80000 registrations, and we have set a threshold to identify
when there is not a clear dominant peak, so as to detect unsuccessful alignments. With a threshold
set at PSR=20, 3208 registrations have been deemed as unsuccessful. Table 4.2 presents the same
results of Table 4.1 recomputed without taking into account those registrations. It can be seen how
the proposed uncertainty measure is now able to describe almost the total of the true registration
results, with a further decrease on the uncertainty average area.

Method % within 3σ bounds Average ellipse area(m2)
P�ngsthorn, K=30 66% 2.42
P�ngsthorn, K=60 92% 26.03
P�ngsthorn, K=120 96% 194.86
Proposed 95% 1.37

Table 4.2: Evaluation of uncertainity measures only for successful registrations. Results of Table4.1
computed only for registrations leading to a PSR greater than 20.

It is worth highlighting that the heuristic of P�ngsthorn et al. was conceived to estimate the
uncertainty of phase correlation registrations over optical images, which usually su�er from
less noise and fewer artifacts than their sonar counterparts. In these cases correlation peaks are
narrower and the heuristic is not a�ected by the aforementioned issues, thus being easier to �nd
a �x K parameter that can work in all cases, and resulting in a good strategy to estimate the
uncertainty. However, in the case of FLS images, correlation matrices present smeared main peaks
and more scattered noise. For this reason we chose to apply the proposed heuristic to measure
the registration uncertainty. However, only those registrations that are deemed as successful
according to a �xed threshold in the PSR measure will be input to the graph.

4.3.2 Navigation Constraints

Similar to registration constraints, odometry constraints computed from navigation data will
have also an associated 3× 3 diagonal information matrix with σ−2 values for each measured
term based on the expected measurement noise. These uncertainty terms will usually depend on
the type and accuracy of the navigation instruments mounted in the vehicle (Doppler Velocity
Log (DVL), �bre-optic gyro, magnetometer, etc.). For their estimation, we take as a basis the
values provided by the instrument manufacturers and increment them to account for other sources
of error such as deviations in the rigid-body transformations that map all sensors to the same
reference point.
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4.4 Graph Construction

Once it is clear how each type of constraint uncertainty is estimated, we need to clarify the
strategy of selecting which edges will be computed and introduced in the pose graph. However,
the process of building the graph will be di�erent if we consider an o�ine approach, where all
FLS images (and possibly navigation data) are available from the start of the processing, or if our
purpose is to perform real-time mosaicing where new data is arriving at each time step. Next two
sections describe the construction of the pose-graph for each approach.

4.4.1 O�line approach

The o�ine strategy contemplates the global alignment problem starting with a dataset of acquired
FLS images FLSt=1..T , and possibly navigation data NAVt=1..T . For the sake of simplicity we
assume here that FLSt and NAVt are paired so that both have been acquired at the time t. Note
that in practice, it is probable that the acquisition frequency of FLS and navigation data do not
match, and thus navigation data must be sampled/interpolated in the arrival time of the closest
FLS frame. In order to compute putative edges of the described pose graph, we need to select a
list of candidate frames for registration. The most naive criteria is to attempt the registration
of all against all. However, this would imply a large number of unnecessary computations
and consequently an excessive amount of time. For a dataset composed of T = 2000 frames,
and considering a registration time of 60 ms, it would take around 3 full days to compute all
the registrations. Even for an o�ine mosaicing application this strategy is not admissible. In
order to avoid unnecessary computations, it is essential to attempt registration only with frame
pairs that are likely to overlap. To detect these candidate pairs, and particularly in the case of
non-consecutive overlapping images, it is necessary to �rst infer the path topology.

In the absence of other sensor data, the path topology can be inferred by using the registrations
of consecutive images. We compute the registrations of each frame FLSt not only with its prede-
cessor FLSt−1 but with several of their neighbor frames by establishing a �xed window w around
the current sequence position: FLSt, FLSt−1, ...FLSt−w. From that, we obtain the corresponding
registration measurements zt−1,t, ..., zt−w,t and information matrices Ωt−1,t, ...,Ωt−w,t, that will
form the graph edges et−1,t, et−2,t, ...et−w,t. The size w of this window is estimated according
to the range and mean velocity of the sonar so as to select sequential frames going from the
next neighbour down to a frame with approximately 50% overlap. The computation of these
multiple links helps to increase the local robustness of the initial estimated path. In order to avoid
introducing erroneous constraints in the initial graph, we discard the registrations that have been
identi�ed as unsuccessful according to an established threshold on the PSR measure, as explained
in previous section. Hence, each graph vertex vt is initialized by compounding the consecutive
registrations: vt = z1,2 ⊕ z2,3⊕, ..., zt−1,t, or, in a more generic way, by compounding along the
largest connected path of the graph, as there might be the case where the registration between
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two immediately consecutive images cannot be established but they can still be linked through
a neighbour frame. The set of initial vertices, together with the constraints established within
neighbor frames, are fed to the graph optimization back-end and an initial estimation of the path
v1, v2, ...vT is obtained. Otherwise, if navigation data is available, the initial vertex positions can
be determined by compounding the odometry increments estimated from the dead-reckoning
navigation: vt = z1,2 ⊕ z2,3⊕, ..., zt−1,t, where zt−1,t = NAVt 	 NAVt−1. Note that initializing
the vertices only from odometry constraints will provide a zero error solution in this initial
graph optimization as the system will not be overconstrained. We can also consider merging the
two types of constraints thus adding also the registration links obtained within the window of
neighbour frames to estimate the initial path. Similarly, if navigation sensors provide redundancy
in some DOF, extra edges could be used so that the pose graph optimizer minimizes the overall
squared error in the discrepancy between measurements.

With this initial guess, putative loop closures can be identi�ed according to the spatial ar-
rangement of the image’s positions. Hence, for each vertex vt we will build a list of loop closure
candidate frames. We will identify vi as a candidate frame for vt under the following criteria:


distance(vi, vt) < r

angle(vi, vt) ∃ {−FoV
2 : FoV2 } | angle(vi, vt)∃ {−

FoV
2 + 180 : 180 + FoV

2 }

vi @ {vt, vt+1, ..., vt+w}

(4.5)

Given that the initial path may contain some drift, we do not look for exact image overlaps
but for vertices whose center is within a distance radius r of the current vertex. Furthermore, the
orientation di�erence between vt and the candidate frame must fall within the limits {−FoV

2 :
FoV

2 } or {−FoV
2 + 180 : 180 + FoV

2 }. In this way, we avoid selecting as candidate pairs
those frames that, even being potentially overlapping, cannot be registered given the implicit
restrictions of our rotation estimation algorithm. Finally, we remove from the list the vertices
whose registration has already been attempted during the initial path computation as they were
part of the window of neighbour frames.

Once all the candidate pairs are identi�ed, they are fed to the registration algorithm described
in Section 3.2. The registration module returns the measurement and its associated uncertainty
for each candidate pair but again only those identi�ed as successful (according to an established
threshold on the PSR measure) will be introduced as constraints in the graph. Finally, the graph
back-end will run the optimization on the graph and the �nal set v1, v2, ...vT of vertex locations
(i.e., absolute image poses) will be obtained.
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Figure 4.6: Flow diagram of the global alignment for the o�ine approach.

4.4.2 Real-time approach

The global alignment under a real-time approach has three main di�erences compared to working
o�ine:

• At a time t only the predecessor frames FLSt, FLSt−1, ..., FLS1 are available.

• There is a limited number of registrations that can be attempted per frame in order to keep
real-time requirements.

• Optimization must be performed incrementally, so as to have an updated map of absolute
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poses on which to refresh the rendered mosaic.

Thus, the proposed pipeline must deal with every incoming frame, determine links with
previous frames in the graph, and optimize the global position of all frames while still maintaining
real-time operation.

On the arrival of a new frame FLSt, the corresponding navigation data NAVt are utilized to
compute the odometry displacement zt−1,t between the current pose and the previous one. A
new vertex vt is created and added to the graph by composing the previous vertex vt−1 and the
computed odometry zt−1,t, with the latter also added as an edge to the graph. Notice that if
navigation data were not available the algorithm could initialize the vertex using the information
of consecutive frame registrations. However, in the case that a given image could not be registered
with its predecessors the graph would become fragmented. For that reason, in an online approach,
navigation is the preferred source for the initialization of new vertices as it will always provide
an odometry estimate.

Next, the received sonar frame is used as a reference frame to compute links with frames that
have been already incorporated to the graph. The criteria for selecting the candidate frames is
similar to that explained for the o�ine case, however we need to guarantee that the number
of attempted registrations will be computed before the arrival of a new frame. To that end the
maximum number of possible registrations RMAX is calculated as:

RMAX = 1
fps (Hz) · tr (s) (4.6)

where fps is the sonar acquisition frame rate and tr is the time necessary to compute one
pairwise registration. From the total number of possible registrations per frameRMAX two di�erent
types of candidates are selected: preceding frames and temporally-far frames. The frames that
are more likely to be successfully registered with a given frame are those immediately preceding
the current frame. Therefore a window of frames behind the current sequence position is always
included in the list of candidate pairs. However, it is also of interest to achieve registrations with
temporally farther frames in order to establish loop closures. Thus, a compromise should be
established in order to decide how many of each type are included in the candidate list, so that both
types of registrations add to a total of RMAX. Potential overlapping frames that are not temporally
close can be identi�ed according to the spatial arrangement of the already optimized vertices
following the criteria of Equation 4.5. However, it is still possible that there may be too many
frames satisfying the described criteria, and therefore a limited number of temporally-far frames
must be selected to conform to the real-time constraint. These frames are chosen by random
selection across all candidates satisfying Equation 4.5. Better selection strategies to �nd loop
closures could be applied, for example, by taking into account the uncertainty of the vertices and
selecting those edges that would lead to a greater decrease in the position uncertainty. However,
the employed graph optimization back-end does not retrieve the uncertainty of the vertices (only
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Figure 4.7: Flow diagram of the global alignment for the online approach.

that of the edges), and its computation is indeed not trivial. Therefore, we leave this possibility as
a future work and we adopt the described solution.

Then, at each time step, we identify from the RMAX registrations the ones that are deemed
as successful and we incorporate them as edges into the graph. This process is repeated until
n vertices are added to the graph, at which moment the optimization is performed yielding the
optimized poses until the current time step t. Therefore, at each n time steps the map of absolute
poses will be updated, being available to the renderer module to refresh the mosaic visualization.

Two important aspects must be highlighted here in regards to the real-time capability. The
�rst is the importance of using a registration algorithm that can cope with the majority of the
image artifacts without requiring the preprocessing of the frames. This turns into more time to
attempt a higher number of registrations and therefore increase the possibility of including more
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graph constraints.

Second, the online work�ow presented in this section, does not guarantee that a real-time
operation will always be possible as there exist some scalability bounds. Despite the e�ciency of
smoothing approaches, they are not constant time when closing large loops [Kaess et al.2012], so
eventually the real time capability of the optimization would drop o�.

Related also to scalability, there is the issue of frame storage and retrieval for long missions. In
order to hypothesize loop closures, previous frames must be available along the vehicle trajectory.
For graphs of the order of thousands of frames, where all frames can be kept in RAM, the system
can hold real time capabilities as will be demonstrated by the experiment of Section 6.4. However,
despite the low resolution of FLS images, holding all data will become at some point unfeasible.
Other solutions such as conveniently splitting the map in submosaics and simplifying the graph
over time should be explored in this direction.
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5 Mosaic Rendering

The last step of the mosaicing pipeline is the rendering of the image mosaic. After the global alignment
step covered on the previous chapter the poses of the sonar images in a global reference frame are obtained.
We can then build the corresponding absolute homographies and map the images on the mosaic plane.
However, as the content of multiple images will overlap at a given position, a strategy is required to deal
with the combination of the pixel intensities. In this chapter we study the problem of fusing the di�erent
FLS frames while minimizing the photometrical di�erences between them in order to generate a mosaic
of smooth and continuous appearance. We will �rst lay out the di�erences of the problem at hand with
respect to the problem of blending optical images. Then, we will propose a compendium of strategies that
are targeted to address the photometrical irregularities that can be present when mosaicing FLS images.
Finally we also provide insights on the SNR and resolution improvement of the generated mosaics.
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5.1 Blending of acoustic images

Usually, when video frames are projected on a photomosaic, the seams along the image bound-
aries become noticeable due to photometrical di�erences between the individual frames. The
same occurs with FLS images, often in a more accentuated manner due to multiple and strong
photometric artifacts. Thus, it is essential to perform one last step to give a continuous and
uniform appearance in the form of a single large mosaic. This is achieved by means of image
blending techniques. It is worth highlighting that generating the sonar mosaic with a smooth
and continuous appearance is not merely driven by aesthetic purposes but it is essential for a
more e�ective interpretation. If images are plotted in a last-on-top fashion, without any fusion
mechanism, the photometric artifacts a�ecting the FLS frames can cause severe degradation of
the �nal mosaic up to the point where understanding the imaged scene becomes impossible.

The basic principles of image blending were established four decades ago [Burt and Adel-
son1983] and the topic has been extensively studied in the �eld of optical imaging, including
underwater environments [Prados et al.2012]. There is a wide variety of image blending tech-
niques in the literature, but at a high level two main approaches can be distinguished. On one
hand, we have transition smoothing methods (also known as or alpha blending methods [Porter
and Du�1984] or feathering [Uyttendaele et al.2001]) which attempt to minimize the visibility
of the image boundaries by smoothing the common overlapping region of the stitched images.
On the other hand, there are optimal seam �nding methods [Fan Gu and Rzhanov2006, Gracias
et al.2009] which attempt to �nd the optimal location to place a cut along the two images so that
it minimizes the photometrical and geometrical changes between them. Furthermore, there are
also hybrid techniques which take advantage of the bene�ts of each approach [Prados et al.2012].

Hence, regardless of the particular technique, optical blending generally deals with a low
number of images at a given position (most of the times pairwise) and treats only their intersecting
region. However, blending a FLS mosaic requires dealing with multiple overlapping images
involving high overlap percentages, which prevents us to leverage from traditional blending
techniques designed for video images. Specially when the images have been acquired in an
across-range fashion, high overlap is a must to achieve good coverage due to the sonar fan-shaped
footprint. Furthermore, presuming that a correct registration has been performed, it is of interest
to keep as much of the overlapping images as possible to be able to improve the SNR of the �nal
mosaic by an averaging process, as will be described in Section 5.2. This is again opposed to other
approaches typically adopted on optical mosaicing such as trying to select only the best image
for a given location. Thus, to blend FLS mosaics it is necessary to deal not only with the seam
areas, but with the fusion of the whole image content.

The state of the art in image blending does not include precise solutions to deal with acoustic
images and, in fact, little work can be found in the literature regarding sonar image blending.
In [Coiras et al.2004] side-scan sonar data is blended using a wavelet-based technique that
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allows to select which kind of features are emphasized in the �nal mosaic. Kim et al. [Kim
et al.2008] proposed a probabilistic approach in the context of a superresolution technique for FLS
frames. They model the blending problem of fusing a low-resolution image into a high-resolution
one in terms of a conditional distribution with constraints imposed by the illumination pro�le
of the frames so as to maximize the SNR of the resulting image. In our initial work on FLS
mosaicing [Hurtós et al.2012], results have been rendered by averaging the intensities of all
overlapping sonar frames at every mosaic pixel. In other research reporting FLS mosaic results,
such as in [Negahdaripour et al.2005] or [Negahdaripour et al.2011], the image blending method
is not speci�ed and we presume pixel averaging is used as well. However, as these mosaics are
composed only of dozens of frames with very homogeneous intensity pro�les, even a last-on-top
strategy could have been used in this context. In general, none of the existing strategies deals with
the particular issues of FLS images and the photometric artifacts that can arise from its imaging
conditions. Moreover, as previous works have only reported small single-transect mosaics, there
are some particular challenges in blending large multiple-track mosaics that need to be speci�cally
addressed to obtain a proper sonar blended mosaic.

Next section will analyze the basic blending through averaging, which is the basis of our
proposed image fusion mechanism. Then, a compendium of strategies are provided to minimize
the di�erent photometric artifacts and achieve a visually pleasant result.

5.2 Intensity averaging blending

A simple but e�ective strategy to blend a FLS mosaic is to perform an average of the intensities
that are mapped to the same pixel location. Assuming that a correct image alignment has been
found, averaging the overlapping image intensities yields the denoising of the �nal mosaic.

Thus, by adopting an averaging approach, the resulting mosaic will have a better SNR compared
to a single image frame (see Figure 5.1). Ideally, by averaging, the reduction of the noise (and
therefore the improvement of the SNR) is proportional to the squared root of the number of
averaged samples. Then, under the assumption of additive uncorrelated noise, a mosaic would
have an overall SNR improvement proportional to the mean of the square roots of the number
of images at each pixel location. However, we must highlight that averaging reduces only the
contributions of random uncorrelated noise and therefore the image SNR cannot be increased
inde�nitely by averaging more samples as, eventually, the remaining noise is due to artifacts that
may manifest as correlated noise.

In the presence of registration misalignments, the averaging strategy will generate blurred
areas of mixed content, which serves also as a visual indicator of the mosaic’s consistency. Further
advantages are that, given its simplicity, the blending is suitable to be implemented in real time.
Assuming that the full mosaic can be stored in memory, the mean pixel values can be e�ciently
recomputed in an incremental way for the area where each incoming image is mapped. The ability

75



Chapter 5. Mosaic Rendering

Figure 5.1: Example of the denoising e�ect obtained by mosaicing. (a) Single frame gathered with a
DIDSON sonar operating at its lower frequency (1.1.Mhz). (b) Small mosaic composed of 50 registered
frames from the same sequence blended by averaging the overlapping intensities. It can be clearly seen
how the SNR increases and the details pop-out.

to not only compute but render a mosaic in real-time can be of interest in many situations. A
clear example would be the generation of an online map for improving the situational awareness
of a ROV pilot as he drives the vehicle. However, examples can also be found in the context
of an AUV application such as for instance a search and reacquisition task without the need of
resurfacing. We can envisage a mission where an AUV surveys an area, sends the map to the
surface and from there an expert identi�es the target to explore, and sends its position back to the
AUV to command the inspection. Since AUV-surface communications are subject to the limited
bandwidth of acoustic modems, transmitting the mosaic instead of the individual frames o�ers a
compact and feasible way of performing such task. Moreover, the bene�t of the denoising e�ect
becomes even more relevant in that case since an image with increased SNR will typically be
better compressed and thus will be more e�ciently transmitted.

Although the averaging approach is a good starting point and may give satisfactory results
in some imaging con�gurations, it su�ers from several problems. Averaging tends to diminish
details in those places where there is a large number of frame contributions. A fade-out of the
mosaic content can occur as a consequence of non-uniform intensity distribution in the images
or when averaging frames that have blind (i.e., black) areas, usually due to non-proper imaging
con�gurations. Besides, image boundaries or seams between di�erent transects can become
noticeable due to a non-constant number of overlapping images, especially in datasets with
multiple tracklines, rotations or non-constant vehicle speed.

5.3 Improving the blending of FLS mosaics

The proposed methodology consists of a set of strategies to address the problems explained in
the previous section associated with FLS image composition. Our approach takes as a basis the
fusion by intensity averaging and incorporates strategies to correct for the di�erent artifacts and
modify the number and/or the intensity of the averaged pixels for the �nal image composition.
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It is important to stress that the proposed strategies concentrate on solving the di�erent
photometric artifacts that can arise both at individual frame level and at global mosaic scale but
does not focus in possible problems caused by geometric registration errors. Therefore, a correct
registration is assumed from previous steps, otherwise the averaging principle would smear the
content of the misregistered area. In the same way, other geometric issues such as object shadow
alterations due to the viewpoint change are handled implicitly by the averaging principle. For
instance, when imaging a protruding object while navigating over it, its shadow gets shortened as
the sonar becomes closer to the object. The �nal shadow representation in the mosaic will then
be the mean of all shadow positions yielding an intermediate solution which we consider to be a
reasonable description of the scene.

Each of the strategies presented here can be enabled or disabled in the blending stage according
to the characteristics of the dataset. Therefore a dataset gathered in ideal conditions (i.e., with a
sonar that would not present inhomogeneous insoni�cation patterns, with the proper altitude, tilt
and range settings, imaging a planar scene and performing just a single trackline at constant speed
in order to keep a uniform number of overlapped images) would be blended through a standard
intensity averaging only bene�ting from the local contrast enhancement step to emphasize its
features.

It is worth noting that the proposed blending is designed to work in an o�ine fashion as it
requires using all gathered frames with the aim of producing a �nal high-quality map of the
inspected area. On the other hand, for real-time mosaicing the simple averaging blending is the
adopted solution.

5.3.1 Individual image pre-processing

The described photometric artifacts that occur at image level (see Section 2.3) can a�ect the
global appearance of the mosaic composition. Hence, it is important to pre-process individual
sonar frames to correct for some possible irregularities. Note that, unless otherwise stated, this
pre-processing is only necessary for the blending stage. The registration method covered in
Chapter 3 is generally able to perform registration under the e�ect of these artifacts and therefore
reduces the need for preprocessing the images before the registration.

5.3.1.1 Inhomogeneous inson�cation pattern correction

Some sonar models show evidence of non-uniform insoni�cation patterns due to the di�erent
sensitivity of the transducers across the �eld of view (Fig. 5.2a). If a su�cient number of images
is available, the underlying illumination pro�le can be computed by averaging all the dataset
frames (Fig. 5.2b). Then, the illumination pro�le can be compensated in the original image thus
yielding a pattern-free image (Fig. 5.2c). If the pattern is strong, this step should be performed
earlier in the mosaicing pipeline (i.e., prior to the pairwise registration of the sonar images) since
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its presence may in�uence the registration result.

(a) (b) (c)

Figure 5.2: Correction of non-inhomogeneous insoni�cation pattern. (a) Original frame. (b) Estimated
illumination pattern. (c) Corrected frame.

5.3.1.2 Contrast Limited Adaptive Histogram Equalization (CLAHE)

Besides non-uniform insoni�cation related to the sensor’s hardware, FLS data can exhibit other
non-constant illumination patterns. Due to non-compensated transmission loss, imaging con�gu-
ration and/or terrain curvature, the images can exhibit weaker backscattered intensities in some
areas (e.g., weaker intensities further away from the sonar origin). This results in considerable
intensity o�sets when registering images that insonify the same portion of the scene but from
di�erent locations (Figure 5.3a, 5.3b), turning into a visible attenuation when blending the mosaic.

(a) (b) (c) (d)

Figure 5.3: Image equalisation and contrast enhancement. (a)-(b) Example of two frames imaging the same
area from two di�erent viewpoints. Notice the di�erence in intensities around the grid in the center. (c)-(d)
Same frames preprocessed with CLAHE. The images present a uniform distribution that allows to merge
them without attenuating the �nal mosaic. Notice also that the local contrast is preserved, emphasizing
the scene features.

To deal with this, we �rst equalize the intensity histograms of the sonar frames so as to match
a uniform distribution and minimize the intensity o�sets on the registered areas. To this end, we
employ the CLAHE technique [Pizer et al.1987] whose advantages are twofold: �rst, it equalizes
the images limiting the noise in the areas that are more homogeneous by setting a clip limit on the
histogram equalization; second, it locally enhances the contrast of the images alleviating the low
SNR that characterizes FLS images. Although, as stated before, the SNR is greatly enhanced by
the averaging nature of the blending, a local contrast enhancement can help to further emphasize
the scene features.

78



5.3 - Improving the blending of FLS mosaics

Note that this procedure does not preserve the true re�ectivity values of the scene. However,
we believe that for inspection purposes, it is more important to obtain a continuous and smooth
representation that emphasizes the features and facilitates a better scene interpretation rather
than preserving the true scene re�ectivity.

5.3.1.3 Masking out blind regions

Extreme cases of non-uniform intensities across the images are those situations where either an
inappropriate imaging con�guration or signi�cant relief variations introduce blind regions in the
sonar frames. Even when working with equalized images, those blind regions have a negative
impact on the �nal blending. Since they do not contain information at all, they cause the actual
scene content to fade out when they are averaged with other images.

Our strategy for those cases is to compute a saliency mask for each frame (Fig. 5.4), which
will be used to mask out the blind regions when performing the fusion by averaging. The mask
m is obtained by applying standard deviation to local neighbourhoods:

m(u, v) =

√∑
(i(x, y)− ī(x, y))2

n− 1 , (5.1)

where n is the number of pixels in the neighbourhood, i(x, y) is the intensity of the pixel
under consideration and ī(x, y) is the mean of all neighbourhood pixels. The shape and size
of the local neighbourhood are parameters that can be adjusted so as to take into account the
standard deviation generated by the residual noise of the images. This standard deviation �lter
acts as a texture classi�er. The blind regions of the image, which are characterized by the lack of
backscattered intensities report low values. On the other hand, scene backscattered intensities
generate higher �lter responses. Hence, a threshold is set to segment both type of regions. To
avoid the selection of image parts corresponding to homogeneous areas on the imaged surface
(such as in a �at sandy bottom) an additional threshold on the mean value of the pixels is imposed.
Therefore, blind areas will be homogeneous areas with low response of the standard deviation
�lter that are characterized by a low average intensity. Finally, to avoid including areas of internal
shadows that can also conform to the previous description, we check for connectivity with the
image footprint boundaries.

5.3.2 Global mosaic blending

Despite the illumination corrections performed at individual frame level, the fusion of images
from di�erent tracklines will unavoidably create noticeable seams along the tracks due to the
presence of a higher number of image contributions in the overlapping area (Figure 5.5a). If the
tracks are combined along-range, seams may be also noticeable as a consequence of merging two
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(a) (b) (c) (d)

Figure 5.4: Example of dataset frames a�ected by blind areas and varying illumination depending on the
imaging viewpoint. (a) Example of an original image with blind areas. (b) Corresponding mask (black
pixels will not be taken into account in the blending). (c) Mosaic after standard intensity averaging. (d)
Mosaic blended by applying CLAHE and the masking of blind regions. Note that, opposed to (c), the sand
ripples above and below the center target can be clearly appreciated.

di�erent image quality areas (low/high resolution).

To reduce these artifacts, we compute an overlap map that re�ects the number of images
projected at each pixel location, taking into account the possible masks that might have been
computed previously if the images contain blind regions. In the presence of multiple tracklines,
the intersection area will present a signi�cantly higher number of overlapped images compared
to their surroundings (Fig. 5.5b).

To avoid these artifacts we propose a mechanism consisting of three main steps: clipping,
smoothing and selection. First, the number of overlapping images are clipped to a threshold
thus reducing the range of possible di�erent overlaps. While it helps to reduce the overload
of pixel contributions at a given location it is also of interest to keep a signi�cant number of
overlapped images to diminish the noise of the �nal mosaic. A trade o� solution consists of
cutting up to the mean of the overlap map values. Second, the new overlap map is smoothed with
a Gaussian kernel to avoid sharp transitions caused by a di�erent number of pixel contributions.
A normalization is required so as to avoid any new computed overlap to exceed the number of
actual overlapping images. Finally, the mosaic is blended by averaging the number of pixels
indicated by the new overlap map. To select from the images that are projected to a given pixel
which ones will be discarded and which ones will be taken into account on the �nal averaging,
the following procedure is implemented: for each pixel of the �nal mosaic we store the list of all
values that are projected to that location together with a weight that re�ects its position in its
original frame. A weighting mask is used to re�ect the location, and therefore the resolution, of
each pixel (from higher to lower as measurement sparseness increases with the range on Cartesian
space). In this way, candidate pixels are sorted according to their weight and the �rst n ones of
higher weight (being n the number of overlapping pixels in the newly computed overlap map)
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are used to compute the �nal pixel intensity by averaging. In this way we give priority to those
frames that depict the region with higher resolution.

5.4 Resolution enhancement

Apart from the improvements in SNR that we achieve as a result of the averaging blending, the
spatial resolution of the �nal mosaic can also be enhanced with respect to the original images.
The actual resolution in which a mosaic is rendered is, by default, the same as that of a single
frame. In this sense, a frame and a corresponding mosaic covering the same area will have the
same amount of pixels. However, a single FLS image has a much lower apparent resolution, as
a consequence of the inhomogenous mapping from polar to Cartesian coordinates that assigns
the same pixel intensity to several pixels in the Cartesian domain. In the mosaic, this e�ect is
attenuated as a consequence of the averaging of multiple frames, thus leading to an improvement
of apparent resolution.

Nevertheless, the real resolution can be indeed increased thanks to the mosaicing process. We
can take advantage of the multiple alignment of low-resolution images together with the subpixel
accuracy positions obtained from the global alignment step to perform super-resolution. Hence,
by oversampling the mosaic grid and mapping the images with subpixel transformations, we
achieve a higher resolution and an overall enhancement of the mosaic image.
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(a)

(b)

(c)

(d)

Figure 5.5: Mosaic blending corrections at global level. (a) Detail of a DIDSON sonar mosaic presenting
three di�erent straight tracklines. Note the visible seams at the regions of track intersection. (b) Overlap
map showing large di�erences in the number of overlapping images across the mosaic. (b) Computed
overlap map clipping the highest overlap values and applying smoothing to avoid abrupt changes. (d)
Blended mosaic.
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6 Experiments and

Results

Once the di�erent steps of the mosaicing system have been described and analyzed individually, this
chapter presents experimental results validating the full pipeline. We �rst report on a small test performed
inside a water tank, followed by results on real-world �eld applications that take place inside environments
where visibility is often compromised. In order to demonstrate the applicability of the mosaicing system
to varied conditions, the datasets used in this chapter include images acquired from di�erent platforms,
di�erent sonar models and a�ected by diverse artifacts. We utilize each experiment to highlight di�erent
aspects of our pipeline’s performance, involving mosaic consistency, accuracy or real-time capabilities. For
every experiment, we report the details of the input sonar frames, the computation times and the resolution
and size of the generated mosaics. All computations are performed on an Intel i7 3.4 Mhz QuadCore CPU
and, unless otherwise stated, the registration algorithm is running on a single core.
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6.1 Tank test

6.1.1 Experiment description

This experiment was carried out in the CIRS water tank at the University of Girona using the
Girona-500 AUV [Ribas et al.2012]. The vehicle is equipped with an RDI Doppler Velocity Log
and a Fiber Optic Gyro as main navigation sensors. An ARIS Explorer 3000 sonar from Sound
Metrics [Sound Metrics ARIS2013] was additionally installed for this experiment (Figure 6.1a).
Several objects of small size (i.e., around 50 cm) were deployed at the bottom of the tank (see
Figure 6.1b). The vehicle was teleoperated over them describing a short lawn mower pattern
while trying to maintain the same orientation viewpoint throughout the experiment. Due to the
limited size of the tank, the sonar was con�gured for small ranges, imaging a window of 1.5 m. A
total of 527 frames were acquired with the vehicle navigating at a constant altitude of 1.5 m from
the bottom and the sonar tilted at 20 deg to facilitate good imaging conditions. Ground truth is
not available as the indoor environment of the experiment did not allow the use of a GPS unit.

(a) (b)

Figure 6.1: Tank experiment setup. (a) Girona 500 AUV equipped with ARIS FLS. (b) Objects deployed in
the water tank.

TANK DATASET

Input frame
Size (pixels) Resolution(m/pixel) Example frame

350x274 0.0045

Computation times
Registration (s) Optimization (s)

2312 27.6

Final mosaic
Size (m) Resolution (m/pixel)

2.3x3 0.0011

Table 6.1: Summary table for the Tank Test Dataset.

6.1.2 Results

We have proceeded with the application of the proposed mosaicing pipeline in an o�ine fashion
over the described dataset. Figure 6.2a shows the vehicle’s dead-reckoning trajectory together
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Figure 6.2: (a) Trajectories of the ARIS Tank experiment. Blue: Vehicle’s dead-reckoning trajectory.
Black-dashed: Trajectory estimation from consecutive image registrations. Green-dashed: Trajectory
estimation from the consecutive constraints including a window of local neighbours. Red: Final estimated
trajectory after the global alignment. (b) Final graph constraints of the ARIS Tank experiment. Black:
window constraints. Red: loop-closure constraints.

with several of the estimated trajectories. The black dashed line shows the estimated trajectory
computed by concatenation of the registration constraints of consecutive image pairs. The green
dashed line shows the estimated path including constraints computed within a window of 20
neighbouring frames. It can be seen that with only the incorporation of these local constraints,
the solution comes much closer to the �nal global-aligned trajectory (depicted in red). The
green path has been used as the initial guess to �nd loop closure hypothesis. Due to the high
overlap of the sequence, the method returned 36092 potentially overlapping pairs under the
requirement of 1 m distance between image centres. From these, 15473 were considered successful
registrations according to strict PSR ratio of 25 and where added to the graph together with their
uncertainties. Figure 6.2b depicts the �nal graph, where the high number of included constraints
can be appreciated.

Figure 6.3 shows the obtained mosaic composed of 527 frames and rendered over an oversam-
pled grid at 4 times the original resolution. The mosaic shows high self-consistence, testifying the
accuracy of the method, and enables the identi�cation of the small objects present in the scene:
a concrete block, an anchor and an amphora as well as the grid and other details of the tank.
Figure 6.4 shows a comparison of a detailed area where the SNR improvement between a single
sonar frame (Figure 6.4a) and the mosaic (Figure 6.4b) can be easily appreciated. Note also the
enhancement of the image when comparing the oversampled (Figure 6.4c) and non-oversampled
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(Figure 6.4b) versions of the mosaic.

Figure 6.3: Mosaic composition with the 527 frames from the tank experiment.

(a) (b) (c)

Figure 6.4: Detail comparison of a small area in the tank mosaic. (a) Single frame. (b) Original resolution
mosaic. (c) Mosaic oversampled 4 times the original resolution. Note the improvement of the mosaic SNR
with respect to the individual frame and the detail enhancement of the oversampled mosaic version.
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6.2 Ship Hull Inspection

6.2.1 Experiment description

The second presented experiment is in the context of ship hull inspection. Ship hulls are routinely
inspected for security reasons using divers, being a hazardous and time consuming task. Recent
e�orts have demonstrated the capability to navigate autonomously with respect to a ship hull
using an AUV [Hover et al.2012] in order to collect visual or acoustic data of the hull in a safe
and reliable manner. Given that these inspections are carried out inside harbor, where water
visibility is often limited, they are a good example of target application for the proposed mapping
methodology.

The dataset used in this section is courtesy of Blue�n Robotics [Blue�n Robotics Corp.2013] and
was acquired with the Hovering Autonomous Underwater Vehicle (HAUV) [Vaganay et al.2005]
equipped with a DIDSON sonar [Sound Metrics DIDSON2013] (Figure 6.5). The experiment was
conducted on the King Triton vessel in Boston Harbor. The vehicle navigated across the bottom of
the hull, mantaining a constant distance to it and covering an area of about 15 m x 6 m. The sonar
was mounted on a tilt unit and was actuated throughout the experiment to adapt the images to the
hull’s surface. The �nal trajectory consists of 5 tracklines across the bottom of the hull, comprising
a total of 4420 sonar images collected during 12 minutes. The spacing between the tracklines
(about 1 m) and the range con�guration of the sonar (up to 4.5 m) guarantees su�cient overlap
between di�erent tracks. Moreover, the vehicle was moving basically in surge and sway DOFs,
which facilitates the registration between revisited locations as the vantage point is preserved
throughout the experiment.

Figure 6.5: HAUV vehicle with DIDSON FLS used in the ship hull experiment. Image credit: Blue�n
Robotics.
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SHIP HULL DATASET

Input frame
Size (pixels) Resolution(m/pixel) Example frame

350x453 0.01

Computation times
Registration (s) Optimization (s)

2654 31.3

Final mosaic
Size (m) Resolution (m/pixel)

19x9.5 0.003

Table 6.2: Summary table for the ship hull dataset.

6.2.2 Results

Due to the high frame rate of acquisition (6 frames per second), only one out of 3 images has been
considered, reducing the dataset to 1473 frames. Although available, no navigation information
has been used in the global alignment stage. Following the link candidate strategy, a total of
17079 pairwise registrations have been attempted, including frames from the vicinity of the
sequence and frames found in loop closure situations. From these, 8148 have been deemed correct
registrations according to a PSR threshold of 20. The high number of established constraints
(consecutive and non-consecutive) allows us to obtain a consistent solution relying solely on the
information extracted from the registrations. The total of performed registrations were computed
in 22 minutes, which suggests that by applying the online pipeline with a more restrictive pruning
on the attempted frames the mosaic could be constructed in real-time.
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Figure 6.6: Links established by registration constraints in the ship hull dataset. Blue circles represent the
vertices of the graph. Links in black depict the registration of a frame with neighbouring frames inside a
window. Links in red represent constraints found in loop-closure situations.

Figure 6.6 shows the �nal computed trajectory from the sonar images, depicting all the links
established between frames. Figure 6.7 shows the navigation trajectory (in blue) and the trajectory
computed with our methodology (in red) both referenced at the sonar’s origin. Unfortunately,
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Figure 6.7: Trajectories of the ship hull dataset. Navigation trajectory (in blue) and estimated trajectory
after the global alignment (in red).

as ground truth is not available in this dataset, we cannot provide a quantitative measure of
which trajectory is closer to the reality. However, by mapping the sonar frames over the image
locations in both trajectories, one can appreciate that the mosaic over the estimated trajectory
leads to a much more consistent image composition. Figure 6.8a shows the mosaic over the
navigation trajectory, while Figure 6.8b displays the mosaic of the estimated trajectory prior to
the optimization step and Figure 6.8c shows the �nal obtained mosaic oversampled by a factor of
3. It can be seen that the composite image in Figure 6.8c presents a consistent overall appearance
and allows the identi�cation of the various features on the hull. Some illumination artifacts are
present (especially in the lower part of the image) due to the tilt imaging angle.

Figure 6.20 shows a comparison of a detailed area between a single sonar frame, the non-
oversampled version of the mosaic, and the mosaic oversampled at 3 times the original resolution.

We would like to take pro�t from the fact that we have a second dataset of the same ship hull
to emphasize the importance of a proper data acquisition. The second dataset is composed of 518
frames gathered along a single trackline where the entire ship hull’s width is imaged within the
sonar’s FOV. Figure 6.10 shows a comparison of the mosaics obtained with the two datasets. As
can be seen, although the overall shape and dimensions of the ship-hull agree in both mosaics,
the single-pass one presents a better de�nition of the hull details (Figure 6.10b). This is due to
the di�erences on the input data, that was acquired under di�erent conditions. The �rst dataset
presents severe sonar tilt variations along the trajectory, ranging from values as di�erent as from
14 to 33 degrees. Although this does not constitute a problem to register the images it does slightly
alter the shadows and appearance of the features along the trajectory leading to a less de�ned
composition. Besides, the dataset undergoes also roll motions spanning values over 15 degrees
thus contributing to add small misalignments. And �nally, several spurious artifacts arise during
the acquisition: in the �rst trackline there are strong re�ections from the water surface and in
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(a)

(b)

(c)

Figure 6.8: Ship hull mosaic rendered over di�erent trajectories (a) Over navigation trajectory. (b) Over
the estimated trajectory before the optimization. (c) Over the �nal optimized trajectory. (a) and (b) present
blurred areas as a consequence of averaging misaligned images whereas the �nal mosaic shows high
consistency.
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Figure 6.9: Detail comparison of a small area in the ship hull mosaic. (a) Single frame. (b) Non-oversampled
mosaic. (c) Mosaic oversampled at 3 times the original resolution. Note the improvement in the mosaic
SNR with respect to the individual frame and the enhancement of the oversampled mosaic version.

(a)

(b)

Figure 6.10: Qualitative comparison of the mosaics elaborated from two di�erent datasets gathered on
the same ship hull.

the whole left part of the trajectory the images are inconsistent by themselves due to the hull
propeller being in motion. On the other hand, the second dataset presents constant tilt and low
roll variations and is not a�ected by any of the aforementioned environment artifacts, yielding to
a higher quality mosaic. Notice that despite this, we have presented the �rst dataset in order to
demonstrate the ability of merging multiple transects and �nding loop closures among them.
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6.3 Marina Marciana Harbor Mapping

6.3.1 Experiment description

The third experiment is based on a harbor survey performed during the ANT’11 sea trial organized
by the Centre for Maritime Research and Experimentation (CMRE), former NATO Undersea
Research Centre, located in La Spezia (Italy) during which the University of Girona collaborated
with CMRE. Tightly connected to ship hull inspection, the surveillance of port facilities is also
key application routinely performed for security and husbandry purposes in a low visibility
environment.

Figure 6.11: ASV equipped with the Blueview P900-130 FLS used in the Marina Marciana experiment.
Image credit: CMRE.

The experiment was conducted using a Blueview P900-130 FLS mounted on CMRE’s ASV (a
modi�ed vessel made by Sea Robotics, see Figure 6.11). The employed setup allows us having
precise di�erential GPS data and heading from 2 antennas which is used as ground truth. The
dataset is composed of 4416 sonar frames gathered along a 2.1 km trajectory comprising both
translational and rotational motions. This dataset is useful to test the proposed methodology under
a more natural environment containing typical sea �oor features (e.g. vegetation, rocks) which
are sparse and less prominent than those found in man-made scenarios. The acquisition sonar
also has signi�cant di�erences in its operating range (up to 50 m), FOV (130 deg) and resolution
(5.8 cm/pixel) compared to the other reported experiments. Additionally, the frames present a
strong inhomogeneous insoni�cation pattern that has been corrected a priori.
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MARINA MARCIANA DATASET

Input frame
Size (pixels) Resolution(m/pixel) Example frame
1526x848 0.057

Computation times
Registration (s) Optimization (s)

10316 219

Final mosaic
Size (m) Resolution (m/pixel)

512x352 0.057

Table 6.3: Summary table for the Marina Marciana dataset.

6.3.2 Results

Although information from the GPS positions is available, it is not utilized to initialize the vertices
of the pose graph. Given its high accuracy, it would result in an initial guess too close to the �nal
solution and would prevent us from demonstrating the performance of the constraints established
by the registration method. The proposed registration algorithm is generally successful in aligning
the sequential image pairs of the dataset. Figure 6.12 shows the absolute mean errors of the
registration estimates for consecutive frames compared to the ground truth odometry computed
from the GPS positions. The mean errors are low, being 0.23 m and 0.15 m for the x and y
translations and 0.5 deg for the rotational estimates. Colored in red, we depict those consecutive
registrations that have been identi�ed as unsuccessful according to a threshold of 20 in the PSR
measure. Most of the frames with high error have been identi�ed, and therefore are not introduced
in the graph. High errors are arising mainly at the start of the sequence and around frames 1500
and 2500. Leaving aside the initial di�erences, where we believe the GPS had an issue with the
heading, the last two problematic points correspond to two turns on highly homogeneous areas,
as can be seen in the lower right side of the mosaiced area (see Figure 6.16a). In these areas the
images are almost completely uniform, lacking any type of texture or intensity variation, and
thus leading to a failure of the registration method which considers, with strong con�dence, that
there is no displacement.

Taking pro�t of the available ground truth, we show the error histograms of the registrations
that have been identi�ed as successful (Figure 6.13). As can be seen, the mean errors are around 0
indicating that the registration method is not a�ected by any bias. This is signi�cant, as a bias in
the registration estimates would not be addressed by the proposed optimization scheme.

The inability to link all consecutive frames prevents the generation of an initial graph using
only the image information. In a sonar navigation framework the dead-reckoning estimates
would allow constraints to be established between these sonar poses. Here, we introduce in its
place constraints based on the absolute GPS measurements. Note that these constraints are only
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Figure 6.12: Absolute mean errors (in x,y and orientation) of the registration estimates for consecutive
frames in the Marina Marciana dataset. Overlaid in red: errors of registrations that have been deemed as
unsuccessful according to the established thresholds on the uncertainty measure.

introduced in 64 of the 4415 pairs of consecutive frames. These links, together with local links from
the registrations inside a window of 20 neighbouring frames, are used to estimate an initial path
to determine hypothesis for temporally-far overlapping frames. In this experiment, cross-track
registration is di�cult since the vehicle navigated on nearly reciprocal headings, alternating them
in consecutive tracks. That causes the image’s appearance to su�er from signi�cant changes
and drastically lowers the number of detected loop-closures, yet the registration algorithm is
able to correctly align a small number of revisited frames crucial to enforce global consistency
(Figure 6.14).

Figure 6.15 shows the GPS trajectory (in blue) together with the estimated sonar trajectory
(in red). It can be seen that the trajectory obtained after the graph optimization closely matches
the GPS track, indicating that the registration constraints lead to a valid solution. There is a
di�erence as a consequence of several small registration errors accumulated along the estimated
path. These errors are distributed along the trajectory, however, since the estimated trajectory
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Figure 6.13: Error histograms for consecutive frame registrations in the Marciana Marina dataset. Only
registrations considered successful under the established uncertainty threshold are taken into account. The
maximum absolute errors are small and the mean of the error is around 0, indicating that the estimations
are not a�ected by any bias. (a) Error histogram for x-translation. (b) Error histogram for y-translation. (c)
Error histogram for orientation.
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Figure 6.14: Loop closure links detected in the Marciana Marina experiment.
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Figure 6.15: Trajectories of the Marciana Marina experiment: GPS trajectory (in green) and estimated
trajectory after the global alignment (in red).

and the GPS track are �xed with respect to the �rst position, the error appears to be larger at the
end. Notice also that the discrepancy is around 15 m, which is barely 0.7% of the total trajectory.
The acoustic mosaic built using the estimated global positions (shown in Figure 6.16a) presents
an overall view of the surveyed area with a continuous and uniform appearance. A result of this
type is of special interest not only to observe the harbor features and their spatial arrangement
but also because it enables us to perceive features that otherwise would be di�cult to distinguish
given the low resolution and SNR of the acquisition sonar.

By georeferencing the mosaic, we can compare it with an orthophotomap of the harbor
environment where the sonar data was gathered (Figure 6.16b) and correlate the presence of scene
features (isolated rocks in the left part of the image) in both representations.

6.4 Cap de Vol Archaeological Site

6.4.1 Experiment description

In an e�ort to demonstrate the real-time capability of the mosaicing pipeline we present an
experiment in the context of archaeological explorations. The results reported in this section
are based on the data gathered at the Cap de Vol shipwreck located at Port de la Selva (Costa
Brava-Spain). The experiments were conducted in July 2013 on board the THETIS archaeological
ship of the Catalan Centre for Underwater Archaeology, Centre d’Arqueologia Subaquàtica de

Catalunya (CASC) with the Girona500 AUV [Ribas et al.2012]. An ARIS Explorer 3000 sonar
[Sound Metrics ARIS2013] and stereo camera system were installed in the payload area for this
particular mission. The Girona500 was teleoperated over the shipwreck area at approximately

96



6.4 - Cap de Vol Archaeological Site

(a)

(b)

Figure 6.16: (a) Final mosaic of the Marciana Marina experiment (not oversampled). (b) Orthophotomap
of the Marciana Marina environment. Note the presence of features that can be appreciated in both
representations (pointed by red arrows).
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0.2 m/s, whilst maintaining a �xed altitude (3 m) and heading to ensure more consistent shadows
within the dataset. The sonar range window was set from 2.5 m to 6.5 m and the acquisition rate
was set at 2 frames per second, thus ensuring a large overlap in the range direction. However, due
to the lack of a pan and tilt unit and the di�culties to adjust the proper tilting angle and range
without being in direct view of the scene, the images contain a large portion of blind areas that
reduce the e�ective overlap. Several tracklines were performed to guarantee the coverage of the
site as well as the possibility to establish loop closures between parallel tracks. All the original
data (i.e., sonar frames, parameters, vehicle navigation) were recorded using a Robot Operative
System (ROS) bag �le, to be able to reproduce the experiment in real-time conditions. In total,
2720 sonar frames were recorded during the experiment which lasted approximately 22 minutes,
covering an area of 17×8 m.

(a) (b) (c)

Figure 6.17: Cap de Vol experiment. (a) Girona500 AUV being deployed on the site and (b) navigating
over the shipwreck. (c) Detail of the Cap de Vol shipwreck. Image credit: CASC

CAP DE VOL DATASET

Input frame
Size (pixels) Resolution(m/pixel) Example frame

350x450 0.008

Computation times
Registration + Optimization (s)

1308

Final mosaic
Size (m) Resolution (m/pixel)

17x8 0.008

Table 6.4: Summary table for the Cap de Vol dataset.

6.4.2 Results

We have applied the proposed mosaicing pipeline in an online fashion over the described dataset.
According to the sonar frame rate, 1 frame must be processed in less than 0.5s in order to achieve
real-time performance. The key point is adapting the number or registrations per frame (the more
the better) so as to take advantage of all the available processing power. The Python implementa-
tion of the registration algorithm used here requires approximately 60 ms per pairwise registration,
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which would result in 8 registrations in half a second. However, by using multithreading in a
quad-core CPU, we are able to perform 16 registrations in 370 ms. Note that the parallelized
implementation does not scale linearly with the number of CPU cores due to overhead reasons.
Hence, we have set the maximum number of registrations per frame to 16 in order to leave some
time for the rest of the processing.

From the maximum registrations per frame, it is necessary to specify how many are devoted
to registrations of consecutive frames and how many are link candidates to temporally-far frames.
As described in Section 4.4.2, the decision is a trade-o� between the local robustness and the
possibility of �nding loop-closures. In this case, we set 6 predecessor link candidates, which
according to the mean speed of 0.2 m/s, ensures an overlap of over 80% and therefore high
probability of obtaining correct registrations. Increasing these number of links would only reduce
the possibility of �nding loop closures, at the expense of obtaining more registrations with
preceding frames which may not be robust. Thus, 10 out of the 16 registrations (per frame) are
performed with randomly selected frames within a distance. The distance boundary to check for
link hypothesis has been set to 2 meters radius from the center of the image. According to the
utilized ranges, frames whose centres are farther from that distance would have less than 50%
overlap and therefore are unlikely to be successfully registered.

From all computed registrations only those with a PSR higher than 18 have been included in
the graph. The optimization of the graph is performed upon addition of every 10 new vertices.
According to the frame rate of the experiment, this corresponds to a new optimized mosaic
every 5 s. Note that within this time only the last 10 vertices contain unoptimized poses. The
optimization time increases with the number of nodes, starting from less than 10 ms to a maximum
of 600 ms at the end of the experiment. Due to this, some frames at the end of the sequence are
skipped.

Figure 6.18 shows the navigation trajectory together with the trajectory obtained after running
the online mosaicing module over the recorded data. The experiment ran successfully in real-time
and concluded with 2682 vertices and a total of 13860 established links, 1235 of those corresponding
to the registration of temporally far frames (see Figure 6.19).

Figure 6.20a shows the obtained �nal mosaic where the wooden structures of the shipwreck
can be clearly seen. The rendering, also conducted in real time, is performed only by averaging
the overlapping intensities at each mosaic pixel while the mosaic size is automatically expanded
with the addition of new frames.

Figure 6.20b shows the mosaic obtained o�ine from the same experiment, involving the
registration of a considerably higher number of links (71165). The o�ine mosaic presents slightly
better de�nition in some areas as the higher number of registration links yields a better estimation
of the �nal image con�guration. However, the mosaic obtained in real-time is consistent and o�ers
a good representation of the imaged scenario. An optical mosaic of the same area is provided in
Fig. 6.20c for comparison purposes.
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Figure 6.18: Cap de Vol experiment trajectories. In blue, the trajectory computed from the navigation data.
In red, the optimized trajectory after running the online mosaicing.

Figure 6.19: Cap de Vol experiment graph after running the online mosaicing. In blue circles, the nodes
representing image poses. In black, constraints from consecutive and near-consecutive image registrations.
In red, loop-closure constraints from temporally far image registrations.

The only available ground truth is a planimetric map of a portion of the wreck produced by
the CASC group in 2012 by systematic measurements of the site’s layout. The map has been
overlayed on the mosaic in Figure 6.21. In general, the planimetry aligns well with the underlying
mosaic structures. The only part where we observe a substantial deviation is in the bow, where the
wooden planks do not lie �at on the sea�oor and its representation gets distorted as a consequence
of the 3D component. The measurements of the length from bow to stern (13 m) as well as the
maximum width (4 m) are also consistent with the obtained mosaic.
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6.4 - Cap de Vol Archaeological Site

(a)

(b)

(c)

Figure 6.20: Cap de Vol shipwreck mosaic. (a) Mosaic generated on real-time (b) Mosaic generated o�ine.
(c) Optical mosaic.
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Figure 6.21: Portion of the Cap de Vol mosaic with the overlayed planimetry.
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7 Conclusions

This chapter concludes the thesis by presenting a summary of completed work in Section 7.1. We reviewing
the main contributions under Section 7.2 and we discuss about the weak points of the proposed framework
in Section 7.3. Finally, compelling areas for future work are outlined in Section 7.4.
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7.1 Summary of completed work

This thesis has addressed the 2D mapping of low-visibility underwater environments by providing
a full framework to generate acoustic mosaics from FLS imagery. The motivation comes from
the recent breakthrough in the market of FLS devices, also termed acoustic cameras in regard
to their capability to provide acoustic images at high refresh rates. The cost of this sensors is
still quite high, but as their size and price decrease they become an increasingly interesting
option for both ROV and AUV applications. Mapping is a quintessential application for this sort
of sensors and the analogy that can be established with popular photomosaicing approaches
becomes straightforward: the e�ective FOV of FLS images can be increased o�ering extended
overviews of underwater areas by registering individual frames. Moreover, by using acoustic
images, this can be performed regardless of the visibility conditions, though at expenses of dealing
with a more challenging type of data. The current lack of e�ective solutions to the problem has
lead to develop in this thesis a complete, versatile and e�cient mosaicing pipeline tailored to the
peculiarities of FLS images.

In Chapter 2, we provided some preliminary background to settle the reader into the particular
characteristics of FLS imaging. We described the mode of operation of FLS devices and we
discussed about the most proper imaging geometry model to be considered for the problem at
hand. Taking pro�t of the narrow beam angle in elevation direction that typically characterizes
FLS devices, we adopted an approximated orthographic model that allows us to relate two
frames by a simple Euclidean transformation, while we showed that introduced errors due to this
approximation remain small for typical operation ranges. We summarized as well the di�erent
challenges presented by FLS images, thus emphasizing the di�culties that are brought in to the
mosaicing problem.

After that, we presented the main stages of the mosaicing pipeline. As we have seen throughout
this thesis, the problem of FLS mosaicing involves a combination of di�erent research areas
including, among others, image registration, global alignment and image blending. Given the
limited amount of previous e�orts addressing the overall problem of FLS mosaicing, we have
provided speci�c reviews of related research in each of the pipeline stages, highlighting the works
applied on FLS imagery even though they are often in the context of other purposes rather than
mosaicing.

In Chapter 3 we addressed the pairwise registration of sonar images which is a key step in
the mosaicing pipeline. To overcome the instability and parameter sensitivity of feature-based
registration approaches, we proposed to use a Fourier-based methodology that, by involving all
image content into the registration, o�ers robustness to noise and the di�erent artifacts associated
with the acoustic image formation. We took pro�t of the inherent advantages o�ered by the phase
correlation principle that accurately estimates translational displacements thanks to disassociating
the energy content from the structure shift in the frequency domain. Building on this principle, we
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adapted several aspects to cope with the multiple noise sources that can jeopardize the registration
of FLS frames. We described a speci�c masking procedure to cope with the spectral leakage caused
by the sonar footprint edges. We also presented an adaptive frequency �ltering to conform to the
di�erent amounts of noise of the phase correlation matrix, thus achieving a good compromise
between distinctiveness and localization of the registration peak in the spatial domain. We also
studied the speci�c problem of rotation estimation and we proposed a simpli�ed way of estimating
it, though being only an approximation, shows better behaviour on the low SNR sonar images
than other popular global rotation estimation approaches. Finally, we provided quantitative
comparisons utilizing ground truth datasets to show the superior performance of the proposed
registration against state-of-the-art feature-based approaches in registering both consecutive and
distant FLS frames.

In Chapter 4, we have addressed the global alignment of the mosaic in order to enforce
consistency between consecutive and non-consecutive image pairs. We have cast the problem
as a graph optimization over the image poses, integrating spatial constraints from pairwise
registrations as well as from navigation data when available. We presented a front-end to
determine the constraints that should be included in the graph according to an initial estimation
of the trajectory and a selection of potential overlapping candidate pairs. The work�ow followed to
build the graph has been provided for both o�ine mosaicing and the online approach, showing the
interplay between the registration and global alignment modules. In the online case, constraints
are added incrementally and under strict restrictions to warrant real-time operation. Besides,
we proposed an heuristic to estimate the uncertainty of a pairwise registration and in this way
weight appropriately the contribution of the registration constraints in the optimization. The
e�ectiveness of the proposed heuristic in describing the uncertainty of the registration results is
also demonstrated utilizing a ground truth dataset.

In Chapter 5 we tackled the rendering of the acoustic images into a smooth and informative mo-
saic. Taking advantage of the high frame rate of the sonar and therefore the multiple overlapping
images at a given location, we adopted a blending approach based on averaging pixel intensities
in order to improve the signal-to-noise ratio and resolution of the �nal composition with respect
to the individual frames. Furthermore, we identi�ed the di�erent photometric irregularities that
can arise from the sonar imaging con�guration and we provided a set of strategies to minimize
their impact both at frame and mosaic level.

In Chapter 6 we provided an extensive experimental section to validate the full proposed
pipeline, showing successful results in relevant �eld applications such as ship-hull inspection,
harbour mapping and archaeological exploration. As evidence of the framework’s versatility this
chapter showed the processing of datasets involving data from di�erent sonar models, gathered
through di�erent setups and imaging diverse environments in terms of morphology and scale.
Along the reported experiments we demonstrated to achieve mosaics with high self-consistency
and veri�ed accuracy when ground truth was available. Moreover, we showed examples of
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mosaics obtained relying solely on FLS data and we presented an example to attest the real-time
potential of the developed framework.

7.2 Review of main contributions

In providing an end-to-end FLS mosaicing pipeline, this thesis has advanced the current state-
of-the-art for underwater mapping in low visibility conditions. We can break down this general
contribution into more particular ones inside each of the framework steps:

FLS registration We have proposed a Fourier-based method to register a pair of FLS images in
a robust and e�cient way. The method, based on the phase correlation of the images, has
been tailored to the particular challenges presented by FLS data. Given the di�culties of
making an analytical approximation to the image noise, we have proposed a morphological
approximation from the phase correlation matrix, which we use to tune a frequency �lter
and achieve better identi�cation of the registration point. Furthermore, we have provided
quantitative comparisons to prove its performance against other state-of-the-art feature-
based techniques.

Global alignment We have proposed an heuristic to quantify the uncertainity of the proposed
registration method and thus weight the registration constraints appropriately in the pose-
based graph optimization. We have proved its e�ectiveness in describing the uncertainity
of the registration with a quantitative evaluation on ground truth data.

FLS mosaicing blending We have studied the particular problem of FLS blending, identifying
the di�erent photometric irregularities that can arise and providing solutions to cope with
di�erent artifacts both at frame and mosaic level.

Experimental evaluation This thesis has provided experimental evaluation of the proposed
method, demonstrating its applicability on real data from di�erent sonar devices, gathered
in real-world environments and in the context of relevant �eld applications. Moreover, we
have reported successful results in di�erent forms of processing: from o�ine mosaicing
relying only on the FLS data, to real-time processing using sequentially incoming FLS and
navigation data.

7.3 Framework failures

Although we have demonstrated that the proposed pipeline is able to mosaic FLS imagery with
robustness and accuracy we believe we are compelled also to provide a summary of the weak
points and the main issues that can lead to failures in the mosaicing framework:

Non-properly acquired imagery The peculiarities of FLS imaging together with the restric-
tions imposed by our registration algorithm must be taken into account when gathering
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data to avoid the failure of the mosaicing.

The narrow beam width in the sonar elevation direction turns into critical the tilt angle of
the device. If the sonar operates under a large pitch angle, not only the e�ective imaged
area is reduced but the error introduced as a consequence of the orthographic projection
model is increased. Features above the imaged surface �uctuate within a wider range of
elevation angles causing larger variations between frames. The Fourier-based registration
algorithm is generally robust in absorbing these variations and retrieving a registration
point, however the uncertainty of the registrations increases under such circumstance and
eventually, specially under an scenario with considerable relief, can lead to an unconsistent
mosaic. Besides, the presence of roll motions have a similar e�ect, causing distortions in the
image that do not conform to the adopted geometry model. Therefore data with signi�cant
roll instability is likely to end up in a fragmented and inconsistent mosaic.

A high acquisition speed can also result in the inability to generate a fully connected mosaic.
If the combination of vehicle speed and sonar frame rate leads to a low overlap in consecutive
images, the pose-based graph can fail to be initialized only by with image constraints.
Furthermore, the number of successful registrations tends to decrease with lower overlap
percentages, therefore reducing the possibilities of encountering loop closures and obtaining
a consistent mosaic. Lastly, higher speeds often involve more brusque movements and
rotations thus increasing vehicle instability and undesired roll motions.

Appendix A summarizes the above factors from a practical point of view, providing general
guidelines to instruct a user in properly gathering FLS data.

Completely uniform images Despite the high tolerance of the registration method to feature-
less areas, images presenting a completely uniform content can generate false positive
edges, as we have seen in the Marina Marciana experiment of Section 6.3. In this cases, the
registration method will retrieve, with high con�dence, a zero o�set that will in�uence the
optimization even when combined with navigation edges. A possible solution to detect this
situation could be to compute the entropy of the image values and discard the registration
if it is lower than a prede�ned threshold.

Images with highly repetitive structures Ambiguous data association due to repetitive fea-
tures in the environment can cause severe failure of least-squares based approaches. Using
the proposed registration method these situations are unlikely to occur since the spatial
arrangement of all image content contributes in the registration. However, notice that if this
ambiguity was present it would be less critical than the issue of uniform areas. Repetitive
structures will cause multiple peaks in the correlation surface, thus resulting in a low PSR
that would avoid the introduction of the misleading constraint in the graph. Nonetheless,
if this situation takes place in multiple occasions it would result in a lack of su�cient
constraints to enforce consistency in the mosaic.
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Large rotations combined with large translations As a consequence of the simpli�cation
that takes place in the rotation estimation method, large translations combined with large
rotations are prone to generate more uncertain registrations that can be discarded. Eventu-
ally, if there are not enough links to enforce consistency that can result in a failed mosaic.

Accumulated trajectory drift If the initial guess at a given pose drifts too far from the truth we
might not be able to generate valid link hypothesis and consequently it will be impossible
to �nd loop closures. To avoid this situation, we must periodically mantain contact with
previously visited locations. However if the revisited locations are not imaged from relatively
small angle di�erences (less than half of the sonar’s FOV) loop closures will not be found
and the mosaic’s trajectory will keep drifting.

7.4 Future work

The work developed in this thesis has laid the foundation for a promising mapping strategy in low
visibility underwater environments. However, there is always room for additional improvement
and further investigation. We have identi�ed several areas that we believe are worth exploring:

Dynamic accommodation of the imaging angle As explained in Section 2.2.1, the sonar’s
tilt angle with respect to the imaged surface is critical to acquire good FLS images. When
the imaged surface is not horizontal (i.e., a slope) it is necessary to adapt this angle in order
to maximize the image coverage. While this can be manually adjusted using a tilt unit when
operating with a ROV, it is interesting to study mechanisms to automatically accommodate
this angle for AUV operations. In this way, mosaicing of more uneven terrains would be
possible, obtaining a �attened 2D representation of the area despite changes in the surface
gradient. Although some e�orts have been devoted to estimate the underlying surface
normal directly from the imagery [Negahdaripour2012a], we believe a more robust approach
could be achieved by introducing an extra range sensor (e.g., a pencil beam pro�ler or a
multibeam echosounder) in order to estimate the slope of the plane ahead of the vehicle
and dynamically adapt the FLS angle using a tilt unit.

Improvements on the optimization back-end As mentioned in Section 4.2, we have utilized
the G2O framework [Kummerle et al.2011] as an optimization back-end for the mosaicing
system developed in this thesis. We have employed it as a basic tool to solve the least-squares
optimization problem, concentrating mostly in providing a reliable front-end. However there
is a great deal of research going on enhancements related to optimization back-ends that
could improve as well the mosaic outcome, specially in terms of e�ciency and robustness
to outlier constraints. In this sense would be interesting to see the behaviour of approaches
presented reduce or simplify the graph nodes [Johannsson et al.2013], to deal with outlier
constraints [Agarwal et al.2013], to provide robustness to ambiguities [P�ngsthorn and
Birk2013] or to provide a better initial guess taking into account the planarity of the tackled
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problem [Carlone et al.2014]. Of special interest would be also to utilize a back-end able to
deliver the uncertainty of the graph vertices. That would open the door for uncertainty
driven selection of link candidates to perform registrations or, in the online case, to utilities
to visualize the places that should be revisited to increase the quality of the mosaic.

Coverage Path planning Another area that is worth exploring is the determination of e�cient
paths to achieve good mapping coverage, taking into account the sonar fan shaped foot-print
while trying to minimize the intensity variations to achieve more consistent mosaics.

Opti-acoustic joint optimization Starting with the Cap de Vol dataset presented in Section 6.4,
in which we acquired both acoustic and video images, we would like to explore the possi-
bilities of performing a joint optimization of the pose-based graph, including both camera
and FLS constraints.

Public dataset Although FLS are becoming increasingly popular, there is not yet, to the best of
the authors’ knowledge, any image dataset publicly available to the research community.
With the resources now available in the CIRS research group (i.e., Girona 500 AUV and
the ARIS sonar), we plan to acquire and publish a dataset including AUV navigation data,
FLS imagery and possibly data from other available sensors such as optical cameras. This
will contribute to the improvement or new development of FLS-related techniques (e.g.
image registration, navigation, SLAM, etc.), by establishing a common reference where
researchers can benchmark their methods.

Mosaicing user application In views of developing a user-oriented application, we would like
to enhance the current mosaicing pipeline with more interactive options. For instance,
in an ROV case, we would like to integrate a system to guide the user in acquiring the
data in proper conditions to facilitate its mosaicing (e.g., providing speed or orientation
instructions to the pilot according to the feedback of the sonar and/or vehicle navigation
sensors). Also, for an o�ine mosaicing application it would be useful to add the possibility
to establish extra links by manually identifying features within an image pair.

Acoustic visual-based image servoing Similarly to the visual-based image servoing systems
that control a vehicle using image feedback, we could envisage an scenario of target-based
positioning using a FLS as a main sensor, thus allowing the operation in low-visibility
underwater environments. By registering the stream of frames coming from the sonar we
could obtain accurate position feedback that could be used to control the vehicle. Analogous
to previous work developed at CIRS [Bechlioulis et al.2013] we could explore the use of such
a system for autonomous grasping of objects from an AUV equipped with an underwater
manipulator. However, the physical setup of a FLS device and a manipulator in the same
vehicle complicates the feasibility of the approach, as the sonar minimum range is usually
around 1m and the arm workspace can be limited. Instead, we could think of a multi-vehicle
system where one vehicle is equipped with the sonar and is in charge of locating the target
and communicating its position through acoustic modem commands to the vehicle that

109



Chapter 7. Conclusions

performs the manipulation.

Other applications . After acquiring experience on the imaging capabilities of the FLS available
at CIRS, we gained insights of what can and cannot be easily observed with this sort of
sonar devices. This opens the door to explore totally di�erent application areas that could
exploit the FLS imaging. Some of these applications worth considering are, for instance,
detection and measurement of �ow (such as in hydrothermal vents or in underwater pipe
leaks) or detection of �shing nets.
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A Guidelines for FLS
image acquisition

The peculiarities of FLS imaging together with the restrictions imposed by our registration algorithm must
be taken into account when gathering data to ensure the success of the mosaicing framework.

During the development of this thesis, we have detected that the procedure of acquiring FLS images under
these constraints might not be trivial for non-experienced users. To help in these regards, we have compiled
a set of guidelines and general recommendations to be followed in order to properly gather FLS data for
its posterior mosaicing. While in Section 2.2 we have provided a technical introduction of the imaging
geometry, here we give insights from a more practical point of view.
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A.1 Appropriateness of the scenario

FLS devices deliver 2D images by projecting into a plane the 3D scene points that lie within the
volume limited by its horizontal (FOV) and vertical (elevation) beams. Due to this principle of
operation, a FLS is not the ideal sensor to image around seamounts or abrupt terrains with strong
3D changes, but it is a valuable tool to image a fairly regular sea�oor or plane surfaces such as
walls. It is acceptable to have protruding objects (with some 3D component) on this base plane
but the essential point is that the underlying surface should be approximately planar in order to
be able to easily con�gure a correct imaging angle.

Notice that the requirement of a planar scenario does not imply the restriction of the plane
being either horizontal or vertical. The surface to be imaged can be a slope inclined at any angle
as long as we have the means to tilt the sonar appropriately to image this underlying plane as it
will be explained.

A.2 Guidelines for imaging a horizontal plane

Typical con�guration scenarios are illustrated in Figure A.1. We will herein describe how to
properly gather FLS images in the general case of imaging an horizontal plane (Figure A.1a).
However, the guidelines can be easily extrapolated to other con�gurations.

(a)

(b) (c)

Figure A.1: Di�erent imaging con�gurations.
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A.2.1 Sonar imaging setup

Overall there are three main parameters to adjust: the altitude or distance to the plane, the tilt
angle of the sonar with respect to the plane and the sonar ranges (minimum and maximum).

First, we will chose an altitude with respect to the base plane that is to be imaged. In general
too high altitudes are a bad option as it will force us to adopt one of the following options:

a) Tilt the sonar to a large angle, which will reduce the e�ective area that we cover (Figure A.2).

large h

large tilt

rmin

small coverage

(a) (b)

Figure A.2: Imaging with large altitude and large sonar tilt angle. (a) Setup (b) Image footprint.

b) extend the ranges to be able to get acoustic returns from the imaged surface (Figure A.3).

large h

rmax

rmin

large coverage, farther ranges (lower resolution)

(a) (b)

Figure A.3: Imaging with large altitude and large ranges. (a) Setup (b) Image footprint.

If the sonar maximum ranges are not enough we might encounter the situation of Figure A.4
in which we would obtain a full blind image.

Even in the case that the ranges can be set to longer values and reach the surface, the obtained
image will be of lower resolution than imaging from a lower altitude. Therefore the advantage
of imaging at a lower altitude is two fold: it allows for smaller sonar tilt angles, meaning more
coverage and provides images at higher resolution due to imaging at closer ranges (Figure A.5).

Hence, in general, the lower the better, of course without sacri�cing the safety of the vehicle.
Around 1.5 meters is a good altitude for a sonar that has a range up to 10m. Sonars that can shoot
at longer ranges will allow us to accommodate the imaging geometry easier as the altitude will
not be so critical. Keeping the same altitude with respect to the plane along all the experiment
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large h
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(a) (b)

Figure A.4: Imaging with large altitude and insu�ciently large ranges. (a) Setup (b) Image footprint.

small h

r
min

large coverage, closer ranges (higher resolution)

r
max

large coverage, closer ranges (higher resolution)

(a) (b)

Figure A.5: Imaging with low altitude. (a) Setup (b) Image footprint.

will help us to constrain the rest of the parameters that must be adjusted.

According to the set altitude two parameters remain to be adjusted. First, we will set the
minimum and maximum image ranges to loose values to cover a large range window and we will
start by adjusting the sonar’s tilt angle. As said, a too tilted angle will reduce the e�ective imaged
area (Figure A.6) while a small grazing angle will ensure a large coverage area (Figure A.7).

large tilt

r
min

small coverage

(a) (b)

Figure A.6: Imaging with large tilt. (a) Setup (b) Image footprint.

The tilt angle will also a�ect to the appearance of the images. A too small grazing angle would
emphasize the features excessively and create elongated shadows with the risk of occluding the
content at further ranges. Usually around 10-20 degrees is a good compromise. If a pan and tilt
unit is available, this angle can be easily tuned.

Once the tilt is �xed, the minimum and maximum ranges should be adjusted to avoid as
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small tilt
r
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max

large coverage

(a) (b)

Figure A.7: Imaging with small tilt. (a) Setup (b) Image footprint.

much as possible blind areas (Figure A.8). Therefore we should increase the minimum range until
approximately the range of the �rst returns and shrink the maximum range to the limit of the last
returns (Figure A.9).

r
min

r
max

(a) (b)

Figure A.8: Imaging with loose ranges. (a) Setup (b) Image footprint.

r
min

r
max

(a) (b)

Figure A.9: Imaging with loose ranges. (a) Setup (b) Image footprint.

Unless required due to sudden change of the surface topology, it is advised to keep all parame-
ters, and specially the sonar ranges, constant during all the experiment.
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A.2.2 Other considerations

• Vehicle roll must be avoided to prevent distortions in the image content and blind areas on
the image sides. The vehicle should be as stable as possible in roll and the sonar mounting
as parallel as possible to the imaged plane.

• Change of the sonar’s tilt (and/or the vehicle’s pitch) along the experiment is not such an
issue like having roll motion. It will not distort the projection of the points, however it can
drastically change the portion of observed terrain within the sonar footprint. Therefore,
once the sonar tilt is properly adjusted for the plane under consideration it is better to
keep it constant during the acquisition. In case that, along the experiment, the base plane
undergoes some general inclination change, it might be worth adjusting.

• Change of the vehicle’s yaw (and/or the panning of the sonar by a pan unit) during the
experiment is not a problem. However, rotating at high speeds should be avoided, specially
in devices with small FOV.

• It is advised to set the sonar acquisition frame rate to the maximum value that the device
allows for the con�gured ranges. It is as well recommended to use a slow vehicle speed,
specially if the con�gured ranges are short and the frame rate is low.

Brusque movements should be avoided as much as possible as they can generate vehicle
instability in pitch/roll DOF.

• When performing long trajectories, it is advised to revisit areas that have been previously
imaged. In order to improve the consistency of the mosaic it is better to maintain roughly the
same sonar orientation between di�erent loop closures. The traditional grid survey of AUVs
can be changed to conform to this restriction by making use of the sway degree of freedom
to perform lateral motions instead of rotations when changing transect (Figure A.10a).
Another possibility could be adjusting accordingly the orientation of the sonar after each
turn with a pan and tilt unit (Figure A.10b).
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(a)

(b)

Figure A.10: Grid surveys maintaining FLS orientation. (a) Making use of the sway DOF. (b) Adjusting
the angle with a pan unit.
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B Chain detection and

following on FLS
imagery

In this thesis we tackled the problem with mapping with FLS. However, as introduced in Chapter 1, FLSs
are a valuable to tool for many applications taking place in low visibility environments. A usual practice
is the detection and inspection of objects in an environment, which does not necessarly imply to build a
mosaic of the area, but to be able to recognise the object in the incoming sonar frames given an a priori
knowledge of it. This appendix encloses an example of object detection algorithm on FLS images in the
context of an underwater chain inspection scenario. Tracking an underwater chain using an autonomous
vehicle can be a �rst step towards more e�cient solutions for cleaning and inspecting mooring chains. By
using an FLS as a primary perception sensor we enable the vehicle operation in limited visibility conditions
and overcome the turbidity arisen during marine growth removal. We developed a robust framework to
perform chain following, combining perception, planning and control disciplines. We present a detection
system that exploits the sonar’s high frame rate and applies local pattern matching to handle the complexity
of detecting link chains in acoustic images. The detection algorithm takes pro�t of the registration method
demonstrated in this thesis to enhance the SNR of the incoming images and perform detection with a
higher degree of reliability. Then, a planning system deals with the dispersed detections and determines
the link waypoints that the vehicle should reach. Finally, the vehicle is guided through these waypoints
using a high level controller that has been tailored to simultaneously traverse the chain and keep track of
upcoming links. Furthermore, the mosaicing system presented in this thesis can be applied on the data
gathered while following the chain, thus delivering an acoustic mosaic to perform a �rst inspection of the
chain state.
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B.1 Motivation

Persistent autonomy is a subject of increasing e�orts in the marine robotics community. The
present work is within the context of PANDORA European FP7 project [PANDORA2014, Lane
et al.2012], which aims to increase the range and complexity of underwater tasks that can be
automated while reducing the need for operator supervision. To this end, one of the three core
tasks of PANDORA project is to work towards a cost and time e�cient solution for the cleaning
and inspection of mooring chains using an AUV.

Chain moorings on �oating structures such as Floating Production Storage and O�shore (FPSO)
vessels are exposed to severe environmental and structural conditions. In order to avoid potential
damage, chain status is monitored through periodic and exhaustive inspections. Traditional
methods, which involve recovering the chain on deck or ashore, are being replaced by in situ
in-water inspections using ROVs equipped with optical callipers [Hall2005] [Morandini and
Legerstee2009]. However, most available solutions require prior removal of the marine biofouling
so that the chain can be properly examined. Cleaning solutions range from manual brushing
with divers, which is potentially hazardous and has an inherent depth limit, to high-pressure
water systems deployed with ROVs [Noble Denton Europe Limited2006]. The time spent to
clean strongly depends on the selected option, but in general is a tedious and slow task since
the optical visibility drops drastically as the removed marine growth �oats in the water. Indeed,
considering the cost of ROV vessels, chain cleaning can be a signi�cant fraction of the cost of a
chain inspection program [Noble Denton Europe Limited2006].

To avoid the presence of troublesome ROV cables and reduce the cost of the deploying vessel,
the PANDORA project aims to demonstrate the feasibility of using an AUV equipped with a water
jet to conduct chain cleaning and inspection tasks. Our proposal is to use an AUV with a high
resolution imaging sonar [Sound Metrics ARIS2013], which delivers acoustic images at near-video
frame rate, in order to autonomously navigate along the chain and detect each of the links. In
this way the cleaning process can be carried out regardless of the visibility conditions and the
suspended marine fouling, thus speeding up the overall operation. Moreover, by producing a
mosaic of the images gathered along the chain trajectory, the same methodology provides the
means to perform an initial visual inspection, from which it is possible to identify some major
issues or locate problematic parts that need further inspection.

Despite these advantages, the use of such a system arises several challenges that must be
addressed. First, the automatic detection of the chain links in FLS images becomes a complex
problem due to the inherent sonar characteristics that have been described in Section 2.3. Besides,
the control of the AUV must be adapted to take into account the imaging geometry of the sonar.
The vehicle location at a given instant di�ers from the point that is being inspected, which is
located few meters ahead depending on the sonar’s range con�guration. Thus, to successfully
follow the chain, the detection and control schemes must be tightly coupled and be able to react
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in real-time. Otherwise, chain links can easily drop o� the sonar’s narrow FOV resulting in the
vehicle losing track of the chain.

Hence, the work presented here deals with the problem of autonomously following an un-
derwater chain as a �rst step towards performing chain cleaning and inspection with an AUV.
An overview of the proposed framework is explained in Section B.2. Section B.3 describes the
detection algorithm developed to robustly detect chain links on sonar imagery. Section B.4 covers
the generation of position waypoints from the link detections. Section B.5 describes the control
system of the AUV, adapted to concurrently navigate over the estimated link waypoints and keep
the proper vehicle orientation to follow the upcoming links. Experiments and results are reported
in Section B.6, showing the performance of the chain following framework on real experiments
with a chain mock-up.

B.2 System Overview

Figure B.1 outlines the developed chain following framework. Our mission scenario consists
in an AUV that is deployed in the vicinity of a mooring chain end. The present methodology
considers a chain lying approximately on a plane, either horizontal or vertical. Note though, that
the approach could be extended to other con�gurations with the aid of a pan-and-tilt unit in order
to set the imaging sonar to the appropriate grazing angle.

The stream of sonar images is processed by a link detection module that identi�es the presence
of a chain link within the sonar’s FOV and delivers its position with respect to the sonar’s origin.
Notice that our aim is to detect each of the links as accurately as possible as the system is intended
to clean them appropriately.

By taking into account the sonar position in the vehicle and the vehicle location in the
world coordinate frame, link detections provided by the previous module are referenced with
respect to the world coordinate frame. The di�erent detections are grouped and associated to the
corresponding chain links by a second module, named waypoint planner. This module maintains
a list of all detected links and generates an ordered sequence of world waypoints that have to be
visited in order to correctly follow the chain.

Finally, a third module implements a combined control system which guides the vehicle towards
each sequence’s waypoint while keeping the orientation to the last detected link. In this way,
the vehicle visits the links that have already been identi�ed while new ones are simultaneously
detected and added to the list. This process is executed until the vehicle has reached the position
of the last visible link and no link remains unvisited thus having completed the chain following
procedure.

The details of the cleaning system, by means of a water jet integrated on the AUV, fall beyond
the scope of the presented framework. However, a new low level controller that will be integrated
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Figure B.1: Diagram illustrating the di�erent steps of the chain following framework.

into the described control module is already being developed [Karras et al.2014] to be able to cope
with the perturbations originated by the water jet.

B.3 Detection of Chain Links on FLS imagery

Although the resolution of new FLS devices is progressively increasing, the inherent characteristics
of the acoustic images pose a challenge to the object detection techniques that are typically used
on optical images. As we have seen in Chapter 3, detection of point features in sonar images
is a�ected by a low degree of repeatability and distinctiveness. This turns into unfeasible the
detection approaches that involve matching features against a visual vocabulary of an object. A
common practice in sonar object recognition is to take advantage of shadow cues. Given that chain
links are not isolated objects but interlaced elements, it is di�cult to exploit the use of shadows as
they cannot be distinctly identi�ed. Likewise, gradient-based or edge-based techniques become
unreliable as depending on the link’s position there is a wide range of di�erent outcomes in
image intensities. There are many possible intensity transitions (from link to background, link to
shadow, link to link, shadow to background) together with possible sonar artefacts (e.g. cross-talk
or strong re�ections) that can contribute to fragment and clutter an edge map, thus complicating
the task of identifying the link’s contour.

The proposed detection method relies mainly on the intensities backscattered by the link itself,
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which are most of the times under partial occlusions due to the imaging viewpoint or actual objects
occluding parts of the chain link, such as other links or marine growth. We have approached
the problem as a pattern matching using normalized cross-correlation of local templates, which
allows us to detect portions of the link while others are not visible. Those detections are then
robustly clustered and related according to their known dimensions and spatial location to �nally
identify the presence of a link and provide an estimation of its center and orientation. Fig. B.2
summarizes the link detection process, consisting of the following steps:

• Image enhancement: Instead of performing the detection on a raw frame, the system takes
advantage of the sonar’s high frame rate and registers a small number of n consecutive frames
to produce an intermediate image of increased signal to noise ratio. The registration between
frames is performed using Fourier-based techniques [Hurtós et al.2014] and the resulting image
is formed by averaging the intensities at each point thus reducing the noise and the incidence
of spurious artefacts present in the individual frames.

• Pattern matching: The image generated in the previous step is the basis for performing
cross-correlation with local templates, each one rotated in few di�erent orientations. These
templates have been previously de�ned according to the morphology of the particular chain
that has to be followed (e.g, for a studless chain a good template set would be composed of the
four link corners and the straight side). Although many links might be present in one image,
and therefore several areas can re�ect a high correlation response for a given template, only
the strongest location for each template is kept.

• Clustering of detections: To increase robustness and discard outliers, local detections are
accumulated along several images, according to the displacements identi�ed by registration.
These detections are clustered by template type, ensuring that a minimum number of the same
type are located within a neighbourhood in order to consider a detection as valid.

• Link identi�cation: Clustered detections must be associated into groups belonging to the
same link. To that end we make use of a heuristic that explores a sequence of possibilities
according to the cluster’s spatial location and known link dimensions. Due to link interlacing,
alternate links have di�erent inclinations with respect the main chain axis, making link elements
of one side easier to be seen at a given image. Therefore the heuristic sweeps the image for the
combination or sub-combination of link elements of the same side (i.e [lower-left corner/straight
segment/upper-left corner] or [lower-right corner/straight segment/upper-right corner]).

• Orientation estimation: Once the di�erent links have been identi�ed, orthogonal regression
is used to �t a line through the detections composing the di�erent groups of a link. The
orientation of the �tted line serves as an estimate of the link’s orientation.

• Center estimation: Finally, using the estimated angle the location of the link’s center can be
estimated by projecting the known link dimensions from each detection point, assuming a 2D
projection.
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Figure B.2: Diagram of the link detection steps.

B.4 Way-Point Planner

As the vehicle moves, the same link might be observed and detected multiple times through the
module presented in previous section. However, these estimations will vary around the actual
chain link center due to mainly two reasons. On the one hand, the locations found in the template
matching step can slightly di�er from one observation to the other as the image’s intensities
�uctuate due to small viewpoint changes. Therefore, the detected location of a link’s part may be
slightly di�erent and so may be the �nal center estimation. On the other hand, since the detections
are referenced in a world map by using the position of the vehicle, the accumulated navigation
drift between two detections may diverge their positions. In views of that, we developed a module
that: a) classi�es the di�erent estimations of the centers into clusters that belong to the same
chain link and b) sorts the clusters in order to request to the vehicle the next way point that needs
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to be reached to follow the chain.

Therefore, the planner module will maintain a list of ordered way points referring to the
centers of the detected chain links. The output of this module at a given instant is the next
waypoint that needs to be reached. Initially, the requested waypoint is the �rst of the list. When
the vehicle reaches the desired location (considering a surrounding tolerance area) the requested
waypoint will then change to the next one.

The computation of the way points is performed in three main steps. First, an n-th order
polynomial curve y = pn (x) =

∑n
i=0 an−ix

n−i is �tted on the sonar detection data (xi, yi),
i = 1, . . . , N , where N is the total number of link center estimations provided by the detection
module up to a given instant - see Fig. B.3a-B.3b. The polynomial �tting is performed using the
least squares method. Notice that the degree n of the polynomial is a parameter that must be set
according to the smoothness of the chain shape, the smoother the shape is, the lower the value of
n should be selected. In general, it will be small (3-4◦) as we do not expect the shape of the chain
to have abrupt direction changes.

In a second step, the sonar detection data is projected onto the �tted curve, thus resulting in(
xproji , yproji

)
, i = 1, . . . , N - see Fig. B.3c. The projection of each point (xi, yi) can be easily

performed by �nding the closest point to the polynomial through the solution of the following
system of two equations:

pn
(
xproji

)
= yproji(

xi − xproji

)
+
(
yi − yproji

)
dpx(x)
dx

∣∣∣
x=xproj

i

= 0.

The �rst equation dictates that
(
xproji , yproji

)
belongs to the �tted polynomial pn (x) whereas

the second one imposes the fact that the vector
[
xi − xproji , yi − yproji

]
is normal to the tangent

of the polynomial pn (x) at the point xproji .

Then, the projected data are sorted in increasing order of x values, obtaining
(
x̄proji , ȳproji

)
,

i = 1, . . . , N . By computing the distances between two consecutive projected points δi =√(
x̄proji+1 − x̄

proj
i

)2
+
(
ȳproji+1 − ȳ

proj
i

)2
, i = 1, . . . N−1 we �nd those j ∈ Nj ⊂ {1, . . . , N − 1}

for which δj > δ̄, where δ̄ denotes half the length of a chain link. If δj > δ̄, points
(
x̄projj , ȳprojj

)
and

(
x̄projj+1 , ȳ

proj
j+1

)
are classi�ed in di�erent classes belonging to di�erent chain links - see Fig.

B.3d. Note that Nj + 1 de�nes the number of total di�erent detected chain links. Finally, we
estimate the center of the detected chain links by computing the centroid of each of the projected
data classes.

The estimates of the sonar detection algorithm will be updated as the AUV moves towards
the desired way points; hence the described planning scheme is re-computed until there are no
further updates.
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(a)

(b)

(c)

(d)

Figure B.3: Phases of the waypoint planner computations. Blue stars: estimates from the sonar detection
algorithm. Red solid line: polynomial that �ts the sonar data. Black stars: projected points onto the
polynomial. The two detected waypoints and their centers are depicted by stars and a circle of the same
color in (d).

B.5 Control Scheme

The control module is responsible to guide the vehicle to the world waypoints dictated by
the planner. However, when the vehicle is over a waypoint, the sonar is inspecting an area
located several meters ahead of the current vehicle position (depending on the con�gured range
parameters). In order to perform a seamless chain following we need to ensure that the chain is
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kept within the FOV of the sonar at all times, regardless of the vehicle position. To that end, our
approach consists in a dual high level controller: on one side, a xyz position controller moves
the vehicle to the desired waypoint. On the other, a yaw velocity controller has the purpose
of keeping the farther perceivable link waypoint in the middle of the sonar’s FOV. The world
coordinates of the link to be centered are transformed with respect to the mid point of the sonar’s
FOV. In this way, the error that must be compensated in order to keep the link in the middle of
the image corresponds to the y coordinate of the obtained waypoint. By feeding this error to a
proportional controller we obtain the velocity setpoint that will correct the yaw rate according to
the link’s distance to the center. With this strategy we guarantee that the vehicle always points to
the farther detected link within the FOV thus increasing the possibilities of detecting successive
new ones as it moves from waypoint to waypoint.

A special situation occurs if the vehicle reaches a waypoint and there are no links inside the
sonar’s FOV. This circumstance can take place when: a) the vehicle is arriving to the end of
the chain and the links remaining to be visited are already to close to be inside the FOV or b)
the chain presents a signi�cant deviation in its trajectory and the links drop o� the FOV before
being robustly detected thus losing the track of successive links. In those cases the vehicle stops
and rotates 45 deg left and right in order to look around for new links, which, in case of being
found are added to the planner list. The execution follows until the vehicle has reached the last
waypoint in the list.

B.6 Experiments and Results

The validation of the proposed approach has been conducted in the water tank at CIRS of the
University of Girona using the Girona 500 AUV [Ribas et al.2012]. The vehicle is equipped with a
complete navigation suite including a DVL, an Attitude and Heading Reference System (AHRS),
and a depth sensor. For the purpose of this experiment an ARIS FLS [Sound Metrics ARIS2013] was
installed in the payload area. The ARIS FLS delivers high-resolution acoustic imagery, providing
an angular resolution of 0.3 deg at the expense of having a narrow FOV (30 deg). The sonar was
mounted on a pan and tilt unit and the tilt angle was �xed throughout the experiments to 15 deg
which is a suitable grazing angle for gathering images on the horizontal plane. A replica of a
mooring chain, consisting of 13 studless links and measuring approximately 7 m, was deployed at
the bottom of the tank. Figure B.4 shows a picture of the setup.

The sonar window was set to 2.5 m, extending from 1 to 3.5 m ahead of the vehicle. Such a
short ranges were established with the aim of having a better image resolution and avoid, at
the same time, re�ections from the tank walls. According to the con�gured range samples, the
acquired images (350x497 pixels) have a range resolution of 0.5 cm. The acquisition rate was set
to 8 frames per second. At this frame rate, the detector module can generate an enhanced image
each 3 frames and accumulate the individual template detections over 4 images thus keeping the
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Figure B.4: Chain experiment setup at the University of Girona’s water tank: Girona 500 AUV equipped
with the ARIS FLS and a chain segment deployed horizontally at the bottom.

processing in real-time and delivering link detections at 0.6 Hz.

To start the experiment the vehicle was teleoperated near one of the chain ends and was left
in a position where some chain links could be seen. From then on, the described framework took
control of the vehicle to drive it autonomously over the chain. We start by analysing the link
detection performance. As the vehicle was moving at a low speed, many of the links were in the
sonar’s FOV enough time to be detected in multiple occasions. On the course of traversing the
chain the detector produced a total of 376 detections, e�ectively detecting 10 di�erent chain links.
In order to evaluate the accuracy of the link detector independently of potential errors introduced
in the two subsequent modules, we have manually labelled the link center on those images where
a link was detected. Table B.6 summarizes the number of times that each of the 13 links were
detected together with the mean error computed with respect to the labelled center.

Note that the �rst 3 links were never detected. This is due to the limited space in the test
tank that did not allow for the necessary distance between the vehicle’s starting position and the
�rst chain links to be detected. The rest of the links were detected multiple times, depending
on how much time they were in the sonar’s FOV and how well they were observed. Regarding
the accuracy, all link centres have an estimated error below 15 cm. These errors are due to the
variability of the template matching step as well as the assumption of the 2D projection when
determining the link centres. Relatively to the link size, they are all below 1/4 of the link’s length
and therefore we can consider that we achieve acceptable detection accuracy.
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Link
Num.

Link
Detections

Mean
Error (cm)

Link
Num.

Link
Detections

Mean
Error(cm)

1 0 - 8 33 4.5 ± 3.9
2 0 - 9 83 7.9 ± 9.5
3 0 - 10 23 6.8 ± 14.1
4 22 12.3 ± 3.6 11 30 10.2 ± 13.3
5 12 6.5 ± 9.2 12 21 9.9 ± 5.9
6 5 7.2 ± 5.1 13 122 5.6 ± 16.3
7 25 4.8 ± 4.7

Table B.1: Table showing the number and accuracy (compared to manually labelled link centers) of the
link detections along the chain following experiment.

Figure B.5 shows the link detections plotted on the world frame (in green), together with
the waypoints (in red) that the planner module has associated to the detections and the AUV
trajectory (in blue). It is important to remark that the link waypoints are dynamically recomputed
during all the experiment as new detections appear by following the procedure described in
Section B.4. In this sense, the depicted link waypoints are the last estimation for each link. These
online adjustments in the position of the waypoints together with the small vehicle displacements
induced on the turn around movements explain the slightly jagged trajectory of the AUV. Since
the test chain was short, when the vehicle reached the middle of the chain the farthest links were
no longer visible, thus triggering the turn around movement at each waypoint. It is also worth
noting that a distance threshold of 0.03 meters was used to consider whether the vehicle had
arrived to a waypoint. For this reason, the AUV trajectory does not go over the exact position
of the link waypoints but e�ectively passes through the tolerance areas shown with red dashed
circles.

Regarding the performance of the planner module, we observe, in the �rst place, that the
links have been correctly associated to the scattered detections. Moreover, the vehicle is driven
successfully through the sequence of waypoints. To verify that the performed trajectory went
over the actual chain links we require the absolute positions of each link. Unfortunately this
ground truth is not available. As an alternative we can compare the estimated link waypoints of
the trajectory against a visual mosaic of the acquired images along the experiment. The mosaic is
referenced with respect to the �rst sonar frame and therefore can also be referenced in world
coordinates by using the vehicle location where the �rst frame was gathered. To build such a
mosaic we have computed the pairwise registration of each frame with a window of frames in
its neighborhood using Fourier-based techniques proposed in this thesis. All the obtained pose
constraints have been used integrated into the pose-based graph optimization, that leads to the
maximum likelihood con�guration of the sonar images. Finally the frames have been fused by
simply averaging the pixel intensities at each location.
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Figure B.5: Results of the chain following experiment. AUV trajectory along the chain is indicated in blue.
Green arrows represent the center and orientation of the multiple link detections. In red, the estimation of
the link waypoints provided by the planner with a circle depicting the tolerance region at 0.03 m.

Figure B.6: Acoustic mosaic generated by registering the acquired sonar frames along the vehicle trajectory
with the link waypoints overlayed in red. The link waypoints closely follow the actual link locations.

Figure B.6 shows the link waypoints overlayed on the acoustic mosaic. The obtained mosaic
is, in general, visually consistent. However, the raw images were a�ected by several re�ections
and intensity artefacts causing a lack of de�nition in some mosaic areas. As it can be seen, the
computed link waypoints closely follow the chain link centres thus testifying the accuracy of our
chain following scheme. The last waypoints present small deviations, possibly due to the fact that
the vehicle accumulated drift along the trajectory. To address that, in future work we could deploy
absolute localization beacons or adopt an SLAM approach using the trajectory computed from
the FLS registrations constraints in order to bound the navigation drift. Therefore, besides the
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accuracy of the computed link waypoints, this example shows how by using the images gathered
along the chain trajectory we can generate an acoustic mosaic to perform a �rst overall inspection
of the chain state. Figure B.7 shows another example of such type of mosaic, rendered at 4 times
the resolution of the original images.

Future work will involve the integration of the water jet and a new low-level controller [Karras
et al.2014] to perform chain following while compensating accordingly for the force/torque
disturbances produced by the jet. Besides, the chain following capability will be tested at sea
where we expect a better performance as the sonar images will not be a�ected by the re�ections
and multi-paths typical of the water tank scenario.
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Figure B.7: Example of chain mosaic.
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