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Abstract 13 

We present the first use of the thermal analysis techniques to study yttrium trifluoroacetate thin 14 

films decomposition. In situ analysis was done by means of thermogravimetry, differential 15 

thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product 16 

have been characterized by X-ray diffraction and scanning electron microscopy. The thermal 17 

decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents 18 

the same succession of intermediates than powder’s decomposition, however, yttria and all 19 

intermediates but YF3 appear at significantly lower temperatures. We also observe a dependence 20 

on the water partial pressure that was not observed in the decomposition of yttrium 21 

trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is 22 

discerned. 23 

 24 
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1. Introduction 1 

 2 

Among the different routes described for the synthesis of YBa2Cu3O7-δ (YBCO) 3 

superconductors, Chemical Solution Deposition (CSD) methods are especially suited for 4 

practical purposes since they are flexible, low-cost and scalable [1,2]. In particular, since their 5 

early discovery by Gupta et al [3], metal trifluoroacetates (TFA) have been extensively used in 6 

the synthesis of high performance YBCO superconducting films [4-9]. CSD involves solution 7 

preparation, solution deposition and a temperature thermal treatment to remove the organic 8 

species and to crystallize the amorphous films.  9 

Thermal analysis (TA) techniques are routinely used to characterize the thermal 10 

decomposition of precursors. TA analysis allows us to monitor the evolution of the 11 

decomposition under different temperature programs and atmospheres. TA analysis combined 12 

with structural characterization provides useful information about the decomposition mechanism 13 

as well as its dependence on the treatment conditions [10-15]. Although CSD is used to 14 

synthesize thin films, TA studies are customarily carried on powders. The main reason is that the 15 

signal in TA measurements is proportional to the sample mass, and thin film masses are at least 16 

one order of magnitude smaller than the usual masses of powders. Recent studies have shown 17 

that the actual behavior on thin films may significantly differ from that observed on powders 18 

[16-19]. The reason is that the transport mechanisms involved on the solid-gas reaction that 19 

govern the decomposition process are enhanced on thin films due to the large surface to volume 20 

ratio.  21 

The aim of this paper is to analyze the thermal decomposition of Yttrium trifluoroacetate 22 

(Y(TFA)3) in the form of films, under different conditions of atmosphere, thickness and 23 

substrate. Y(TFA)3, combined with barium and copper TFAs, is the most common precursor in 24 

the fabrication of high-performance YBCO superconducting tapes [4,5,9]. Thermogravimetry 25 

(TG), differential thermal analysis (DTA), and differential scanning calorimetry (DSC) are used 26 

to monitor the decomposition process. The volatiles formed during decomposition are analyzed 27 

using evolved gas analysis (EGA) performed with a mass spectrometer (MS). Final and 28 

intermediate products are characterized using scanning electron microscopy (SEM) and X-ray 29 

diffraction (XRD). We focus our attention on the differences with respect the behavior reported 30 

for powders [20,21]. In particular, we observe that films decomposition starts at a lower 31 
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temperature than powders. Contrarily to powders, the decomposition depends on the water 1 

partial pressure and no combustion is observed in films. Finally, decomposition is enhanced for 2 

substrates with cation terminations. 3 

 4 

2. Experimental 5 

2.1 Chemicals 6 

Anhydrous Y(TFA)3 with a purity of 99.99% (trace metals basis) was supplied by Aldrich. A 7 

solution 0.66 M of Y(TFA)3 in methyl alcohol was obtained at room temperature by manually 8 

shaking the mixture for less than 1 minute. Films were prepared by freely spreading microdrops 9 

(~3 µL) on the surface of a glass disc (12 mm in diameter) or on a square LaAlO3 (LAO) plate 10 

(5×5 or 10×10 mm2). The solvent was removed by heating the substrate at 70ºC for 15 minutes 11 

in a hot plate under vacuum (pressure around 440 mbar). Nominal film thicknesses were of the 12 

order of several hundred nanometers. Nominal thicknesses have been calculated by assuming 13 

that the density of pyrolized films is that of bulk yttria (5.01 g/cm3), Y2O3. 14 

 15 

2.2 Characterization techniques 16 

TG and DTA analysis was performed with a Setaram apparatus model, Setsys Evolution 17 

16. To improve the signal-noise ratio, two substrates coated on both sides were analyzed 18 

simultaneously. After the experiments, TG and DTA curves were corrected by subtracting a 19 

consecutive identical second measurement and by measuring the sample mass at room 20 

temperature after the experiment. Gas flow was controlled by mass flow meters. High purity 21 

gases at a flow rate around 50 ml/min were used to control the furnace atmosphere. Water-22 

saturated gases were obtained by bubbling the carrier gas in water at standard temperature and 23 

pressure (25ºC, 1 atm). Residual oxygen and water partial pressures on the furnace were 0.01% 24 

and 0.002%, respectively. EGA analyses were performed by placing the samples inside a quartz 25 

tube at a pressure of around 10-6 mbar. Samples were heated using an external furnace. DSC was 26 

performed in a Mettler Toledo DSC model DSC821 with films deposited on a square LAO plate 27 

(5x5 mm2) substrate. Thermal analysis experiments were performed at heating rates of 5, 10 and 28 

20 K/min. 29 

XRD experiments were done in a thin film diffractometer PANalytical model X'Pert PRO 30 

MRD. The X-ray beam wavelength was 1.5418 Å (Cu-Kα). SEM observations were performed 31 
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in a Zeiss DSM 960A scanning electron microscope operated at 20 kV. Samples were coated 1 

with a thin film of gold to remove electrostatic charges.  2 

 3 

3. Results and discussion 4 

Figure 1 shows the TG curves of Y(TFA)3 thin films in LAO substrates heated at 20 K/min, 5 

either in wet or in dry atmospheres, with different oxygen partial pressures, and for similar 6 

nominal film thicknesses (around 0.4 µm). In Fig 1 the measured mass is normalized to the mass 7 

after dehydration. As a reference the expected masses of intermediate and final products are 8 

plotted as dashed lines. To facilitate the comparison between powders and films, the 9 

decomposition of Y(TFA)3 in the form of powders has also been included in Fig. 1. 10 

The overall precursor decomposition can be divided in four stages, labeled as (I) to (IV). 11 

The first stage ends at 150ºC and corresponds to the dehydration. Dehydration of anhydrous 12 

Y(TFA)3 is related to the water uptake at room temperature of Y(TFA)3 due to its high 13 

hygroscopicity [22]. Stages (II) to (IV) involve the formation of intermediates YF3, Y6O5F8, 14 

YOF and the final product Y2O3. Intermediates and final product have been identified by XRD, 15 

Fig 2. Precisely, after stage II at 450ºC only YF3 is identified. Above 500ºC, YF3·decomposes to 16 

form Y6O5F8 and YOF, at 650ºC no YF3 is detected, instead Y6O5F8 and YOF are identified and 17 

at 730ºC traces of Y6O5F8, YOF and Y2O3 are observed. Finally, YOF decomposes to form 18 

Y2O3, at 950ºC only Y2O3 is observed. In Fig 1 we have plotted (horizontal dashed lines) the 19 

expected masses for the formation of YF3 (34.1%), Y6O5F8 (29.8%), YOF (29.0%) and Y2O3 20 

(26.4%). From, Fig. 1, one can observe that at the end of each stage, the mass of the solid 21 

residues coincides with the expected masses of the intermediates and final products. This 22 

sequence of intermediates coincides with those reported in powders [21]. 23 

 24 

3.1 Decomposition of Y(TFA)3, stage II. 25 

 26 

 Stage II is the main decomposition step; involves the larger mass loss and results in the 27 

formation of YF3. The formation of YF3 is due to the high electronegativity of fluorine which 28 

displaces the oxygen bonded to Y [5]. From the EGA analysis in vacuum, Fig. 3, one can 29 

observe that the main volatiles formed during stage (II) coincide with those reported for powders 30 

[20,21]; namely CO, CO2 and (CF3CO)2O: 31 



 

5 
 

Y(OOCCF3)3→ YF3 +(CF3CO)2O+CO+CO2    (1) 1 

the presence of (CF3CO)2O is identified through the fragments [CF3]
+ and [CF3CO]+. Moreover, 2 

in the absence of water (CF3CO)2O decomposes to form CF3CFO, COF2 and CO: 3 

(CF3CO)2O → CF3CFO + COF2+CO    (2) 4 

The latter reaction accounts for the larger amount of CO when compared to CO2 and the 5 

presence of fragments [CFO]+, [CF]+ and [CF2O]+ in Fig. 3 [21]. 6 

Simultaneous TG-DTA, Fig. 4, confirms that the decomposition is an exothermic process. 7 

The enthalpy, measured by DSC, is 50220±−  J/g and is in agreement with the enthalpy 8 

measured in powders in inert atmosphere [21]. Thus from XRD, EGA and DSC we conclude that 9 

the decomposition mechanism is the same in powders than in films.  10 

The enthalpy measured in powders was sensitive to the atmosphere; in the presence of 11 

oxygen the enthalpy was larger and the DTA peak was not correlated to the mass loss rate signal. 12 

This extra contribution in the presence of oxygen is related to the combustion of CO released in 13 

reaction (1). This combustion heats the solid sample, but takes place in the gas phase, i.e., it does 14 

not affect the mass of the solid residue, thus DTA and TG signals are not correlated. In the case 15 

of films, no dependence of the enthalpy on the oxygen partial pressure is observed and the DTA 16 

and mass loss rate signals are always correlated, see Fig. 4. This result indicates that there is no 17 

effect related to the CO combustion in films. In films, the large surface to volume ration 18 

enhances CO removal when compared to the powders, where gas stagnation occurs inside the 19 

crucible and in the voids between particles.  20 

The enhanced removal of gaseous reaction products in reactions (1) and (2) is also 21 

responsible for the lower temperature onset of the Y(TFA)3 decomposition (in powders gas 22 

stagnation may significantly slow down the reaction kinetics [23]). Indeed, in the case of 23 

powders, after dehydration, the mass remains constant for a temperature interval of around 150ºC 24 

before the decomposition onset (Fig. 1), while in the case of films, the mass continues to 25 

decrease after dehydration but at a lower rate, i.e., dehydration and decomposition processes 26 

overlap. Despite the fact that films start to decompose at a lower temperature, Y(TFA)3 27 

decomposition is completed first in powders than in films (see. Fig. 1). The reason is that in 28 

powders the low thermal diffusivity of the material and the exothermic nature of the reaction 29 

results in a thermal runaway that builds up a fast propagation combustion front. The very abrupt 30 

mass loss (Fig 1) as well as the sharp DTA peak (Fig 6 in ref. [21]) observed in powders are 31 
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typical features of the formation of a combustion front. In the case of films, heat removal is 1 

clearly enhanced and combustion is prevented. As a result, the mass evolution is smoother, the 2 

mass loss rate, lower, and decomposition is completed at a higher temperature. Numerical 3 

integration of the heat propagation in Y(TFA)3 powders and films confirms, respectively, the 4 

presence and absence of a combustion front [19]. 5 

Previous results in powders [20,21] indicate that precursor decomposition does not 6 

depend on the oxygen and water partial pressures. This result is in agreement with the fact that 7 

neither oxygen nor water are involved in reaction (1). From the inset of Fig. 1, one can confirm 8 

that Y(TFA)3 decomposition in films does not depend on oxygen partial pressure but does 9 

depend on water partial pressure. Actually, from the inset in Fig. 1, one can observe that at the 10 

early stages, decomposition is enhanced in the presence of water. This dependence on the water 11 

partial pressure was not observed in powders due to their significantly longer diffusion path. To 12 

highlight the effect of water diffusion, in Fig 5 we have plotted the evolution of the 13 

decomposition of Y(TFA)3 in wet conditions for different film thicknesses; the thicker the film, 14 

the higher the decomposition temperature, thus the lower the water contribution. This 15 

dependence on the film thickness is not observed in dry atmospheres. 16 

 In Fig 6 we have plotted the evolution of Y(TFA)3 decomposition in films deposited over 17 

LAO and glass substrates. From Fig 6, one can state that decomposition is enhanced in the case 18 

glass substrates. To disclose the effect of the chemical properties of the substrate surface, we 19 

have analyzed the decomposition of Y(TFA)3 under the same conditions but with two glass 20 

substrates submitted to an acid and basic chemical etching respectively, see Fig. 6 (Chemical 21 

etching: room temperature, 0.1 M NaOH and 0.1 M HCl solutions). When compared to the basic 22 

etching, the acid etching clearly shifts the decomposition to lower temperatures. Thus, the cation 23 

and H+ terminations of the bare glass and acid etched glass substrates enhances the 24 

decomposition Y(TFA)3. Consequently, the decomposition enhancement observed in the 25 

presence of water is also related to the presence of H+. Since EGA analysis does not reveal any 26 

effect on the gas evolved composition due to water, the presence of water does not modify the 27 

decomposition mechanism, reaction (1). Actually, it is very reasonable to assume that the 28 

presence of cations weakens the bond between Y+ and the TFA− groups, as a result, the 29 

decomposition takes place at lower temperature.  30 
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 The fact that water diminishes the precursor stability together with the slow water 1 

diffusion provides an explanation to the fact that no stable anhydrous intermediate is formed 2 

during Y(TFA)3 hydrate decomposition [20] and the impossibility to obtain anhydrous Y(TFA)3 3 

by means of a thermal treatment (precursor decomposition starts before the complete removal of 4 

water [22]). Y(TFA)3 is very hygroscopic and takes up water very easily when exposed to 5 

ambient conditions. Therefore, thermal dehydration is also observed in anhydrous Y(TFA)3, even 6 

if they are exposed to ambient conditions for a short time. However, in this case, during the 7 

thermal treatment a stable anhydrous intermediate is formed after dehydration [21]. During 8 

dehydration, Y(TFA)3 hydrate releases approximately 3.7 water molecules per yttrium atom 9 

[20,22], while anhydrous Y(TFA)3 releases 3.0 water molecules per yttrium atom [21]. This 10 

extra amount of water present in Y(TFA)3 hydrate is probably responsible for the lower stability 11 

of this precursor. Moreover, long time exposure of anhydrous Y(TFA)3 to ambient conditions 12 

may result in a significant water uptake that could affect the precursor stability. It is well-known 13 

that a large water content in YBCO TFA precursors has a harmful effect on the final properties 14 

of the YBCO films [24]. The lower stability of Y(TFA)3 in the presence of water may help to 15 

disclose the detrimental effect of the initial water content in the precursor. 16 

 17 

3.1 Decomposition of YF3 and formation of Y2O3 stages III and IV. 18 

 19 

From Figs 1 and 2 one can observe that YF3 decomposes to form non-stoichiometric yttrium 20 

oxyfluoride Y6O5F8, stoichiometric YOF and finally yttria Y2O3. Compared to the decomposition 21 

of Y(TFA)3, the decomposition rate of YF3 is much slower, it covers a temperature interval 22 

larger than 600ºC. Noteworthy is the fact all intermediates and yttria are formed at significantly 23 

lower temperatures in films than in powders (see Fig 1), e.g., in wet air the transformation of 24 

Y(TFA)3 into yttria is completed at 950ºC in films and at 1200ºC in powders. This result 25 

indicates that the reaction is probably controlled by diffusion of a volatile reactive or product. 26 

From Fig 1 one can observe that the decomposition is clearly enhanced in the presence of water 27 

while no significant dependence on the P(O2) is observed. Besides, it has been reported that 28 

fluorides decomposition is controlled by HF diffusion [5,25,26], therefore we propose the 29 

following three step decomposition route: 30 

 6 YF3 + 5 H2O → Y6O5F8 + 10 HF    (3) 31 
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 Y6O5F8+ H2O → 6 YOF + 2 HF    (4) 1 

 2YOF+ H2O → Y2O3 + 2 HF     (5) 2 

To confirm that reactions (3) to (5) are controlled by diffusion, in the inset of Fig 5, we have 3 

plotted the evolution of YF3 for three films of different thicknesses. One can verify that for 4 

reactions (3) to (5), the thicker the film, the higher the decomposition temperature. 5 

When compared to powders, the temperature decomposition onset in films shifts down 6 

about 250ºC. This result indicates that gas transport and renewal is a critical parameter in the 7 

decomposition of YF3 and that in the case of solid gas reactions the decomposition temperatures 8 

observed in powders strongly differ from the actual decomposition temperature in films. 9 

Although YF3 decomposes at a significantly lower temperature in films, its decomposition is still 10 

too high to understand the YBCO formation. It has been proposed [3,7] that after precursor 11 

decomposition, a barium yttrium fluoride is formed that will decompose at a much lower 12 

temperature allowing the formation of YBCO. 13 

 14 

SEM analysis, Fig. 7, shows that Y2O3 films have a similar morphology than powders 15 

[21]. It consists in a granular structure of sintered spherical particles. The size of particles is 16 

about 150 nm. Film porosity is very high, as a result, the actual thicknesses are about two times 17 

the nominal ones. For instance, in Fig. 7.b the calculated nominal thickness is approximately 1 18 

µm while the film thickness is about 2 µm. 19 

 20 

4. Conclusions 21 

 22 

We have studied the thermal decomposition of yttrium trifluoroacetate films under 23 

different atmospheres. Thermal analysis of films reveals the effect of gas transport on the 24 

decomposition behavior, a key aspect of the solid-gas reactions involved in precursor 25 

decomposition. For instance, when compared to powders, the larger area to volume ratio 26 

significantly enhances gas exchange and diffusion. As a result, films start to decompose at lower 27 

temperatures. In particular, all decomposition steps appear at lower temperatures in films than in 28 

powders. This decomposition enhancement results in the formation of yttria in films at 950ºC, 29 

i.e., 250º below the yttria formation temperature reported in powders.  30 
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The larger area to volume ratio significantly enhances heat transport from the sample to 1 

the substrate. Accordingly, during Y(TFA)3 decomposition combustion is prevented. Thus, the 2 

decomposition rate of Y(TFA)3 to form YF3 is much slower in films than in powders. 3 

We have observed that the presence of cations weakens the bond between Y+ and TFA− 4 

groups. Therefore, films start to decompose at a lower temperature in the presence of water or 5 

when they are deposited over substrates with positive ions terminations at their surfaces. In 6 

addition, a large initial water content in films or powders reduces the precursor stability. 7 

The decomposition of YF3 is controlled by HF out-diffusion. Therefore, gas flow, film 8 

thickness and water partial pressure are key parameters to control the decomposition kinetics of 9 

YF3. 10 

 To sum up, when analyzing solid-gas reactions, the results obtained from powders cannot 11 

be extrapolated to films. Besides, thermal analysis on films provides useful information to 12 

disclose the reaction mechanisms and to reveal the effect of gas and heat transport on the 13 

decomposition behavior. 14 

 15 
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Figure 1. TG curves for thermal decomposition of Y(TFA)3 films, deposited over LAO 2 

substrates, in wet and dry  atmospheres with different oxygen partial pressures: air, nitrogen and 3 

oxygen mixture and argon and powders in wet air. Nominal film thicknesses are around between 4 

0.4 µm. The initial mass of powders was 10.47 mg. The mass has been normalized to the mass 5 

after dehydration. Inset: detail of the precursor film decomposition for wet and dry atmospheres. 6 

Horizontal dashed lines: expected masses for the formation of final and intermediate products. 7 
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Figure 2. X-ray curves of the Y(TFA)3 films, deposited over LAO substrates and heated at 20 2 

K/min up to several temperatures.  3 
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Figure. 3. EGA analysis of thermal decomposition of Y(TFA)3 in vacuum (10-6 mbar) for a film 3 

deposited on a LAO substrate of nominal thickness 0.95 µm. Heating rate is 5 K/min. Only the 4 

more intense ions have been plotted. 5 
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Figure 4. Simultaneous TG-DTA analysis of thermal decomposition of Y(TFA)3 films, 2 

deposited over LAO substrates, in dry synthetic air (P(O2) = 21%). Heating rate is 20 K/min and 3 

the nominal film thickness is 0.39 µm.  4 
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Figure 5. TG curves for thermal decomposition of Y(TFA)3 of films, deposited over LAO 2 

substrates, of different thicknesses heated at 20 K/min in wet synthetic air (P(O2)=21%). Inset: 3 

detail of last stages of film decomposition. 4 
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Figure 6. TG curves for thermal decomposition of Y(TFA)3 of films, deposited over different 2 

substrates, heated at 20 K/min in dry synthetic air (P(O2)=21%).  3 
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Figure 7. Scanning electron micrograph obtained when Y(TFA)3 is heated to 950ºC at a constant 3 
rate of 20 K/min in wet air (a) top view (b) cross-sectional view. The nominal film thicknesses is 4 
0.91 µm 5 


