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 RESUM 
 

Els bioreactors de membranes (BRM) són una combinació dels reactors convencionals i una 

unitat de filtració que reté la biomassa, de manera que presenten com a gran avantatge una 

qualitat de sortida amb estàndards de reutilizació, i molt poca necessitat d’espai. Amb la creixent 

demanda d’aigua, els rigorosos requeriments de qualitat i l’increment de zones propenses a 

l’escassetat d’aigua, la tecnologia BRM ha esdevingut una opció molt prometedora en les 

estacions depuradores d’aigües residuals. Tot i que l’embrutiment de les membranes i els costos 

associats per la seva neteja són els principals inconvenients, no s’han identificat encara les 

estratègies d’operació òptima per millorar l’eficiència dels processos que tenen lloc en els BRM 

d’una forma integrada, és a dir, optimitzar al mateix temps els processos biològics d’eliminació 

de contaminants i els físics de filtració, per tal de minimitzar l’embrutiment i, si és possible, reduir 
els costos d’operació. 

Aquesta tesi presenta un pas endavant cap a l’operació integrada dels BRM mitjançant estudis 

experimentals i de modelització. Les interaccions entre els processos biològics (eliminació de 

nutrients i característiques de la biomassa) i físics (hidrodinàmica i filtració) que tenen lloc als 
BRM s’han estudiat, amb l’objectiu final de millorar-ne la seva operació i el control integrat. 

Primerament, es van identificar les condicions òptimes d’operació per l’eliminació de nutrients 

mitjançant un model aplicat a una planta pilot. Gràcies a una anàlisi de sensibilitat es van trobar 

quins van ser els paràmetres més sensibles respecte a l’operació integrada dels processos 

d’eliminació de nutrients i filtració. La recirculació aeròbia, el cabal aire en el tanc de membranes 

i en el compartiment aerobi i el cabal de purga van ser identificats com a paràmetres més 

determinants per l’eliminació de nutrients, mentre que el temps de relaxació  i el cabal de 

filtració van ser els més sensibles respecte a la filtració. Aquesta información complementada 

amb coneixement expert, va permetre la creació d’un arbre de decisió pel control integrat dels 
processos de filtració i eliminació de nutrients.  

Respecte la hidrodinàmica, es va optimitzar una planta híbrida a escala real tenint en compte la 

qualitat de l’efluent i els costos operacionals mitjançant estudis de modelització i simulació, 

considerant el tractament de l’aigua a través de les membranes, el decantador secundari o una 

combinació d’ambdós. Això també va permetre l’estudi de la hidrodinàmica del carrousel 

mitjançant diferents tancs en sèrie i dividint cada tanc en dos capes horitzontals. L’operació amb 

membranes implicà uns costos més elevats deguts a l’aire subministrat a aquestes, però es va 

demostrar la capacitat de l’aeració de bombolla gruixuda per finalitzar la nitrificació en el tanc de 

membranes. D’altra banda, l’operació amb el decantador secundari representà més temps 
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anòxic, resultant amb menors nitrats i costos associats però empitjorant la qualitat global de 
l’efluent de la planta. 

Tenint en compte el fenomen de l’embrutiment, es van utilizar dos models diferents 

(determinístic i basat en dades) per descriure la pressió transmembrana (PTM) en una planta 

pilot que va treballar sota diferents modes operacionals al llarg d’un any i mig. Concretament, el 

model determinístic va permetre la descripció de la PTM en condicions d’estat estacionari o amb 

canvis de flux, mentre que el model basat en dades captà millor les dinàmiques canviants del 

sistema. Així el model basat en dades anà un pas més enllà en la predicció de la PTM, mentre que 

el determinístic no va ser suficientment detallat, sobretot amb majors dinàmiques causades per 

les pertorbacions. En qualsevol cas, els models de filtració necessiten també incorporar models 

determinístics de llots actius per poder descriure els processos biològics i tenir una descripció 
completa dels processos que es duen a terme en els BRM. 

D’altra banda, els estudis experimentals van permetre superar les limitacions dels models. Les 

relacions entre els processos biològics d’eliminació de nutrients, els processos de filtració i les 

característiques dels fangs determinaren les estratègies pel control integrat de dos dels 

paràmetres operacionals més importants en els BRM: l’aeració biològica i de membranes. En 

aquest sentit, es demostrà com l’aeració d’una planta pilot no només influenciava a l’eliminació 

de nutrients, sinó també afectava a les propietats dels fangs i això afectà a l’embrutiment. La 

reducció de l’aeració de membranes afectà dràsticament el procés de filtració, sense mostrar 

recuperació després de restablir les condicions d’aire inicials i empitjorant la qualitat de l’efluent i 

les propietats de la biomassa. Aquest estudi va permetre identificar les condicions d’operació 

òptimes dels BRM, amb una reducció del 42% en el cabal d’aire total, aconseguint un 75% 
d’estalvi energètic respecte a l’operació inicial. 

Un sistema innovador de control d’aire focalitzat en l’aeració de membranes, va ser validat amb 

èxit durant 320 dies en una planta BRM a escala real. La mitjana de reducció de cabal va ser del 

13%, amb un màxim d’estalvi limitat per l’usuari al 20%, sense afectar a les característiques del 

fang ni la qualitat de l’efluent. Aquesta reducció del cabal es va traduir en una disminució mitjana 

del 14% en el consum energètic de l’aeració de membranes, aconseguint-se estalvis màxims del 
22%. 

Els resultats obtinguts en aquesta tesi permetran millorar l’operació i el control automàtic dels 

procesos biològics i de filtració d’una forma integrada, reduir també els costos energètics i 

contribuir d’aquesta manera a la millora de la competitvitat de la tecnología BRM, especilament 
com a solución per a problemas d’escassetat d’aigua. 
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 RESUMEN 
 

Los bioreactores de membrana (BRM) son una combinación de reactores convencionales 

seguidos por una unidad de filtración que retiene la biomasa, de forma que presentan como gran 

ventaja una calidad de agua de salida con estándares de reutilización y requeriendo poco 

espacio. Con la creciente demanda de agua, los rigurosos requisitos de calidad y el incremento de 

zonas propensas a la escasez de agua, la tecnología BRM se ha convertido en una opción muy 

prometedora en estaciones depuradoras de aguas residuales. Conociéndose que el 

ensuciamiento y sus costes asociados son los principales inconvenientes, no se ha encontrado 

aún cuál es la operación óptima para mejorar la eficacia de los BRM de forma integrada. Es decir, 

optimizar al mismo tiempo los procesos biológicos de eliminación de contaminantes y los 

procesos físicos de filtración con el fin de minimizar el ensuciamento, y si es posible, los costes de 
operación. 

Esta tesis presenta un paso adelante hacia la operación integrada de los BRM mediante estudios 

experimentales y de modelización. Las interacciones entre los procesos biológicos (eliminación 

de nutrientes y características de biomasa) y físicos (hidrodinámica y filtración) que tienen lugar 
en los BRM se han estudiado, con el objetivo final de mejorarse su operación y control integrado. 

En primer lugar, se identificaron las condiciones óptimas de operación para la eliminación de 

nutrientes mediante un modelo aplicado a la planta piloto. Gracias a un análisis de sensibilidad se 

hallaron los parámetros más sensibles respeto a la operación integrada de los procesos de 

eliminación de nutrientes y filtración. La recirculación aerobia, el caudal aire en el tanque de 

membranas y en compartimento aerobio y el caudal de purga fueron identificados como 

parámetros más determinantes para la eliminación de nutrientes, mientras que el tiempo de 

relajación y el caudal de filtración son los más sensibles respeto a la filtración. Complementado 

con conocimiento experto, se creó un árbol de decisión para el control integrado de los procesos 
de filtración y eliminación de nutrientes. 

Respecto a la hidrodinámica, se optimizó una planta híbrida a escala real con respeto a la calidad 

del efluente y los costes operacionales medítate estudios de modelización y simulación, 

considerando el tratamiento de agua a través de las membranas, el decantador secundario o una 

combinación de ambos. También se estudió la hidrodinámica en el carrusel mediante diferentes 

tanques en serie y dividiendo cada tanque en dos capas horizontales. La operación con 

membranas implicó unos costes más elevados debido al aire subministrado a éstas, pero se 

demostró la capacidad de la aeración con burbuja gruesa de finalizar la nitrificación en el tanque 

de membranas. Por otra parte, la operación con el decantador secundario representó más 
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tiempo anóxico, resultando con menos nitratos y menores costes asociados por deterioro de la 
calidad global del efluente de la planta.  

Teniendo en cuenta el fenómeno del ensuciamiento, dos modelos distintos (determinístico y 

basado en datos) se utilizaron para describir la presión transmembrana (PTM) en una planta 

piloto trabajando con diferentes modos de operación a lo largo de un año y medio. 

Concretamente, el modelo determinístico permitió la descripción de la PTM en condiciones de 

estado estacionario o con cambios de flujo, mientras que el modelo basado en datos reprodujo 

mejor las dinámicas cambiantes del sistema. De esta forma, el modelo basado en datos permitió 

dar un paso adelante en la predicción de la PTM, mientras que el determinístico no fue 

suficientemente detallado, sobre todo cuando con mayores dinámicas debido a las 

perturbaciones. En cualquier caso, los modelos de filtración necesitan incorporar modelos 

determinísticos de fangos activos para describir los procesos biológicos y tener una descripción 
completa de loes procesos que se llevan a cabo en los BRM. 

Por otra parte, los estudios experimentales permitieron superar las limitaciones de los modelos. 

Las relaciones entre los procesos biológicos de eliminación de nutrientes, los procesos de 

filtración y las características de la biomasa determinan las estrategias para el control integrado 

de dos de los parámetros operacionales más importantes en los BRM: la aeración biológica y de 

membranas. En este sentido, se demostró como la aeración de una planta piloto no solo 

influenciaba a la eliminación de nutrientes, sino que también afectaba a las propiedades de los 

lodos y eso afectó al ensuciamiento. La reducción de la aeración de membranas afectó 

drásticamente al proceso de filtración, sin mostrar recuperación después de restablecer las 

condiciones de aire iniciales, empeorándose también la calidad del efluente y las propiedades de 

la biomasa. Este estudio permitió identificar las condiciones de operación óptimas con una 

reducción del 14% en el caudal de aire total, lográndose un 75% de ahorro energético respeto la 
operación inicial. 

Un sistema innovador de control automático de aire focalizado en la aeración de membranas, fue 

validado con éxito a lo largo de 320 días en una planta BRM a escala real. La media de reducción 

de caudal de aire fue del 13%, con un ahorro máximo limitado por parte del usuario al 20% sin 

afectar a las características de la biomasa ni a la calidad del efluente. Esta reducción del caudal de 

aire se tradujo en una disminución media del 14% en el consumo energético de la aeración de 
membranas, consiguiéndose ahorros máximos del 22%. 

Los resultados obtenidos en esta tesis pemitiran mejorar la operación y el control automático de 

los procesos biológicos y de filtración de una forma integrada, reducir los costes energéticos y 

contribuir a la mejora de la competitividad de la tecnología BRM, especialmente como a solución 
para problemas de escasez de agua. 
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 SUMMARY 
 

Membrane bioreactors (MBR) are a combination of common bioreactors and membrane 

filtration units for biomass retention, presenting unique advantages like high effluent quality and 

a smaller footprint than that one by conventional wastertreatment plants. Due to the growing 

demand for fresh water, ncreasingly stringent environmental water quality requirements and the 

increase of areas prone to water scarcity, MBR technology has become a competitive alternative 

for municipal wastewater treatment plants (WWTP) or their upgrades. Although fouling and its 

associated operational costs have been known to be a key issue in MBRs, the optimal operation 

to enhance MBR efficiency regarding biological and physical processes is still lacking. For this 

reason, the research developed in the framework of this thesis has been focused on the 

identification of the optimal operational strategies to improve the efficiency of the processes 

taking place in the MBR in an integrated way, optimizing simultaneously biological and physical 
processes to minimize fouling and, if possible, operational costs. 

This thesis presents a step towards the integrated operation of MBRs through experimental and 

model-based studies. Interactions between the biological (nutrient removal and sludge 

characteristics) and physical (hydrodynamics and filtration) processes in MBRs were studied, with 
the final aim being to improve their integrated operation and control.  

Firstly, the optimal operating conditions for proper nutrient removal were identified through a 

model-based approach in a pilot-scale MBR plant. Sensitivity analysis enabled the identification 

of the most sensitive parameters of the integrated operation of nutrient removal and filtration 

process. Aerobic recirculation, aeration in the membrane and in the aerobic tank and waste flow 

rate were determinant for the nutrient removal process, whereas relaxation time and the 

filtration flux were the most sensitive parameters affecting the filtration performance. 

Complemented with expert knowledge, a decision tree has been developed for the integrated 
operation of biological nutrient removal and filtration processes.  

A hydraulic model optimised a hybrid full-scale MBR with respect to effluent quality and 

operational costs, depending on the treatment of wastewater flux through membranes, 

secondary settler or through a combination of both. It also allowed the study of the hydraulics of 

the oxidation ditch by means of several in-series tanks and dividing each tank in two horizontal 

layers. Membrane operation implied higher energy costs due to the membrane aeration, but the 

capability of the coarse-bubble aeration to finish the nitrification step in the membrane tank was 

demonstrated. On the other hand, the operation of the plant with the secondary settler caused 
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higher anoxic times, resulting in lower nitrates concentration in the effluent and lower associated 
costs but lower effluent quality. 

Regarding the fouling phenomenon, two different model approaches were used to describe this 

phenomen transmembrane pressure (TMP) in an MBR pilot plant under different operating 

modes along one year and a half. Concretely, the deterministic model enabled the prediction of 

the TMP under steady-state operation or flux changes, while the data-driven model coped with 

all the other dynamics of the system. Thus the data-driven model went one step further in the 

prediction of TMP whereas deterministic models were not detailed enough, especially when 

variables changed due to perturbations. In any case, filtration models need to be integrated with 

the deterministic activated sludge models in order to describe the biological processes and to 
have a complete description of the MBR systems. 

Additionally, the experimental studies overcame the modelling studies gaps. Interrelations 

between biological nutrient removal processes, filtration processes and sludge characteristics 

determined the strategies for the integrated control of the two most important operating 

parameters in MBR: biological and membrane aeration. In that sense, it was demonstrated how 

the biological aeration of a pilot-scale plant not only influenced the biological nutrient removal, 

but also caused the deterioration of the sludge characteristics and thus affecting the fouling 

propensity. The reduction of the membrane aeration influenced drastically the filtration 

performance, with no recovery after achieving the initial aeration conditions and worsening the 

effluent quality and the sludge properties. The identification of the optimal aeration conditions 

led to an airflow rate reduction of 42%, representing an energy saving of 75% compared to the 
initial operating conditions. 

Regarding membrane aeration, the novel air-scouring control system was successfully validated 

for 320 days in a full-scale MBR. The average reduction of the air-scouring flow rate was 13%, 

with the maximum reduction being limited to 20%, without compromising sludge characteristics 

and effluent quality. The control actions led to an average decrease in the energy consumption 

for membranes aeration of 14% and reaching a maximum of 22%.  

The results obtained as part of this thesis will improve the integrated operation and the 
automatic control of the biological and filtration processes simultaneously. Moreover, the 
reduced energy costs and the better understanding of MBR operation may contribute to making 
MBR systems a more competitive technology to deal with water scarcity problems. 
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1.1  BACKGROUND 
Pollution is related to human civilization and its actions. As industrialization and urbanization 

have steadily increased, this has been accompanied by a corresponding increase in the demand 

for water along with a rise in waste production; a significant part of which will end up as waste 

water (Foster 2003). 

In recent decades, improvements in water quality in the waste water treatment field have been 

made in the most developed countries. Over the years, defining and removing those constituents 

that may cause long-term effects and environmental impacts have played an important role in 

the water treatment field. As a result, the degree to which the water is treated has increased 

considerably (Henze et al. 2008).  It is not only important to fulfil water quality objectives and 

meet the standards required by each country, but it is also important to meet the demand for 

water whilst taking into account the scarcity of this resource.   

There are a number of technologies which, by means of activated sludge, facilitate the removal of 

any organic matter and/or nutrient present in the wastewater. Most of the wastewater 

treatment plants (WWTPs) are designed as conventional activated sludge (CAS) systems. CAS 

systems are a combination of physical, chemical and biological processes composed of different 

grades of treatment; preliminary, primary, secondary, and tertiary and/or advanced wastewater 

treatment  (Tchobanoglous et al. 2003).  However, the main limitation of CAS technology is the 

space required to run the entire treatment line. In addition, the secondary settlers used in CAS 

present some limitations related to activated sludge settling problems, thus causing the 

deterioration of effluent quality due to problems separating microbiology-related solids. For 

instance, some of the most common problems are filamentous bulking, foaming, rising and 

deflocculation (Comas et al. 2008). As a result, variations and new technologies, such as 

membrane bioreactors (MBRs), are being developed to deal with waste water treatment.  

In Europe, the first full-scale MBRs plant treating municipal wastewater and with a capacity of 

3800 p.e. was built in 1998 in Porlock (UK). Subsequent waste water treatment plants were 

implemented with this technology in Germany (1999, Büchel -1000 p.e.- and Rödingen -3000 p.e) 

and France (Perthes-en-Gâtinais, 4500 p.e.). Later on other MBRs lines were put into service such 

as the MBR line in Brescia, Italy which treats 42,000m3/d or the one constructed in Kaarst, 

Germany to serve a population of 80000 p.e and which treats  45000 m3/d (Kraume and Drews 
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2010). In Catalonia, the first waste water treatment plant using MBR technology was 

commissioned in La Bisbal d’Empordà (2003) as a hybrid MBR plant. Nowadays, seven full-scale 

MBR to treat municipal wastewater have been installed in Catalonia (Gabarrón et al. 2014). 

 

1.2 MEMBRANE BIOREACTOR TECHNOLOGY 
Membrane bioreactors (MBRs) refer to a technology which combines a membrane process 

(microfiltration or ultrafiltration) with a suspended growth bioreactor (Judd 2011).  

MBRs are characterized by a small footprint, easy retrofit and high effluent quality. MBRs not 

only replace the secondary settler, diminishing considerably the space, but also achieve high 

quality effluent comparable to tertiary treatments. This technology is the proper one selected for 

upgrading existing WWTPs with limited space and/or for water reuse applications (Brepols et al. 

2008). In that sense, MBRs are becoming increasingly popular for waste water treatment, not 

only being noticed in the global market growth but also with higher public acceptance of water 

reuse. More stringent environmental regulations and more investments on cost-effective MBRs 

make them the first choice for WWTPs. 

1.2.1 ADVANTAGES AND DRAWBACKS  

MBR processes present unique advantages compared to other technologies and these are widely 

recognized.  Some of these are listed below:  

MBRs can produce a high quality, clarified and largely disinfected permeate in a single step. 

Depending on the pore size of the membranes, significantly smaller pathogenic bacteria and 

viruses from the sludge can be retained on the membrane surface (Marti et al. 2011).  

In CAS systems, solids separation is done in the secondary settler. The particle size should be big 

enough to ensure proper sedimentation, thus demanding a minimum hydraulic retention time 

(HRT) for growth. In this sense, MBRs present an independent control of HRT and sludge 

retention time (SRT) (Judd 2008), as the particles, bigger than the membrane pore size, will be 

retained within the system. In addition, MBRs also avoid any rising problems, (present in the 

secondary settler), which occur when the compacted settled sludge starts to rise to the surface 

usually due to denitrification, or anaerobic biological activity that produces carbon dioxide or 
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methane (Tchobanoglous et al. 2003). Other settling problems of a microbiological origin are 

issues such as 1) bulking, when the density of the sludge tends to decrease as a consequence of 

an overabundance of filamentous microorganisms, 2) foaming, which is a variant of filamentous 

bulking propagated by growth of a certain bacteria causing foam on the settler sludge surface, or 

3) sludge deflocculation, all of which lead to a deterioration of the effluent quality which can 

actually be avoided with membrane filtration. Thus, MBRs can also ensure higher effluent 

qualities and avoid having particles in the effluent. 

 

The ability of MBRs to work at higher mixed liquor suspended solids (MLSS) concentrations, thus 

higher SRT, not only reduces the required space of the reactors, but also reproduces the 

conditions of specific nitrifying bacteria able to enhance ammonia removal. In addition, more 

solids are retained in the membrane tank, thereby reducing solid production and waste flow 

(Judd 2011). 

However, MBRs systems do have some constraints. To ensure longer membrane life and to avoid 

membrane flow channels, initial screening should be more effective than in CAS so as to limit the 

entry of large particles (>1-3 mm in size) (Judd 2008). Along with this, MBRs require added 

procedures and operational protocols for membrane maintenance and cleanings, thereby adding 

complexity to their operation.  

When MBR technology is compared to CAS, cost is still the main drawback as MBR installation 

requires a higher capital expenditure (CAPEX) on equipment and entails greater operating costs 

(OPEX) (Judd 2008). However, a CAS process with tertiary treatment has a higher CAPEX than an 

MBR achieving comparable effluent quality (Brepols et al. 2010). While membrane module prices 

may have decreased in recent years leading to a reduction in CAPEX, the MBR elevated energy 

demands to cope with fouling have become the main factor in OPEX; with membrane aeration 

being the biggest contributor to the overall operating costs (Fenu et al. 2010b, Gabarrón et al. 

2014, Verrecht et al. 2010b). In this sense, it could be understood that the high operational costs 

are directly related to fouling abatement. Therefore, fouling and cost mitigation have become the 

key issues in this field.  
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1.2.2 TYPE OF MEMBRANES 

The most commonly used membranes in the separation process are microfiltration (100-1000 

nm) and ultrafiltration (5 – 100 nm).  

The most commonly employed materials in membrane manufacture are polymers and ceramics, 

i.e. celluloses, polyamides, polysulphones and other polymeric materials with high chemical and 

physical resistance. In addition, it is desirable to have hydrophylic membranes to prevent fouling, 

due to the hydrophobic characteristics of the foulants.  

 

1.2.3 MBR CONFIGURATIONS 

Conventionally, two different configurations can be distinguished; (a) side-stream MBR, with 

membranes located next to the bioreactor and separation being done by pressure-driven 

filtration, or (b) submerged or immersed MBR, where vacuum-driven membranes are submerged 

in the bioreactor and filtration is operated in the dead-end mode (Figure 1.1). In both 

configurations, shear is necessary to prevent fouling. In side-stream MBRs this is achieved though 

pumping, whereas in immersed MBRs aeration provides the shear. In waste water treatment, 

where energy requirements are relatively lower, immersed membranes are the most widely 

used. 

 

Figure 1.1 |MBR process configurations, (a) side-stream MBR, with the membrane located next to the bioreactor and (b) 

submerged or immersed MBR, with the membranes inside the bioreactor, from Judd (2011). 
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While there are different modules used in membrane bioreactors, the most common are flat 

sheet membranes (FS) or hollow fibre (HF) when working in submerged MBR. By applying 

negative pressure, water can pass through the membrane. Aeration is usually placed at the 

bottom of the bioreactor to ensure a homogeneous mixture. On the other hand, multi-tube 

membranes are the most commonly used in side-stream MBR which pump the sludge into the 

membrane compartment located next to the bioreactor (Figure 1.2).   

 
Figure 1.2 | Various membrane configurations: Flat sheet membrane (a), tubular membranes (b) and hollow fiber membranes 

(c), from Judd (2011). 

1.2.4 FILTRATION PROCESS: DESIGN AND OPERATING PARAMETERS 
Membrane filtration involves the flow of water-containing pollutants across a membrane. The 

water passing through the membrane is called the permeate, whereas the water with a higher 

concentration of materials is known as the concentrate.  

The key parameters to monitor the membranes are: 

 Transmembrane pressure (TMP): the driving force for the process. This is the energy 

required to filter at a constant flux. When the flux passes through the membranes there 

is a pressure drop called transmembrane pressure which is normally expressed in bar or 
mbars.  

  

 Flux (normally denoted J): the quantity of permeate able to cross a unit area of 

membrane per unit time. Commonly, it is expressed as L·m-2·h-1 (LMH), but it takes the SI 

a) b) c)
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units of m3·m-2 s-1, or simply m/s. MBRs generally operate at fluxes between 10 and 

150 LMH; the flux relates directly to the driving force (i.e. the transmembrane pressure, 

or TMP, for conventional MBRs) and the total hydraulic resistance offered by the 

membrane and the interfacial region adjacent to it.  It is influenced by the TMP, viscosity 

of the medium (µ) and the total resistance (Rtot), as the sum of the intrinsic membrane 

resistance and the bulk of the membrane surface.  
 

ܬ  = ∆்ெ
ఓ·ோ௧௧

   (Eq. 1.1) 

  Permeability (normally denoted K): is the ratio of the flux and TMP, is highly dependent 

on temperature and normally takes the units of L· m-2·h-1·bar-1. At constant flux, 

permeability is proportional to TMP values. In that sense, K could be used to test the 

membrane state and the effectiveness of the physical/chemical cleanings performed.  

 

ܭ  = 
∆்ெ

= ଵ
ఓ·ோ௧௧

  (Eq. 1.2)  

 

 Specific aeration demand (SAD) is the air flow per membrane area (SADm, m·h-1) or per 

permeate volume unit (SADp). 

 

 

ܦܣܵ  = ݓ݈݂ ݎ݅ܽ

 ݂݁ܿܽݎݑݏ ݁݊ܽݎܾ݉݁݉
  (Eq. 1.3)  

 

 

 

ܦܣܵ  = ݓ݈݂ ݎ݅ܽ

 ݓ݈݂ ݁ݐܽ݁݉ݎ݁
  (Eq. 1.4)  

 

1.2.5 FOULING PHENOMENA 

A permeate flux decrease or TMP increase during a membrane process is recognized as “fouling”. 

Membrane fouling is the main drawback associated to this technology. As described by Drews 

(2010), fouling in its strict form is the coverage of the membrane surface (external and internal) 

by deposits which adsorb or simply accumulate during operation. As a consequence, there is a 

loss in permeability, an increase in resistance, and a reduction of the effective membrane area 

requiring an increase of the transmembrane pressure (when working at constant flux) or 
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decrease of permeate production (when working at constant pressure). At the end, this results in 

higher energy expenses and the need to chemically clean the membranes.   

As a measure of fouling, permeability can be used as an indicator. Since flux is influenced by the 

TMP, viscosity and the total resistance, K is inversely proportional to the total resistance of the 

membrane.  

The different types of fouling can be characterized as reversible, irreversible or irrecoverable 

fouling. Reversible (also called removable) fouling can be easily removed with a physical cleaning 

(backwashing or relaxation), whereas irreversible fouling needs to be chemically cleaned to be 

eliminated. In general, reversible fouling can be recognised by the cake formation on the 

membrane surface while irreversible fouling is observed though pore blocking and highly 

attached foulants during the filtration. Irrecoverable fouling, which also can be classified as 

clogging, is a permanent fouling and there are no possible courses of action to recover the 

membrane (Figure 1.3). 

 
Figure 1.3|  Schematic procedure of the fouling mechanisms: reversible fouling, irreversible fouling and irrecoverable fouling 

(adapted from Meng et al., (2009) and Judd (2011)). 

 

There are many factors affecting fouling and this makes it difficult to characterize properly; 

despite the large body of research available on this subject (e.g. (Bouhabila et al. 2001, Drews 

2010, Le-Clech et al. 2006)). According to Drews (2010), the three main reasons regarding the 

contradictory results and non-unravelled phenomena rely on: 

i) The complexity of the phenomena. This encourages researchers to jump to foregone 

conclusions when observing any relationship at all. Thus, neither is it possible to 

cope with a model able to explain the entire variables related to the fouling process 

(Naessens et al. 2012a). There are substantial interactions among operating 

conditions with membrane characteristics, biomass characteristics and feed 
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characteristics being the main factors in the fouling process reflected in the loss of 

permeability (Figure 1.4). 

 

ii) The lack of standard protocols for analysing fouling. Fouling analysis has increased in 

recent years to deal with fouling mechanisms and predict fouling behaviour. 

However, there are neither unique methodologies being used nor standard 

protocols.  Apart from that, there is still the question about how useful they are in 

terms of fouling prediction, for instance, the analysis of exopolymeric substances 

(EPS). It is difficult to compare published results due to the differences (scale, 

materials, feed characteristics, and operating conditions) among the plants studied 

as well as the analytical differences; for example sample preparation.  

 

iii) Clearer explanations should be used in terminological terms. For instance, soluble 

microbial product (SMP) is a blanket term used to refer to a group of compounds 

despite having been analysed by diverse means.  This in turn leads to confusing 

results and hampers the interpretation of the results obtained by different 
investigations.  

 

Figure 1.4 | Inter-relationships between engineering decisions and permeability loss (adapted from Drews (2010)), where CST: 

capillarity suction time; DO: dissolved oxygen concentration; EPS: extracellular polymeric substances; HRT: hydraulic retention 

time; MLSS: mixed liquor suspended solids; PSD: particle size distribution; SMP: soluble microbial products; SRT: sludge age. 

MBR OPERATION BIOMASS PROPERTIES 
AND HYDRODYNAMICS

PERMEABILITY LOSS

SRT /HRT 
Loading rate
Influent characteristics
Temperature
DO/ Nitrogen concentration

MBR DESIGN

BIOLOGICAL

Dead end/ crossflow velocities
Constant TMP/ constant flux
Backwash/ relaxation
Cleaning intervals/chemicals
Aeration rate /intermittency

MEMBRANE

REACTOR
Tank height
Cross section ratio
Module spacing
Module height
Bubble size / aeration ports

Pore size
Material
Hydrophobicity / charge
Surface roughness

MEMBRANE

EPS / SMP 
Release, 
concentration
Properties
Bound/ soluble

PDS, CST, 
FILTERABILITY

FLOW FIELD/ 
SHEAR

FOULING
Reversible
Irremovable

CLOGGING
Irreversible

MLSS

MICROBIAL 
POPULATION

RHEOLOGY



1. INTRODUCTION 

10 

As shown in Figure 1.4, there are a vast number of factors influencing fouling mechanisms. 

However, the main factors affecting fouling can be divided into four groups: (i) operating 

parameters, (ii) design, (iii) feed characteristics and (iv) biomass properties and dynamics. 

i) Operating parameters. Operating parameters have a significant influence on fouling. 

As an example, temperature clearly shows an effect on the TMP, namely the higher 

the temperatures, the less propensity to fouling there is (Al-Amri et al. 2010, Ma et 

al. 2013). 

Moreover, aeration plays an important role, not only in providing oxygen to the 

biomass (Braak et al. 2011, Germain et al. 2007, Verrecht et al. 2008), but also in 

avoiding particle deposit on the membrane surface. Several control strategies 

related to aeration have been studied, some of these have been reviewed by Ferrero 

et al. (2012). 

Sludge retention time (SRT) is the average time the activated-sludge solids are in the 

system. The SRT is an important design and operating parameter for the activated-

sludge process and is usually expressed in days (Tchobanoglous et al. 2003). MLSS 

are directly related to SRT. In the literature, it is found that low SRT involves higher 

fouling propensity (Van den Broeck et al. 2012), while some correlations have been 

found with SRT and microbial communities (Grelier et al. 2006) and sludge 

filterability (Sabia et al. 2013). 

Parameters related to membrane filtration are also affecting the fouling 

phenomena, for instance chemical cleanings affect the permeability loss by aging the 

membrane or working at high permeate flux, leads to a steep rise in TMP (in other 

words, operating over the so-called critical flux). Proper relaxation or backwashing 

periods can be useful to improve the increase of fouling (Mannina and Cosenza 

2013). 

 

ii) Membrane design is subject to its pore size and configuration. On the one hand, 

membrane pore size affects membrane fouling. On the other hand, membrane 

orientation (in relation to the flow of water or the position in the containers taking 

into account packing density or aeration) can negatively influence fouling. 

Membrane material (type, hidrophobicity, roughness) also influences fouling. In 

addition, the design of the reactor (height, module spacing or type of air-scouring) 

can affect the fouling propensity.  

 

iii) Although influent characteristics do not form part of the most important 

interactions in MBR fouling, some alterations in the feed can affect it. Some authors 

reported how salinity is damaging the biomass and directly affecting membrane 

fouling (Di Bella et al. 2013), or how differences in temperature are affecting the 
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TMP behaviour (Krzeminski et al. 2012a). Van den Broeck et al. (2010) also noticed, 

by changing the ratio of monovalent over polyvalent cations in the influent, 

differences in sludge flocculation thus affecting fouling. 

 

iv) Focusing more on biomass properties, some of the most commonly encountered 

parameters related to fouling are listed below: 

Extracellular polymeric substances (EPS), including proteins, polysaccharides, humic 

acids, etc., are considered the main cause of fouling. They are classified as (a) bound 

EPS or (b) soluble EPS or soluble microbial products (SMP). Bond EPS are located at 

the cell surface and bound to the sludge flocs. On the other hand, soluble EPS or 

SMP are defined as compounds released by the microorganisms into the solution. If 

they are released during substrate metabolism, they can be defined as substrate-

utilization-associated-products (UAP), whereas they are biomass-associated-

products if they are formed during biomass decay (Meng et al. 2009). Several 

mathematical models have been developed to attempt to describe the relationship 

of EPS on fouling (Jiang et al. 2008, Mannina et al. 2011, Menniti and Morgenroth 

2010b, Tian et al. 2011a, Zuthi et al. 2012). In relation to fouling, proteins and 

polysaccharides fractions are considered the main contributors. However, the role of 

EPS has not yet been revealed, with many controversial results (Bugge et al. 2013, 

Drews et al. 2006b, Monclús et al. 2011, Wang et al. 2009), extended to other 

biopolymers (transparent exopolymer particles or biopolymers clusters). 

Biomass concentration, also known as mixed liquor suspended solid (MLSS) 

concentration, is a necessary and easy parameter to follow. The stand-alone use of 

MLSS as a fouling indicator is insufficient (Le-Clech et al. 2006). However, optimal 

MLSS concentration ranges are recommended in Lousada-Ferreira (2010). 

Particle size distribution (PSD), viscosity, sludge hydrophobicity and microscopic 

images can help us to determine the state of the biomass and find relationships with 

fouling (Van den Broeck et al. 2011). In addition, filterability of the sludge and 

capillarity suction time (CST) are also indicators of the sludge quality for membrane 

filtration. 

 
 

1.3 MODELS FOR MEMBRANES BIOREACTORS 
Fouling is one of the main drawbacks of this technology alongside large energy consumption 

compared to conventional activated sludge technologies. Most of these systems are working in a 

conservative way; in other words with significant room for optimization. The usual safeguard 

operation consists of a fixed approach to remedy fouling with membrane aeration, backwashing 
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and chemical cleaning. These strategies neither take into account influent changes nor fouling 

causes, which results in higher energy and chemical (Figure 1.5). 

Therefore, there is a significant potential for improving 

cost efficiency in dynamic and online control and 

modelling (Drews 2010). The use of models in these 

systems can be a really valuable tool to optimize this 

technology.  

 

Figure 1.5 | Operational cost distribution for a stand-alone MBRs, adapted 

from Krzeminski et al. (2012b). 

 

1.3.1 THE CURRENT STATUS OF MBRS IN LITERATURE, WITH SPECIAL FOCUS ON 

MODELLING 

In the last 20 years, an increase in the number of publications related to MBRs has been noted 

(~2000), concurring with the implementation of this technology in WWTPs. In particular, there 

was a surge of publications from 2003 onwards which eventually levelled off in 2009 and since 

then has maintained the same rate until present-day (Figure 1.6).  

 As expected, this growth has been accompanied by publications on modelling, with a total 

number of 675 publications related to modelling and 221  were modelling studies.   

 

Figure 1.6 | Number of publications and 

patents related to MBRs in the last 20 years. 
1MBR publications focused on modelling 

studies; 
2
MBR publications not strictly 

dedicated to models.  

Keywords search: “MBR AND membrane AND 

water” in the abstract, title and keywords, 

with extension of modelling in the full text (
2
) 

or in the abstract, title and keywords (1). 

Source: ScopusTM and WipoTM data bases 

(April 2014). 
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With regards to the MBR modelling studies published and sorted by type, the majority belong to 

the environmental science field, followed by chemical engineering, and then engineering and 

chemistry (as represented in Figure 1.7). Among those countries publishing work, China, Italy, 

United States, Belgium and Canada are the five main contributors. Spain holds the tenth position. 

 

 

 

Figure 1.7 | MBR publications in 

the last 20 years and sorted by 

type. Source: ScopusTM (April 

2014). 

 

However, what are the MBR models about? On gathering all the keywords from the MBR 

publications, and disregarding the terms MBR, membrane, modelling, and water treatment 

(which were the most common to all the publications), a clear keyword appears: fouling (Figure 

1.8). 

 
Figure 1.8 | Graphical representation of the main keywords appearing in MBR modelling publications (April 2014). The greater 

the word size, the more frequent to modelling publications it was. Source: ScopusTM. 
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1.3.2 MBR MODELLING: STATE OF THE ART  

Mathematical modelling has become a useful tool to design plants, operating and optimization 

practices so as to limit environmental pollution and costs. As the application of MBRs in WWTPs 

has significantly increased, MBR models for optimization experienced a significant growth. There 

is significant room for improvement in that field, especially in the reduction of energy 

consumption, bearing in mind that most of the full-scale MBRs are working in a conservative 

manner. However, the filtration element in MBR models implies additional complexity in 

comparison to CAS.  

 

BIOLOGICAL NUTRIENT REMOVAL MODELLING IN MBRS 

The existing family of activated sludge models (ASM) to describe the biological nutrient removal 

in CAS are well known (Henze et al. 2000). ASM are divided into three main groups: ASM1, for 

carbon and nitrogen removal, ASM2/ASM2d, for phosphorous removal and ASM3, a more 

detailed model, for N and carbon removal.  

To describe the biological reactions taking place in MBRs, the models can be used directly or 

adapted based on any membrane specificities that may differ from the standard values used in 

CAS (Fenu et al. 2010a, Naessens et al. 2012a, Zuthi et al. 2012). Basically, and mainly due to 

membrane cycles, kinetic differences are because of the high retention times of the systems, high 

biomass concentrations and hydrodynamics. Taking those specifications into account, the 

unmodified ASM to model MBRs facilitates the description of good BNR and its effluent quality 

production. The sludge production and balances on the system are also collated by MBR-ASM 

models. In that sense, several authors using AMS models describe  optimization studies for BNR 

and costs in benchmark plants (Maere et al. 2011, Odriozola et al. 2013), pilot plants (Mannina et 

al. 2011) and full-scale plants (Verrecht et al. 2010a). Nonetheless, special attention should be 

paid to several areas, starting with influent fractionation. Since MBRs are highly susceptible 

because of their complete retention and high SRT, influent fractionation (particularly on the inert 

fractions) plays an important role in the proper model description and calibration. Taking into 

consideration the nitrification and denitrification kinetics, parameters related to this process 

(namely, half-saturation coefficients) could change in the MBR models found in literature. Results 

indicate the need to increase half-saturation constants to allow adequate model predictions in 
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simultaneous nitrification and denitrification (SNdN), especially at high MLSS (Insel et al. 2011) to 

be run. Specific operating conditions required dissolved oxygen and nitrogen half-saturation 

coefficients to be calibrated so as to accurately model system SNdN performance; the higher the 

MLSS concentrations are, the higher the mass transfer limitations will be, as explained by  the 

higher half-saturation constant in switch functions (Sarioglu et al. 2008, 2009). In addition, floc 

size, sludge morphology, filamentous bacteria and their kinetics,  and the higher viscosity and EPS 

are other factors suspected of contributing to the behaviour of MBR systems and affecting mass 

transfer limitations. 

However, since separation mechanisms are the main difference between CAS (using secondary 

settlers) and MBR systems (with membrane filtration), conventional ASM do not take into 

account the rheological and morphological characteristics of the MBR sludge, i.e. floc size, 

viscosity and EPS effects. For this reason, the modified ASM models appeared to describe or 

incorporate the EPS/SMP production and degradation. During the filtration, flocs, bacteria, 

polymeric substances (proteins and polysaccharides) and colloids are retained in the system and 

are all highly susceptible to biodegradation. Those fractions are not considered in the general 

ASM models but can have a high metabolic impact on MBR systems. Along these lines, Rittmann 

and co-workers developed a model that describes the interaction between heterotrophic and 

nitrifying bacteria in biological treatment processes, with regards to membrane retaining biomass 

characteristics (Laspidou and Rittmann 2002a, b). In the model, SMP are divided into two groups: 

utilization-associated products (UAPs), which are produced by biomass growth, and biomass-

associated products (BAPS), which arise from biological decay.  Fenu et al. (2010) reviewed the 

main model equations and mechanisms to describe the formation of EPS and SMP, and some of 

them have been used to upgrade a number of ASM models, as explained by Lu et al. (2001) and 

Ahn et al. (2006). In addition, Naessens et al. (2012a) classified the existing biokinetic models 

applied to MBRs.  

 

FILTRATION PROCESS MODELLING IN MBRS 

The most difficult and most important part of modelling MBRs is the long term decline of flux 

(more precisely: permeability) that occurs during operation as a result of the fouling phenomena. 

In addition, proper characterization of the fouling phenomena through modelling can help to 

develop control strategies to save costs. There is room for improvement in the areas of operating 
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and capital costs, i.e. upgrading filtration cycles, aeration, and chemical cleanings or increasing 

membrane life-time. Thus, a proper filtration model can help to develop adequate conditions for 

improving energy, efficiency, and the use of chemicals, as well as reducing membrane ageing and 

avoiding fouling. 

A filtration model aims to describe the behaviour of the flux going through the membrane, how it 

becomes fouled and the TMP performance. However, simplified models have been used without 

taking into account the fouling phenomena. When the aim of the study veers away from studying 

filtration performance, an ideal filtration can be used with an ideal settler, thus omitting the TMP 

and the filtration cycles.  

Different modelling techniques have been used to describe filtration performance. To provide an 

overview, two large groups can be distinguished: mechanistic or deterministic models and data-

driven models. Deterministic models used to describe filtration can be divided into resistance-in-

series models and mass-transport models. For data-driven models, statistical models and artificial 

intelligence models can be distinguished (Figure 1.9). 

 

Figure 1.9 | Different model-based methodologies to describe the permeability loss in membranes.   

 

RESISTANCE-IN-SERIES MODELS 

The accumulation of material on the membrane surface over time provokes an increase in 

hydraulic resistance. This hydraulic resistance can be explained as a sum of different resistances 

(i.e. different fouling mechanisms) related to filtration flow (working at constant pressure) or 

TMP decrease (when working at constant flux). The equation relating flux to a difference in TMP 
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is described by Darcy’s law (Aimar et al. 1989) in the previous equation 1.1. In order to describe 

the aforementioned hydraulic resistance, the most widely extended and commonly used 

equation was proposed by Busch et al. (2007): 

 

 

(࢞,࢚)ࢇ࢚࢚ࡾ = (࢞)ࡾ + (࢞,࢚)ࢉࡾ + ,࢚) ࡾ (࢞ + (࢞,࢚)࢈ࡾ + (࢞,࢚)ࢉࡾ +  (Eq. 1.5) (࢞,࢚)ࢉ࢙ࡾ

 

 

where R m  is the constant resistance of the clean membrane, R c  is the cake layer 

resistance, R p  is the resistance due to pore blocking, and R b  is the resistance of the biofilm. The 

resistances due to concentration polarization Rcp and due to scaling Rsc are considered. Note that 

except for the clean membrane resistance R m  all resistances are time-dependent.  

 

An advantage of using a resistance-in-series model is the ability to discern the components 

clogging the membrane and their sensitivity to the membrane resistance. The different 

components describing hydraulic resistance differ depending on the model. Jeong et al. (2007) 

identified the main individual resistances affecting the fouling by means of accumulating solids 

and particles in and onto the membrane and removing them with physical and chemical 

cleanings. Other models went into more detail about the filtration cycles; determining the 

amount of particles deposited on the membrane and the reduction of the compression after 

cleaning periods (Jiang et al. 2008, Li and Wang 2006).  

 

On the other hand, extended mathematical deductions on the individual resistances of the 

membrane to model fouling have appeared. These kinds of integrated models which combine 

biological and biomass kinetic models are known as hybrid MBR models, where the physical 

MBR element is almost always described by resistances-in-series models. The connection 

between biological–physical and fouling processes have been careful described in the model 

developed by Zarragoita-González et al. (2008), although it does not enable a complete and 

correct COD balance and presents a high number of SMP related parameters. Following the same 

tendencies, Di Bella et al. (2008) proposed an integrated model which takes into account the 

effect of cake layer on COD removal, however, fouling deposition was not fully integrated. The 
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physical processes, SMP formation and degradation, cake layer attachment–detachment and its 

influences on fouling development and TMP were improved in Mannina’s et al. (2011) model.  

However, despite the complexity of the hybrid models, to date there is no consensus on the use 

of a single model which would enable the description of the fouling phenomena. 

 

MASS-TRANSPORT MODELS 

Mass transfer models describe the net movement of substance from one location (usually a 

stream) phase, fraction or component, to another. It is well known that the sludge flow is, in 

terms of heat and mass transfer enhancement, significant in two-phase flow regimes. Fouling 

phenomena can be described as mass-transport by means of the precipitation of the dissolved 

material in water, where the Brownian diffusion is the main physical phenomenon. Therefore, 

these models are really valuable for describing the physical reactions, focused on the particles 

pathway in the fluid and their effects on the filtration performance, taking place during the 

filtration process. However, their implementation is not easy owing to the complexity of the 

sludge behaviour. In the last decade there have been many reports on the hydrodynamics, based 

on computational fluid dynamics (CFD). Brannock et al. (2010) used a CFD model for a flat sheet 

and hollow fibre MBRs accounting for aeration, sludge rheology and geometry and demonstrated 

that the effect of sludge settling and rheology had minimal impact on bulk mixing. Ndinisa et al. 

(2006a), studied the hydrodynamic factors such as airflow rate, nozzle size, intermittent 

filtration, channel gap width, feed concentration, imposed flux, and the use of membrane baffle 

and its effects on fouling phenomena, or by identifying the most effective flow profiles for fouling 

minimization (Ndinisa et al. 2006b). Other CFD results showed a high correlation with resistance 

data, and how a specific baffle angle had a significant impact on shear stress (Khalili-Garakani et 

al. 2011).  

 

DATA-DRIVEN MODELS: STATISTICAL AND ARTIFICIAL INTELLIGENCE MODELS 

Other attempts to model fouling move from mechanistic models and some researchers leapt to 

explore the capabilities of empirical modelling using data-driven models. Data-driven is the 

computational process of discovering patterns in large data sets  involving methods at the 

intersection of artificial intelligence and statistics. In recent years, there have been various 
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attempts to advance the use of artificial intelligence as a viable approach to develop data-driven 

models to describe the performance of membrane processes. The advantages of using neural 

network models is that there is neither a need to separate biological and filtration processes, nor 

is any process knowledge required. These types of black box models enable the estimation of 

filtration performance using influent, effluent or operational parameters, without paying too 

much attention to the biological processes describing the flux decline (Chellam 2005, Liu et al. 

2009, Pendashteh et al. 2011, Soleimani et al. 2013). As an example, Chellam (2005) modelled 

the membrane fouling induced by polydisperse feed, demonstrating that the permeate flux is the 

most important operational variable. Liu et al. (2009) predicted fouling in microfiltration 

membranes, using just 5 inputs, demonstrating that turbidity, flux and backwashing time are 

equally important parameters. However, the main drawback in all cases is the need to do 

intensive and empirical calibrations and so to acquire reliable models a very large amount of data 

is mandatory. 

Other chemometric studies have been used to understand the fouling phenomena as well.  

Maere et al. (2012), described the fouling behaviour through principal component analysis, 

where it was possible to determine the severity or reversibility of fouling qualitatively in an 

automated manner without the need for additional sensors or tests.  Galhina et al. (2011, 2012) 

used a statistically-based approach to monitor and control the key performance parameters of 

membrane bioreactors, by means of fluorescence analysis and minor analytical requirements. 

Similarly, MBR parameters such as water quality variables and operating conditions were used in 

this model by Kaneko and Funatsu (2013) to predict TMP in long-term operation, or by Philippe et 

al. (2013) for long-term permeability evolution through operating conditions (SRT, temperature, 

MLSS, F:M ratio, iron dosing and membrane flux. Focussing more closely on sludge 

characteristics, statistical analysis such as multi-component analysis has been carried out to 

correlate the characteristics of activated sludge (i.e. biomass concentration, relative 

hydrophobicity, sludge morphology, EPS, surface charge and total organic carbon) with sludge 

filterability. Results determined that there is no correlation to a first classification of filterability 

between single sludge parameters and fouling. But sludge morphology and relative 

hydrophobicity can classify the sludge in two categories , i.e., bad and poor to good, implying that 

deflocculation and a low relative hydrophobicity have a negative impact on activated sludge 

filterability (Van den Broeck et al. 2011). Recent studies suggest a combination of both 
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deterministic and black box models to determine biological and filtration descriptions, 

respectively (Galinha et al. 2013). 

 

1.4 CONTROL AND OPTIMISATION: STATE OF THE ART 
MBR models can be a helpful tool to optimise operation and control of biological or filtration 

processes in MBR systems. However, experimental studies are necessary to improve the present 

deterministic or data-driven models and to study processes or associations that current models 

do not cover.  

In general, most of the optimisation studies, either modelling or experimental, are focused on a 

specific process (e.g. biological processes or filtration processes) disregarding the effect of other 

processes in an integrated way.  A large number of contributions in the literature have dealt with 

filtration processes, or have focused on fouling phenomena or on understanding the increase in 

TMP because of membrane aeration intensity (air-scouring) or look at the permeate flux cycle 

(e.g. backwashing/relaxation periods and duration or flux). On the other hand, achieving good 

BNR in an MBR or proper MLSS concentrations for filtration have been also fundamental 

objectives. Most of the strategies for optimal operation resulted in an increase of energy and 

costs and so in recent years far more attention has been paid to energy-saving strategies. 

Moreover, studies on the hydrodynamics are also relevant in MBR due to the high shear 

provoked by aeration and hydraulic load variations. Despite a significant potential for 

improvement, the integration of all the above-mentioned objectives (improvement in filtration, 

cost reduction in biological and hydrodynamic processes etc.) have seldom been studied. There 

have also been a few studies, mainly empirical, focused on improving automatic controls of 

biological or filtration processes. 

Figure 1.10 assembles the most significant studies related to these objectives, and divides them 

into empirical and model-based studies, while also distinguishing those studies involving an 

improvement in control of each element. 
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Figure 1.10 | Empirical and model-based strategies based on filtration, biological, costs, hydrodynamics or integrated processes 

in MBR. Superscript numbers in the figure stand for a related publication. Control studies marked in blue. 1 (Germain et al. 

2007), 2(Germain et al.  2005), 3(Hong et al. 2007), 4(Howell et al. 2004), 5(Ferrero et al. 2011a), 6(Ferrero et al. 2011b),  7 (Ferrero 

et al. 2011), 8(Field et al. 1995),  9(Le-lech et al. 2003), 10(Bacchin et al. 2006) , 11(Tiranuntakul et al. 2011), 12 (Zsirai et al. 2013) 

13(Monti et al. 2006),  14(Monclús et al. 2010), 15(Fu et al. 2008), 16(Choi et al. 2009), 17(Fatone et al. 2008), 18(Kim et al. 2008), 
19(Monclús et al. 2011), 20(Menniti et al. 2009), 21(Stricot et al. 2010), 22(Braak et al. 2011), 24(Brepols et al. 2010), 25(Gabarrón et 

al. 2014), 26(Krzeminski et al. 2012c), 27(Ginzburg et al. 2008), 28(Busch and Marquardt, 2009), 29(Ferrero et al. 2012), 30(Busch et 

al. 2007), 31(Drews et al. 2009), 32 (Jiang et al. 2008), 33(Liu et al. 2009), 34(Maere et al. 2012), 35(Galinha et al. 2013), 36 (Maere et 

al. 2012), 37 (Philippe et al. 2013), 38(Zuthi et al. 2013), 39(Cosenza et al. 2013), 40(Odriozola et al. 2013), 41(Beltrán et al. 2009), 
42(Fenu et al. (2010b), 43(Verrecht et al. 2010b), 44(Maere et al. 2011), 45(Mannina and Cosenza 2013), 46 (Verrecht et al. 2010a), 
47(Brannock et al. 2010), 48(Khalili-Garakani 2011), 49(Mannina et al. 2011), 50(Tian et al. 2011), 51(Zarragoitia-González et al. 

2008), 52(Galinha et al. 2011), 53(Galinha et al. 2013). 

 

1.4.1 EMPIRICAL STUDIES 

To date, most of the MBR research has been focused on empirical studies to comprehend and 

evaluate the MBR process. Along these lines, several studies have been focused on membrane 

aeration and its effects on the TMP. Germain et al. (2007, 2005) studied relationships between 

oxygen transfer and biomass characteristics in the membrane tank, while others were more 

focused on mitigating fouling through intermittent aeration (Hong et al. 2007) or by membrane 

aeration changes to manipulate the critical flux  (Howell et al. 2004). The use of control strategies 

focused on membrane aeration were studied by Ferrero et al. (2011a, 2011c, 2011d), with the 
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aim of identifying the best filtration performance by reducing air-scouring and saving costs. With 

regards to the filtration processes, membrane flux has also been extensively studied and starting 

with the so-called critical flux concept, i.e. flux below which a decline of flux with time does not 

occur (Field et al. 1995). Le-Clech et al. (2003) compared data derived from different flux-step 

analyses to determine the critical flux, with the best practice for its determination appearing to 

be small flux intervals coupled with moderate filtration time. Critical flux was also reviewed by 

Bacchin et al. (2006), who pointed out the different flux-step methodologies used and the 

influence of membrane and suspension properties on the critical flux. Later on, further studies 

were carried out to compare the critical flux values obtained from various determination 

methods. These studies recommended smaller step heights while the step length had no effect 

on critical flux, regardless of the determination methods employed (Tiranuntakul et al. 2011). 

Zsirai et al. (2013)  pointed out the limitations of the flux step test and the difficulty of obtaining  

precise fouling rate data in full-scale MBR in complex hydrodynamic systems. 

With biological processes, the effect of mixed liquor/permeate recirculation on carbon and 

nutrient removal was studied by Monti et al. (2006), achieving higher BNR rates than with 

conventional activated sludge systems with a higher loading rate and better effluent quality. This 

was again demonstrated by Monclús et al. (2010a) during 210 days of operation in an MBR pilot 

plant. The influence of influent chemical oxygen demand and nitrogen ratio was also studied in 

an MBR, demonstrating a total N removal efficiency decrease as the COD/N decreased (Fu et al. 

2008). Choi et al. (2009) used oxidation reduction potential to improve nitrogen removal through 

the on/off control of an aerator. Fatone et al. (2008) validated, on both pilot and full scale level, 

an online control system for intermittent biological aeration in MBR to improve nitrogen 

removal. Kim et al. (2008) carried out a fouling control system by changing membrane depth, and 

consequently achieved better nitrogen removal. However, in the case of sludge characteristics, 

MLSS was the only monitored parameter. As for the biological characteristics of the sludge, the 

optimization of start-up procedures in MBR with low initial solids concentrations was achieved 

with a knowledge-based control module, which also saved time and preserved the membrane 

integrity (Monclús 2012).  

On the other hand, there are several empirical studies on the topic of how hydrodynamics affect 

the filtration process, e.g., how shear can affect the production of SMP in an MBR system 
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(Menniti et al. 2009) or how the effluent quality and fouling are affected by the hydrodynamic 

stress (Stricot et al. 2010). Braak et al. (2011) deal with hydrodynamics in MBRs, studing aeration 

parameters and their impact on filtration performance or novel air-scouring membrane systems 

in the filtration processes. To control fouling, the study of continuous and non-continuous 

membrane operation on permeate flux decline was examined (Hong et al. 2002). It was 

determined that intermittent suction operation resulted in slower flux decline due to an 

enhanced removal of foulants accumulated on the membrane surface. 

Most of the strategies to avoid fouling consist of membrane aeration, backwashing and chemical 

cleaning in conjunction with routine analyses on membranes, thus resulting in an increase in 

energy demand, chemicals and a reduction in the life-time of the membrane. Hence, empirical 

optimizations and assessments in full-scale MBRs have been applied with the aim of reducing 

costs.  Brepols et al. (2010) compared the specific energy demand of MBRs and conventional 

WWTP, where the small and medium sized MBRs do not have a disadvantage in actual energy 

consumption compared to similar-sized CAS with tertiary treatment. Gabarrón et al. (2014) 

assessed seven full-scale MBRs and achieved a 34% energy reduction through optimization 

strategies, thus demonstrating that hydraulic load was the main determining factor in energy 

consumption. In addition, operation at optimal flow conditions was demonstrated to result in low 

specific energy consumption and in an energy efficient process (Krzeminski et al. 2012c). 

Ginzburg et al. (2008) studied how to control fouling through different operating modes to 

uncover energy saving strategies. This emphasizes the idea that predetermined schemes are 

never optimal, and flexible operations become the solution to dealing with changing influent, 

biological and membrane conditions. As reported by Busch and Marquardt (2009) significant 

potential for improving cost efficiency is available in the area of dynamic and online 

control. Ferrero et al. (2012) reviewed the most important control strategies applied to MBR 

systems. The very few literature contributions coping with dynamic and online fouling control 

and the absence of full-scale control implementations were identified. Thus, fully-integrated 

control or optimization of MBRs, regarding biological processes and filtration, are practically non-

existent.  In addition, the few optimization and control strategies applied until now present 

conservative operational solutions owing to the restricted operating conditions recommended by 

the manufacturer to preserve the guarantee.  
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1.4.2 MODELLING STUDIES 

Modelling studies have been carried out that can help the development of possible optimal 

strategies for MBRs operation. Focusing on the filtration process, modelling studies based on 

permeability loss are the most frequent. Their common aim is to determine the best operational 

strategies for reducing or predicting fouling. Most of them are through deterministic models 

(Busch et al. 2007, Drews et al. 2009, Jiang et al. 2008, Liu et al. 2009, Maere et al. 2012) or data-

driven models (Galinha et al. 2013, Maere et al. 2012, Philippe et al. 2013, Zuthi et al. 2013). In 

spite of these modelling approaches, a general and widely accepted validated model still does 

not exist. In fact, not only have model-based biological nutrient removal studies for improving 

the process efficiency through simulation also been carried out (Cosenza et al. 2013, Odriozola et 

al. 2013), but heuristic models have been used to describe the gradient of solids among the 

reactors as well (Beltrán et al. 2009). With model-based costs studies, Fenu et al. (2010b) 

evaluated the cost of an MBR plant and other WWTPs using ASM models, determining higher 

consumption for MBRs in comparison with a WWTP treatment resulting in similar effluent 

quality. Similarly, a cost analysis of the impact of representative dynamic flow and load 

conditions using ASM1 was evaluated in an MBR, which determined sludge production and the 

application of buffer tanks as the most appropriate for diminishing operational costs (Verrecht et 

al. 2010b). Other studies improved BNR together with a cost reduction using ASM2d as the 

biological model. For example, Maere et al. (2011), at an MBR-benchmark plant, took into 

consideration the shear by coarse-bubble aeration where membrane aeration was simulated; 

Mannina and Cosenza (2013) studied diverse operational strategies, such as aeration, hydraulic 

filtration/backwashing cycles or membrane cleanings to improve BNR and reduce costs. A small-

decentralised MBR was able to be optimised by up to 23%, with respect to energy consumption, 

and without compromising effluent quality  (Verrecht et al. 2010a). More focused on 

hydrodynamics, Brannock et al. (2010) optimized a full-scale MBR in terms of aeration, sludge 

rheology and geometry by using CFD. Similarly, Khalili-Garakani (2011) evaluated fouling on the 

membrane surface and determined a minimal effect of rheology on the bulk mixing. Although it is 

essential to integrate fouling and biological models, only very few authors in specific studies have 

done so (Mannina et al. 2011, Tian et al. 2011a, Zarragoitia-González et al. 2008). In addition, the 

use of models to develop control strategies to improve the filtration process, i.e. real-time 

calculation of fouling indicators for control (Galinha et al. 2011) or the use of biological models to 
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improve the system in real time (Galinha et al. 2013), can also be a useful tool for operators to 

facilitate the MBR process. In that sense, hybrid models for real-time control are a promising tool 

with significant potential for application.  

There is a lack of good modelling practice in MBRs on the subject of data collection and its 

relationship to the influent fractionation, calibration and validation. In all the studies reviewed, it 

is important to note the importance of model validation. In that sense, most of the models 

require further insight into the validation steps. Furthermore, most of the MBR models are based 

on theoretical studies, and few of them are based on laboratory and pilot-scale plant results. In 

this sense, there is a noticeable absence of applying these models to full-scale municipal or 

industrial MBRs, so as to evaluate the different control strategies in terms of energy, time savings 

and water quality.  

Hence, to overcome the limitations of the current models, it is indispensable to combine them 

with experimental studies. Thus, experimental studies can help to fill the gaps where modelling 

tools are not able to describe the entire system. Although some variables are clearly correlated 

with fouling, for other variables it is not that clear at all because of their dynamic nature. In fact, 

there are a lot of variables interacting in an MBR, for instance TMP, thus MBR filtration really 

becomes a very complex problem to describe with deterministic models. The integration of 

empirical studies with modelling and control approaches is still lacking in the literature, and it 

should be further investigated. Empirical and model-based studies are complementary tools 

which are useful for improving, optimising and understanding the MBR process in terms of BNR, 

sludge characteristics, hydrodynamics, costs and filtration performance. 

This thesis has contributed in the water/wastewater engineering field in the following way: first a 

methodology for generate decision trees combining systems analysis and expert knowledge. 

Secondly with a model based evaluation study of an MBR-CAS hybrid system. Thirdly, the 

improvement of fouling predictions combining mechanistic and data-driven models has been 

done. Fourthly, experimental relations of the aeration (biological and from the membrane 

compartment) have been identified. And finally, a control system to reduce the energy cost of 

the aeration in MBRs was validated in a full-scale MBR plant. 
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1.5 ANTECEDENTS 
To date, the research of the group has aimed for a better understanding of MBR processes and 

operation, i.e. biological and filtration processes. This has been achieved through basic research 

and experimentation with different membrane configurations in pilot and full-scale facilities. 

With a total funding of approximately 2 million euros, this research has been carried out within 

the framework of several public research projects that have been operating since 2006 

(Colmatar, Colmatar+, Waterfate, demEAUmed, MBR2, AtWat), public-private schemes (MMA 

and CDTI with INIMA) and contracts with government administrations (ACA, ACCIO). Preceding 

works include three doctoral theses (Ferrero 2011, Gabarrón 2014, Monclús 2011), several MSc, 

around 30 scientific publications and a patent approved by the Spanish Intellectual Property 

Authority on October 22nd 2010 (ES 2333837 (Rodriguez-Roda et al. 2011)). 

An innovative air-scouring control system was developed and optimized by Ferrero (2011). This 

control system has been implemented, adapted and validated on a pilot scale. It has achieved 

energy savings of up to 20% (with respect to the minimum aeration recommended by the 

membrane suppliers), without any fouling interferences and with good BNR efficiency. This study 

led to the above-mentioned patent application (ES 2333837(Rodriguez-Roda et al. 2011)).  

Monclús (2011) defined and extended a knowledge-based decision support system for biological 

nutrient removal in municipal MBR. The system achieves good efficiency in both the start-up and 

steady-state periods. Fouling indicators have been identified, resulting in the proposal of a new 

method for monitoring and estimating membrane fouling in an MBR. In addition, operational 

strategies to speed up the start-up process in MBRs were proposed.  

in addition, recently a state of the art study of the design, operation and diagnosis of the 

municipal MBRs in Catalonia was carried out (Gabarrón, 2014) with the main operational 

problems being identified and several optimization strategies presented to improve the 

operation of this technology and its costs. 

This thesis will attempt to fill the gaps of previous works, such as the integrated operations and 

controls for biological nutrient removal, filtration and sludge properties, and the validation of the 

air-scouring system in a full-scale MBRs. Integrated optimization strategies will be tested by 

means of modelling and experimental studies on both pilot and full scale levels.  
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The principal objective of this thesis is to study the interactions between the biological (nutrient 

removal and sludge characteristics) and physical (hydrodynamics and filtration) processes in 

MBRs to improve their integration operation and control. In order to achieve it, several sub-

objectives were established:  

 

 To optimise biological nutrient removal in MBRs through a model-based approach. 
 

 To improve the description of system hydrodynamics and optimise hydraulic 
management of MBRs in terms of process efficiency and economy by means of 
modelling. 
 

 To improve the description of the filtration performance (i.e. TMP evolution) through 
both data driven and deterministic modelling approaches.  
 

 To understand the effects of the aerobic and membrane aeration regulation on the 
nutrient removal and filtration processes, as well as to sludge characteristics. 
 

 To validate the effectiveness of an innovative automatic control system for membrane 
aeration at full scale.  
 

The attainment of the previous sub-objectives has led to the following thesis outline (Figure 2.1). 

 

Figure 2.1 | Outline of the thesis.Note that for the calibration/validation of the models in Chapter 4 and Chapter 5 experimental 

results were used. 
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Chapter 4 identifies the most sensitive operating parameters for a UCT-MBR pilot plant. A model-

based study (ASM) together with a sensitivity and scenario analysis are used in the optimization 

of process set-points, and an operational decision tree for the integrated operation of MBRs for 

nutrient removal is developed based on modelling results and expert knowledge.  

Hydrodynamics of a full-scale hybrid wastewater treatment is investigated in Chapter 5. The 

selection of appropriate plant operational conditions (effluent treated by membranes or 

secondary settler) through deterministic biological modelling (ASM) and solids separation risk 

model is assessed for this complex system. 

 

Chapter 6 gives a comparison of deterministic and data-driven models to describe the evolution 

of TMP in a pilot-scale MBR giving a reliable description of membrane fouling. 

 

Chapter 7 presents the changes in filtration processes, nutrient removal processes and the 

biomass characteristics by modifications of biological and membrane aeration. 

 

Chapter 8 illustrates how modifications to membrane aeration can achieve energy saving (with 

no negative impact on biological processes and filtration) at a full-scale MBR through the 

validation of the air-scouring control system Smart Air MBR®. 
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This chapter describes the research methodology followed in this thesis. Simulation and model-

based studies were complemented and validated by experimental work carried out in pilot- and 

full-scale MBRs (Table 3.1).  

Chapters 4, 5 and 6 were simulation-based studies each utilizing a deterministic model. In 

Chapter 6 a data-driven model for the filtration processes was also used to complement the 

deterministic model. Experimental characterisation of the influent, the effluent and sludge 

characteristics were carried out for each of the models developed. On-line parameters were also 

monitored. The modelling study in Chapter 6 utilized experimental data from 1.5 years of 

operation. 

Chapters 7 and 8 were entirely experimental. The results from these two chapters reinforce the 

findings from the models described in the previous chapters.  Additional data was obtained from 

an MBR pilot plant which was operated for 3 years and a full-scale MBR plant monitored for 2 

years.  

 

Table 3.1 | Description of the methodologies described in chapters, indicating type, year and scale of performance.  

Chapter  
Type of experiment 

Scale 
Experimental Modelling 

Chapter 4 20101 2011 Pilot-plant 

Chapter 5 2011-20121 2012-2014 Full-scale 

Chapter 6 2011-2013 2013-2014 Pilot-plant 

Chapter 7 2013 
 

Pilot-plant 
Chapter 8 2012-2013   Full-scale 
1 Experimental work for the calibration and validation of the modelling studies  

 

3.1 EXPERIMENTAL SYSTEMS 

3.1.1 PILOT-PLANT MBR  

The pilot plant is located at the Castell-Platja d'Aro WWTP, Catalonia, North-East of Spain (Figure 

3.1). The pilot plant treats municipal wastewater with an average ratio of nutrients (C:N:P) of 

100:11:0.8. The characteristics of the raw wastewater fed to the pilot plant MBR are detailed in 

each chapter. The pilot plant comprises of a pre-screening system (0.25 m3, with 1 cm screen), a 
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bioreactor with UCT configuration (total volume of 2.26 m3), i.e. anaerobic (14% of the total 

volume), anoxic (14%) and aerobic (23%) reactor compartments, that are ultimately followed by 

a compartment (49%) with submerged flat sheet membranes with a nominal pore size of 0.4 µm 

(Kubota). The total membrane area is 8 m2. Total suspended solids (TSS) sensors (Solitax; Hach 

Lange, Düsseldorf, Germany) are installed in the anaerobic and membrane compartments. The 

anoxic reactor is equipped with an ORP (oxidation reduction potential) sensor (Alldos, Reinach, 

Switzerland). All compartments are equipped with a mixer. In the aerobic and membrane 

reactor compartments two DO-temperature sensors (Crison, Alella, Barcelona, Spain) are 

installed. Furthermore, in the aerobic bioreactor compartment and in the membrane 

compartment a pH sensor (ProMinent, Heidelberg, Germany) are installed respectively. An on-

line ammonia analyser (Amtax, Hach Lange, Germany), nitrate sensor (Nitratax, Hach Lange, 

Germany) and phosphate analyser (Phosphax, Hach Lange, Germany) are installed in the 

membrane compartment.  Downstream of the sensor and analyser units, a filtering unit is 

installed to filter the samples at 0.2  µm (Filtratax, Hach Lange, Germany). 

The raw wastewater is collected directly from the sewer entering the full-scale WWTP, after 

passing the bars for gross solids. The wastewater is pumped to the pilot plant using a peristaltic 

pump (Bredel SPX25, Watson Marlow, USA) and then passes through a second 1 cm screen 

located in a primary settler. The water is then pumped through a 1 mm pore size filter and stored 

in a mixed 500 L buffer tank. From this buffer tank the wastewater is pumped to the anaerobic 

reactor compartment with a positive displacement pump (Seepex, Bottrop, Germany) passing 

through a second filter with a pore size of 0.6 mm to prevent large solids from entering the 

bioreactor and damaging the membranes. The permeate is obtained by applying a vacuum 

pressure drop over the membranes using a second positive displacement pump, which is 

controlled by pressure transducers that measure the transmembrane pressure (TMP). Treated 

effluent is collected in the permeate tank and discharged from the pilot plant to the WWTP 

sewer.  
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Figure 3.1| Detailed pictures of the pilot-scale plant located in Castell-Platja d'Aro. 

 

In the aerobic reactor a PID controller maintains the dissolved oxygen at the desired set-point, 

using two membrane air diffusers. The bioreactor is operated with three different recirculation 

flows proportional to the inflow, transfering the sludge from the membrane bioreactor to the 

anoxic compartment (external recirculation), from the aerobic to the anoxic compartment 

(anoxic recirculation) and from the anoxic to the anaerobic compartment (anaerobic 

recirculation). 

 

Figure 3.2| Overview of the SCADA system installed in the pilot plant. 
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The pilot plant is equipped with a programmable logic controller (PLC) and supervisory control 

and data acquisition (SCADA) system that acquires digital and analogical data and controls all the 

automatic control loops of the plant: aeration, permeate fluxes, hydraulic retention time (HRT), 

SRT and mixed liquor suspended solids (MLSS) concentration and recycles.  

 

3.1.2 FULL-SCALE MBR 

A full-scale MBR facility treating municipal wastewater and located in La Bisbal d'Empordà 

(Girona, Spain) was evaluated. This WWTP has a 

hybrid configuration, combining membrane 

treatment and secondary sedimentation.  

 

The primary treatment is composed of coarse 

screen (8 cm), a fine screen (1 mm), a grit 

chamber, a lamination tank (1112 m3) with 

prolonged aeration to prevent the 

sedimentation and maintaining the water in 

mixed conditions, and finally a sieve. 

Figure 3.3| Overview of the WWTP of La Bisbal d'Empordà. 

 

Figure 3.4| Simplified scheme of the full-scale facility. 
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The secondary treatment is composed of biological reactor with an approximate volume of 4000 

m3 (oxidation ditch type) with four surface aerators, two of wich have a variable speed. Water is 

then pumped to two MBR tanks (A and B, 30 m2 each) where Zenon 500c hollow fibre 

membranes are installed, with a total membrane area of 5808 m2 and a specific aeration demand 

(SADm) of 0.405 m·h-1. Permeate flux is 27±1 L·m-2·h-1 (LMH), with 10 minutes of filtration and 40 

seconds of backpulse, adding 6.3 mg ·L-1 of NaClO. The facility treats a maximum daily flow of 

3225 m3·day-1 by membrane ultrafiltration. When the influent flow rate is higher than 3225 

m3·day-1, the excess flow is treated with the secondary settler (925 m3, and a surface of 314 m2). 

All the underflow sludge from the secondary sedimentation tank is returned to the oxidation 

ditch, and there is an external recirculation from the membranes to the oxidation ditch. The 

average SRT is of 19±2 days, wasting the sludge from the membrane recirculation. The effluent 

flow rate and the TMP were respectively monitored by a flowmeter and a pressure gauge, and all 

data is stored in a SCADA system. 

3.2 ANALYTICAL METHODS 

3.2.1 INFLUENT AND EFFLUENT ANALYSIS 

Several analytical methods have been used to determine the concentration of nutrients, organic 

matter and suspended solids in the influent and effluent of the WWTP. A description of the 

analytical methods used is detailed in 3.2. 

Table 3.2 | Analytical methods used for the determination of the influent and effluent concentrations.  

Analysis Reference (APHA 2005) 

Total suspended solids (TSS) APHA standard method 2540D 

Volatile suspended solids (VSS) APHA standard method 2540C 

Chemical oxygen demand (COD) APHA standard method 5220B 

Biochemical oxygen demand (BOD) APHA standard method 5210D 

Total Kjeldahl Nitrogen (TKN-N) APHA standard method 4500-Norg B. using boric acid 

and destillator Büchi (Postfach, Switzerland) 

Ammonium (NH4
+-N) APHA standard method B324, using boric acid and 

destillator Büchi (Postfach, Switzerland)  

Nitrates, nitrites and phosphates  

(NO3
--N, NO2

--N, PO4
3--P) 

APHA standard method 4110B, using ionic 

chromatography (Metrohm 761-Compact) 
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3.2.2 SLUDGE SAMPLES 

To determine the sludge properties, different analyses have been carried out. 

The concentration of solids in the sludge compartments was determined according to APHA 

standard method 2540D. Sludge volume index (SVI) was determined according to Metcalf and 

Eddy (2002), using 1 L of membrane tank' sludge and settling 30 minutes. Due to the high 

concentration of solids in the pilot plant, the diluted sludge volumetric index (DSVI) was used.  

The dewaterability of the different mixed liquor samples was evaluated by measuring the 

capillary suction time (Triton electronics Ltd., type 304 B) with CST papers and the 6 mL of sludge 

sample. Filterability was determined using the protocol described by Kubota (R) through 50 ml of 

sample through a 2-4 µm pore disc filter (ALPL1244185) under gravity during 5 minutes.  

Particle size distribution (PSD) was measured with a particle size analyzer (Beckman Coulter LS 

13 320) using the Universal Liquid Module and including a polarization intensity differential 

scattering technology to measure the small particles.  

Filtered supernatant was analysed for soluble microbial products (SMP). Extraction of bound EPS 

from the sludge samples was made through the cationic exchange resin method of Froelund et al. 

(1996). Protein concentration was measured spectrophotometrically using Lowry method (Lowry 

et al. 1951) as modified by Peterson (1979). Polysaccharides content was analysed using Dubois 

method (Dubois et al. 1956) by using 5% phenol concentration (Raunkjaer et al. 1994). 

Microscopic examinations were done using a Nikon model Eclipse E200 microscope and the 

microscope pictures were recorded using the Zeiss KS100.3 software. Filamentous index (FI) was 

determined based on the subjective method for filamentous bacteria abundance scoring 

suggested by Eikelboom et al. 2002. 

 

For the determination of the hydrophobicity, sludge samples were diluted to 1 g MLSS/L. This 

dilution sample is measured as the initial value at 650 nm (Absi) in a spectrophotometer 

(DR5000, Hach Lange) with the filtrate from this sample as a blank. 3 mL of this dilution sample is 

shaken vigorously with an equal amount of n-hexadecane for 2 min. After that, the sample is 

allowed to separate again for 5 min. The absorbance in the aqueous phase is then measured at 
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650 nm (Absf) and compared to the absorbance of the dilution sample (blank). Hydrophobicity 

can then be calculated as follows: 

Hydrophobicity = ቀ1−  ୠୱ
ୠୱ

ቁ · 100 (Eq. 3.1) 

 

 

3.3 MODELLING SOFTWARE TOOLS 

3.3.1 WEST BY MIKE DHI 

WESTTM (mikebydhi.com) is a powerful tool for dynamic modelling and simulation of WWTPs. The 

extensive deterministic models and process library of WEST (e.g. ASM model family) allows the 

possibility to model and evaluate almost any kind of WWTP. The tool allows the simulation of 

scenarios with dynamic flow rate profiles and the evaluation of possible control systems. 

This was used to describe the biological (ASM2d, Henze et al. 1999) and the membrane filtration 

process behavior (resistance-in-series model) in Chapters 4 and 6 or coarse bubble aeration 

(Maere et al. 2011) in Chapter 5.  

 

3.3.2 WEKA 

WekaTM is a collection of machine learning algorithms for data mining tasks. The algorithms can 

either be applied directly to a dataset or called from your own Java code. Weka contains tools for 

data pre-processing, classification, regression, clustering, association rules, and visualization. It is 

also well-suited for developing new machine learning schemes. It was used for the description of 

the TMP in Chapter 5 by means of a data-driven model. Further details of the models used are 

available in Chapter 5. 

 

3.3.3 RISK ASSESSMENT 

The presence of heuristics and qualitative knowledge on complex phenomena such as 

filamentous bulking, foaming and rising sludge stands in sharp contrast with the lack of basic 
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mechanistic knowledge on the population dynamics of the microorganisms causing these 

phenomena. Benchmark system applies a risk assessment model, which integrates empirical 

knowledge with the mechanisms of standard deterministic models to infer solids separation 

problems of microbiological origin (Comas et al., 2008), applied in Chapter 5. The intention is to 

propose a risk assessment model for microbiology-related problems using only information 

available in the simulation outputs, either directly or after simple data processing. The reader is 

referred to the detailed technical reports for a full description of all three risk models (Comas et 

al., 2008). 

The mathematical representation of the decision tree is captured using the principles of fuzzy 

decision theory (Figure 3.5). 

 

 

Figure 3.5| Relationship between the mechanistic model and the fuzzy knowledge base to estimate risk of microbiology-related 

solids separation problems. 

 

The risk estimation involves three main steps: 

 fuzzification;  
 fuzzy inference of the risk through a Mamdani approach; 
 defuzzification of the output variable. 

Fuzzification is the process of converting values of numerical data into linguistic/qualitative 

descriptors or input fuzzy sets (i.e. low, high, etc.) by means of corresponding membership 
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functions. Membership functions are defined for each variable used as risk assessment indicators 

or symptoms in the decision trees (i.e. F/M_removed, F/M_fed, DO, SRT, BOD5/N ratio, and SS in 

this example). Triangular or pseudo-trapezoidal functions are used to define the membership 

functions. The limits of these membership functions as well as their degree of overlapping can be 

customized by the user according to the configuration and characteristics of the simulated 

activated sludge plant. 
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4  

RESULTS I:  

DEVELOPMENT OF A DECISION TREE 

 FOR THE INTEGRATED OPERATION  

OF NUTRIENT REMOVAL MBRS  

BASED ON SIMULATION STUDIES  

AND EXPERT KNOWLEDGE 
 

Redrafted from : 

Dalmau, M., Rodriguez-Roda, I., Ayesa, E., Odriozola, J., Sancho, L., Comas, J. (2013)  

Development of a decision tree for the integrated operation of nutrient removal MBRs based on 

simulation studies and expert knowledge. Chemical Engineering Journal 217, 174-18. 
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4.1 OVERVIEW 
The mathematical modelling and simulations of WWTPs have become very useful since their 

introduction in the mid-1990s as a support tool to select the appropriate design and operational 

parameters (Rivas et al. 2008). This is due, on one hand, to the publication of the well-known 

mathematical models for the different unit-processes, the Activated Sludge Model  (ASM) family 

(Henze et al. 2000). On the other hand, the development of new computational platforms, with 

efficient methods for the numerical analysis of models (Copp 2002, Nopens et al. 2010) and the 

progressive elaboration of systematic procedures for the experimental calibration of the most 

common plant models and good modelling practices (Gillot et al. 2009) have also supported the 

rising use and implementation of models. 

Although activated sludge models were initially developed to describe conventional activated 

sludge (CAS) processes, they have also been used in MBRs in the last decade. However, MBRs 

have different biological and filtration process specifications than CAS: higher control between 

sludge and hydraulic residence times, higher mixed liquor suspended solids concentrations and 

viscosity, accumulations of soluble microbial products (SMP) on the membrane (Tian et al. 2011b) 

and different aeration demands and performances, entailing the modification of standard ASM 

models (Naessens et al. 2012a). According to (Fenu et al. 2010a): modelling of biological 

processes in membrane bioreactor studies can be divided into two principal groups: (i) 

unmodified ASM and (ii) modified ASM to MBR processes. The unmodified models aim for good 

process descriptions, effluent characterizations, oxygen demand and sludge productions with 

standard ASM models and the adaptation of a few stoichiometric and kinetic parameters, mainly 

related to nitrification and denitrification, with respect to the default values, based on the 

experience (Fenu et al. 2010a, Monclús et al. 2010b). The modified models consider the MBR 

specificities in order to better describe the biokinetic models through the incorporation of 

additional compounds (SMP or exocellular polymeric substances, EPS) and/or processes 

(distinction between aerobic and membrane aeration). The use of these extended SMP-models 

increase the complexity of the model, while they do not improve the predictions for effluent 

characterization, sludge production or energy consumption. Besides, relations between SMP and 

fouling rates are still contradictories, e.g.: no correlation appears between SMP and the observed 

membrane fouling rate despite the efforts for modelling it (Fenu et al. 2011). 



 4. RESULTS I 

43 

Apart from the biological processes, a filtration model is needed to describe the membrane 

operation. A filtration model aims to describe the permeate flux and pressure performance 

(transmembrane pressure (TMP) evolution, which is an indicator of fouling) over time. Most 

common ones are based on multi-series resistance models. For example, the resistance in series 

model in (Jiang 2007, Jiang et al. 2008) describes the fouling process as a progressive increase of 

the TMP, provoked by the material deposited on and inside the membrane pores. The 

accumulation of solid particles onto the filtering surface causes a rising resistance across the 

membrane. The total membrane resistance (Rtot(t)) is modelled  by a sum of three different terms 

(Equation 4.1), two of them describing fouling mechanisms varying over the time (Rc(t) , Rirr(t)):   

Rtot(t) = Rm + Rc(t)+ Rirr(t)  (Eq. 4.1) 

where Rm denotes the constant intrinsic resistance of the membrane (m-1), Rc(t) is the cake 

resistance caused by the reversible accumulation of solids on the filtering surface during the 

filtration period (m-1), and Rirr(t) denotes the irreversible accumulation of solids (m-1). Considering 

an incompressible filter cake, the cake resistance (Rc(t)) is modelled according to equation 

(Equation4.2),  

Rc (t)= ∝·(w(t))/A0 (Eq. 4.2) 

where∝  represents the specific cake resistance according to cake thickness (m/g), w(t) is the 

cake mass (g) related to the sludge solid concentration and to the flow rate of permeate, and Ao 

is the surface area of the membrane (m2). The irreversible fouling (Rirr(t)) is calculated as in the 

following: 

Rirr(t)= Rm (A0/(A(t)) - 1) (Eq. 4.3) 

where A indicates the irreversibly blocked membrane (m2) depending on a pore blocking 

parameter, on a constant SMP concentration and on a the flow rate of permeate over the time. 

Other similar approaches can be found in (Mannina et al. 2011). 

Notwithstanding, several studies use model simplification by modelling an ideal membrane and 

ideal filtration and, thereby, disregarding the appearance and evolution of fouling (Maere et al. 

2011, Verrecht et al. 2010a).  
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Model predictions are used by plant designers and operators to select the most appropriate 

combination of operational biological variables (aerobic dissolved oxygen set-point, recirculation 

flow rates, waste flow rates, etc.) to meet efficient removal and minimal cost requirements (Fang 

et al. 2011, Guerrero et al. 2012). In some papers, the operational variables for the filtration 

processes (membrane aeration, filtration flux or relaxation time) are also considered to ensure a 

good filtration performance, even though they are considered separately, i.e. independently 

from the biological processes. The study of both biological and filtration processes are a rising 

trend in this field (Mannina et al. 2011, Naessens et al. 2012b, Wu et al. 2012).  Nevertheless, the 

above cited tools only considered descriptive parameters and none of them presented a real 

combined method which should couple with expert knowledge. The aim of the paper is the 

development of an operational decision tree for the integrated operation of MBRs for nutrient 

removal. In order to obtain it, a simulation-based study, based on sensitivity and scenario 

analysis and supplemented with expert process knowledge, was carried out for the identification 

of the most sensitive operational and their best set-point ranges/values for a UCT-MBR pilot 

plant. 

 

4.2 MATERIALS AND METHODS 

4.2.1 EXPERIMENTAL SYSTEM 

The experimental pilot plant studied is an MBR with a UCT configuration able to biologically 

remove organic matter, nitrogen and phosphorous. Specifically, the UCT-MBR pilot plant is 

equipped with a primary settler and a screening system to prevent the entrance of large 

particles. The bioreactor has a total volume of 2.26 m3. It consists of an anaerobic (14% of the 

total volume), an anoxic (14%) and an aerobic compartment (23%), that are ultimately followed 

by a compartment (49%) with submerged microfiltration flat sheet membranes (Marti et al. 

2011). The membranes used have a total membrane area of 8 m2 (HF, Kubota, Japan), with a 

nominal pore size of 0.4 μm. A schematic representation of the pilot plant MBR is shown in Figure 

4.1. The wastewater is obtained from the sewer that enters the full-scale wastewater treatment 

plant at Castell d’Aro (Catalonia, NE of Spain), where the MBR pilot plant is located. 
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Figure 4.1| Schematic overview of the UCT–MBR pilot plant showing the different compartments, flow directions and main 

instruments and equipment. 

 

4.2.2 MODEL-BASED METHODOLOGY FOR THE DEVELOPMENT OF OPERATIONAL 

DECISION TREES 

A decision tree is explained as a representation of a causal chain of interactions from symptoms 

to problems, causes and solutions of a problem under evaluation (Comas et al. 2003). In this 

study, the evaluated problem is the proper operation of an UCT-MBR plant. Figure 4.2 illustrates 

the methodology followed for the development of a decision tree for the integrated operation. 

 

Figure 4.2| Methodology for the development of operational decision trees. 
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 It is composed of 4 main steps (Figure 4.2): modeling, sensitivity and scenario analysis and 

building of the decision tree. The first step consists in setting up the plant model, as well as 

calibrating and validating it with experimental data. Once the plant is modeled, a local sensitive 

analysis (LSA) is performed in order to identify the most sensitive operational parameters 

(second step). Third, a scenario analysis (SCA) is carried out to find out the best set-point 

values/ranges for the most sensitive parameters (best operational parameter set). Finally, all the 

extracted information from the simulation results interpretation, supplemented with expert 

knowledge, allows developing the operational decision tree (fourth step). 

 

4.2.3 MODEL DEVELOPMENT 

The Unified Protocol developed by the IWA Good Modelling Practice task group 

(http://www.iwahq.org/fc) was adopted to develop the UCT-MBR pilot plant model and to carry 

out the corresponding simulations (Gillot et al. 2009). Focusing on the of UCT-MBR pilot plant 

(Figure 4.1), a simulation study of membrane bioreactors is carried out to identify the best 

control strategies for integrated MBR operation, updated with expert knowledge. 

 

DATA COLLECTION AND RECONCILIATION 

Data collection is divided in two main parts: the compilation of operational and design data and 

the characterization of influent wastewater. Table 4.1 summarizes the initial (or reference) 

operational conditions of the pilot plant.  

To characterize influent wastewater for steady state and dynamic modelling, two experimental 

campaigns were held to measure influent chemical oxygen demand (COD), filtered COD, 

biochemical oxygen demand (BOD5), ammonia (NH4
+-N), nitrates and nitrites (NOx

--N), total 

Kjeldahl nitrogen (TKN-N), filtered TKN-N and phosphates (PO4
3--P). From the SCADA data, 

membrane and anoxic mixed liquor suspended solids (MLSS), dissolved oxygen (DO) from the 

aerobic and the membrane tank, mixed liquor suspended solids (MLSS) concentrations from 

membrane tank, influent flow and transmembrane pressure (TMP) values were recorded every 

10 seconds. During a seven-day experimental campaign (24-30 November 2010; first period), 

composite samples were taken every two hours.  The steady state influent used for calibration 
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was based on average data of this period (Table 4.2). For the dynamic calibration, samples every 

two hours were used. During this period, the MBR pilot-plant was fed with municipal wastewater 

with a weekly average C:N:P ratio of 100: 16.76: 1.53. 1. In order to validate the plant, the values 

of integrated samples from another 24-h campaign were used (15 January 2011; second period). 

In this case, the C:N:P ratio was 100: 10.91: 1.50. Effluent characterization was done following 

the same procedure.  

Table 4.1 | Initial (reference) operational conditions of the pilot plant. 

Parameter Units Value 

Influent flow (m3·d-1) 3800 (HRT ≈ 0,6 d.) 

Anoxic recirculation (% of inflow) 129 

Aerobic recirculation (% of inflow) 92 

External recirculation (% of inflow) 136 

Sludge retention time (Days) 22 days (waste flow rate: 1,8% inflow) 

DO aerobic set-point (mg O2 ··L-1) 1.5 

KLa membranes (d-1) 70 

Permeate; relaxation time (minutes) 9; 1 

Carbon dosage (pure commercial methanol) (L·d-1) 0 

 

Analyses from influent and effluent were performed according to Standard Methods (APHA, 

2005, APHA standard method 5220B for COD, APHA standard method 4500-Norg.B for TKN and 

APHA standard method B324 for NH4
+-N). The ammonia in the distillate was determined with a 

titrimetric method (Tritino 719S Metrohm, Herisau, Switzerland) using H2SO4 and a pH meter. 

Nitrites (NO2
--N), nitrates (NO3

--N) and phosphates (PO3
4--P) concentrations were analysed using 

ion chromatography (Metrohm 761-Compact; APHA standard method 4110B).  

Table 4.2 | Average characteristics of the UCT-MBR pilot plant influent during the experimental campaign (after primary settler; 
daily samples during a week). 

Variable Units Average (SD) Variable Units Average (SD) 

BOD5 (mg BOD·L-1) 115 (36) NH4
--N (mg N·L-1) 23.35 (4.97) 

BOD30 (mg·L-1) 137 (59) NO2
--N (mg N·L-1) 0.03 (0.02) 

COD (mg COD ·L-1) 176 (27) NO3
--N (mg N·L-1) 0.03 (0.01) 

CODf (mg COD·L-1) 102 (28) PO4
3--P (mg P·L-1) 2.71 (0.56) 

TKN (mg N·L-1) 29.48 (6.06) TSS (mg·L-1) 42.26 (12.00) 

TKNf (mg N·L-1) 25.81 (6.62) pH - 7.30 (0.70) 
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PLANT MODEL SET-UP 

The conventional ASM2d (Henze et al. 1999) was chosen for this study as a biokinetic model for 

simultaneous C, N and P removal for both the steady state and dynamic simulation of the plant. 

Regarding the filtration processes, a filtration model based on a summation of in-series 

resistances was used (Jiang 2007). This model presents some limitations, such as the need to 

check the hydraulic balance across the membrane in every operational change (i.e. establishing 

filtration, backwashing and concentrate flux values, according to relaxation or backwashing times 

selected). In addition, cake resistance does not present any recuperation during the relaxation 

period. Finally, aeration in membranes is modelled in the same way as in conventional activated 

sludge units, considering fine bubbles instead of coarse bubbles. Hence, air scouring is not 

contemplated in the resistance model, and for this reason membrane aeration and fouling rates 

are not connected.  

The plant was modelled and simulated using the modelling and simulation platform WEST® 

(mikebydhi.com) (Vanhooren et al. 2003). 

 

STEADY STATE AND DYNAMIC CALIBRATION AND VALIDATION  

The steady state calibration is run with an influent of constant flow and composition for 55 days, 

which corresponds to approximately three times the SRT (20 days), based on first period with a 

constant flow of 3800 m3·d-1. The calibration was based on the dynamic influent profile of the 

seven-day experimental campaign (first period). The simulation was run with 40 days with steady 

state file, assuring constant nutrient removal profiles, followed by 15 days of dynamic influent, by 

repeating the seven characterized days twice. In addition, model validation was carried out on 

steady state data from the second period. The quantitative criteria to evaluate the simulation 

results are based on a mean square relative error (MSRE):  

MSRE=1/n ∑ 
n

(i=1) [ [(y(t,θOBS)i  - (y(t,θSIM i)] / (y (t,θOBS)i  ]
2

 
(Eq. 4.4) 

The MSRE is related to the corresponding observed or measured value at each time step. 

Minimum differences between the observed (y (t,θOBS))and simulated (y(t,θSIM)) process variable 

values mean a good agreement between simulation and prediction (Hauduc et al. 2011). Taking 
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into account the purpose of the project, a MSRE below 15% is considered adequate. When 

necessary, modifications on default model parameters were done. 

 

EVALUATION CRITERIA  

Once the model is considered validated, several simulations were run following the same 

procedure: 40 days in steady state data followed by 15 days with dynamic influent. System 

analysis tools (section 2.4) are used to evaluate all the simulation runs, supporting the 

identification of best operational strategies. While BOD, COD, TSS, NH4
--N, NOx

—N and PO4
3- -P 

are used as indicators for the efficiency of the nutrient removal processes, TMP is used as 

indicator of the fouling phenomena for the filtration processes. Besides, two additional global 

indicators, developed for the Benchmark Simulation Model (BSM, 

http://www.BenchmarkWWTP.org), are used to assess the impact of the operational strategies in 

MBRs: the effluent quality index (EQI) and the operational cost index (OCI)(Copp 2002, Nopens et 

al. 2010). In particular, the EQI combines the effluent loads of compounds that have a major 

influence on the quality of the receiving water. Specifically, the calculation of the EQI (in kg 

pollution units d-1) is described in equation (4.5): 

ܫܳܧ =
1

ݐ)1000 − (ݐ
· න [(்ܷܲௌௌ(ݐ) + ܷܲை(ݐ) + ܷܲை(ݐ) + ்ܷܲே(ݐ) + ்ܷܲே(ݐ) + ܷܲேை(ݐ) + ܷܲ௧௧(ݐ)) ·ܳ(ݐ)݀ݐ]

௧

௧
 

 (Eq. 4.5) 

where ti indicates the initial time and tf  the end day of the simulation period evaluated, Qe(t) is 

the effluent flow rate (L/d), and PUk is the pollutant load of each component (mg/L) according to 

equation (4.6): 

  PU(t)= βk · CK   (Eq. 4.6) 

where the weighting factors are βTSS=2, βBOD=2, βTKN=30, βNO=10 and βPTOTAL=50, and Ck  is the 

concentration of each composite variable (adapted from Nopens et al. 2010). 

The operational cost index (OCI in kWh units d-1) is estimated as follows (equation 4.7): 

 OCI = AE + PE + 3·SP + 3·EC + ME  (Eq. 4.7) 
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This operational cost function is a weighted sum of aeration energy (AE), pumping energy (PE), 

sludge production (SP), external carbon addition (EC) and mixing energy (ME) (Copp 2002, 

Jeppsson 2005, Nopens et al. 2010). This equation estimates the energy costs of the system. 

Despite the effects of an elevated MLSS concentration on oxygen transfer and coarse bubble 

aeration are not taken into account in AE, for this study equation (4.7) is considered to 

adequately estimate the cost tendencies. 

 

4.2.4 SYSTEM ANALYSIS TOOLS 

SENSITIVITY ANALYSIS 

Local sensitivity analysis (LSA) examines the impact of the modification of one operational 

parameter of the model on the resulting process variable, by applying a perturbation. The higher 

the difference between the perturbed and the default operational parameters (aerobic DO 

concentration, membrane KLa, anoxic recirculation, aerobic recirculation, filtration flux, 

relaxation time, carbon dosage and waste flow rate) related to each process variable (NH4
+-N, 

NO3
--N, PO4

3--P, TMP), the higher the impact of the parameter on the model. All simulations were 

run using WEST® taking into account all adjusted parameters. Relative sensitivity function (RSF) 

evaluated the local sensitivity of the model. The RSF was calculated from the sensitivity function 

(SF) based on the finite forward difference method with a perturbation factor of 1·10-7. The 

operational parameters were perturbed with an amount equal to 1·10-7 for the SF calculation 

(equation 4.8):   

 SF= (y (t,θj+ ξθj) -y(t,θj)) / (ξθj) (Eq. 4.8) 

Where y(t, θj) represents the process variable, θj represents the operational parameter value and 

ξ the perturbation factor. The RSF calculation is based on equation 4.9: 

RSF= (SF· θ)/(y (t,θ))  (Eq. 4.9) 

A value of RSF < 0.25 means a non-influential parameter. RSF values between 0.25 and 1 were 

moderately influential. Parameters extremely influential were considered when RSF>2, according 

to Audenaert et al. (2011) and references therein.  
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SCENARIO ANALYSIS 

To determine the best operational conditions a scenario analysis (SCA) has been carried out by 

experimentally varying values of the most sensitive parameters, i.e. those having the greatest 

impact on effluent quality and filtration process according to the previous LSA results. An SCA 

grid provides several operational conditions resulting from the different sensitive parameter 

combinations, leading to 768 different simulation runs. Each simulation of the SCA was run with 

an influent data file of 40 days in steady state followed by 15 days of dynamic influent. To find 

the best operational ranges for the most sensitive parameters, first a Pareto frontier considering 

the minimum TMP, EQI and OCI is applied. To reduce the extension of the front, a screening was 

performed by excluding all parameter sets which were worse than 50% of all sets for at least one 

criterion, thus focussing on the “compromise” area in the trade-off between performance criteria 

(Benedetti et al. 2009). 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 MODEL CALIBRATION AND VALIDATION 

An iterative evaluation of TMP and MLSS tendencies, as well as of COD, NH4
+-N, NO3 --N and PO4

3-

-P profiles, was done based on a calibration method (Hulsbeek et al. 2002) and expert 

knowledge. Steady state calibration, using default parameters (Henze et al. 2000), resulted in low 

simulated nitrate and nitrate concentrations in the aerobic phases. For this reason, the nitrogen 

half saturation coefficient for autotrophs, KNH4, was increased from 1 up to 1.5 g N·m-3 due to the 

high ammonia concentration in the aerobic tanks. Moreover, as a second step, the reduction 

factor for denitrification (ŋNO3-H) was decreased from 0.8 to 0.4, diminishing the portion of the 

denitrifying biomass. With respect to the filtration model, all default parameters were used.  

Table 4.3 illustrates that both simulated and experimental values denote an inefficient 

denitrification which is caused by an inadequate C:N:P ratio. Despite that, the estimated nutrient 

concentrations as well as the MLSS and TMP tendencies showed satisfactory values with respect 

to the experimental values. With the adjustment of KNH4 and ŋNO3-H, dynamic calibration was also 

successful since experimental and simulated values presented a MSRE below 10% (Figure 4.3). 
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Table 4.3 |Steady state simulated values versus the experimental values. 

Parameter Units Experimental 
values 

Simulated values MSRE (%) 

TMP (mbar) 170.66 188.01 1.03 

COD (mg COD ·L-1) 31.50 31.02 0.02 

NH4-N (mg N·L-1) 1.39 1.13 3.50 

NOx
--N (mg N·L-1) 18.85 19.95 0.34 

PO4
3--P (mg P·L-1) 3.31 3.01 0.82 

MLSS (g ·L-1) 5.71 5.56 0.07 

 

 

 

Figure 4.3| Relation between the dynamic simulation results (dark grey) and the experimental results (light grey), for TMP 

values at the end of each cycle (a), MLSS concentration into membrane compartment (b), and effluent concentrations for 

organic matter (c), ammonium (d), nitrates and nitrites (e) and  phosphorous (f). 
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In order to validate the model, experimental data from the second period was used. Since the 

simulated values showed a mean percent error inferior to 10% with respect to the experimental 

values (i.e: 1.49% for TMP, 1.81% for membrane MLSS, 0.87 for COD, 2.10 for NH4
+-N, 0.15 for 

NO3
--N and 1.19 for PO4

3--P), the model was considered valid for reproducing process behaviour 

and for carrying out the local sensitivity analysis (LSA).  

 

4.3.2 LOCAL SENSITIVITY ANALYSIS (LSA) 

Taking into account all operational parameters that could alter not only the biological process but 

also the filtration processes (Table 4.1), a local sensitivity analysis was carried out (Figure 4.4). An 

external carbon addition was included to achieve good denitrification rates due to the low 

concentration of organic matter in the plant influent.  

Regarding the filtration processes, only TMP was significantly sensitive to relaxation time, as well 

as filtration flux with the corresponding filtration time according to the mass balance (Figure 

4.4a). From these observations it was concluded that an increase of relaxation time, implying and 

increase of filtration flux, leads to a TMP increase, in agreement with other studies (Wu et al. 

2008).   

In terms of EQI, specific sensitivity analyses over NH4
+-N, NO3

--N and PO4
3--P effluent 

concentrations were run to determine the most sensitive operational parameters in the model 

(RSF>0.25). DO set-point in the aerobic tank and aeration in the membrane tank were 

appreciated to be sensitive to [NH4
+-N] and [PO4

3--P]. These parameters were moderately 

influential to [NH4
+-N] in an indirect way (RSF>0.25), meaning that higher aeration rates provoked 

better [NH4
+-N] removal. Contrary, these parameters presented a moderate direct influence on 

[PO4
3--P]. These relations could be explained by the fact that the quantity of returning nitrates to 

the anaerobic zone was increased due to high aeration. Nitrates give a competitive advantage to 

the heterotrophic bacteria in front of PAOs, which had slower growth using the same substrate.  

It is remarkable that aerobic recirculation presented an indirect proportional relation to [NO3
--N]. 

Decreasing this value exerted a higher effluent [NO3
--N] concentration. Carbon dosage was found 

to be important, as seen in [PO4
3--P] and [NO3

--N] RSF values. Due to the low C: N: P ratio in the 

influent, an external carbon dosage increases the denitrification yield. In addition, carbon dosage 
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enhanced phosphorus release phase, extending the phosphorus removal efficiency in both anoxic 

and aerobic zones (Figure 4.4b - d).  

 
Figure 4.4 | Results obtained from the LSA, showing the most sensitive parameters related to the filtration process based on 

TMP (a) and effluent quality (b). 

 

As a summary, the LSA results showed that aerobic recirculation, membrane aeration, relaxation 

time, DO aerobic set-point and carbon dosage are the most sensitive parameters, i.e. they have 

the greatest impact on effluent quality, OCI and TMP. Similar results were obtained by (Mannina 

et al. 2011), who distinguished two groups of sensitive operational parameters: one related to 

the biological processes and the other related to the physical filtration process. In agreement 

with our results, they also pointed out that the most sensitive operational parameters for 

biological processes did not significantly affect the TMP. This is clearly a strong drawback of the 

model since in practice operational parameters for biological processes can have substantial 

impact on TMP, e.g.: low levels of DO lower the cell hydrophobicity and thus causes floc 

deterioration and stronger interactions with the typically hydrophilic membrane, causing higher 

fouling (Drews 2010).  
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4.3.3 SCENARIO ANALYSIS 

The scenario analysis was carried out with an adequate C:N:P relation in the influent. Thus an 

external dose of methanol was needed to increase the readily biodegradable organic substrate 

concentration (SF, mg COD· L-1) of the influent. The sludge retention time (SRT) was set in all the 

simulations as the reference one (20 days), in order to ensure nitrification and denitrification 

processes. An SCA grid providing several operational conditions was defined as a result of the 

combination of different set-point /values/ranges for the five more sensitive parameters (Table 

4.4). These operational conditions are given by varying (i) aerobic recirculation, from 65 to 197% 

of influent; (ii) membrane aeration, with KLa between 50 and 90d-1; (iii) relaxation time, tested on 

0, 1 and 2 minutes; (iv) aerobic set-point of dissolved oxygen, between 0.5, 1, 1.5 and 2 mg O2·L-1, 

and finally, (v) carbon dosage, with an addition of 0.15, 0.17, 0.2 and 0.25 L CH3COOH·d-1. The 

combination of all these set-point values results in 768 different scenarios or simulation runs 

(Figure 4.5a).  

Table 4.4 | Scenario analysis grid, showing the studied set-points for each sensitive parameter. 
Parameter Studied values Units 

Aerobic recirculation 65 92 130 197 (% of the inflow) 

Membrane kLa 50 65 75 90 (d-1) 

Relaxation time 0 1 2 (minutes) 

DO aerobic set-point  0.5 1 1.5 2 (mg O2·L-1) 

Carbon dosage  0.15 0.17 0.2 0.25 (L MeOH·d-1) 

 

To select the best values of the sensitive operational parameter among the 768 simulations run, 

the Pareto function was applied based on low OCI, EQI and TMP. The screening condensed the 

Pareto-optimal parameter sets from 48 to 10 (Figure 4.5b-c). 

The study of the 10 optimal operational parameter set (Table 4.5) led to identifying that the best 

operational conditions involve working with a relaxation time of 0 minutes, a minimum aeration 

in the aerobic reactor (0.5 mg·L-1) and in the membrane tank (50-75 d-1 of KLa values), with the 

reference SRT (20 days). It must be emphasized that a minimum relaxation time (0 min.) is 

selected as the best option to maximize permeate production, and thus permeability, because 

the filtration model does not consider a significant recovery of TMP during relaxation. Since this 

is not a realistic situation, some of the 48 good operational conditions involving a relaxation time 
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Figure 4.5 | Outputs of the scenario analysis in terms of operational costs (OCI), effluent quality and TMP: (a) represents all the 

set-point combinations (only strategies using relaxation time equal to 0), highlighting Pareto results; (b) only the 48 solutions 

corresponding to the Pareto front; and (c) the 10 best configurations after the screening method. 

 of 1 minute, for example, should be considered for practical implementation. Other modelling 

studies did not consider either the relaxation time or the filtration time as operational set-points 

(Maere et al. 2011, Verrecht et al. 2010b).  

  

Regarding aeration, the best operational condition involve a low DO set-point in the aerobic 

compartment and minimal values for KLa in the membrane compartment, enabling sufficient 

nitrification rates between aerobic and membrane compartments and ensuring membrane air-

Table 4.5 |The best 10 operational parameters set obtained with the Pareto front and the screening over the SCA, allowing minor TMP, EQ and 

OCI, all of them fulfilling the EU Directive (91/271/CEE). 

O
pe

ra
ti

on
al

 p
ar

am
et

er
s 

Relaxation time (min) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Filtration time (min) 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 

Filtration flux (Lm-2h-1) 19.42 19.42 19.42 19.42 19.42 19.42 19.42 19.42 19.42 19.42 

DO aerobic (mg ·L-1) 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.50 0.50 0.50 

Kla membranes (d-1) 75.00 75.00 65.00 65.00 65.00 75.00 50.00 65.00 65.00 75.00 

Aerobic recirculation % of the inflow 65.00 65.00 92.00 92.00 92.00 92.00 130.00 13.0.00 197.00 197.00 

Methanol flow (L·d-1) 0.15 0.17 0.15 0.17 0.20 0.17 0.17 0.15 0.17 0.17 

Pr
oc

es
s 

va
ri

ab
le

s 

NH4-N (mg ·L-1) 2.85 2.84 3.31 3.35 3.54 2.89 3.62 3.22 3.20 2.89 

NOx
--N (mg ·L-1) 6.58 6.42 5.70 5.25 4.98 6.50 4.39 5.69 5.28 6.14 

PO4
3--P (mg ·L-1) 0.65 0.55 0.62 0.49 0.40 0.58 0.59 0.73 0.57 0.65 

TMP (mbar) 91.07 91.15 91.49 91.16 91.73 91.44 91.35 91.31 91.11 91.19 

EQI (kg ·d-1) 932.22 907.79 948.69 912.56 908.31 922.29 926.84 962.32 913.21 924.65 

OCI  --  5922.48 5984.52 5348.52 5493.95 5648.18 5941.02 6030.43 5320.11 5467.52 6050.57 
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scouring while reducing aeration costs and a recycling stream with high dissolved oxygen 

concentrations. A direct correlation between aeration in aerobic and membrane compartments 

and operational costs has also been found in full-scale MBRs elsewhere (Fenu et al. 2010b, 

Ferrero et al. 2011b). Since nitrification is partly carried out in the membrane compartment, the 

dissolved oxygen set-point in the aerobic compartment can be lowered. These conditions will 

also favour good denitrification rates and, consequently, phosphorous accumulating organisms as 

well. Finally, the SRT value selected is certainly enough for the development of nitrifying biomass.  

In order to study the overall impact of all operational parameters on TMP, nutrient removal and 

costs, a global sensitivity analysis was carried out using standard regression coeffiecients (SRC) to 

identify their  influences (Saltelli et al. 2004). A summary of the results is shown in Table 4.6. 

Table 4.6 | Global sensitivity analysis results. If the coefficients of determination are R2 >0.7, SRC results are reliable sensitive 

measures (marked in bold). The higher the absolute values of the SRC, the stronger the influence of the corresponding 

parameter (θj) on the variable (y(t, θj)). 
 Ammonium Nitrates/ Nitrites Phosphorous TMP EQ OCI 

R2 R2 R2 R2 R2 R2 

0.29 0.86 0.84 0.96 0.42 0.93 

Relaxation time -0.15 -0.04 -0.16 0.63 0.15 0.01 
Aerobic recycle -0.02 0.20 -0.06 0.00 0.13 0.02 
DO aerobic 0.14 0.40 0.39 0.00 0.12 0.71 
KLa membranes -0.26 0.61 0.25 0.00 0.12 0.57 
Methanol flow -0.01 -0.33 -0.57 0.01 -0.59 0.71 
 

 

To sum up the main global sensitivity analysis results, the most significant parameters where 

related to costs, and they were ranked as aerobic DO set-point, methanol flow and membrane 

aeration. The significance of aeration in cost is well known (Ferrero et al. 2011b, Maere et al. 

2011, Verrecht et al. 2010b), as well as an external contribution of external carbon dosage 

(appreciated in the OCI calculation). Increasing aeration or carbon dosage will cause higher 

operational cost, in agreement with the expectations arising from expert process knowledge. 

Secondly, the most influential parameter affecting TMP was relaxation time. 
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4.3.4 OPERATIONAL DECISION TREE FOR THE INTEGRATED OPERATION OF MBRS 

Based on the interpretation of the simulation results and complemented with expert and 

empirical knowledge, a decision tree for the integrated operation of both filtration and biological 

processes in any UCT MBRs has been developed (Figure 4.6). Even though many efforts have 

been made to match models with reality, they still present several limitations. Thus coupling of 

expert knowledge with simulation results is necessary to reach consistent rules for the integrated 

operation of MBRs. Expert knowledge involves human expertise acquired with MBR operation, as 

well as upgraded with empirical knowledge based on scientific research. 

The developed decision tree consecutively evaluates five process variables: TMP, related to the 

filtration process, and NH4
+-N, NO3

-,-N, PO4
3--P concentrations related to the biological process. 

In addition, operational costs are included in the study as process variable.  Sensitivity and 

scenario analysis results have been used for the tree development, supplemented by expert 

knowledge when necessary. For this reason, some restrictions were presented during the 

decision tree development and expert knowledge prevailed over simulating results when a 

conflict was detected.  Biological and filtration processes are considered of paramount 

importance for experts since complying with them is essential before looking for potential cost 

savings. In addition, in order to guarantee an efficient nutrient removal, it was necessary to 

assess NH4
+-N, NO3

-,-N, PO4
3--P concentrations in this order, and consider carbon dosage as the 

last option for reaching biological nutrient removal. Analysing simulation results (point 4.3.3), 

several parameters are cost sensitive, and therefore they were considered in the last branch.  

Taking into account these boundaries and according to the sensitivity analysis, the filtration 

process was presented as the first step of the tree, with relaxation time as the most sensitive 

parameter for TMP. Thus, the first step is focused on the control of the filtration process. In order 

to consider possible permeate flux fluctuations, permeability (K) has been selected instead of 

TMP in the decision tree. For these reason, the first action is checking for the permeability trend. 

In case of bad permeability, lowering the filtration flux is the subsequent action. Taking into 

account that filtration flux is related to relaxation time (it could be considered that the operation 

with higher fluxes implies higher relaxation times), lowering filtration flux resulted on an 

improvement of permeability trends, with the corresponding relaxation times. Consequently, 

other studies revealed that fouling dependence is higher on the applied instantaneous flux than 
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on filtration modes itself (Metzger et al. 2007).  Taking into account expert process knowledge, 

membrane aeration is considered as an important factor to reduce TMP (LSA did not show any 

correlation because the filtration model does not consider air scouring). Consequently, checking 

permeability trends to reduce air-scouring costs while maintaining the correct filtration 

performance (Maere et al. 2011, Verrecht et al. 2010b) was presented as the following step in 

the decision tree. 

If the control of filtration performance and the minimization of fouling affect biological 

processes, the following three steps are explored to ensure adequate nitrification, denitrification 

and phosphorous removal. According to expert knowledge and LSA results, the first action is to 

verify DO set-points of aerobic reactor needed for the conversion of ammonia into nitrates or 

nitrites. If the concentration of ammonia is higher than desired, it is important to check if the SRT 

is higher than the minimum required for nitrification.  

The third level consists of achieving adequate nitrate and nitrite levels. Regarding to LSA results, 

the first control actions is focused on aerobic recirculation, according to whether DO is 

transported or not by recirculation form aerobic to anoxic tanks. If denitrification is not achieved, 

attention should be paid to aerobic aeration, and membrane aeration in second term, decreasing 

both when nitrate and nitrite concentration are too high. Eventually, if there are no other 

possible actions, this branch ends with the addition of organic matter.  

The last branch is focused on phosphorous removal efficiency. To ensure a minimum level of 

phosphorous concentration, the most sensitive parameters (aerobic and membrane aeration) are 

taken into account. From a process engineering point of view, recirculation from anoxic played an 

important role on phosphorous removal. Thus, according to LSA, it can be considered a 

parameter to take it into consideration. Once again, the last action must be the external carbon 

dosage.  

Once the filtration and nutrient removal processes are successfully achieved, then the costs can 

be reduced. For this reason, the closing branch of the tree is based on costs. As illustrated by the 

simulation results, aeration is the most important factor accordingly with expert knowledge and 

literature (Fenu et al. 2010b, Ferrero et al. 2011b, Verrecht et al. 2010b). In this case, aerobic 

aeration has a major effect on costs. Hence, cost reduction is focused on aerobic aeration. 
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Although membrane aeration is the second most influential, air scouring of the membrane 

compartment is already used for reducing fouling and it could cause a buckle. External carbon 

addition must also be considered in order to reduce cost.  

 

 

Figure 4.6| Decision tree for selecting good operational strategies for MBRs. 
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4.4 CONCLUSIONS 
 

 The combination of ASM2d as biokinetic model and an in-series resistance model as 

filtration model has provided a correct description of transmembrane pressure, nutrient 

removal and mixed liquor suspended solids in an UCT-MBR pilot plant.  

 A local sensitivity analysis enabled to find the most sensitive parameters for the 

integrated operation of nutrient removal and filtration process of the MBRs, to be 

further examined via scenario analysis: aerobic recirculation, aeration in the membrane 

and aerobic tank and waste flow rate, all of them affecting the nutrient and organic 

matter removal, while the relaxation time and the filtration flux were the most sensitive 

parameters affecting the filtration performance.  

 A Pareto front containing the best 48 operational conditions was found when examining 

the scenario analysis results. Then, in order to find the 10 best combinations of set-

points among them, a screening method was applied.  

 Simulation studies not only provided more information about the most sensitive 

parameters but also about the best set-point values/ranges, achieving a good relation 

with costs, effluent quality and lower TMP.  

 Even though many efforts have been made to couple models to reality, they present 

several limitations. So the use of expert knowledge for simulation results interpretation 

is till essential. 

 Based on the simulation results and expert knowledge, a decision tree for the integrated 

operation of both biological and filtration processes has been developed. The sensitivity 

analysis demonstrated the stronger relationship between relaxation time and filtration 

flux with TMP, gathered in the decision tree. However, due to model limitations, 

operational parameters (e.g. aerobic aeration) for biological processes may strongly 

affect TMP and it was not captured in the model results. Nutrient removal process 

variables presented higher dependence on biological and membrane aeration. 

Consequently, the first branches of the operational tree presented that relevant 

operational parameter whereas aerobic recirculation seemed to be important in 

denitrification. In addition, carbon dosage was very influential for denitrification and 

phosphorous removal. Both actions were used for decision tree development. 
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Operational costs were mainly influenced by aeration and carbon dosage, in agreement 

with engineering knowledge.  The last branch of the tree was based on operational cost 

due to the relevancy of the biological nutrient removal process and filtration 

performance. 

 

Further studies will concentrate on experimental verification of some relationships of the 

decision tree, e.g. between air scouring and fouling reduction in order to improve the filtration 

model. 
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5.1 OVERVIEW 
MBRs becomes a rising choice in WWTPs, not only standalone, but also as an option to upgrade 

existing WWTP (Kraume and Drews 2010). That is why in the last decades a combination of 

conventional activated sludge (CAS) wastewater treatment technology with membrane filtration, 

known as hybrid MBR, have been taken into consideration (Bixio et al. 2008, Brepols et al. 2008). 

They mainly result from retrofitting conventional plants with strict effluent limits and little or no 

place for expansion or when a high quality effluent is needed for water reuse purposes. Flow 

treated by CAS generates lower effluent quality in terms of suspended solids, bacteria and viruses 

regarding standalone MBRs (Marti et al. 2011). However, several advantages of hybrid MBRs over 

standalone MBRs have been reported; effluent can either be produced through the secondary 

settlers or by filtration, which allows a reduction in the required membrane area (and thus costs) 

since peak flows can be treated by the settlers (Krzeminski et al. 2012b). Krzeminski et al. (2012b) 

identified a decrease of 17% in operational cost in hybrid concepts compared to standalone. 

However, to achieve the same effluent quality standalone MBRs are more efficient. Generally 

very little is known about the design and operation of hybrid MBRs. 

Evaluation of different energy-saving strategies has already pointed out in several MBRs with 

different configurations. In all cases hydraulic load was found to be the main determinant factor 

for the energy consumption, which was highly dependent on membrane capacity usage. 

Specifically in hybrid MBRs, buffering the influent flow and optimization of both biological 

aeration and membrane air-scouring, reduced the specific energy demand by 14% (Gabarrón et 

al. 2014). The energy efficiency of an MBR is driven by the hydraulic utilization of the membranes 

and can be improved mainly by implementation of flow equalization, new aeration strategies and 

adjusting operational settings to incoming flow (Krzeminski et al. 2012b). Despite that fact, none 

of the improvements reported took into account the operational flexibility in hybrid MBRs, since 

in most of the full-scale facilities the operation is restricted to the manufacturers guarantee. 

Thus, there is a wide range of improvement in that field.  

Mathematical modeling could be useful tool to identify the best operational strategies (Rivas et 

al. 2008),  regarding effluent quality and costs in MBRs (Maere et al. 2011). There exist some 

examples focused on energy-saving strategies in MBRs at pilot-scale (Mannina and Cosenza 2013) 

or in full-scale standalone MBRs (Verrecht et al. 2010a). Regarding hybrid-MBRs, despite the 
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6.1 OVERVIEW 
MBRs may have high operating energy requirements (Verrecht et al. 2010b), specifically to 

prevent fouling. The main MBR foulants are colloidal, dissolved and particulate substances 

excreted by microorganisms present in the biomass, including bound extracellular polymeric 

substances (EPS) and soluble microbial products (SMP) (Meng et al. 2009). Due to the complexity 

of the biological processes and membrane filtration phenomena taking place in MBRs, it is 

difficult to determine the optimal way to operate an MBR. For this reason, full scale MBRs are 

commonly run conservatively to avoid operational problems. Mathematical models can help to 

identify the best operating strategies through model-based optimisation (Verrecht et al. 2010a). 

However, a widely accepted general mathematical model able to cover all system variables does 

not yet exist (Naessens et al. 2012a). Although the biological processes have been described, 

fouling development within the filtration component is still under discussion. There are some 

successful efforts to model the biological processes occurring in MBRs that rely on activated 

sludge models (ASM) (Maere et al. 2011). In some cases, ASM-like models have been extended to 

include additional state variables to incorporate fouling descriptors (e.g., SMP), with limited 

success (Fenu et al. 2010a). Other models have focused more on the understanding of the 

physical processes to properly describe membrane aeration (Maere et al. 2011) and to determine 

operating costs for ideal membranes (Verrecht et al. 2010a) or optimal energy-saving strategies 

regarding fouling (Mannina and Cosenza 2013). However, the complexity of fouling, which is 

influenced by several factors and the lack of consensus on a specific fouling indicator (Drews 

2010) increase the difficulty of modelling the filtration process. Overall, none of the deterministic 

approaches for modelling fouling have led to a widely accepted general model that has been 

validated at different scales and under operating conditions. Rather, deterministic models are 

only applicable in very specific cases. Empirical data and expert knowledge have also been 

applied to control fouling strategies (Ferrero et al. 2012), but the complexity of the process 

makes those systems vulnerable.  

When there is a lack of fundamental knowledge about a specific process (e.g., fouling 

development) but a significant amount of experimental and historical data is present, data-driven 

models can be a good option. Currently, successful data-driven MBR models include 

chemometric approaches that have been used to predict transmembrane pressure (TMP) 

(Kaneko and Funatsu 2013) and chemical cleaning intervals (Kim et al. 2011) as linear regressions. 
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TMP has also been used to describe fouling behaviour by means of principal component analysis 

and fuzzy clustering (Maere et al. 2012). Furthermore, artificial neural networks have been 

adopted to predict TMP in ultrafiltration membranes for water treatment (Delgrange et al. 1998) 

or to predict the fouling behaviour of microfiltration membranes under constant flux conditions 

(Liu et al. 2009). A statistical approach linking long-term and short-term permeability evolution 

with operating variables in full-scale MBRs, with flux as the main factor affecting long-term 

fouling followed by temperature, food to microorganisms and sludge retention time, was also 

studied (Philippe et al. 2013). Other recent studies used 2-D fluorescence monitoring data to 

describe TMP, the effluent quality descriptors and biomass concentrations (Galinha et al. 2011, 

Galinha et al. 2012). However, the comparison of a deterministic model and a data-driven model 

to describe filtration can help to overcome the limitations of using a single model. Such a study 

would determine which approach better describes filtration processes and in which operating 

conditions. 

The objective of this chapter is to illustrate the comparison of deterministic and data-driven 

models for the TMP description in MBRs and the utility of both approaches for a more reliable 

description of fouling. To that aim,  two different models were developed and evaluated. The 

accuracy of both models was assessed and compared using experimental data from an industrial 

scale MBR pilot plant over 1.5 years of operation under different conditions. 

 

6.2 MATERIALS AND METHODS 

6.2.1 EXPERIMENTAL SYSTEM 

The experimental pilot plant was an MBR with a University of Cape Town (UCT) configuration 

able to biologically remove organic matter, nitrogen and phosphorous. The influent wastewater 

(4.25  m3·d-1) was obtained directly from the full-scale wastewater treatment plant sewer at 

Castell d’Aro (Catalonia, Spain), where the MBR pilot plant is located. Specifically, the UCT-MBR 

pilot plant was equipped with a primary settler and a screening system to prevent the entrance 

of large particles. The bioreactor had a total volume of 2.26 m3 divided into anaerobic (14% of 

the total volume), anoxic (14%) and aerobic (23%) compartments and a compartment with 
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submerged microfiltration flat sheet membranes (49%). The membranes had a total membrane 

area of 8 m2 (HF, Kubota, Japan), with a nominal pore size of 0.4 μm, working at 9 minutes of 

filtration and 1 minute of relaxation. The permeate production for the whole period ranged from 

120 L·h-1 to 200 L·h-1 (15-25 L·m-2·h-1, LMH), and membrane aeration for the whole period 

fluctuated between 6 and 12 m3·h-1. The UCT configuration pilot plant was operated at an 

average sludge retention time of 25±6 d and a hydraulic retention time of 0.50±0.05 d. The 

suspended solids concentration in the membrane tank ranged from 3.55 to 11.85 g·L-1 and 1.27-

4.08 g·L-1 in the anaerobic reactor. The plant was equipped with pH, OD, temperature and 

oxidation reduction potential (ORP) probes located in the aerobic reactor and flow sensors and 

solids concentration probes in the anaerobic and membrane compartments. A schematic 

representation of the pilot plant MBR is shown in Figure 6.1. More detailed information about 

the MBR influent and its configuration can be found in (Dalmau et al. 2013, Monclús et al. 2012). 

  

 

Figure 6.1| Schematic of the configuration of the MBR pilot-scale plant. 

  

 

6.2.2  MODEL DEVELOPMENT AND EVALUATION 

In the deterministic model, the TMP is described by differential equations to explain the physical, 

chemical and biological processes taking place in the system. In the data-driven modelling 

approach TMP is described by learning the model structure from compiled measured data only, 
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without previous introduction of any knowledge about the system in the modelling procedure. 

Although deterministic and data-driven models are conceptually different, the same data 

collection and processing were used to establish both models. The deterministic model was 

calibrated by adjusting the biological and physical parameters using a specified data set and was 

subsequently validated using a different data set, according to Rieger et al. (2012). Regarding the 

data-driven model, its structure was ‘discovered’ automatically from the measured data, thus 

there was no calibration. Validation was performed using a cross-validation method. The 

deterministic model was evaluated using local sensitivity analysis and by comparing the accuracy 

of the simulated and experimental TMP values.  

 

6.2.3 DATA COLLECTION AND PROCESSING 

On-line data from operating variables and parameters related to the filtration and biological 

processes as well as the biomass characteristics were gathered every ten seconds for 1.5 years 

(462 days). Data include the TMP, temperature, ORP, mixed liquor suspended solids 

concentration of the membrane compartment (MLSSm) and mixed liquor suspended solids 

concentration of the anaerobic tank (MLSSana), dissolved oxygen (DO) in the aerobic reactor, 

waste flow rate, membrane air-scouring flow rate and permeate flow rate.  

In addition, integrated grab samples were taken twice per week from the influent, permeate and 

each sludge compartment (anaerobic, anoxic, aerobic and membranes). From the influent and 

permeate, chemical oxygen demand (COD); total Kjeldahl nitrogen (TKN); and NH4
+-N, NO3

--N, 

NO2
--N, PO4

3--P concentrations were measured (APHA 2005) (Table 6.2). The total suspended 

solids (MLSS) from the influent and from the sludge of each compartment as well as the SMP 

concentrations from the membrane tank were also analysed. The SMP The characterisation was 

based on the analysis of soluble microbial products (SMP), the protein analysis and the 

polysaccharide fractions (Dubois et al. 1956, Frølund et al. 1996).Finally, the operating 

parameters and chemical cleanings performed during the study were taken into account. 

Chemical cleanings were identified to explain the increase in TMP and the consequent decrease 

in pressure after cleaning.  
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Once all the data were collected, they were processed to filter outliers and remove periods with 

atypical behaviour, i.e., operational failures, according to Comas et al. (2010). Daily averages of 

the 10 second on-line measurements were used to describe the TMP performance, providing 

adequate information and avoiding noise. An extrapolation of the grab sample results was 

performed for days when information was not available, by considering the same value until the 

next analysis was performed. 

The time between each chemical cleaning was considered a different experimental period, 

yielding 9 different periods with different operating conditions (Table 6.2). During periods 4 (P4) 

and 5 (P5), an intensive experimental campaign was performed to characterise the influent of the 

plant (full details in (Dalmau et al. 2013)). 

 

6.2.4 MODEL SET UP 

DETERMINISTIC MODEL 

ASM2d (Henze et al. 1999) was selected as the biochemical model for simultaneous C, N and P 

removal for both the steady state and dynamic simulations of the plant. For the filtration 

component, the deterministic TMP model was based on a resistance-in-series model based on 

Jiang (Jiang 2008), which describes the fouling process as a progressive increase in TMP (mbar) 

caused by material deposited on and inside the membrane pores (equation 6.1).  

ܲܯܶ =  ŋ (்,௧)
ଷ.·ଵఱ

· (௧)
ଷ.·ଵఱ

· ܴ௧௧(ݐ) (Eq. 6.1) 

In equation 6.1, η(T,t) is the viscosity (g·h-1·m-1), J(t) is the permeate flux (L·m-2·h-1) and Rtot is the 

total resistance of the membrane (m-1), expressed as a resistance increment across the 

membrane due to the accumulation of particles in the filtering area.  



 6. RESULTS III 

85 

Table 6.1 | Operating conditions of the different periods used for simulation. 

                                      

Period Days  Membrane 

air-flow  

(m3·h-1) 

Permeate flow                                 

(l·h-1) 

Permeate flux 

(LMH) 

MLSSm          

(kg·m-3) 

MLSSana 

(kg·m-3) 

SMP 

concentration 

(mg·L-1) 

Temperature 

(°C) 

Aerobic DO 

set-point 

(mg·L-1) 

pH ORP                               

(mV) 

Period 1 (P1) 27 12.00 - 12.01 156.78 - 196.01 19.60 - 24.50 6.29 - 80.10 1.75 - 2.65 8.00 ± 1.50 17.83 - 21.48 1.09 - 2.52 6.61 - 7.04 450.11 - 493.06 

Period 2 (P2) 24 10.00 - 12.00 176.98 - 203.99 22.12 - 25.50 6.92 - 7.46 2.26 - 2.46 10.00 ± 0.50 20.64 - 22.88 1.63 - 1.77 7.09 - 6.96 494.70 - 483.23 

Period 3 (P3) 96 6.71 - 8.86 175.98 - 176.53 22.00 - 22.07 9.41 - 11.84 3.37 - 4.08 9.50 ± 12.50 24.07 - 28.50 1.53 - 1.70 6.80 -6.95 314.09 - 381.11 

Period 4 (P4) 41 7.40 - 8.20 175.55 - 176.95 21.94 - 22.12 3.55 - 4.52 1.47 - 3.35 12 .00 ± 3.25 18.74 - 22.41 1.70 - 1.96 6.86 - 7.17 413.73 - 446.75 

Period 5 (P5) 18 10.00 - 10.01 140.00 - 156.25 17.50 - 19.53 4.79 - 5.78 1.23 - 2.42 8.50 ± 2.00 14.89 - 16.54 1.53 - 1.62 5.95 - 6.07 229.76 - 245.10 

Period 6 (P6) 63 10.99 - 11.20 125.77 - 126.98 15.72 - 15.87 5.30 - 6.96 1.49 - 2.60 3.00 ± 0.50 15.74 - 19.46 1.53 - 1.81 4.70 - 5.48 238.39 - 255.72 

Period 7 (P7) 128 7.28 - 10.44 146.57 - 149.50 18.32 - 18.69 5.34 - 8.96 1.37 - 2.45 2.35 ± 0.50 21.83 - 27.38 1.52 - 1.79 5.18 - 5.63 242.06 - 341.22 

Period 8 (P8) 32 10.00 - 10.23 169.06 - 183.55 21.13 - 22.94 8.38 - 9.33 2.24 - 2.87 7.75 ± 0.15 24.51 - 26.77 1.48 - 1.59 6.39 - 6.64 346.42 - 352.15 

Period 9 (P9) 33 10.00 - 10.29 174.71 - 177.56 21.84 - 22.20 7.02 - 10.71 1.97 - 3.98 5.35 ± 1.25 22.93 - 25.98 1.50 - 1.53 6.14 - 6.51 457.49 - 533.49 
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Table 6.2 | Influent and effluent characteristics along the different periods (units: mg·L-1) 

Period CODT (in) CODS (in) CODT (out) TKNT (in) TKNS (in) TKN (out) NH4
+

 (in) NH4
+

(out) NO2
-
 (in) NO2

-
(out) NO3

- 
(in) NO3

-
(out) PO4

3- 
(in) PO4

3-
(out) 

P1 
122.03 ± 

61.10 
112 ± 62 71 ± 30 

14.95 

±7.82 

10.70 ± 

9.14 

0.71 ± 

0.53 

16.68 ± 

3.58 

2.71 ± 

1.01 

0.01 ± 

0.00 

0.06 ± 

0.04 

0.40 ± 

0.10  

16.53 ± 

1.70 

1.77 ± 

0.62  

2.66 ± 

0.80 

P2 
226.75 ± 

145.43 

79.82 ± 

49.94 

69.64 ± 

40.65 

30.13 ± 

17.87 

22.13 ± 

12.31 

2.13 

±1.91 

17.37 ± 

6.63 

2.16 ± 

1.25 

0.03 ± 

0.01 

0.08 ± 

0.01 

0.31 ± 

0.14 

13.45 ± 

5.11 
2.46 ±1.17 

1.98 

±1.10 

P3 
717.56 ± 

278.12 

138.33 ± 

48.67 

48.76 ± 

29.91 

85.82 ± 

51.42 

67.31 ± 

10.95 

6.93 ± 

3.05 

37.59 ± 

10.12 

2.35 ± 

1.71 

0.09 ± 

0.11 

0.04 ±  

0.02 

1.74 

±0.64 

11.63 ± 

7.34 

15.00 ± 

14.04 

7.17 ± 

4.14 

P4 
458.67 ± 

49.03 

96.67 ± 

31.46 

35.36 ± 

22.22  

25.11 ± 

10.28 

21.96 ± 

9.61 

1.87 ± 

1.12 

18.83 ± 

9.40 

1.27 ± 

0.79 

0.04± 

0.03 

0.10 ± 

0.08 

0.41 ± 

0.31 

13.45 ± 

5.11  

2.49 ± 

1.17 

1.98 ± 

1.10 

P5 
232.29 ± 

180.92 

82.00 ± 

60.01 

35.25 ± 

21.68 

24.93 ± 

12.46 

19.39 ± 

8.89 

1.76 ± 

0.60 

20.08 ± 

6.11 

17.09 ± 

5.88 

0.31 ± 

0.24 

0.10 ± 

0.04 

0.79 ± 

0.55 

14.45 ± 

2.67 

2.14 ± 

0.96 

1.99 ± 

0.76 

P6 
207.41 ± 

127.41 

115.82 ± 

60.75 

29.29 ± 

14.30 

42.40 ± 

31.66 

26.79 ± 

12.40 

1.77 ± 

1.05 

28.48 ± 

17.08 

28.48 ± 

17.08 

2.17 ± 

1.73 

0.05 ± 

0.04 

0.05 ± 

0.01 

0.06 ± 

0.05 

11.06 ± 

2.91 

1.47 ± 

0.77 

P7 
466.37 ± 

210.26 

179.33 ± 

97.27 

20.26 ± 

14.95 

54.99 ± 

18.06 

33.99 ± 

30.26 

4.43 ± 

6.44 

47.41 ± 

28.46 

3.51 ± 

2.40 

2.28 ± 

0.53 

1.63 ± 

0.47 

0.76 ± 

0.27 

4.86 ± 

3.89 

11.93 ± 

6.70  

1.70 

±1.35 

P8 
433.77 ± 

137.48 

137.96 ± 

95.13 

23.45 ± 

9.35 

42.68 ± 

16.32 

35.01 ± 

12.47 

4.47 ± 

3.21 

33.71 ± 

13.74 

5.51 ± 

2.67 

0.10 ± 

0.05 

0.26 ± 

0.12 

0.11 ± 

0.03 

7.22 ± 

5.84 

3.25 ± 

1.25 

3.24 ± 

1.22 

P9 
274.70 ± 

107.54 

97.78 ± 

73.75 

26.17 ± 

17.26 

44.20 ± 

41.55 

29.18 ± 

15.67 

2.70 ± 

2.09 

29.59 ± 

19.36 

7.07 ± 

2.72 

0.17 ± 

0.11 

0.11 ± 

0.04 

0.45 ± 

0.28 

5.78 ± 

4.17 

2.51 ± 

1.73 

1.62 ± 

0.30 
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The total membrane resistance (Rtot(t)) is modelled by the sum of three different terms (equation 

2):   

Rtot(t) = Rm + Rc(t)+ Rirr(t) (Eq. 6.2) 

where Rm denotes the constant intrinsic resistance of the membrane (m-1), Rc(t) is the cake 

resistance caused by the reversible accumulation of solids on the filtering surface during the 

filtration period (m-1), and Rirr(t) denotes the irreversible accumulation of solids (m-1). The 

reversible accumulation cake resistance (Rc(t)) is modelled according to equation 6.3,  

Rc(t)= ∝· w(t) /A0  (Eq. 6.3) 

where ∝  represents the specific cake resistance according to cake thickness (m·g-1), w(t) is 

the cake mass (g) related to the sludge solids concentration and to the flow rate of 

permeate, and A0 is the surface area of the membrane (m2). The irreversible fouling (Rirr(t)) is 

calculated as follows: 

Rirr(t) =Rm · ቀ బ
(௧)

− 1ቁ (Eq.6. 4) 

Where A(t) indicates the irreversibly blocked membrane (m2) determined from a pore-

blocking parameter, the SMP concentration (g·L-1) and the flow rate of permeate over the 

time. The deterministic model was developed using West(R) (www.mikebydhi.com) as the 

modelling and simulation tool. 

 

DATA DRIVEN 

In contrast to the deterministic model, where the relationship between the dependent and 

independent variables is presented with known functions, data-driven approaches identify 

the functional dependencies between variables from measured data. In the case of a model 

tree, these functional dependencies are a set of regression equations following specific 

conditions for their use. Thus, unlike a simple linear regression, which calculates a single 

regression function for a given domain, a model tree identifies a set of sub-domains that can 

be characterised with regression functions of the dependent variable. The division into sub-
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domains is based on tests of the values of the independent variables, which are entered as 

nodes in the model tree (Witten et al. 2011). Thus, model trees are hierarchical structures 

composed of nodes and branches where the internal nodes contain tests on the input 

variables. Each branch of an internal test corresponds to an outcome of the test, and the 

predictions for the values of the dependant variable are stored in the leaves, which are the 

terminal nodes in the tree, containing a regression equation. The data-driven model, i.e., a 

model tree, was induced with the M5’ algorithm embedded in the WEKA® software package. 

The algorithm M5’ embedded in the WEKA® is a variation of the M5 algorithm (Quinlan 

1992).  

MODEL CALIBRATION AND VALIDATION 

The deterministic model was calibrated for steady and dynamic states over a period equal to 

three times the sludge retention time, using the experimental campaign data from period 4 

(P4). Biological parameters were adjusted when required by comparing the simulated and 

measured values. Once calibrated, the model was then validated using the experimental 

campaign values from period 5 (P5), working under different conditions. The other periods 

were also calibrated with the available experimental data. 

The validation of the model tree was performed by cross-validation, wherein the dataset is 

partitioned into a chosen number of folds (n). Each fold is used for testing in turn, while the 

remainders (n-1 folds) are used for training. The final error is the averaged error of all the 

models throughout the procedure. In our case, we used 10-fold cross-validation and the root 

mean square error were used. 

 MODEL EVALUATION 

Local sensitivity analysis was conducted to determine which filtration parameters in the 

deterministic model had the strongest effect on the TMP. Following the same procedure as 

Dalmau et al. (2013), a relative sensitivity function (RSF) was used to evaluate the local 

sensitivity of the model by perturbing the operating parameters by 1·10-7. Greater 

differences between the perturbed and the default operating parameters imply greater 

impact of the parameter on the TMP. A value of RSF < 0.25 means the parameter is non-
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influential. RSF values between 0.25 and 1 are moderately influential. Parameters are 

considered extremely influential when the RSF > 2, according to Audenaert et al. (2011) and 

references therein. 

The root mean square error (RMSE) (equation 6.5) was used to compare the accuracy of the 

simulated TMP values for each model compared to the experimental values. The RMSE is 

commonly used to predict the divergence between simulated results and observed values. 

This criterion avoids error compensation and indicates the average magnitude of the errors, 

which should be as low as possible. Therefore, the model with the lowest RMSE, 

deterministic or data-driven, is better at describing the TMP.  

RMSE = ට[ ଵ


·∑ (yi,measured - yi,simulated)2 ]  (Eq. 6.5) 

 where yi,measured is the observed, experimental or measured TMP value in the MBR process, 

while yi,simulated  is the value given by the simulation results and n the total number of values. 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 MODEL SET-UP, CALIBRATION AND VALIDATION 

DETERMINISTIC MODEL 

A deterministic model was developed following the layout shown in Fig. 6.1. It consisted of three 

activated sludge units: anaerobic, anoxic and aerobic tanks, each of which were described with 

an ASM2d biological process model. The oxygen transfer rate was adapted in the aerobic tank to 

attain the experimental DO set-point. The fourth tank represented the membrane compartment, 

where the filtration processes were described with a resistance-in-series model. Influent 

fractions for COD, N and P in the deterministic model were determined from influent and 

effluent grab samples taken during the experimental campaign. Total suspended solids from the 

influent and tanks as well as SMP measurements were also taken into account in the 

deterministic model. In addition, daily averages of the on-line measurements of temperature, 

aerobic reactor DO, waste flow rate and permeate flow were used in the model.  
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The biological model was calibrated using default parameters for ASM2d, except for the nitrogen 

half-saturation coefficient for autotrophs, KNH4, which was increased from 1 to 1.5 g N·m-3, and 

the anoxic reduction factor for the growth of heterotrophic organisms (ηNO3–H), which was 

decreased from 0.8 to 0.4, diminishing the proportion of the denitrifying biomass. The RMSE 

values for TMP in the calibration and validation periods were 14.83 and 13.65, respectively 

(detailed results in Dalmau et al. (2013)).  

DATA-DRIVEN MODEL 

The model tree (MT) generated from measured data was primarily used for finding functional 

dependencies between the operating parameters and the TMP and thus modelling the TMP 

values under different conditions. Additionally the MT, unlike many commonly used data-driven 

methods, can partly explain the system and reveal hidden patterns from the data. All on-line 

daily data, that is, temperature, ORP, MLSSm, MLSSana, aerobic reactor DO, membrane air-

scouring and permeate flow, were used to induce the data-driven model. Offline measurements 

were too scarce (two to three times per week) for reliable induction of data-driven model. Thus, 

they were not taken into account. The model tree (Figure 6.2) was composed of 35 multivariable 

linear equations (or linear models, LM), each of which is valid under specific operating conditions 

in the system given by specific values of the operation conditions (on-line daily data). The 10-fold 

cross-validations of the developed model tree led to a RMSE of 20.08.  

Starting from the top of the tree, it is necessary to discern along the tree branches (between the 

different operating conditions) until reaching each LM in the leaves. The operating parameters at 

the top of the tree were the most discriminating. Each LM enables the estimation of the TMP as a 

linear regression of multiple operating parameters. LM1, for example, is valid when the 

temperature is below 22.44°C, the membrane airflow is under 10.631 m3·h-1, the ORP is under 

426.78 mV, the pH is 6.89 and, finally, the temperature is below 19.46°C. All of the LMs are listed 

at the end of the chapter (6.5 Annex). From the LM equations, it is possible to know which 

parameters are the most influential because each parameter is multiplied by a weighting factor. 

The higher the weighting factor, the greater the influence on the predicted TMP value. Finally, 

positive weighting factors indicate a direct relation to the TMP, while a negative value denotes an 

inverse relation to TMP.   



 6. RESULTS III 

91 

A thorough analysis of the model reveals 5 main subdomains of different typical TMP values, 

defined by different operating parameters (temperature, MLSS, dissolved oxygen, air flow rate 

and permeate flow rate) (Figure 6.2). The typical TMP values for each subdomain are 0-15 mbar 

(white in Figure 6.2), 15-30 mbar (light grey in Figure 6.2), 30-60 mbar (grey in Figure 6.2), 60-90 

mbar (dark grey in Figure 6.2) and 90-120 mbar (black in Figure 6.2). 

 

Figure 6.2 | Regression model tree developed for the TMP prediction, with subdomains and multivariable linear models (LM). 

Five main subdomains are numbered, representing different typical values of TMP (coloured in different grey tones). Units: 

temperature (°C), MLSSana/m (g·L-1), aerobic DO (mg·L-1), OPR (mV), membrane air-flow (m3·h-1), permeate flow (L·h-1). 

6.3.2 MODEL EVALUATION 

GENERAL DISCUSSION OF THE RESULTS 

Both deterministic and data-driven models were used to simulate the different operating 

conditions over 462 days of operation of an industrial-scale MBR. Figure 6.3 illustrates the 

dynamic TMP experimental data for all periods (blank dots), together with the TMP simulated by 

both modelling approaches, deterministic (black line) and data-driven (grey line). 
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The RMSE of the simulated results with respect to real values for the whole evaluation period is 

slightly higher for the data-driven model compared to the deterministic model (19.34 and 20.08, 

respectively). The accuracy of both models for different periods was also calculated (Table 6.3). 

 
Figure 6.3 | Measured TMP and simulated TMP values using both data-driven and deterministic models versus time. 

Table 6.3 |RMSE for each period for both models. The lowest value for each period is in bold. 

Periods   Deterministic Data Driven 

Overall period 19.34 20.08 

P1 36.93 29.62 

P2 15.56 31.81 

P3 20.73 23.61 

P4 14.83 14.46 

P5 13.65 10.03 

P6 23.38 20.46 

P7 10.61 9.96 

P8 10.60 17.68 

P9 18.81 19.36 
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The sensitivity analysis performed on the deterministic model demonstrated that permeate flux 

(with an RSF > 2) is the most influential parameter affecting the TMP in the deterministic model, 

implying a direct relationship between the TMP and the permeate flux, i.e., an increase in the 

permeate flux leads to an increase in TMP (Figure 6.4). This relationship was also confirmed by 

the experimental results (Figure 6.5a). Additionally, permeate fluxes close to the critical flux 

defined by the manufracturer yield a steeper slope for the TMP (i.e., higher fouling rates, also in 

Figure 6.5a), in agreement with other results reported (Ng and Ng 2010).  

In addition, the SMP concentration and temperature had a moderate influence on the TMP, 

according to RSF values (Figure 6.4). The direct impact on TMP after an increase of SMP 

concentrations was also observed in the experimental results; higher SMP concentrations led to 

slightly higher TMP values (Figure 6.5b). On the other hand, a decrease in temperature resulted 

in a slight increase in TMP (Figure 6.5b). Membrane filtration resistance was highly affected by 

temperature in the deterministic model, as it has an impact on sludge morphology and, 

specifically, the sludge viscosity. Indeed several studies reported seasonal variations in the TMP 

due to temperature (Al-Amri et al. 2010, van den Brink et al. 2011).  

 

 

 

Figure 6.4 | Sensitivity of different parameters in the deterministic TMP model. 
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Figure 6.5| Experimental influence of TMP vs. the permeate flux increase (a) and SMP increase and temperature decrease (b). 

 

In general, TMP values fell into five different subdomains, as revealed in the model tree. These 

subdomains are defined by different operating conditions (Figure 6.2). Taking into account all the 

operating conditions, the most discriminating variable was temperature. As an overall trend, the 

TMP values predicted by the model tree at temperatures over 22.44 °C (left-hand side of the 

tree) were lower than those estimated at temperatures below 22.44 °C (right-hand side of the 

tree). In addition, there was a negative relationship between temperature and TMP in all linear 

models for temperatures >22.44 °C (i.e., negative coefficients in LM20-35). In general, high TMP 

values are expected at lower temperatures because there is an increase in the mixed liquor 

viscosity, a reduction of biomass floc size and higher release of SMP into the mixed liquor (van 

den Brink et al. 2011).  

The second most discriminating variable was the membrane air scouring flow rate. Higher 

membrane airflows (>10 m3·h-1) had a positive influence on the TMP trend in several linear 

models (Figure 6.2 LM14-19, 27-33). An increase in aeration rates is expected to reduce 

membrane fouling (Ji and Zhou 2006), as is observed in subdomain 5b of Figure 6.2. However, the 

highest estimated TMP values were found in subdomain 3, with air flow rates greater than 10.63 

m3·h-1. These high TMP values can be explained due to excessive aeration intensity, which can 

cause sludge floc breakage, i.e., deflocculation, leading to higher SMP release and thus an 
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increase in TMP, thereby increasing fouling (Gil et al. 2012). This situation is more favoured at 

lower temperatures (Bewtra et al. 1970).  

Robles et al. (2012) reported that pH values under 7 could reduce fouling problems related to 

chemical precipitation, thus leading to low TMP. This observation is also in agreement with the 

model tree, where several conditions (represented in subdomains 1, 4 and 5 in Figure 6.2) 

yielded slightly better TMP predictions at pH values less than 7, independent of the other 

parameters. 

ORP, which is related to the concentration of nitrates and nitrites in the tank, had a positive 

effect on TMP, as shown in subdomain 1 of Figure 6.2 and is reflected in the LM (LM1-12). De la 

Torre et al. (2010) reported a direct statistical relationship between nitrite concentration and 

sludge filterability. Accordingly, membrane fouling could increase by biofilm denitrification (Kim 

and Nakhla 2009), and Drews et al. (2007) reported that SMP increased with decreasing nitrate 

concentrations in post-denitrification biological nutrient removal systems. 

Permeate flow has a strong influence on TMP (Judd and Judd 2011, Ng and Ng 2010), especially 

when working above the critical flux (Monclús et al. 2010b, Ng and Ng 2010), (> 25 LMH, e.g., 

LM7). However, critical flux conditions were not reached in the majority of experimental studies. 

However, our model suggests that when working under critical conditions, permeate flux is not 

the most discriminatory parameter for TMP, thus it is not at the top of the tree.  

 

DIFFERENCES ON MODEL PERFORMANCE DURING THE DIFFERENT PERIODS 

To establish which conditions enabled the best representation of the TMP in each model, all of 

the periods were studied separately. However, after an adjustment of each model based on the 

RMSE values (Table 6.3), neither model was capable of describing the TMP in all of the periods. 

Depending on the conditions, one model predicted the TMP better than the other. P2, P3, P8, 

and P9, the hottest periods with less temperature variation, were better explained by the 

deterministic model. In contrast, P1, P4, P5, P6, and P7, which had lower temperatures overall 

and more variation in temperature, were better explained by the data-driven model.  
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The data-driven model fitted better in period 1 (RMSEdet 39.93, RMSEdata-driven 29.62), likely 

because of the high variation in the dissolved oxygen in the aerobic compartment and pH, which 

are considered in the data-driven model (e.g., LM1-LM4), but not in the deterministic model 

equations. 

Regarding the second period (P2), when the flux changed noticeably (22.12 – 25.50 LMH), even 

though the flux conditions were mostly subcritical and critical flux (Jc, 25 LMH, [21]) was reached 

in very few cases, the deterministic model fitted better (RMSEdet 15.56, RMSEdata-driven 31.81). 

P3, P8 and P9 were periods without large changes in operation. Specifically, the conditions were 

a MLSSm greater than 6 g·L-1, relatively high temperature (above 22 °C), pH of approximately 7 

and, the use of subcritical flux conditions (<25 LMH), all of which led to better performance by 

the deterministic model. In period 8, higher accuracy was achieved with the deterministic model 

(RMSEdet 10.60), as opposed to the data-driven model (RMSEdata-driven 17.68), which could be due 

to permeate flux variation (21.13 - 22.94 LMH), in alignment with P2 results. 

Monclús et al. (2011) reported that critical flux is 21 LMH when the MLSSm concentration is 

under 6 g·L-1. Using these criteria, operation in P4 was over the critical flux (21.94-22.12 LMH), 

with the highest SMP values (12±3.25) and a wide range of temperatures (18.74-22.41 °C). 

According to Ng and Ng (2010), fouling mechanisms change when working at critical conditions. 

In these conditions, the data-driven model yielded more accurate results (RMSEdet 15.56, 

RMSEdata-driven 31.81). The data-driven model also performed better in P5 (RMSEdet 13.63, 

RMSEdata-driven 10.03), where low MLSSm concentrations (4.79-5.78 g·L-1) and temperatures 

(14.89-16.54°C) were predominant, although the operating flux was not over the critical flux 

(17.50-19.53 LMH). Finally, the data-driven model gave a more accurate description in periods 

with low pH values: P6 (4.70-5.48) and P7 (5.18-5.63). Although fouling problems related to 

chemical precipitation can be avoided at pHs of less than 7 (Robles et al. 2012), pH is not 

normally considered in deterministic models, thus neither is its effect on fouling phenomena, 

which could explain the lower accuracy obtained from the deterministic model. 

To summarize, the deterministic model describes better the TMP under subcritical and stable 

operating conditions, while the data-driven model outperforms the deterministic model in 

periods with higher perturbations, explicitly under critical conditions (e.g. low temperature 
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and/or MLSS) and sudden variations of operational conditions (e.g. DO changes). Since the data-

driven model is learning from relationships between data values of real cases, it is able to capture 

those cases better, i.e. when there are significant changes in the filtration process, reflected on 

the TMP evolution. On the other hand, the deterministic model describes relatively well the 

filtration processes when MBR system is working as expected but it is not able to capture the 

effect of the perturbations, except from permeate changes. Permeate flux is the most influential 

variable introduced in the deterministic model affecting the TMP, followed by TMP is also 

sensitive to other variables, such temperature or SMP concentration, considered in the 

deterministic model. However, pH variations or ORP oscillations are not considered in the 

mechanistic model equations. In that sense, the data-driven model can go one step further in the 

prediction of TMP whereas deterministic models are not detailed enough, especially if these 

variables are modified due to perturbations. In any case, filtration models need to be integrated 

with the deterministic ASM models to describe the biological processes in order to have a 

complete description of the MBR systems. The combined use of both models enabled a better 

understanding of this phenomenon as a function of the different operating conditions. Next 

studies will involve the validation of combined use in other pilot and full-scale plants and 

implementation of variables such pH or ORP in deterministic models. 

 

6.4  CONCLUSIONS 
Two different models (deterministic and data-driven) were used to describe fouling phenomena 

as measured by TMP over 462 days at an MBR pilot plant operated under different conditions. 

Neither model best described fouling under all of the simulated operating conditions. The 

combined use of both models led to a better understanding of this phenomenon as a function of 

the different operating conditions. In general, the deterministic model performed better at high 

temperatures (20 °C); at constant MLSSm, DO and pH; subcritical filtration conditions; and with 

permeate fluctuations. In contrast, the data-driven model worked better at low temperatures 

(under 20 °C), low pH, under critical filtration conditions and in periods with relevant variations in 

other operating parameters, such as pH or DO in the aerobic reactor. The combination of both 

models led a better understanding of fouling under different operating conditions. 
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6.5 ANNEX 
Table 6.4 |. List of all linear models developed by the data driven model. 

Linear 
Model 

Equation 

LM1 
TMP = 0.01·(Permeate flow) - 10.35·(Aerobic DO) - 8.17·(Membrane air-flow) - 0.79·(MLSSm) 
+ 8.22·(MLSSana) + 5.23·(Temperature) - 0.21·(pH)0.01·(ORP) + 54.30 

LM2 
TMP = 0.06·(Permeate flow) - 13.09·(Aerobic DO) - 0.09·(Membrane air-flow) - 0.61·(MLSSm) 
+ 0.97·(MLSSana) + 0.94·(Temperature) - 1.25·(pH)-0.01·(ORP) + 65.08 

LM3 
TMP = 0.18·(Permeate flow) - 18.96·(Aerobic DO) - 0.12·(Membrane air-flow) - 0.47·(MLSSm) 
+ 0.97·(MLSSana) + 0.94·(Temperature) - 2.15·(pH)-0.00·(ORP) + 62.20 

LM4 
TMP = 0.18·(Permeate flow) - 18.46·(Aerobic DO) - 0.12·(Membrane air-flow) - 0.47·(MLSSm) 
+ 0.97·(MLSSana) + 0.94·(Temperature) - 2.15·(pH)-0.01·(ORP) + 58.97 

LM5 
TMP =  - 0.33·(Permeate flow) - 4.36·(Aerobic DO) - 0.05·(Membrane air-flow) - 
1.00·(MLSSm) + 1.04·(MLSSana) + 1.25·(Temperature) + 1.93·(pH)-0.01·(ORP) + 110.26 

LM6 
TMP =  - 0.41·(Permeate flow) - 4.36·(Aerobic DO) + 0.19·(Membrane air-flow) - 
1.00·(MLSSm) + 1.04·(MLSSana) + 1.25·(Temperature) + 1.93·(pH)-0.01·(ORP) + 123.45 

LM7 
TMP = 15.88·(Permeate flow) - 9.79·(Aerobic DO) - 1.40·(Membrane air-flow) - 1.00·(MLSSm) 
+ 1.04·(MLSSana) + 1.25·(Temperature) + 1.93·(pH)-0.01·(ORP) - 273.20 

LM8 
TMP =  - 0.10·(Permeate flow) - 12.10·(Aerobic DO) - 0.61·(Membrane air-flow) - 
3.96·(MLSSm) - 2.77·(MLSSana) - 0.03·(Temperature) + 16.08·(pH)+0.10·(ORP) - 44.40 

LM9 
TMP =  - 0.10·(Permeate flow) - 12.10·(Aerobic DO) - 0.61·(Membrane air-flow) - 
3.12·(MLSSm) - 3.26·(MLSSana) - 0.03·(Temperature) + 16.64·(pH)+0.10·(ORP) - 48.80 

LM10 
TMP =  - 0.10·(Permeate flow) - 12.10·(Aerobic DO) - 0.61·(Membrane air-flow) - 
2.59·(MLSSm) - 2.09·(MLSSana) - 0.03·(Temperature) + 14.07·(pH)+0.10·(ORP) - 41.80 

LM11 
TMP = 0.06·(Permeate flow) - 13.90·(Aerobic DO) - 0.61·(Membrane air-flow) - 3.49·(MLSSm) 
- 0.45·(MLSSana) - 0.03·(Temperature) + 8.57·(pH)+0.14·(ORP) - 24.02 

LM12 
TMP = 0.09·(Permeate flow) - 13.90·(Aerobic DO) - 0.61·(Membrane air-flow) - 4.64·(MLSSm) 
- 0.45·(MLSSana) - 0.03·(Temperature) + 8.57·(pH)+0.14·(ORP) - 18.77 

LM13 
TMP = 0.62·(Permeate flow) - 5.69·(Aerobic DO) + 7.25·(Membrane air-flow) + 2.27·(MLSSm) 
+ 3.61·(MLSSana) + 0.37·(Temperature) - 1.68·(pH)+0.07·(ORP) - 67.25 

LM14 
TMP =  - 0.34·(Permeate flow) - 6.58·(Aerobic DO) - 18.56·(Membrane air-flow) + 
2.27·(MLSSm) - 15.53·(MLSSana) + 1.89·(Temperature) - 2.45·(pH)+0.08·(ORP) + 319.43 

LM15 
TMP =  - 0.79·(Permeate flow) - 1.45·(Aerobic DO) + 27.55·(Membrane air-flow) + 
6.55·(MLSSm) - 10.41·(MLSSana) - 3.44·(Temperature) + 2.52·(pH)+0.03·(ORP) - 214.83 

LM16 
TMP =  - 1.40·(Permeate flow) - 16.67·(Aerobic DO) - 5.56·(Membrane air-flow) + 
17.58·(MLSSm) - 3.49·(MLSSana) + 0.37·(Temperature) + 19.44·(pH) - 0.43·(ORP) + 383.98 

LM17 
TMP =  - 1.31·(Permeate flow) - 1.45·(Aerobic DO) - 3.10·(Membrane air-flow) + 
27.04·(MLSSm) - 43.63·(MLSSana) + 0.37·(Temperature) + 16.96·(pH) - 0.32·(ORP) + 275.05 

LM18 
TMP =  - 1.37·(Permeate flow) - 1.45·(Aerobic DO) - 3.10·(Membrane air-flow) + 
27.04·(MLSSm) - 34.26·(MLSSana) + 0.37·(Temperature) + 16.30·(pH) - 0.32·(ORP) + 263.07 
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LM19 
TMP =  - 1.90·(Permeate flow) - 1.45·(Aerobic DO) - 3.10·(Membrane air-flow) + 
31.93·(MLSSm) - 29.82·(MLSSana) - 0.37·(Temperature) + 16.96·(pH) - 0.32·(ORP) + 323.41 

LM20 
TMP = 0.06·(Permeate flow) - 2.43·(Membrane air-flow) + 1.71·(MLSSm) - 
6.55·(Temperature) + 3.07·(pH) - 0.01·(ORP) + 178.41 

LM21 
TMP = 0.06·(Permeate flow) + 1.35·(Aerobic DO) - 2.43·(Membrane air-flow) + 2.58·(MLSSm) 
- 5.87·(Temperature) + 3.07·(pH) - 0.01·(ORP) + 149.08 

LM22 
TMP = 0.06·(Permeate flow) - 3.07·(Membrane air-flow) + 2.06·(MLSSm) - 
5.48·(Temperature) + 3.07·(pH) - 0.01·(ORP) + 143.67 

LM23 
TMP = 0.33·(Permeate flow) - 1.29·(Membrane air-flow) + 0.61·(MLSSm) - 
1.71·(Temperature) + 3.07·(pH) - 0.01·(ORP) - 2.17 

LM24 
TMP =  - 0.03·(Permeate flow) + 3.54·(Aerobic DO) + 0.33·(Membrane air-flow) + 
1.07·(MLSSm) - 2.26·(MLSSana) - 1.34·(Temperature) - 1.06·(pH) - 0.02·(ORP) + 59.28 

LM25 
TMP =  - 0.03·(Permeate flow) + 3.54·(Aerobic DO) + 0.36·(Membrane air-flow) + 
1.07·(MLSSm) - 2.26·(MLSSana) - 1.34·(Temperature) - 1.06·(pH) - 0.02·(ORP) + 58.70 

LM26 
TMP =  - 0.03·(Permeate flow) + 3.54·(Aerobic DO) + 0.71·(Membrane air-flow) + 
1.07·(MLSSm) - 2.26·(MLSSana) - 1.34·(Temperature) - 1.06·(pH) - 0.02·(ORP) + 55.27 

LM27 
TMP = 0.02·(Permeate flow) - 16.25·(Aerobic DO) + 4.04·(Membrane air-flow) + 
0.88·(MLSSm) + 0.57·(MLSSana) - 1.89·(Temperature) - 1.06·(pH)0.00·(ORP) + 53.20 

LM28 
TMP = 0.02·(Permeate flow) - 21.63·(Aerobic DO) - 2.70·(Membrane air-flow) + 0.88·(MLSSm) 
+ 0.27·(MLSSana) - 1.89·(Temperature) - 1.06·(pH)0.00·(ORP) + 128.90 

LM29 
TMP = 0.02·(Permeate flow) - 21.38·(Aerobic DO) - 2.70·(Membrane air-flow) + 0.88·(MLSSm) 
+ 0.27·(MLSSana) - 1.89·(Temperature) - 1.06·(pH)0.00·(ORP) + 128.38 

LM30 
TMP = 0.02·(Permeate flow) - 15.86·(Aerobic DO) - 1.64·(Membrane air-flow) + 0.88·(MLSSm) 
- 1.22·(MLSSana) - 1.89·(Temperature) - 1.06·(pH)0.00·(ORP) + 111.93 

LM31 
TMP = 0.02·(Permeate flow) - 14.88·(Aerobic DO) - 1.64·(Membrane air-flow) + 0.88·(MLSSm) 
- 1.22·(MLSSana) - 1.89·(Temperature) - 1.06·(pH)0.02·(ORP) + 108.38 

LM32 
TMP = 0.02·(Permeate flow) - 14.88·(Aerobic DO) - 1.64·(Membrane air-flow) + 0.88·(MLSSm) 
- 1.22·(MLSSana) - 1.89·(Temperature) - 1.06·(pH)0.02·(ORP) + 108.99 

LM33 
TMP = 0.02·(Permeate flow) + 3.54·(Aerobic DO) - 1.90·(Membrane air-flow) + 0.88·(MLSSm) 
- 1.22·(MLSSana) - 1.94·(Temperature) - 1.06·(pH) - 0.02·(ORP) + 101.13 

LM34 
TMP = 0.41·(Permeate flow) - 29.24·(Aerobic DO) + 8.59·(Membrane air-flow)  
-   2.05·(MLSSm) + 3.54·(Temperature) - 11.70·(pH) - 0.84·(ORP) + 474.80 

LM35 
TMP = 0.11·(Permeate flow) - 4.09·(Aerobic DO) + 8.71·(Membrane air-flow) + 3.96·(MLSSm) 
- 2.69·(Temperature) - 7.05·(pH) - 0.15·(ORP) + 96.24 
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7.1 OVERVIEW 
MBR aeration control is still rare in practice (Ferrero et al. 2012), although more than 50% of total 

operation costs are due to aeration (Krzeminski et al. 2012c). Thus, aeration control presents a 

wide range of opportunities for optimisation.  

The effects of aeration on biological nutrient removal have been widely studied in recent 

decades, frequently with reliable activated sludge models (ASM, Henze et al., (2000)). Model-

based studies using ASMs have enabled successful optimisations of wastewater treatment plants 

with different configurations with respect to nutrient removal efficiencies and operating costs 

(Rivas et al. 2008).  

Focusing on MBR studies, a model-based optimisation of a modified benchmark-MBR plant was 

carried out to investigate carbon (C) and nitrogen (N) removal via the appropriate manipulation 

of dissolved oxygen (DO) and recirculation flow at different temperatures (Odriozola et al. 2013). 

Additionally, optimisation studies carried out in a small-centralised MBR with specific aeration 

efficiencies for fine and coarse bubbles at the bioreactor and membrane compartment were used 

to determine the optimal strategy for biological removal processes and energy demand (Verrecht 

et al. 2010a). Sarioglu et al. (2008) also carried out a model-based optimisation of nitrogen 

removal in an MBR plant, taking advantage of the high sludge age, the high mixed liquor 

suspended solids (MLSS) concentration and the lower DO diffusion rate, enabling simultaneous 

nitrification/denitrification. However, none of the previous studies have dealt with the 

description of fouling phenomena, but rather considered the filtration processes as ideal. A 

standard model to describe fouling is not yet available because there are complex relationships 

between operational parameters, biological and physical processes and activated sludge 

characteristics. A few authors have presented a mathematical model considering both membrane 

fouling filtration and biological nutrient removal processes (Mannina et al. 2011, Zarragoitia-

González et al. 2008). However, as reported by Zuthi et al. (2012), those modelling studies were 

focused on steady-state processes; other studies presented some drawbacks, and still others had 

too many parameters for calibration or were only validated in a specific pilot plant. 

Experimental studies are necessary to quantify the relationships among biomass characteristics, 

filtration performance and biological nutrient removal, especially for the aeration process. A few 

experimental aeration studies have reported the effects of membrane aeration. These studies 
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have been focused on the influence of shear stress provoked by membrane aeration on the 

physicochemical and biological properties of the biomass, whether focusing on the break-up of 

the flocculation and the formation of smaller particles (Germain and Stephenson 2005) or on the 

production of extracellular polymeric substance (EPS) (Menniti and Morgenroth 2010a) and the 

membrane fouling rate. Gao et al. (2011) studied how DO concentration influenced the 

generation of EPS and soluble microbial products (SMP) in mixed liquor and biocake to control 

fouling. However, the study of how both biological and membrane aeration affect the filtration 

performance, the properties (physical and biological) of the biomass and the biological nutrient 

removal (BNR) performance has not been reported. The aim of this chapter is to study the effect 

of changes in biological and membrane aeration on the filtration processes (i.e., fouling 

behaviour), the biological nutrient removal processes and the biomass characteristics. 

 

7.2 MATERIALS AND METHODS 

7.2.1  UCT-MBR PILOT PLANT 

The pilot plant for this study is an MBR with a University Cape Town (UCT) configuration that is 

able to biologically remove organic matter, nitrogen and phosphorous (Monclús et al. 2010a). 

The pilot plant was fed with real municipal wastewater, without industrial contributions, directly 

collected from the sewer system. It was sent to the UCT-MBR pilot plant is equipped with a 

primary settler and a screening system (0.01 m) to prevent the entrance of large particles. The 

bioreactor has a total volume of 2.26 m3. It consists of anaerobic (14% of the total volume), 

anoxic (14%) and aerobic (23%) compartments that are ultimately followed by a fourth 

compartment (49%) with submerged microfiltration (MF) flat sheet (FS) membranes. The 

membranes have a total membrane area of 8 m2 (LF-10, Kubota, Japan), with a nominal pore size 

of 0.4 μm. In the aerobic reactor, a PID (proportional-integral-derivative) controller maintains the 

DO at the desired concentration using a blower and membrane diffusers. A scheme of the pilot 

plant is shown in Figure 7.1. Details for the operating conditions in the pilot plant are provided in 

Table 7.1. 
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Figure 7.1 | Pilot plant diagram. 

 

Table 7.1 | Design and operating parameters. 

Parameter Units Value 
Standard 
deviation 

Design influent flow m3·d-1 4.5 
 

Instantaneous flux LMH 25 0.2 

Membrane surface m2 8 - 

Filtration/relaxation periods min 9/1 - 

Default specific energy demand (SADm) m·h-1 1.25 - 

Default Aerobic DO set-point  mg O2 ·L-1 1.5  

Temperature °C 16 1.83 

TSS anaerobic reactor mg ·L-1 2.17 0.75 

 

anoxic reactor mg ·L-1 4.48 1.20 

 

aerobic reactor mg ·L-1 4.95 1.58 

  membrane tank mg ·L-1 9.28 2.41 

Recirculation to anoxic to anaerobic % influent flow 129 
 

Recirculation to aerobic to anoxic % influent flow 92 
 

External recycle (to membrane to anoxic) % influent flow 136 
 

Wastage pump % influent flow 1.8  
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7.2.2  EXPERIMENTAL PROCEDURE 

Two different studies were carried out to determine the effects of aeration in an MBR: 

Experiment A uses a modification of the DO set-point in the aerobic compartment and 

Experiment B involves a modification of the air-scouring flow rate in the membrane tank. 

The aeration of the aerobic compartment in Experiment A was modified by gradually reducing 

the DO set-point of the aerobic compartment from 1.5 to 0 mg O2·L-1 over the course of 35 days. 

Experimentally, 0.1 mg O2·L-1 was reduced each day by adjusting the aerobic DO set-point, from 

1.5 mg O2·L-1 to 0.5 mg O2·L-1. After one week at 0.5 mg O2·L-1, the decrease continued with a 

gradual decrease of 0.1 mg O2·L-1 per day to 0 mg O2·L-1. In this experiment, the air-scouring flow 

was fixed at 1.25 m·h-1. The same procedure was applied for Experiment B, in which the aerobic 

DO set-point was maintained at 0.5 mg O2·L-1 and the membrane air-scouring flow rate was 

reduced from 10 m3·h-1 to 6 m3·h-1 (SADm, of 1.25 to 0.75 m·h-1). The manufacturer recommends 

applying an average air-scouring flow of 10 m3·h-1 at this pilot-scale size. Daily air-scouring flow 

rate changes of 1 m3·h-1 were applied until 6 m3·h-1 (SADm of 0.75 m·h-1) was reached; the plant 

was operated using this rate for 3 days. A subsequent daily increase of the air-flow was applied 

up to 1.25 m·h-1. The second part of the experiment lasted for 15 days. 

Before starting each experiment, there was a stabilisation period in which nutrient removal 

remained constant and the TMP was maintained at an approximate value of 50 mbar. A chemical 

cleaning was applied before starting Experiment B.  

 

7.2.3 EXPERIMENTAL MONITORING 

BIOLOGICAL NUTRIENT REMOVAL MONITORING  

Three times per week, grab samples were gathered from the influent, the effluent, and each of 

the pilot plant compartments. The chemical oxygen demand (COD), the total suspended solids 

(TSS), and the volatile suspended solids (VSS) were measured in the samples from the influent 

and each compartment according to Standard Methods for the Examination of Water and 

Wastewater (APHA 2005). Influent and effluent nitrogen species and phosphates were analysed 

in accordance with  Standard Methods (APHA 2005). All the soluble fractions were filtered using 
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0.45 mm cellulose acetate filters, and all samples were analysed on the day of collection. An 

average of the influent measurements during the entire experiment is provided in Table 7.2. In 

addition, on-line measurements of ammonia (Amtax, Hach Lange), nitrates and nitrites 

(Nitratax, Hach Lange) and phosphates (Phosphax, Hach Lange) from the effluent were 

recorded every 10 seconds during the whole experiment. The plant was operated at a constant 

sludge retention time of 25 ± 2 days, with a constant concentration of solids throughout the 

experiment (Table 7.1). 

Table 7.2 | Influent characteristics. 

Measurement Units Value Standard deviation 
COD total mg O2 ·L-1 211.50 73.35 

 
soluble mg O2 ·L-1 77.59 74.74 

TKN total mg N ·L-1 26.80 14.23 

 
soluble mg N ·L-1 20.86 14.65 

NH4
+- N mg N ·L-1 20.51 11.15 

NOx
--N mg N ·L-1 0.42 0.18 

PO4
3--P mg P ·L-1 1.58 1.07 

Influent TSS mg ·L-1 150 111 

 

BATCH TESTS FOR BIOLOGICAL NUTRIENT REMOVAL RATES 

Batch tests were carried out for Experiment A at 1.5, 1, 0.5 and 0 mg O2 ·L-1 and for Experiment B 

at the beginning and the end of the experiment; these batch tests were used to determine the 

biological activity of the polyphosphate-accumulating organisms (PAO) and denitrifying PAO 

(DPAO) responsible for aerobic and anoxic phosphorus removal based on Monclús et al. (2010a).  

The oxidation of ammonium to nitrite by ammonium oxidising bacteria (AOB) and nitrite-

oxidising bacteria (NOB) were also tested using batch experiments at 1.5, 0.5 and 0 mg O2 ·L-1 in 

Experiment A and at the beginning and the end of Experiment B. The flasks were inoculated with 

2 L of sludge from the MBR after washing them three times with tap water. Predetermined 

amounts of NaHCO3 and NH4Cl were added as a feed to enable nitrification under oxygen 

saturation. Samples were taken every 15 minutes, and NO3
--N, NO2

--N and TSS concentrations 

were measured and recorded.  
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SLUDGE CHARACTERISATION  

The sludge characterisation was performed by analysing sludge samples from the membrane 

tank 3 times per week in Experiment A and 5 times per week in Experiment B. The 

characterisation was based on the analysis of soluble microbial products (SMP), the protein 

analysis (Frolund et al. 1995) and the polysaccharide (Dubois et al. 1956) fractions. Due to high 

concentrations of activated sludge, the diluted sludge volumetric index (DSVI) was considered 

using the methodology described by Lee et al. (1983). Particle size distribution (PSD) analyses 

were carried out using an LS 13320 Multi-Wavelength Particle Size Analyser. In addition, relative 

hydrophobicity, expressed as percentage of hydrophobic sludge, was performed using the 

protocol described by Rosenberg (1980). Microscopic examinations were performed using a 

Nikon model Eclipse E200 microscope, and the microscope pictures were recorded using the 

Zeiss KS100.3 software. Microscopic analysis was used to determine the filamentous index (FI) 

based on the method for filamentous bacteria abundance scoring suggested by Eikelboom 

(2000). The capillarity suction time (CST)  (Triton electronics Ltd., type 304 B, (Scholz 2005)) was 

used daily to determine the dewaterability of the sludge, and a sludge filterability test was also 

performed daily (Monclús et al. 2011). Differences among samples were determined by 1-way 

ANOVA, where a p-value <0.05 was considered significant. All statistical calculations were 

generated using Microsoft Excel 2007 (Microsoft). 

 

 FOULING AND FILTRATION PERFORMANCE 

The transmembrane pressure (TMP) and the fouling rate (FR) calculations were recorded every 

10 seconds. The FR per cycle was obtained as the slope of all TMP values for each cycle according 

to the equation 7.1, following the procedure described by Monclús et al. (2011): 

ܴܨ =  ቀୢ
ୢ୲

ቁ
ୡ୷ୡ୪ୣ

      (mbar·s-1)   (eq. 7.1) 

Moreover, the irreversible fouling that was not recovered by physical cleaning was calculated by 

comparing the initial values of two consecutive cycles using equation 2:  

ܨ = మିభ
୲మି୲భ

  (mbar·d-1),   (eq. 7.2) 
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where TMP1 and TMP2 are the TMP (in mbar) at the beginning of the two consecutive cycles and 

t1 and t2 their corresponding times (days). 

Additionally, at the beginning and end of the experiments, a flux step test was used to determine 

the critical flux based on the protocol of Tiranuntakul et al. (2011). 

 

7.3 RESULTS 

7.3.1  EXPERIMENT A: MODIFICATION OF THE DO SET-POINT IN THE AEROBIC 

COMPARTMENT 

EFFECTS ON BIOLOGICAL NUTRIENT REMOVAL 

Decreasing the aerobic DO set-point led to significant changes in the nutrient removal 

performance (Figure 7.2). Regarding the ammonium concentration, complete nitrification 

efficiencies were achieved above the 0 mg O2 ·L-1 DO set-point, with effluent concentrations 

below 0.1 mg NH4
+-N·L-1. Then, with an aerobic DO at 0 mg O2 ·L

-1, NH4
+-N increased up to 12 mg 

NH4
+-N·L-1. Nitrification tests showed a 30% decrease in the nitrification rate from the start of the 

experiment until the end (Table 7.3). With respect to denitrification, peaks of NOx
- that exceeded 

the standard limits were reached when operating at 1.5 mg O2 ·L-1 of DO; however, at 0.5 mg O2 

·L-1, an improvement in the denitrification rate was achieved without increasing the ammonium 

concentration. Thus, as observed by Sarioglu et al. (2008), simultaneous nitrification and 

denitrification were most likely occurring at 0.5 mg O2 ·L-1. The overall total nitrogen 

concentration decreased as much as 30%, from 13.36 ± 3.70 mg N ·L-1 (the DO set-point at 1.5 mg 

O2 ·L-1) to 9.39 ± 3.70 mg N ·L-1 (when operating at 0.5 mg O2 ·L-1). 

In the case of phosphorous removal, anaerobic plus anoxic conditions stimulated the 

development of denitrifying phosphate-accumulating organisms (DPAOs). Table 7.3 summarises 

the evolution of the phosphate accumulating organisms (PAO) and the DPAO activity. The Prelease 

activities were mostly constant throughout the experiment, with a slight decrease from 6.41 to 

5.16 mg P·gVSS-1·h-1 in PAOs and 4.97 to 3.94 mg P·gVSS-1·h-1 in DPAOs. Regarding Puptake, PAO 

Puptake activity was higher than that of DPAOs, as has been observed elsewhere (Oehmen et al. 

2007), with a decrease in both communities of 47% in PAOs and 44% in DPAOs activities 
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throughout the experiment.  Specifically, the Puptake rate decreased twice as much as the Prelease 

rates, which is evident in the phosphate concentration increase with the aerobic DO set-point of 

0.5 mg O2·L-1 (Figure 7.2). Therefore, under these conditions, there was an accumulation of 

phosphorous in the system up to values of 8 mg PO4
3--P ·L-1. 

 
Figure 7.2 | Evolution of nutrient concentrations in the effluent and influent grab samples along the aerobic DO set-point 

modification. 

Table 7.3 | AOB, NOB, PAOS and DPAOS in Experiment A. 

 
 Parameter Units 

Aerobic DO set-point (mg O2·L-1) 

1.5 1.0 0.5 0 

Nitrogen 
Nitrification  
test 

NOx
- rate mg N·gVSS-1·h-1 3.38 -- 2.60 2.34 

Phosphorous 
removal 

PAO test Prel. rate mg P·gVSS-1·h-1 6.41 6.48 5.87 5.16 

 Pupt. rate mg P·gVSS-1·h-1 10.20 8.56 8.88 5.37 

 
DPAO test Prel. rate mg P·gVSS-1·h-1 4.97 4.82 4.85 3.94 

 
 Pupt. rate mg P·gVSS-1·h-1 4.02 3.81 3.02 2.24 

 
% DPAO PUR ratio   0.39 0.35 0.33 0.37 
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EFFECTS ON SLUDGE CHARACTERISTICS 

The PSD decreased throughout the entire experimental period. Although the median of the 

particle sizes was maintained (139.44 ± 9.31 µm), smaller particles were observed at the end of 

the experiment. This reduction was noticed in the 90th percentile, which decreased 20% from 

194.10 ± 20.01 µm to 153.23 ± 14.20 µm (significant differences (p=0.003) were found between 

means).  

 

Figure 7.3 | Sludge characteristics evolution in Experiment A. 
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SMP analysis revealed an increase in protein ranging from 1.06 ± 0.32 to 1.74  ± 0.28 mg SMP ·L· g 

SSV-1 and an increase in the polysaccharide fraction from 1.14 ± 0.46 to 2.06 ± 0.23 mg SMP ·L· g 

SSV-1. 

In addition, significant differences were found in the protein fraction (p=0.034). Relative 

hydrophobicity values remained constant, with values of 80.7 ± 7.1%, reinforced by the statistical 

analysis (p=0.084). The number of filaments obtained by microscopic analysis did not show any 

increase in the filamentous index (always between 2 and 3) at the lowest DO concentrations, and 

the DSVI values were 138 ± 19 mL·mg-1 (p=0.722). However, proliferation of Spirillum spp. in the 

system was observed. A decrease in the filterability (3.55±0.21 to 2.85±0.18 mL ·g SSV-1·L) and an 

increase in CST (3.86±0.51 to 4.50±0.26 s ·g SSV-1·L) were also observed when comparing values 

above and below 0.5 mg O2·L-1. Filterability values were consistently different, while CST values 

were significantly different (p=0.001) . 

 

EFFECTS ON FILTRATION PERFORMANCE 

There was an increase in the TMP and the FR during the experimental period. Specifically, the 

TMP values increased from 70 to 175 mbars, while FR rose 75% from the beginning to the end of 

the experiment (Figure 7.4). However, both changes were greater when the aerobic DO set-point 

values were lower than 0.5 mg O2·L-1, which can be identified as the lower limit for the DO set-

point. When DO values were below 0.5 mg O2·L-1, the TMP ranged from 100 mbars to 175 mbars 

and the FR values doubled. When operating at 0 mg O2 ·L-1, the FR values exceeded the FR critical 

condition values of 0.008 mbar·s-1 (Monclús et al. 2010b) (see A1, A2 and A3 in Figure 7.4). 

Irreversible fouling was also observed; when working above 0.5 mg O2 ·L-1, Firr showed an average 

TMP increase of 1.05 mbar·day-1, whereas below 0.5 mg O2 ·L-1, Firr values increased 6.94   

mbar·day-1.  

The flux step tests indicated a reduction of the critical flux by 36%, from 27.5 LMH at the 

beginning to 17.5 LMH at the end of Experiment A; this indicates that the system was operated 

over the critical conditions, and it explains the high increase in fouling (Figure 7.4).  

 



7. RESULTS IV  

112 

 

Figure 7.4 |Evolution of the TMP and the fouling rates during the aerobic DO set-point modification in Experiment A. A.1, A.2 

and A.3 illustrate the evolution of the TMP and the fouling rates three experimental cycles operating at 1.5, 0.5 and 0 mg O2 ·L-1, 

respectively.  
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7.3.2 EXPERIMENT B: MODIFICATION OF THE AIR-SCOURING FLOW IN THE MEMBRANE 

COMPARTMENT 

EFFECTS ON BIOLOGICAL NUTRIENT REMOVAL 

Although the experiment lasted for two weeks, the effects of the membrane air-scouring flow 

modification on nutrient removal were observed almost immediately (Figure 7.5). Membrane 

aeration reduction led to an increase in anoxic zones that were detrimental to the aerobic zones. 

Therefore, a decrease in nitrates and an increase in ammonium were observed. As a 

consequence, the effluent NH4
+-N concentrations exceeded the discharging limit (5 mg N·L-1). 

However, when membrane aeration was increased again to an SADm value of 1.25 m·h-1, the total 

N removal efficiency recovered. In comparison with Experiment A, similar nitrification rates were 

identified (Table 7.4). However, the influent varied on the 8th day of the experiment with lower 

ammonium and phosphate concentrations, and the lower concentrations were reflected in the 

effluent discharge.  

Table 7.4 | AOB, NOB, PAOS and DPAOS activities in Experiment B.  

Nutrient Test Parameter Units 
Air-scouring flow at 10 

m3·h-1 

 Day 0  Day 14 

Nitrogen 
Nitrification 
 test 

NOx
- rate mg N·gVSS-1·h-1 

3.04 3.02 
 

     Phosphorous Test PAO Prel. rate mg P·gVSS-1·h-1 5.83 5.67 
 

 
Pupt. rate mg P·gVSS-1·h-1 10.54 9.17 

 
      Test DPAO Prel. rate mg P·gVSS-1·h-1 4.41 4.93 

 
 

Pupt. rate mg P·gVSS-1·h-1 3.30 2.97 
 

      % DPAO PUR ratio   0.32 0.32 
 

Phosphorous removal was not affected by the membrane aeration decrease, as shown in Figure 

7.4. The PAOs and the DPAOs tests demonstrated that both the PUR ratio and the aerobic and 

anoxic phosphorous release rates and the phosphorous uptake were essentially maintained 

(Table 7.4). 
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Figure 7.5 | Evolution of the nutrient concentrations in the effluent and influent grab samples during the membrane air-

scouring flow rate modification of Experiment B. 

 

EFFECTS ON SLUDGE CHARACTERISTICS 

The PSD did not show any significant differences (p>0.050) during the experiment; the average 
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Figure 7.6 | Sludge characteristics evolution in Experiment B. 
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0.13 g·mg VSS-1). Despite of the increment, statistical analysis did not show significant 

differences. In contrast to the SMP results, the relative hydrophobicity of the sludge decreased 

from 80% to 30% with the air-scouring flow rate reduction. However, hydrophobicity increased to 

values similar to the initial values when aeration was restored. No changes in the filamentous 

bacteria index were noticed (the index remained between 2 and 3); there were no significant 

changes observed in the DSVI (127 ± 16.36 mL·mg-1), either. Filterability values decreased 15% 

when the air-scouring flow rate decreased to SADm values lower than 1 m·h-1. A similar trend was 

observed for CST, with values rising from 4.99 ± 0.22 s·VSS-1 to 5.90 s·VSS-1 for SADm values below 

1 m·h-1, and means were significantly different (p=0.025). 

 

EFFECT ON FILTRATION PERFORMANCE 

A reduction in the air-scouring flow rate, measured as SADm, from 1.25 to 0.75 m·h-1 resulted in a 

rise in the TMP from 50 to 100 mbar (Figure 7.7). There was also an increase of approximately 

99% in the FR, compared to the initial values. Moreover, the subsequent SADm increase (from 

0.75 to 1.25 m·h-1) did not result in a TMP recovery. At the beginning of Experiment B, the FRs 

were higher than in the beginning of Experiment A. However, the FR values (Figure 7.4-B.2) agree 

with the values observed in Experiment A under the same operating conditions (Figure 7.7-A.2). 

The irreversible fouling, Firr, values were calculated to be 1.18 mbar·d-1 when the air-scouring 

flow decreased from 1.25 to 1 m·h-1 and were 17.68 mbar·d-1 when the air-scouring flow was 

reduced from 1 to 0,75 m·h-1. Firr increased to 22.57 mbar·d-1 after increasing the air-scouring 

from 0.75 to 1.25 m · h-1; this shows that the TMP did not recover. The critical flux decreased 

from 27.5 LMH to 12.5 LMH from the beginning to the end of the experiment, i.e., a reduction of 

56%, which corroborated the deterioration of the filtration performance. This confirms that the 

last part of the experiment was operated over a critical flux. 
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Figure 7.7 | The evolution of the TMP and the fouling rates during the membrane air-scouring flow modification in Experiment 

B. B.1, B.2 and B.3 illustrate the evolution of the TMP and the fouling rate of three specific filtration cycles working at different 

SADm values (1.25, 0.75 and 1.25 mbar·s-1) on day 1, 8 and 14, respectively.  
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7.4 DISCUSSION 
The results presented in this study reveal the importance of the interrelations between biological 

nutrient removal processes, filtration processes and sludge characteristics and establish the basis 

for the development of integrated control strategies for the two most important control 

parameters in MBR: biological and membrane aeration. The Discussion has thus been divided in 

four sections: a) biological nutrient removal, b) sludge characteristics, c) filtration performance 

and d) the evaluation of energy savings. 

 

7.4.1 BIOLOGICAL NUTRIENT REMOVAL  

Biological and membrane aeration reductions of 66% and 20%, respectively, were carried out. 

These reductions had positive effects on nutrient removal efficiencies because denitrification was 

improved and nitrification was complete in the membrane compartment. Even in a system in 

which the membrane tank is double the volume of the aerobic compartment, it is necessary to 

maintain a minimum of 0.5 mg O2 ·L
-1 in the aerobic compartment. Lower DO set-point values in 

the aerobic compartment lead to a severe deterioration of sludge flocs and reduce biological 

nutrient removal processes due to lower transfer efficiency caused by coarse-bubble aeration in 

the membrane compartment compared to fine-bubble aeration in the aerobic tank (Rosso et al. 

2008). 

MBR operational conditions typically enhance nitrification, especially under stress conditions 

(Liebig et al. 2001); however, the activity of nitrifiers was significantly reduced (33%) when the 

DO set-point was decreased to values lower than 0.5 mg·L-1 or when the SADm decreased lower 

than 1 m·h-1. In addition, for both cases, it was revealed that the nitrogen removal efficiencies 

recovered after aeration was increased again.  

Phosphorous evolution is directly related to NOx- concentrations in the biological nutrient 

removal system. This was observed in the results shown in Figure 7.2, where PO3
4- is not stable 

due to the lack of oxygen under 0.5 mg O2·L-1, and the conditions are not suitable to uptake 

phosphorous completely.  However, Experiment B (Figure 7.5) demonstrated that an aerobic DO 

set-point of 0.5 mg O2·L-1 was sufficient to ensure enhanced biological phosphorous removal 

despite the decrease in air-scouring flow. Both aeration experiments showed similar trends 
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regarding P removal efficiencies according to the PAOs and DPAOs tests, but with a greater 

decrease of the Puptake in Experiment A under 0.5 mg O2·L-1 and minor changes in the Prelease ratio.  

According to Kuba et al. (1996), the rate of Puptake by PAOs under anoxic conditions is generally 

lower than that under aerobic conditions. Some authors have noted the existence of two 

different groups of PAOs (Oehmen et al. 2007) and have debated whether PAOs and DPAOs are 

the same organisms. The ratio of DPAO/PAO (Puptake rate, PUR) was relatively constant in our 

experiments, which suggests that DPAOs are PAOs capable of utilising nitrate as an electron 

acceptor.  

 

7.4.2 SLUDGE CHARACTERISTICS 

The sludge characteristics deteriorated when the DO set-point was lowered to values below 0.5 

mg O2 ·L
-1. This decrease led to smaller sludge particles. A 25% decrease in the average PSD was 

observed due to the reduction of the bigger particles, which intensify the fouling propensity, 

even though the median size of the particles was maintained. In anaerobic MBRs similar results 

were found, where lower aggregate sizes were indentified due to high dispersive growth 

associated to the anaerobic systems, leading to high fouling propensities (Martin-Garcia et al. 

2011). Faster FR were observed when the DO set-point values were lower than 0.5 mg O2·L-1 

because small particles in the solution were deposited on the membrane surface intensifying the 

fouling propensity. Air-scouring flow rate changes in the membrane tank did not significantly 

affect the PSD. Lower filterability values were observed at concentrations below 0.5 mg O2 ·L
-1, 

which is in agreement with the results of Wilén and Bálmer (1999). Regarding the SMP in 

Experiments A and B, the polysaccharide fractions increased by 20% and 15%, respectively, and 

the protein fractions increased up to 20% and 19%, respectively, because the low DO set-points 

and the low air-scouring flow rates intensified the stress of the microorganisms and enabled 

greater release of EPS (Gao et al. 2011). The results achieved in this study are also in agreement 

with those of Arabi and Nakhla (2009), who observed higher carbohydrate SMP concentrations in 

a simultaneous nitrification and denitrification MBRs, determining that anoxic conditions impact 

membrane fouling more than the shear rate.  

In addition, a rapid reduction of relative hydrophobicity was observed when the membrane air-

scouring flow rate SADm values were below 1 m·h-1. Lower relative hydrophobicity values are 
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correlated with increased fouling because of the hydrophilic characteristics of the membranes 

and the higher flock deterioration (Van den Broeck et al. 2011). Other studies have shown similar 

behaviour of relative hydrophobicity and fouling propensity in MBR pilot plants (Arabi and Nakhla 

2009) or full-scale municipal MBRs (Van den Broeck et al. 2011).  

Biological aeration affects the properties of the sludge and has an effect on the deterioration of 

the filtration performance, which was observed for the PSD, the CST, the filterability and the 

SMP. However, sludge characteristics also deteriorated when the membrane air-scouring flow 

rate decreased; there was a noteworthy decrease in hydrophobicity and significant changes in 

the SMP, the filterability and the CST.  

Filamentous bacteria did not show any specific changes in either of the experiments, with the 

DSVI confirming the filamentous index results. Although Ma et al. (2013) noted that some 

filamentous bacteria are related to membrane fouling, the presence of Spirillum spp. bacteria has 

not been reported to have an effect on the filtration efficiency.  

 

7.4.3  FILTRATION PERFORMANCE 

A DO set-point of 0.5 mg O2·L-1 in the aerobic tank and an SADm of 1 m·h-1 in the membrane tank 

are the optimal values for the filtration performance of this pilot plant based on the TMP, the FR 

and the Firr values. For operational conditions with lower aeration, in both the aerobic and the 

membrane tanks, the TMP and the FR values doubled and irreversible fouling was observed 

(Figure 7.4 and Figure 7.7). However, higher irreversible fouling was observed in Experiment B 

with an Firr value 2.5 times higher than in Experiment A (from 0.5 to 0 mg O2·L-1 and from 1 to 

0.75 m3·h-1). Moreover, when decreasing the membrane aeration so that SADm, values were 

below 1 m·h-1, Experiment B also experienced reversible fouling, with FR values 10 times higher 

than in Experiment A. 

After operating with SADm values lower than 1 m·h-1 in Experiment B, the following aeration 

increase did not provide any recovery for the TMP; an Firr of 25.83 mbars·day-1 was observed. In 

addition, despite achieving the same initial aeration conditions (SADm = 1.25 m·h-1), the observed 

FRs at the end of the experiments were 99% higher. The optimal aeration conditions enabled the 

reactor to operate with FRs lower than 0.008 mbar·s-1; operating at higher FR values is a 
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determinant for critical conditions. These operational critical conditions were reinforced by the 

critical flux values, which decreased 1.6 and 2.3 times compared to the initial conditions in 

Experiments A and B, respectively. A non-returnable point was observed when working at an 

aerobic DO set-point below 0.5 mg O2·L-1 and with SADm values lower than 1 m·h-1; operating 

under these conditions resulted in requiring chemical cleaning to recover stable conditions. 

It could be concluded that the fouling propensity in Experiment A is due to the deterioration of 

the sludge, which is caused by an increase in SMP fractions and a reduction of the PSD, causing 

increased fouling. This was reflected by the filterability decrease and the CST increase. In 

Experiment B, despite similar changes in sludge characteristics, a reduction of the SADm directly 

deteriorated the sludge characteristics (SMP increased, filterability and relative hydrophobicity 

were reduced and CST increased) and increased the fouling phenomenon. 

 

7.4.4  ENERGY EFFICIENCIES 
Aerobic aeration can be reduced up to 81% (at 0.5 mg O2·L-1, decreasing aeration flow from 5.74 

to 1.08 m3·h-1), and membrane aeration can be reduced up to a 20% (at 1 m·h-1 of SADm, which 

represents a decrease of air-scouring from 10 to 8 m3·h-1). With these operational conditions, 

filtration performance and sludge characteristics were not negatively affected and nutrient 

removal efficiency was improved. Therefore, the optimised total air flow rate was 9.08 m3·h-1, 

and the initial value was 15.79 m3·h-1. The average airflow rate saved was 42%, which, when 

using a centrifugal blower, represents an energy savings of 75% compared to the initial operating 

conditions. 

 

7.5  CONCLUSIONS  
Interrelations between biological nutrient removal processes, filtration processes and sludge 

characteristics determine the strategies for the integrated control of the two most important 

operating parameters in MBRs: biological and membrane aeration. Optimal values include a DO 

set-point of 0.5 mg O2·L-1 or an SADm of 1 m·h-1 (75% of energy reduction), during which the 

membrane compartment can be used to complete nitrification even though denitrification was 

favoured due to simultaneous nitrification/denitrification. Filtration performance and sludge 
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characteristics were not negatively affected. An irreversible point was noted when operating 

under the optimal conditions: the BNR and the sludge characteristics deteriorated, and chemical 

cleaning was required to recover the original conditions. 
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8.1 OVERVIEW 
Since the late 1990s, several improvements in the operational conditions of filtration and the 

decrease in the total capital expenditure required for the MBRs has led to its wider adoption in 

municipal wastewater treatment facilities (Ferrero et al. 2012). According to market expansion 

stabilisation at the turn of the 21st century, MBR technology is currently a consolidated 

technology (Judd 2011, Santos et al. 2011, Lesjean et al. 2009). 

The energy requirements of MBR systems are greater than the requirements of conventional 

activated sludge systems coupled with tertiary treatment. One of the parameters that 

significantly contributes to the total operational cost is membrane aeration (Santos et al. 2011, 

Verrecht et al. 2010). Because membrane aeration represents between 25-50% of the 

operational costs (Judd, 2011), several new automatic control systems or module configurations 

have focused on aeration reduction (i.e., reusing the air-scouring between different modules or 

using intermittent aeration) (Judd 2011, Verrecht et al. 2008, Drews 2010). However, robust 

control systems that are capable of reducing aeration requirements while maintaining optimum 

filtration performance are lacking. Ferrero et al. (2012) compared different control systems that 

aimed to reduce operational costs by modifying operational conditions (flux, cycle length, etc.). 

These authors stressed that the number of patents and scientific publications regarding control 

systems for membrane bioreactors remains very limited. In addition, the patents are usually very 

general and based on large assumptions to cover a wide spectrum of intellectual property. 

However, these statements are not always scientifically proven or validated, at least for long 

term conditions (Ferrero et al. 2012). There are very few research publications on control 

systems that have been developed at the pilot scale, and none of these systems has been 

validated in closed-loop at full scale (Huyskens et al. 2011, Lorain et al. 2010). 

The membrane air-scouring flow rates that are adopted in practice are generally very 

conservative according to the manufacturers’ recommendations. The most recent developments 

on the module configuration and aeration strategies have resulted in considerable improvements 

(i.e., using cyclic aeration for hollow fiber membranes (Barillon et al. 2013). However, in most 

cases, the air-scouring flow rate remains fixed in most cases regardless of the sludge quality or 

membrane permeability. Thus, automatic control systems are needed to optimise aeration in 

termf of the membrane performance and sludge characteristics.  
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Ferrero et al. (2011a) developed a control algorithm for air-scouring reduction based on 

permeability evolution, which was successfully tested at the pilot scale (Ferrero et al. 2011b). 

This control system was patented and registered as Smart Air MBR®.  

The aim of this chapter is to report a full-scale validation of this MBR air-scouring control system 

and to illustrate that energy savings can be achieved without affecting the filtration process 

performance, the nutrient removal efficiencies or the sludge characteristics. 

 

8.2 MATERIALS AND METHODS 

8.2.1 LA BISBAL D’EMPORDÀ WWTP  

The membrane air-scouring control system was validated over two years at La Bisbal d’Empordà 

WWTP (LBE, North East of Spain). This full-scale MBR plant (Figure 8.1) was designed to treat a 

maximum daily flow rate of 3200 m3 of municipal wastewater. 

 
Figure 8.1 |Flow diagram of LBE water line. 

 

The treatment steps consist a coarse screen (8 cm), a grit chamber, a buffer tank (1110 m3), a fine 

screen (1 mm), an oxidation ditch bioreactor (3636 m3), two parallel membrane lines (30 m3) with 

submerged ultrafiltration membranes (ZeeWeed 500C, Zenon, GE), and an additional secondary 

settler that is employed during wet weather and peak flows. Each filtration line is equipped with 

an independent positive displacement air blower (GM 25S, Aerzen, Germany) that provides a 

fixed aeration of 17.8 m3·min-1 for each line. Each blower is operated at 3500 rpm (50 Hz), 
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corresponding to an energy consumption of 289.5 kWh per day. A detailed description of the 

MBR is presented in Table 8.1. 

 

Table 8.1 | Membrane characteristics at La Bisbal d’Empordà WWTP. 

 Filtration Line A Filtration Line B 

MBR capacity m3·day-1 1,600 1,600 
Membranes manufacturer  Zenon, General Electric 
Membranes  model   ZeeWeed 500c  
Pore size µm 0.04 
Total membrane area  m2 2,904 2,904 
Air-scouring flow m3·min-1 17.8 - 14.24 17.8 
SADm

* Nm3·m-2·h-1 0.37 - 0.29 0.37 
SADp** Nm3·h-1·m-3·h1 16.02 - 12.82 16.02 
Filtration cycle filtration/backpulse 10 min / 40 sec 
Average permeate flux L·m-2·h-1 (LMH) 23 ± 2 
Average permeate net flux L·m-2·h-1 (LMH) 21.6 ± 2 
 

Standard 
maintenanceleaning:  
Chemically-enhanced 
backflush (CEB) 

45 minutes of CEB 
140 mg·L-1 of NaClO + 200 mg·L-1 of EDTA 
when the TMP<-0,45bars 

Recovery chemical cleaning 
6–12 hours of 
in-situ cleaning 

 
Soaking the membranes in  
basic or acid solution (1,500ppm)  

*SADm: Specific Aeration Demand with respect to membrane area, according to membrane manufacturer  

**SADp: Specific Aeration Demand with respect to permeate flow, according to membrane manufacturer 

 

Membranes were installed in 2003, and only 5.7% of the total area has been replaced over 10 

years of operation. A visual inspection carried out in 2011 revealed that the membranes were in 

good condition (i.e., less than 1% of the membranes were damaged). The membranes were 

installed in 2003, and only 5.7% of the total area has been replaced over 10 years of operation.   

A visual inspection carried out in 2011 revealed that the membranes were in good condition (i.e., 

less than 1% of the membranes were damaged). Chemically-enhanced backflush (CEB) is 

performed as a maintenance routine procedure when the TMP exceeds a threshold of 0.4 bars 

(usually every week). First, a solution of 140 mg·L-1 sodium hypochlorite and 200 mg·L-1 EDTA is 

applied for 5 backflush pulses of 15 seconds, with a 5-minute relaxation between pulses, at a flux 

of approximately 23 L·m-2·h-1 (LMH). Every 6 months, recovery chemical cleanings are carried out 
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by soaking the membranes in an alkaline solution (a 1500 mg·L-1 sodium hypochlorite solution) or 

an acid solution (a 1500 mg·L-1citric acid solution) for 6-12 h. Manual cleanings are performed 

every two years (Gabarrón et al. 2013). 

 

8.2.2 AIR-SCOURING CONTROL SYSTEM: SMART AIR MBR®
  

SmartAir MBR® control system modifies the membrane air-scouring flow rate based on the 

permeability evolution, which is used as an indicator of the membrane performance and sludge 

characteristics (Comas et al. 2010). TMP and permeate flow are monitored in real time. Long-

term (LT) and short-term (ST) permeability trends are evaluated and compared to identify savings 

opportunities and alarms. The controlled variable is the slope ratio (SR), which is calculated as the 

ratio between the ST and the LT permeabilities. The SR is proportional to the control action, 

which in this case is the daily regulation of the air scour flow rate by increasing or decreasing the 

blower frequency (the manipulated variable) (Ferrero et al. 2011a). 

Normally, the permeability decreases in proportion to the cake layer resistance, which is roughly 

proportional to the volume of sludge filtered. However, corrective actions such as chemical 

cleaning or a decrease in the permeate flux, can cause the permeability to increase. Operational 

conditions (the temperature, the suspended solids concentration, the sludge age, etc.) can also 

affect the sludge permeability. Thus, four different scenarios (i.e., relationships between ST and 

LT) have been defined for the air scour control system (Figure 8.2).  

 

 
Figure 8.2 | Different relationships between LT and ST permeability. 
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 Case 1: The long term permeability slope is negative (LT<0), and the short term 

permeability slope is positive or equal to zero (ST ≥ 0), corresponding to a moderate 

energy saving opportunity. 
 

 Case 2: The long term permeability slope is negative (LT<0), and the short term 

permeability slope is negative (ST < 0, lower or higher than LT), corresponding to a low or 

a non-energy saving opportunity. 
 

 Case 3: The long term permeability slope is positive or equal to zero (LT≥0), and the short 

term permeability is positive or equal to zero (ST ≥ 0, lower or higher than LT) 

corresponding to a moderate or high energy saving opportunity. 
 

 Case 4: The long term permeability slope is positive or equal to zero (LT≥0), and the short 

term permeability is negative (ST < 0), corresponding to a moderate or low energy saving 
opportunity. 

 

EXPERIMENTAL PLANNING 

The experimental work was divided in two main phases:  

 PHASE 1: DATA GATHERING AND CALIBRATION OF THE CONTROL SYSTEM.  
The air scour control system was operated in an open-loop regime under the conditions 

recommended by the membrane suppliers for 4 months (Table 8.1). Data on the TMP, the 

permeate flux and the working hours per day of both process lines were collected in real time, 

processed and compared. The information acquired over this period was used to calibrate the 

control system parameters. The ST was determined to be 4 days, and the LT was determined to 

be 14 days (Ferrero et al. 2011b). 

 

 PHASE 2: VALIDATION.  

The air scour control system was operated in a closed-loop regime for filtration line A, 

whereas line B was used as a reference with a constant air scour flow rate of 17.8 m3·min-1 

(as recommended by the membrane manufacturers). Figure 8.3 is a schematic of the 

membrane tank that shows the two filtration lines and the equipment for the control 

system. In Phase 2, the maximum flow rate reduction allowed for the air scour control 

system in line A was increased progressively from 5% of the air scour flow rate to 10%, 15% 

and 20% of the air scour flow rate. The permeability decay was used as an indicator of the 
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general fouling evolution, and the fouling rate (which was measured as the slope of the 

permeability for each permeate cycle, as in Monclús et al. (2011)), was used to estimate the 

fouling that accumulated in each cycle. The filtration performance, energy consumption and 

economic savings were evaluated and compared for the two filtration lines. The biological 

nutrient removal efficiencies and sludge characteristics were also measured and compared 

for the last three years. 

 

 

Figure 8.3| Schematic diagram of the control system of the LBE WWTP. 

 

8.3 RESULTS AND DISCUSSION 

8.3.1 PHASE 1: DATA GATHERING AND CALIBRATION OF THE CONTROL SYSTEM 

The evolution of the daily averaged TMP and the permeability values for both lines exhibited very 

similar behavior for both lines during the entire phase: the average permeability was 66.9 ± 7.3 

LMH·bar-1 for line A and 62.1 ± 4.1 LMH·bar-1 for line B (Figure 8.4). Line A exhibited a slightly 

higher permeability than line B until February 16th when both permeabilities began to fluctuate, 

such that the lines exhibited almost the same permeability at the end of Phase 2 (52.5 LMH·bar-1 

for line A and 51.7 LMH·bar-1 for line B). Similar filtration times were observed for both lines (18.2 

± 0.1 working hours·day-1 for line A and 18.1 ± 0.3 working hours·day-1 for line B), and the 

number of maintenance CEB cleanings for both lines was also very similar (13 for line A and 14 

for line B).  
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Figure 8.4 | Fouling evolution (permeability) during 4 months previous of the control system activation. 

 

The daily TMP and the permeate flux for both lines were registered to calibrate the control 

system parameters based on the most common ranges for the ST, LT and SR. For filtration line A, 

for which the control system was implemented, the SR ranged from +2 to -2, showing the highest 

percentage of occurrence and represented 43% of the total cases (Figure 8.5A). In defining the 

entire SR range, 63% of the total cases were taken into account, where the lowest value was -2.5 

and the highest value was +5.0 (Figure 8.5B). These historical SR values were used to set the 

variation in the air scour flow rate (in % or in m3·min-1). The control system regulated variations in 

the air scour flow rate using a positive displacement air blower through a frequency driver.  

 
Figure 8.5 | SR percentage of occurrence. A) Probability B) Accumulated probability. 
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Table 8.2 shows the relationships between the SR and the variations in the air scour flow rate 

that were used in the second phase of the validation project. 

Table 8.2 | Control system actions 

LT ST 
Slope Ratio 
SR = ST/LT 
 [...) 

Airflow  
Variation 
(%) 

Airflow  
variation 
(m3·min-1) 

Saving 

LT<0 

CASE 1 
 
ST ≥ 0 

<-2.5 -3% -0,53 

Moderate 

[-2.5; -2) -2.6% -0,46 
[-2; -1.5) -2.2% -0,39 
[-1.5; -1) -1.8% -0,32 
[-1; -0.5) -1.4% -0,25 
[-0.5; 0) -1% -0,18 

CASE 2 
 
ST < 0 

[0; 0.2) -1% -0,18 
ST≥LT 
 
Moderate 

[0.2; 0.4) -0.8% -0,14 
[0.4; 0.6) -0.6% -0,11 
[0.6; 0.8) -0.4% -0,07 
[0.8; 1) -0.2% -0,04 
[1; 1.2) +0.3 % +0,05 

ST<LT 
 
No savings  

[1.2; 1.4) +0.6% +0,11 
[1.4; 1.6) +0.9% +0,16 
[1.6; 1.8) +1.2% +0,21 
[1.8; 2) +1.5% +0,27 
[2; 2.5) +1.8% +0,32 
[2.5; 3) +2.1% +0,37 
[3; 3.5) +2.5% +0,45 
[3.5; 4) +3% +0,53 
[4; 5) +4% +0,71 
≥5 +5% +0,89 

LT>0 

CASE 3 
 
ST ≥ 0 

[0; 0.2) -0.4% -0,07 
ST<LT 
 
Moderate 

[0.2; 0.4) -0.8% -0,14 
[0.4; 0.6) -1.2% -0,21 
[0.6; 0.8) -1.4% -0,25 
[0.8; 1) -1.8% -0,32 
[1; 1.2) -2.5% -0,45 

ST≥LT 
 
High 

[1.2; 1.4) -3% -0,53 
[1.4; 1.6) -3.5% -0,62 
[1.6; 1.8) -4% -0,71 
≥1.8 -5% -0,89 

CASE 4 
ST < 0 

<-2 0% 0,00 
Low  

[-2; 0) -0.5% -0,09 
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8.3.2 PHASE 2: VALIDATION  

FOULING EVOLUTION 

The fouling behavior was monitored based on the evolution of the permeability and the fouling 

rate (FR) to ensure that there were no differences between the filtration line that was regulated 

by the air scour control system (line A) and the reference line B.  

Figure 8.6 shows the permeability (K) evolution of both filtration lines. At the end of Phase 1 

(before the closed-loop implementation, from day -50 to day 0), the difference between the 

permeabilities of the lines was less than 0.6% (i.e., the permeability was 57.1 ± 10 LMH·bar-1 for 

line A and 57.4 ± 9.7 LMH·bar-1 for line B). The air scour control system was then operated in a 

closed-loop regime (day 0) with a maximum air flow reduction of 5% (i.e., an air-scouring flow 

rate of 16.9 m3·min-1): the evolution of the permeability was very similar for both lines. After two 

weeks, the maximum allowable reduction in the flow rate was increased to 10% over 47 days 

(from day 14 to day 61). The maximum reduction in the air scour flow rate was then increased up 

to 15%. Over this period, the permeabilities of both lines were almost identical, except for days 

115-130 when a recovery cleaning was performed on both lines (the permeability reached the 

minimum value set by the operators), and the permeability rose to 80 LMH·bar-1 and 95  

LMH·bar-1 for lines A and B, respectively. The high fluctuations in both permeabilities, which were 

generally parallel, were caused by the CEB. This behavior reflected that following a CEB, the 

permeability decreased until a subsequent CEB was performed. 

 
Figure 8.6 | Fouling evolution in the La Bisbal d’Empordà WWTP: K(A) with Smart Air MBR and K(B) without Smart Air MBR.  
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A final maximum reduction in the air scour flow rate of 20% was applied from day 160 to day 320. 

The behaviors of both profiles were very similar: the average permeability was 63.5 ± 5.0 

LMH·bar-1 for line A and 63.7 ± 5.93 LMH·bar-1 for line B. Moreover, the filtration time was similar 

for both lines (17.9±2.4 working hours/day for line A and 17.8±2.8 working hours/day for line B), 

and the number of maintenance CEB cleanings was also very similar (90 for line A and 92 for line 

B). Therefore, no significant differences between filtration lines A and B were detected. 

Note that the control system decreased the air scour flow rate when the fouling was reduced, 

usually after a CEB was performed (e.g., days 37 and 64 in Figure 8.6). However, when the fouling 

tendency was bigger, the control system increased the air scour flow rate in an attempt to 

recover the previous permeability tendency (e.g., days 52, 142 and 220 in Figure 8.7).  

 

Figure 8.7 | Permeability slope per each permeate cycle: MBR-A with Smart Air MBR and MBR-B without Smart Air MBR.  

 

A deeper examination of the fouling behavior revealed that the modifications of the air-scouring 
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LMH·bar-1·min-1 for line A and -0.22 ± 0.1 LMH·bar-1·min-1 for line B. During the first two months 

of closed-loop operation (from day 0 to day 65), the FRs decreased equally for both lines up to -

0.81 LMH·bar-1·min-1 for line A and -0.72 LMH·bar-1·min-1 for line B at day 65. The FRs then 

increased because of the CEB that was performed in the WWTP, resulting in an average value of  

-0.29 ± 0.15 for line A and -0.30 ± 0.15 for line B just before the recovery chemical cleaning (days 

115-130). After the recovery chemical cleaning (from day 130 onwards), the FRs fluctuated, 

reaching values of -0.19 LMH·bar-1·min-1 for line A and -0.16 LMH·bar-1·min-1 for line B at the end 

of the validation period. Throughout the validation period (330 days of operation), the average 

FR was -0.28 ± 0.16 LMH·bar-1·min-1 for line A and - 0.28 ± 0.17 LMH·bar-1·min-1 for line B. 

Considered the permeability values achieved (Figure 8.6) together with the FR values (Figure 8.7) 

at the end of Phase 2, the permeability in filtration line A decreased by 0.30% in each cycle, 

whereas the permeability for line B decreased by 0.25%. These results show that the air scour 

control system did not affect the fouling behavior in line A compared to line B. 

The effect of the closed-loop air scour control system on the biological processes was evaluated 

by comparing the sludge properties and the biological nutrient removal efficiencies over the last 

3 years (Table 8.3). The sludge concentration, filterability (which was measured as the capillarity 

suction time (CST)) and the sludge settleability (which was measured as sludge volumetric index 

(SVI)) did not exhibit any differences before and after the implementation. Similarly, the 

biological nutrient removal efficiencies remained constant over the last 3 years, except for the 

nitrogen removal efficiencies, which decreased in 2011 because of the implementation of a 

control system for biological aeration to reduce energy requirements in the oxidation ditch. 

Table 8.3 | Activated sludge properties and biological nutrient removal over the last three years.  

Category Parameter Units 2010 2011 2012 

Sludge properties 

Mixed Liquor 
Suspended solids 

g·L-1 5.7 ± 1.4 6.3 ± 1.5 5.7 ± 1.2 

SVI  mL·g-1 307 ± 93 227 ± 74 257 ± 80 
CST seconds -- 54 ± 10 50 ± 9 

Biological Nutrient 
Removal 

Chemical oxygen 
demand 

% 

96 ± 4 95 ± 3 95 ± 2 

Biochemical oxygen 
demand 

97 ± 2 97 ± 3 97 ± 2 

Total nitrogen 93 ± 10 86 ± 13 85 ± 7 
Phosphorous 81 ± 15 77 ± 19 80 ± 10 
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ENERGY CONSUMPTION 

During the validation phase (Phase 2), 32% of the control actions applied corresponded to 

moderate or low variations in the air scour flow rate (case 1, case 2 with ST≥LT, case 3 with ST<LT 

and case 4), whereas 43% of the control actions corresponded to high variations in the air scour 

flow rate (case 3 with ST≥LT): the air scour flow rate was incremented by the control system in 

only 25% of the cases (case 2 with ST<LT). The average reduction in the air scour flow rate was 

13% over the 1-year validation period. 

Before the operation of the air scour control system in a closed-loop regime, the energy 

consumption for the aeration demand of each filtration line was 289.5 kWh·day-1 for a design air 

scour flow rate of 17.8 m3·min-1 (at 50 Hz) (Figure 8.8).  

 
Figure 8.8 | Energy consumption evolution with Smart Air MBR. 
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energy saving ratio during this validation phase averaged 0.025 kWh·m-3 for a maximum value of 

0.04 kWh·m-3.  

Finally, the payback of the air scour control system was calculated considering that the system 

was installed for both filtration lines and for a fixed maximum reduction in the air scour flow rate 

reduction of 20%. For investment costs of the required equipment of 2950€ per filtration line, the 

payback of the control system was estimated at 1.8 years (based on the Spanish electricity cost). 

 

8.4 CONCLUSIONS  
The full-scale air-scouring control system was successfully validated, displaying a 13% average 

reduction in the air-scouring flow rate and a maximum reduction of 20%. This reduction in air-

scouring flow rate caused the energy consumption during membrane aeration to decrease by an 

average of 14% and a maximum of 22%.  The energy  savings ratio was estimated as 0.025 

kWh·m-3, with 0.04 kWh·m-3 as the maximum ratio. Permeability and fouling rate trends were not 

affected by the control system; they presented very similar patterns for both filtration lines 

throughout the experimental evaluation period of more than 320 days. The energy savings in the 

MBR, which normally operates very conservatively, is important for increasing the 

competitiveness of this technology. 
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The high demand for water and its shortage in arid or semi-arid regions make MBR a competitive 

technology thanks to the high quality effluent it produces. However, understanding and 

optimising a system as complex as that of MBRs, is difficult and time consuming. Between the 

different processes there are a high number of complex interactions which range from nutrient 

removal to hydrodynamic aspects, from activated sludge characteristics to filtration processes. It 

is imperative to take into consideration the characteristics of the sludge as this plays an 

important role in MBRs. MBRs are systems with high retention times and specific operating 

modes (i.e. permeate/backwashing, high shear), which directly affect the specifics of the sludge, 

such as EPS or SMP production, bacterial communities or particle size. Above all, what still 

remains as an inevitable phenomenon is the increase in TMP as a result of the fouling 

phenomena. Unless all the relationships are better understood, fouling phenomena will 

continued to be mitigated rather than prevented, and thus operational costs will increase. 

This thesis aims to provide insights into the integrated operation of MBRs, which involve 

optimizing biological nutrient removal, minimizing fouling and, whenever possible, implementing 

cost saving strategies. Modelling and experimental studies have been carried out on both pilot-

scale and full-scale systems to achieve this goal. 

 

GENERAL DISCUSSION 

Most MBR studies have been focused on single targets, for instance, optimizing BNR (Dvořák et 

al. 2013, Monclús et al. 2010a), studying the fouling phenomena (Arabi and Nakhla 2009, Drews 

et al. 2009) or examining the effects of sludge characteristics (Beltrán et al. 2009, Gao et al. 2011, 

Lee et al. 2003, Menniti et al. 2009, Sabia et al. 2013). Due to the high number of interactions 

among these previously mentioned phenomena, it is essential not to ignore any of the relevant 

aspects, but rather to consider them in an integrated way. First, the most relevant operational 

parameters for BNR are identified through deterministic modelling in Chapter 4. This chapter 

may focus on biological nutrient removal, some sludge properties and fouling phenomena have 

also been taken into account, although the filtration model presented some limitations regarding 

air scouring efficiency on fouling recovery. Complemented with expert knowledge, it has been 

possible to develop a decision tree to identify best set-point values for biological nutrient 

removal optimization. Nevertheless, the pilot plant did not allow an adequate degree of freedom 
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so as to explore optimization of hydrodynamics. Chapter 5 explores hydrodynamics in a full-scale 

hybrid MBR. It illustrates a model-based optimization of the system with respect to effluent 

quality and operational costs depending on the treatment of wastewater flux through 

membranes, secondary settler or through a combination of both. It also details the opportunity 

to better model the hydraulics of the oxidation ditch using several tanks in-series and dividing 

each tank into two horizontal layers. This better hydraulic description led to a better calibrated 

model. Operation using membranes normally implies higher energy costs due to membrane 

aeration; therefore membrane aeration could be used to save some energy in the aerobic 

compartment. However, we demonstrate the capacity of coarse-bubble aeration to finish the 

nitrification step in the membrane tank. On the other hand, the operation of the plant with a 

secondary settler presented higher anoxic times, resulting in lower nitrates in the effluent along 

with lower associated costs. This, however, increased the risk of the rising sludge phenomena 

(because of possible denitrification in the settler), and also decreased the effluent quality (in 

comparison with membrane treatment) due to solid concentrations in the effluent. 

Furthermore, the fouling phenomenon was not entirely explained by the models used in 

Chapters 4 or 5. Thus, other types of models to better describe TMP evolution were explored. 

Chapter 6 illustrates the comparison of the description of TMP by means of a deterministic 

model and a data-driven one as well. We demonstrated that they complement each other since 

the deterministic models were able to assemble the TMP profile under stable operating 

conditions, whereas the higher dynamics in TMP and permeability were better fitted by the data-

driven model. Deterministic models should always be complemented with experimental fouling 

indicators (i.e. CST, filterability, etc). However, the use of deterministic models to describe 

biological treatment processes through the world-wide accepted ASM family is the state-of-the-

art practice (Henze et al. 2000). Data-driven models present the benefit of learning from the 

system by using empirical data. The use of available on-line data from sensor measurements 

monitoring the filtration enabled a reliable model tree for the TMP description to be developed. 

Similarly, other data-driven studies can help to assess the fouling and filterability behaviour 

(Maere et al. 2012, Van den Broeck et al. 2011). As the ASM-type model is so well accepted, data-

driven models for BNR description are not common. Besides, usually amount of online data for 

influent nutrient concentrations is scarce due to a lack of nutrient sensors in most plants. 
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When models are not able to describe certain situations or relationships due to a lack of 

knowledge, the need for experimental studies arises. In this sense, Chapter 7 outlines how 

biological and membrane aeration affect filtration performance, sludge properties and biological 

nutrient removal efficiency. Several studies have focused on the effect of the membrane air-

scouring on TMP performance and sludge characteristics (Braak et al. 2011, Brannock et al. 2010, 

Choi et al. 2009, Germain et al. 2007, Hong et al. 2007, Ji and Zhou 2006), however, few of them 

paid attention to BNR evolution as they considered the membrane tank unsuitable for nutrient 

removal (Fenu et al. 2010b). Results in Chapters 5 and 7 demonstrate the ability of the 

membrane aeration to nitrify. However, biological aeration (aeration in the aerobic 

compartment) reduction also affected filtration performance. The reduction of the aerobic set-

point to values lower than 0.5 mg O2·L-1 led to significant changes in sludge properties, 

influencing the filtration with an increase in the TMP and fouling rate. Chapter 7 focuses on 

energy efficiency, showing how energy savings can be achieved by increasing anoxic zones to the 

detriment of the biological aeration. In addition, a reduction of up to 20% of membrane air-

scouring was accomplished without affecting the integrated process, and this was the major 

contributor to cost savings.  

The results from Chapter 7 validate the modification of the membrane air-scouring flow rates 

through an automatic control system in one of the two membrane lines of the full-scale facility 

(Chapter 8). The control actions to regulate the air-scouring flow rate were based on the 

evolution of the permeability (Ferrero et al. 2011a), and served as an indicator of the membrane 

performance and sludge characteristics. This full scale validation resulted in a cost savings of 

15%, all the while maintaining good filtration performance, adequate BNR efficiency and 

satisfactory sludge properties in the system. Cost reduction was already noticeable in an MBR 

plant treating 3225 m3·d-1, but of course its extrapolation to bigger MBR plants could result in 

greater savings, thus contributing to convert MBR systems into more economically feasible 

technology. Although the reduction of the aerobic set-point in the biological part of the full scale 

system has not been described in this thesis (as this was done in the pilot plant -see Chapter 7), 

an automatic control system reducing the aerobic aeration and based on electric rates is 

currently being applied. 

 



 9. DISCUSSION 

141 

INTEGRATED OPERATION 

The knowledge acquired from all of the studies during this thesis will be useful in the 

development of a knowledge-based supervision module, in other words the top echelon of a 

decision support system (DSS) for MBR operation. The supervision level is located hierarchically 

at the top of the automatic control and data acquisition levels (Figure 9.1). Data acquisition and 

signal processing is carried out to identify outliers, missing data and validate all data required for 

the control and supervision levels. Consequently, the validated data is used for the real-time 

automatic control. Data acquisition and control systems for biological aeration are normally 

available in most MBRs. However, although Comas et al. (2010) have already reported on the 

potential benefits of a knowledge-based approach, most of the real MBR systems still do not 

incorporate a closed loop control for air-scouring, rather preferring to use the open loop control, 

typically suggested by manufactures for conservative operation. None of them incorporate a set 

of knowledge-based rules able to supervise both biological, hydrodynamic and filtration 

processes in an integrated way, i.e. current MBR systems do not regulate, if needed, the set-

points for aerobic DO, optimal LMH and maximum air-scour reduction in an integrated way.  

 
Figure 9.1 | A knowledge-based DSS for the integrated operation of MBR. 
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The knowledge collected from all empirical and modelling studies has allowed a table relating the 

modifications of operational parameters and the biological, filtration and costs issues to be 

developed (Figure 9.2). Some of the operational parameters are the controlled or manipulated 

variables of automatic control systems, others involve manual modifications. Therefore, this 

table forms the basis for the development of a set of rules for the integrated operation of MBRs 

and which will then become the knowledge base for the supervision module (Figure 9.1).  These 

rules combined with on-line data (TMP, temperature, FR, DO, etc.) and off-line data (i.e. sludge 

characteristics, influent and effluent nutrient concentrations, TSS) will allow the proper 

operational set-points for the automatic control level along with some operational ranges that 

are restricted to be determined.  

As demonstrated in Chapters 4, 5 and 6, as well as in other studies (Insel et al. 2011, Mannina 

and Cosenza 2013, Verrecht et al. 2010a), model-based studies can be useful to test and optimise 

operating set-points defined by the supervision level. All the rules for the integrated operation 

will have to be experimentally verified in full-scale systems. An initial example was the validation 

of a KB-supervision for a closed-loop air-scouring control system, which supervised the maximum 

air-scouring reduction allowed, while maintaining good filtration together with efficient BNR and 

good sludge quality (Chapter 8). In current practices in MBR systems the aerobic DO set-point is 

regulated just enough to fulfil the legal discharge limits for nutrient concentrations, but 

disregards filtration performances and changes in sludge properties. This validation of the 

automatic air-scouring control system and its knowledge-based supervision in a full-scale MBR is 

evidence of the usefulness of the DSS. 

 

RELATIONSHIPS FOR THE INTEGRATED OPERATION 

A summary of the relationships between the operating parameters and the biological, filtration, 

sludge characteristics and costs issues in an MBR are presented in Figure 9.2. These relationships 

are based on the results presented in this thesis and complemented by findings in the literature. 

It is necessary to point out that most of the work done in MBR does not relate the operational 

parameters to the processes previously mentioned. For instance, how filtration performance is 

affected by specific sludge properties is well studied. So too is the use of statistics to find the 

interactions between fouling phenomena and effluent characteristics or sludge properties. 
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However, these studies are not related to operational parameter changes, thus, they are not 

included in the table. In addition, there are some works related to the nutrient effect of the 

operational parameters, to the biological nutrient removal or to sludge properties which can fill 

the gaps, but as they were not carried out in MBR systems this knowledge has not been included 

in Figure 9.2. 

From Figure 9.2, the exact effect of recirculation on the filtration performance has not been 

demonstrated clearly. However, optimization of BNR through recirculation changes, similar to 

CAS systems, has been identified. Gao et al. (2011) indicated the affect of the external 

recirculation on the denitrification processes, when high amounts of DO from the membrane 

tank are reciculated affecting the anoxic conditions.  

The effects of the biological aeration increase are well known in the BNR, but little attention has 

been paid to its affect on sludge characterization and the filtration process. How the increase of 

the biological aeration decreased the production of bound EPS, SMP and PSD, and improved the 

filterability with no affect on sludge hydrophobicity has been demonstrated. In Chapter 7, there 

is an extended discussion about these effects. The results from Chapter 7 identify how the 

decrease in biological aeration, and the subsequent changes to the sludge properties, led to a 

decrease in the efficiency of the filtration process.  

On the other hand, the increase in membrane aeration propitiates better filtration performances 

and increases the efficiency of the physical cleanings. Biological nutrient removal can also be 

achieved in the membrane compartment (Chapter 7). With regards to sludge properties, higher 

air-scouring provoke a decrease in the bound EPS, SMP and PSD (Chapter 7 and references 

therein). However, too much air-scouring creates high shear. The excess of shear in the system 

can also provoke floc breakage, leading to smaller particles, blocking membrane pores and 

increasing fouling (as identified in Chapter 6). High shear can also stress microorganism 

behaviour, with higher excretion of SMP or bound EPS (Germain et al., 2007).  

On the subject of the permeate flux, no modification of flux properties related to nutrient 

removal were found. On the other hand, the increase in the flux is related to higher bound EPS 

and SMP production, higher PSD and lower filterability. Higher flux and closer to the critical flux 

are reported as negatively influencing the filtration process. 
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With regards to influent characteristics, higher F/M ratios were demonstrated to propitiate the 

production of bound EPS and SMP and decrease filterability. Thus, the higher F/M ratios are 

related to the increase in TMP values. 

The effects of temperature on the BNR have not been studied specifically in MBR systems. 

Nevertheless, temperature plays an important role on sludge viscosity and it directly affects 

sludge properties and filtration performance. As was demonstrated in Chapter 6, the affect of the 

temperature led to a better TMP performance and decreased filterability values.  

A step towards the integrated operation of MBRs has been presented in this thesis. However, 

further research is still needed to convert all of these relationships into rules and then implement 

them in the supervision module to validate them experimentally. In doing so, energy costs and 

the complexity associated with MBR operation will be significantly reduced, and will help to 

convert MBR systems into a more competitive technology, one to be considered seriously when 

facing water shortage problems.   
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Figure 9.2 | Effects of operating conditions on filtration performance, sludge and biological processes. The numbers in superscript indicate the literature references reaffirming the 

statement. In addition, C4 stands for Chapter 4, C5 Chapter 5, C 6 Chapter 6, C7 Chapter 7 and C8 means Chapter 8.Concretely, each literature reference are detailed below: 1 

(Tchobanoglous et al. 2003), 2 (Bekir Ersu et al. 2008),3 (Tan and Ng 2008), 4(Gao et al. 2011), 5(Arabi and Nakhla 2009), 6(Menniti et al. 2009), 7(Drews et al. 2006a), 8(Drews et al. 2007), 
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This thesis presented a step towards the integrated operation of MBRs through experimental and 

model-based studies. The most important conclusions arising from the present work are 

summarized below: 

 

i. A model-based approach and sensitivity analysis enabled the identification of the 

most sensitive parameters for the integrated operation of nutrient removal and 

filtration processes. 

ii. The decision tree based on simulation studies and expert knowledge enabled the use 

of the optimal operating parameters for nutrient removal by MBRs, thus minimizing 

energy and costs.  

iii. An integrated model for the full-scale hybrid MBR has been used to optimise the 

hydrodynamics of the plant, treating the effluent by membranes or secondary 

settler. This model used the deterministic biological model (ASM2d), involving a two 

layer hydraulic model for oxidation ditch description, a qualitative model to estimate 

the risk of the activated sludge solid separation, a coarse bubble model for 

membrane aeration and a 1-D Bürger model for a proper description of the settler.  

iv. The optimisation of the hydraulic management resulted in significant savings by 

reducing membrane filtration in favour of gravitational settling, whilst still meeting 

legal discharge requirements.  

v. MBR fouling is better described by a deterministic model when operating above 20 

°C, constant MLSS, DO and pH, subcritical filtration conditions or with permeate 

fluctuations; whereas it is better described by data driven-model when operating 

below 20 °C, low pH, under critical filtration conditions and in periods with relevant 

variations in other operating parameters, such as pH or DO in the aerobic reactor.  

vi. TMP description under steady state operation was demonstrated to be properly 

described by a deterministic model. However, under dynamic and changing 

operation the data-driven models can describe this behaviour better. 
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vii. Experimental studies were necessary for the identification of the interrelationships 

between the biological and filtration processes. 

viii.  A total flow reduction of 42% (75% energy reduction) has been achieved by 

managing biological and membrane aeration in MBRs to the optimal values (0.5 mg 

O2·L-1 DO set-point and 1 m·h-1 SADm), while preserving filtration performance and 

sludge characteristics. 

ix. The air-scouring control system based on permeability trends was successfully 

validated at full scale for one year. 

x.  The validation of the control system demonstrated an average air-scouring 

reduction of 13% (maximum reduction of 20%) leading to an average energy saving 

of 14% (maximum energy saving of 22%), without compromising permeability and 

fouling rate trends. 

All results obtained as part of this thesis will form the knowledge base of the expert supervision 

module for the integrated operation of membrane bioreactors.  

 

 

 

 

 

 

 

 

 

 



10. CONCLUSIONS 

150 

 

 

 

 

 



 

151  

11  

BIBLIOGRAPHY 
  



11. BIBLIOGRAPHY 

152 

Abusam, A., Keesman, K., Van Straten, G., Spanjers, H. and Meinema, K. (2001) Parameter estimation 
procedure for complex non-linear systems: calibration of ASM No. 1 for N-removal in a full-scale 
oxidation ditch. Water Science & Technology 43(7), 357-366. 

Ahn, Y.T., Choi, Y.K., Jeong, H.S., Chae, S.R. and Shin, H.S. (2006) Modeling of extracellular polymeric 
substances and soluble microbial products production in a submerged membrane bioreactor at 
various SRTs. Water Science and Technology 53(7), 209-216. 

Aimar, P., Howell, J.A. and Turner, M. (1989) Effects of concentration boundary layer development on 
the flux limitations in ultrafiltration. Chemical Engineering Research and Design 67(3), 255-261. 

Al-Amri, A., Salim, M.R. and Aris, A. (2010) The effect of different temperatures and fluxes on the 
performance of membrane bioreactor treating synthetic-municipal wastewater. Desalination. 

APHA (2005) Standard Methods for the Examination of Water and Wastewater, American Public 
Health Association. American Water Works Association (AWWA) & Water Environment Federation 
(WEF), Washington DC. 

Arabi, S. and Nakhla, G. (2009) Characterization of foulants in conventional and simultaneous 
nitrification and denitrification membrane bioreactors. Separation and Purification Technology 69(2), 
153-160. 

Audenaert, W.T.M., Vermeersch, Y., Van Hulle, S.W.H., Dejans, P., Dumoulin, A. and Nopens, I. (2011) 
Application of a mechanistic UV/hydrogen peroxide model at full-scale: Sensitivity analysis, calibration 
and performance evaluation. Chemical Engineering Journal 171(1), 113-126. 

Bacchin, P., Aimar, P. and Field, R.W. (2006) Critical and sustainable fluxes: Theory, experiments and 
applications. Journal of Membrane Science 281(1–2), 42-69. 

Bekir Ersu, C., Ong, S.K., Arslankaya, E. and Brown, P. (2008) Comparison of recirculation 
configurations for biological nutrient removal in a membrane bioreactor. Water Research 42(6-7), 
1651-1663. 

Beltrán, S., Irizar, I., Monclus, H., Rodriguez-Roda, I. and Ayesa, E. (2009) On-line estimation of 
suspended solids in biological reactors of WWTPs using a Kalman observer. Water Science and 
Technology 60(3), 567-574. 

Benedetti, L., Prat, P., Nopens, I., Poch, M., Turon, C., De Baets, B. and Comas, J. (2009) A new rule 
generation method to develop a decision support system for integrated management at river basin 
scale. Water Science and Technology 60(8), 2035-2040. 

Bewtra, J.K., Nicholas, W.R. and Polkowski, L.B. (1970) Effect of temperature on oxygen transfer in 
water. Water Research 4(1), 115-123. 



 11. BIBLIOGRAPHY 

153 

Bixio, D., De Wilde, W., Nevo, V., Eliades, P., Lesjean, B. and Thoeye, C. (2008) Potential of innovative 
Dual CAS-MBR configurations in two very diverse market situations: Bulgaria and Cyprus. Water 
Practice and Technology 3(2). 

Bouhabila, E.H., Ben Aïm, R. and Buisson, H. (2001) Fouling characterisation in membrane bioreactors. 
Separation and Purification Technology 22-23, 123-132. 

Braak, E., Alliet, M., Schetrite, S. and Albasi, C. (2011) Aeration and hydrodynamics in submerged 
membrane bioreactors. Journal of Membrane Science 379(1–2), 1-18. 

Brannock, M., Wang, Y. and Leslie, G. (2010) Mixing characterisation of full-scale membrane 
bioreactors: CFD modelling with experimental validation. Water Research 44(10), 3181-3191. 

Brepols, C., Dorgeloh, E., Frechen, F.B., Fuchs, W., Haider, S., Joss, A., de Korte, K., Ruiken, C., Schier, 
W., van der Roest, H., Wett, M. and Wozniak, T. (2008) Upgrading and retrofitting of municipal 
wastewater treatment plants by means of membrane bioreactor (MBR) technology. Desalination 
231(1–3), 20-26. 

Brepols, C., Schäfer, H. and Engelhardt, N. (2010) Considerations on the design and financial feasibility 
of full-scale membrane bioreactors for municipal applications. Water Science and Technology 61(10), 
2461-2468. 

Bugge, T.V., Larsen, P., Saunders, A.M., Kragelund, C., Wybrandt, L., Keiding, K., Christensen, M.L. and 
Nielsen, P.H. (2013) Filtration properties of activated sludge in municipal MBR wastewater treatment 
plants are related to microbial community structure. Water Research 47(17), 6719-6730. 

Bürger, R., Diehl, S., Farås, S., Nopens, I. and Torfs, E. (2013) A consistent modelling methodology for 
secondary settling tanks: A reliable numerical method. Water Science and Technology 68(1), 192-208. 

Bürger, R., Diehl, S. and Nopens, I. (2011) A consistent modelling methodology for secondary settling 
tanks in wastewater treatment. Water Research 45(6), 2247-2260. 

Busch, J., Cruse, A. and Marquardt, W. (2007) Modeling submerged hollow-fiber membrane filtration 
for wastewater treatment. Journal of Membrane Science 288(1–2), 94-111. 

Busch, J. and Marquardt, W. (2009) Model-based control of MF/UF filtration processes: Pilot plant 
implementation and results. Water Science and Technology 59(9), 1713-1720. 

Chellam, S. (2005) Artificial neural network model for transient crossflow microfiltration of 
polydispersed suspensions. Journal of Membrane Science 258(1-2), 35-42. 

Choi, C., Kim, M., Lee, K. and Park, H. (2009) Oxidation reduction potential automatic control potential 
of intermittently aerated membrane bioreactor for nitrification and denitrification. Water Science and 
Technology 60(1), 167-173. 



11. BIBLIOGRAPHY 

154 

Comas, J., Meabe, E., Sancho, L., Ferrero, G., Sipma, J., Monclus, H. and Rodriguez-Roda, I. (2010) 
Knowledge-based system for automatic MBR control. Water Science and Technology 62(12), 2829–
2836. 

Comas, J., Rodríguez-Roda, I., Gernaey, K.V., Rosen, C., Jeppsson, U. and Poch, M. (2008) Risk 
assessment modelling of microbiology-related solids separation problems in activated sludge systems. 
Environmental Modelling and Software 23(10-11), 1250-1261. 

Comas, J., Rodríguez-Roda, I., Sànchez-Marrè, M., Cortés, U., Freixó, A., Arráez, J. and Poch, M. (2003) 
A knowledge-based approach to the deflocculation problem: integrating on-line, off-line, and heuristic 
information. Water Research 37(10), 2377-2387. 

Copp, J.B. (2002) The COST Simulation Benchmark: Description and Simulator Manual, Luxembourg. 

Cosenza, A., Mannina, G., Neumann, M.B., Viviani, G. and Vanrolleghem, P.A. (2013) Biological 
nitrogen and phosphorus removal in membrane bioreactors: Model development and parameter 
estimation. Bioprocess and Biosystems Engineering 36(4), 499-514. 

Dalmau, M., Rodriguez-Roda, I., Ayesa, E., Odriozola, J., Sancho, L. and Comas, J. (2013) Development 
of a decision tree for the integrated operation of nutrient removal MBRs based on simulation studies 
and expert knowledge. Chemical Engineering Journal 217, 174-184. 

De Clercq, B., Coen, F., Vanderhaegen, B. and Vanrolleghem, P.A. (1999) Calibrating simple models for 
mixing and flow propagation in waste water treatment plants. Water Science and Technology 39(4), 
61-69. 

de Haas, D.W., Wentzel, M.C. and Ekama, G.A. (2000) The use of simultaneous chemical precipitation 
in modified activated sludge systems exhibiting biological excess phosphate removal Part 1: Literature 
review. . Water SA 26, 439-452. 

de la Torre, T., Iversen, V., Meng, F., Stüber, J., Drews, A., Lesjean, B. and Kraume, M. (2010) Searching 
for a universal fouling indicator for membrane bioreactors. Desalination and Water Treatment 18(1-3), 
264-269. 

De La Torre, T., Lesjean, B., Drews, A. and Kraume, M. (2008) Monitoring of transparent exopolymer 
particles (TEP) in a membrane bioreactor (MBR) and correlation with other fouling indicators Water 
Science and Technology 58(10), 1903-1909. 

Delgrange, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L. and Lainé, J.M. (1998) Neural networks 
for prediction of ultrafiltration transmembrane pressure – application to drinking water production. 
Journal of Membrane Science 150(1), 111-123. 



 11. BIBLIOGRAPHY 

155 

Di Bella, G., Di Trapani, D., Torregrossa, M. and Viviani, G. (2013) Performance of a MBR pilot plant 
treating high strength wastewater subject to salinity increase: Analysis of biomass activity and fouling 
behaviour. Bioresource Technology 147, 614-618. 

Di Bella, G., Mannina, G. and Viviani, G. (2008) An integrated model for physical-biological wastewater 
organic removal in a submerged membrane bioreactor: Model development and parameter 
estimation. Journal of Membrane Science 322(1), 1-12. 

Drews, A. (2010) Membrane fouling in membrane bioreactors-Characterisation, contradictions, cause 
and cures. Journal of Membrane Science 363(1-2), 1-28. 

Drews, A., Arellano-Garcia, H., Schöneberger, J., Schaller, J., Wozny, G. and Kraume, M. (2009) Model-
based recognition of fouling mechanisms in membrane bioreactors. Desalination 236(1-3), 224-233. 

Drews, A., Lee, C.H. and Kraume, M. (2006a) Membrane fouling - a review on the role of EPS. 
Desalination 200(1-3), 186-188. 

Drews, A., Mante, J., Iversen, V., Vocks, M., Lesjean, B. and Kraume, M. (2007) Impact of ambient 
conditions on SMP elimination and rejection in MBRs. Water Research 41(17), 3850-3858. 

Drews, A., Vocks, M., Iversen, V., Lesjean, B. and Kraume, M. (2006b) Influence of unsteady 
membrane bioreactor operation on EPS formation and filtration resistance. Desalination 192(1-3), 1-9. 

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. (1956) Colorimetric method for 
determination of sugars and related substances. Analytical Chemistry 28(3), 350-356. 

Dvořák, L., Svojitka, J., Wanner, J. and Wintgens, T. (2013) Nitrification performance in a membrane 
bioreactor treating industrial wastewater. Water Research 47(13), 4412-4421. 

Eikelboom, D.H. (2000) Process Control of Activated Sludge Plantsby Microscopic Investigation., IWA 
Publishing, London. 

Fang, F., Ni, B.J., Li, W.W., Sheng, G.P. and Yu, H.Q. (2011) A simulation-based integrated approach to 
optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Chemical 
Engineering Journal 174(2-3), 635-643. 

Fatone, F., Battistoni, P., Bolzonella, D., Pavan, P. and Cecchia, F. (2008) Long-term experience with an 
automatic process control for nitrogen removal in membrane bioreactors. Desalination 227(1-3), 72-
84. 

Fenu, A., Guglielmi, G., Jimenez, J., Spèrandio, M., Saroj, D., Lesjean, B., Brepols, C., Thoeye, C. and 
Nopens, I. (2010a) Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) 
processes: A critical review with special regard to MBR specificities. Water Research 44(15), 4272-
4294. 



11. BIBLIOGRAPHY 

156 

Fenu, A., Roels, J., Wambecq, T., de Gussem, K., Thoeye, C., de Gueldre, G. and van de Steene, B. 
(2010b) Energy audit of a full scale MBR system. Desalination 262(1-3), 121-128. 

Fenu, A., Wambecq, T., Thoeye, C., De Gueldre, G. and Van de Steene, B. (2011) Modelling soluble 
microbial products (SMPs) in a dynamic environment. Desalination and Water Treatment 29(1-3), 210-
217. 

Ferrero, G. (2011) Development of an air-scour control system for membrane bioreactors, University 
of Girona, Girona, Spain. 

Ferrero, G., Monclús, H., Buttiglieri, G., Comas, J. and Rodriguez-Roda, I. (2011a) Automatic control 
system for energy optimization in membrane bioreactors. Desalination 268(1-3), 276-280. 

Ferrero, G., Monclus, H., Buttiglieri, G., Gabarron, S., Comas, J. and Rodriguez-Roda, I. (2011b) 
Development of a control algorithm for air-scour reduction in membrane bioreactors for wastewater 
treatment. Journal of Chemical Technology and Biotechnology 86(6), 784-789. 

Ferrero, G., Monclus, H., Buttiglieri, G., Gabarron, S., Comas, J. and Rodriguez-Roda, I. (2011c) 
Development of a control algorithm for air-scour reduction inmembrane bioreactors for wastewater 
treatment. Journal of Chemical Technology and Biotechnology 86(6), 784-789. 

Ferrero, G., Monclús, H., Sancho, L., Garrido, J.M., Comas, J. and Rodríguez-Roda, I. (2011d) A 
knowledge-based control system for air-scour optimisation in membrane bioreactors. Water Science 
and Technology 63(9), 2025-2031. 

Ferrero, G., Rodríguez-Roda, I. and Comas, J. (2012) Automatic control systems for submerged 
membrane bioreactors: A state-of-the-art review. Water Research 46(11), 3421-3433. 

Field, R.W., Wu, D., Howell, J.A. and Gupta, B.B. (1995) Critical flux concept for microfiltration fouling. 
Journal of Membrane Science 100(3), 259-272. 

Foster, C. (2003) Wastewater treatment and technology, Thomas Telford Publishing, London. 

Frolund, B., Griebe, T. and Nielsen, P.H. (1995) Enzymatic activity in the activated-sludge floc matrix. 
Applied Microbiology and Biotechnology 43(4), 755-761. 

Frølund, B., Palmgren, R., Keiding, K. and Nielsen, P.H. (1996) Extraction of extracellular polymers from 
activated sludge using a cation exchange resin. Water Research 30(8), 1749-1758. 

Fu, Z., Yang, F., Zhou, F. and Xue, Y. (2008) Control of COD/N ratio for nutrient removal in a modified 
membrane bioreactor (MBR) treating high strength wastewater. Bioresource Technology 100(1), 136-
141. 



 11. BIBLIOGRAPHY 

157 

Gabarrón, S. (2014) Diagnosis, assessment and optimisation of the design and operation of municipal 
MBRs, University of Girona, Girona, Spain. 

Gabarrón, S., Ferrero, G., Dalmau, M., Comas, J. and Rodriguez-Roda, I. (2014) Assessment of energy-
saving strategies and operational costs in full-scale membrane bioreactors. Journal of Environmental 
Management 134(0), 8-14. 

Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G., Oliveira, R., Crespo, J.G. and Reis, M.A.M. 
(2011) Real-time monitoring of membrane bioreactors with 2D-fluorescence data and statistically 
based models. Water Science and Technology 63(7), 1381-1388. 

Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G., Reis, M.A.M. and Crespo, J.G. (2012) 
Multivariate statistically-based modelling of a membrane bioreactor for wastewater treatment using 
2D fluorescence monitoring data. Water Research 46(11), 3623-3636. 

Galinha, C.F., Guglielmi, G., Carvalho, G., Portugal, C.A.M., Crespo, J.G. and Reis, M.A.M. (2013) 
Development of a hybrid model strategy for monitoring membrane bioreactors. Journal of 
Biotechnology 164(3), 386-395. 

Gao, D.W., Fu, Y., Tao, Y., Li, X.X., Xing, M., Gao, X.H. and Ren, N.Q. (2011) Linking microbial 
community structure to membrane biofouling associated with varying dissolved oxygen 
concentrations. Bioresource Technology 102(10), 5626-5633. 

Germain, E., Nelles, F., Drews, A., Pearce, P., Kraume, M., Reid, E., Judd, S.J. and Stephenson, T. (2007) 
Biomass effects on oxygen transfer in membrane bioreactors. Water Research 41(5), 1038-1044. 

Germain, E. and Stephenson, T. (2005) Biomass characteristics, aeration and oxygen transfer in 
membrane bioreactors: Their interrelations explained by a review of aerobic biological processes. 
Reviews in Environmental Science and Biotechnology 4(4), 223-233. 

Gernaey, K.V. and Jørgensen, S.B. (2004) Benchmarking combined biological phosphorus and nitrogen 
removal wastewater treatment processes. Control Engineering Practice 12(3), 357-373. 

Gil, J.A., Dorgeloh, E., van Lier, J.B., van der Graaf, J.H.J.M. and Prats, D. (2012) Start-up of 
decentralized MBRs: Part I: The influence of operational parameters. Desalination 285(0), 324-335. 

Gil, J.A., Krzeminski, P., van Lier, J.B., van der Graaf, J.H.J.M., Wijffels, T. and Prats, D. (2011) Analysis 
of the filterability in industrial MBRs. Influence of activated sludge parameters and constituents on 
filterability. Journal of Membrane Science 385–386(0), 96-109. 

Gillot, S., Ohtsuki, T., Rieger, L., Shaw, A., Takacs, I. and Winkler, S. (2009) Development of a unified 
protocol for good modelling practice in activated sludge modelling. Influents 4, 70-72. 



11. BIBLIOGRAPHY 

158 

Ginzburg, B., Peeters, J. and Pawloski, J. (2008) On-line fouling control for energy reduction in 
membrane bioreactors., Atlanta. 

Grelier, P., Rosenberger, S. and Tazi-Pain, A. (2006) Influence of sludge retention time on membrane 
bioreactor hydraulic performance. Desalination 192(1-3), 10-17. 

Guerrero, J., Guisasola, A., Comas, J., Rodriguez-Roda, I. and Baeza, J.A. (2012) Multi-criteria selection 
of optimum WWTP control setpoints based on microbiology-related failures, effluent quality and 
operating costs. Chemical Engineering Journal 188, 23-29. 

Härtel, L. and Pöpel, H.J. (1992) A dynamic secondary clarifier model including processes of sludge 
thickening. Water Science & Technology 25(6), 267-284. 

Hauduc, H., Neumann, M.B., Muschalla, D., Gamerith, V., Gillot, S. and Vanrolleghem, P.A. (2011) 
Towards quantitative quality criteria  to evaluate simulation results in wastewater treatment – A 
critical review, p. 46, Watermatex'11, 8th IWA Symposium on Systems Analysis and Integrated 
Assesment. San Sebastian (Spain). 

Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.V.R. and Van Loosdrecht, M.C.M. 
(1999) Activated Sludge Model No.2d, ASM2d. Water Science and Technology 39(1), 165-182. 

Henze, M., Gujer, W., Mino, T. and Van Loosdrecht, M.C.M. (2000) Activated Sludge Models ASM1, 
ASM2, ASM2d and ASM3, IWA Publishing, London. 

Henze, M., Loosdrecht, M.C.M.v., Ekama, G.A. and Brdjanovic, B. (2008) Biological Wastewater 
Treatment: Principles, Modelling and Design 
Henze, M., Loosdrecht, M.C.M.v., Ekama, G.A. and Brdjanovic, D. (eds), IWA Publishing, London. 

Hong, S.H., Lee, W.N., Oh, H.S., Yeon, K.M., Hwang, B.K., Lee, C.H., Chang, I.S. and Lee, S. (2007) The 
effects of intermittent aeration on the characteristics of bio-cake layers in a membrane bioreactor. 
Environmental Science and Technology 41(17), 6270-6276. 

Hong, S.P., Bae, T.H., Tak, T.M., Hong, S. and Randall, A. (2002) Fouling control in activated sludge 
submerged hollow fiber membrane bioreactors. Desalination 143(3), 219-228. 

Howell, J.A., Chua, H.C. and Arnot, T.C. (2004) In situ manipulation of critical flux in a submerged 
membrane bioreactor using variable aeration rates, and effects of membrane history. Journal of 
Membrane Science 242(1-2), 13-19. 

Hulsbeek, J.J.W., Kruit, J., Roeleveld, P.J. and van Loosdrecht, M.C.M. (2002) A practical protocol for 
dynamic modelling of activated sludge systems. Water Science and Technology 45(6), 127-136. 



 11. BIBLIOGRAPHY 

159 

Huyskens, C., Brauns, E., Van Hoof, E. and De Wever, H. (2008) A new method for the evaluation of the 
reversible and irreversible fouling propensity of MBR mixed liquor. Journal of Membrane Science 
323(1), 185-192. 

Insel, G., Hocaoĝlu, S.M., Cokgor, E.U. and Orhon, D. (2011) Modelling the effect of biomass induced 
oxygen transfer limitations on the nitrogen removal performance of membrane bioreactor. Journal of 
Membrane Science 368(1-2), 54-63. 

Jeong, T.Y., Cha, G.C., Yoo, I.K. and Kim, D.J. (2007) Characteristics of bio-fouling in a submerged MBR. 
Desalination 207(1-3), 107-113. 

Jeppsson, U. (2005) Aeration and mixing energy for BSM1, BSM1_LT and BSM2. 

Ji, L. and Zhou, J. (2006) Influence of aeration on microbial polymers and membrane fouling in 
submerged membrane bioreactors. Journal of Membrane Science 276(1–2), 168-177. 

Jiang, T. (2007) Characterization and modelling of Soluble Microbial Products in Membrane 
Bioreactors, Ghent University, Belgium. 

Jiang, T. (2008) Characterization and Modelling of Soluble Microbial Products in Membrane 
Bioreactors, PhD Thesis, Ghent University. 

Jiang, T., Myngheer, S., De Pauw, D.J.W., Spanjers, H., Nopens, I., Kennedy, M.D., Amy, G. and 
Vanrolleghem, P.A. (2008) Modelling the production and degradation of soluble microbial products 
(SMP) in membrane bioreactors (MBR). Water Research 42(20), 4955-4964. 

Judd, S. (2008) The status of membrane bioreactor technology. Trends in Biotechnology 26(2), 109-
116. 

Judd, S. (2011) The MBR Book. Principles and Aplications of Membrane Bioreactors for water and 
wastewater treatment, Elsevier, Oxford, UK. 

Judd, S. and Judd, C. (2011) The MBR book. Principles and Applications of Membrane Bioreactors for 
Water and Wastewater Treatment. , Elsevier. 

Kaneko, H. and Funatsu, K. (2013) A chemometric approach to prediction of transmembrane pressure 
in membrane bioreactors. Chemometrics and Intelligent Laboratory Systems 126, 30-37. 

Khalili-Garakani, A., Mehrnia, M.R., Mostoufi, N. and Sarrafzadeh, M.H. (2011) Analyze and control 
fouling in an airlift membrane bioreactor: CFD simulation and experimental studies. Process 
Biochemistry 46(5), 1138-1145. 



11. BIBLIOGRAPHY 

160 

Kim, J.Y., Chang, I.S., Shin, D.H. and Park, H.H. (2008) Membrane fouling control through the change of 
the depth of a membrane module in a submerged membrane bioreactor for advanced wastewater 
treatment. Desalination 231(1-3), 35-43. 

Kim, M.G. and Nakhla, G. (2009) The beneficial role of intermediate clarification in a novel MBR based 
process for biological nitrogen and phosphorus removal. Journal of Chemical Technology and 
Biotechnology 84(5), 637-642. 

Kim, M.J., Sankararao, B. and Yoo, C.K. (2011) Determination of MBR fouling and chemical cleaning 
interval using statistical methods applied on dynamic index data. Journal of Membrane Science 375(1-
2), 345-353. 

Kimura, K., Miyoshi, T., Naruse, T., Yamato, N., Ogyu, R. and Watanabe, Y. (2008) The difference in 
characteristics of foulants in submerged MBRs caused by the difference in the membrane flux. 
Desalination 231(1-3), 268-275. 

Kimura, K., Yamato, N., Yamamura, H. and Watanabe, Y. (2005) Membrane fouling in pilot-scale 
membrane bioreactors (MBRs) treating municipal wastewater. Environmental Science and Technology 
39(16), 6293-6299. 

Kraume, M. and Drews, A. (2010) Membrane bioreactors in waste water treatment - Status and 
trends. Chemical Engineering and Technology 33(8), 1251-1259. 

Krzeminski, P., Iglesias-Obelleiro, A., Madebo, G., Garrido, J.M., van der Graaf, J.H.J.M. and van Lier, 
J.B. (2012a) Impact of temperature on raw wastewater composition and activated sludge filterability 
in full-scale MBR systems for municipal sewage treatment. Journal of Membrane Science 423-424, 
348-361. 

Krzeminski, P., Langhorst, W., Schyns, P., de Vente, D., Van den Broeck, R., Smets, I.Y., Van Impe, 
J.F.M., van der Graaf, J.H.J.M. and van Lier, J.B. (2012b) The optimal MBR configuration: Hybrid versus 
stand-alone - Comparison between three full-scale MBRs treating municipal wastewater. Desalination 
284, 341-348. 

Krzeminski, P., Van Der Graaf, J.H.J.M. and Van Lier, J.B. (2012c) Specific energy consumption of 
membrane bioreactor (MBR) for sewage treatment. Water Science and Technology 65(2), 380-392. 

Kuba, T., Murnleitner, E., Van Loosdrecht, M.C.M. and Heijnen, J.J. (1996) A metabolic model for 
biological phosphorus removal by denitrifying organisms. Biotechnology and Bioengineering 52(6), 
685-695. 

Laspidou, C.S. and Rittmann, B.E. (2002a) Non-steady state modeling of extracellular polymeric 
substances, soluble microbial products, and active and inert biomass. Water Research 36(8), 1983-
1992. 



 11. BIBLIOGRAPHY 

161 

Laspidou, C.S. and Rittmann, B.E. (2002b) A unified theory for extracellular polymeric substances, 
soluble microbial products, and active and inert biomass. Water Research 36(11), 2711-2720. 

Le-Clech, P., Chen, V. and Fane, T.A.G. (2006) Fouling in membrane bioreactors used in wastewater 
treatment. Journal of Membrane Science 284(1-2), 17-53. 

Le-Clech, P., Jefferson, B., Chang, I.S. and Judd, S.J. (2003) Critical flux determination by the flux-step 
method in a submerged membrane bioreactor. Journal of Membrane Science 227(1-2), 81-93. 

Lee, S.E., Koopman, B., Bode, H. and Jenkins, D. (1983) Evaluation of alternative sludge settleability 
indices. Water Research 17(10), 1421-1426. 

Lee, W., Kang, S. and Shin, H. (2003) Sludge characteristics and their contribution to microfiltration in 
submerged membrane bioreactors. Journal of Membrane Science 216(1-2), 217-227. 

Li, X.y. and Wang, X.m. (2006) Modelling of membrane fouling in a submerged membrane bioreactor. 
Journal of Membrane Science 278(1-2), 151-161. 

Liebig, T., Wagner, M., Bjerrum, L. and Denecke, M. (2001) Nitrification performance and nitrifier 
community composition of a chemostat and a membrane-assisted bioreactor for the nitrification of 
sludge reject water. Bioprocess and Biosystems Engineering 24(4), 203-210. 

Liu, Q.F., Kim, S.H. and Lee, S. (2009) Prediction of microfiltration membrane fouling using artificial 
neural network models. Separation and Purification Technology 70(1), 96-102. 

Lousada-Ferreira, M., Geilvoet, S., Moreau, A., Atasoy, E., Krzeminski, P., van Nieuwenhuijzen, A. and 
van der Graaf, J. (2010) MLSS concentration: Still a poorly understood parameter in MBR filterability. 
Desalination 250(2), 618-622. 

Lu, S.G., Imai, T., Ukita, M., Sekine, M., Higuchi, T. and Fukagawa, M. (2001) A model for membrane 
bioreactor process based on the concept of formation and degradation of soluble microbial products. 
Water Research 35(8), 2038-2048. 

Lyko, S., Wintgens, T. and Melin, T. (2008) Comparative Investigation on the impact of polymeric 
substances on membrane fouling during sub-critical and critical flux operation of a municipal 
membrane bioreactor, pp. 1849-1855. 

Ma, Z., Wen, X., Zhao, F., Xia, Y., Huang, X., Waite, D. and Guan, J. (2013) Effect of temperature 
variation on membrane fouling and microbial community structure in membrane bioreactor. 
Bioresource Technology 133(0), 462-468. 

Maere, T., Benedetti, L., Janssen, M., Weijers, S. and Nopens, I. (2008) Use of an automated 
calibration methodology and scenario analysis for WWTP optimisation: the Haaren case-study, 
Florence,  Italy. 



11. BIBLIOGRAPHY 

162 

Maere, T., Verrecht, B., Moerenhout, S., Judd, S. and Nopens, I. (2011) BSM-MBR: A benchmark 
simulation model to compare control and operational strategies for membrane bioreactors. Water 
Research 45(6), 2181-2190. 

Maere, T., Villez, K., Marsili-Libelli, S., Naessens, W. and Nopens, I. (2012) Membrane bioreactor 
fouling behaviour assessment through principal component analysis and fuzzy clustering. Water 
Research 46(18), 6132-6142. 

Mannina, G. and Cosenza, A. (2013) The fouling phenomenon in membrane bioreactors: Assessment 
of different strategies for energy saving. Journal of Membrane Science 444, 332-344. 

Mannina, G., Di Bella, G. and Viviani, G. (2011) An integrated model for biological and physical process 
simulation in membrane bioreactors (MBRs). Journal of Membrane Science 376(1-2), 56-69. 

Marti, E., Monclus, H., Jofre, J., Rodriguez-Roda, I., Comas, J. and Balcazar, J.L. (2011) Removal of 
microbial indicators from municipal wastewater by a membrane bioreactor (MBR). Bioresource 
Technology 102(8), 5004-5009. 

Martin-Garcia, I., Monsalvo, V., Pidou, M., Le-Clech, P., Judd, S.J., McAdam, E.J. and Jefferson, B. 
(2011) Impact of membrane configuration on fouling in anaerobic membrane bioreactors. Journal of 
Membrane Science 382(1-2), 41-49. 

Meng, F., Chae, S.R., Drews, A., Kraume, M., Shin, H.S. and Yang, F. (2009) Recent advances in 
membrane bioreactors (MBRs): Membrane fouling and membrane material. Water Research 43(6), 
1489-1512. 

Menniti, A., Kang, S., Elimelech, M. and Morgenroth, E. (2009) Influence of shear on the production of 
extracellular polymeric substances in membrane bioreactors. Water Research 43(17), 4305-4315. 

Menniti, A. and Morgenroth, E. (2010a) The influence of aeration intensity on predation and EPS 
production in membrane bioreactors. Water Research 44(8), 2541-2553. 

Menniti, A. and Morgenroth, E. (2010b) Mechanisms of SMP production in membrane bioreactors: 
Choosing an appropriate mathematical model structure. Water Research 44(18), 5240-5251. 

Metzger, U., Le-Clech, P., Stuetz, R.M., Frimmel, F.H. and Chen, V. (2007) Characterisation of 
polymeric fouling in membrane bioreactors and the effect of different filtration modes. Journal of 
Membrane Science 301(1-2), 180-189. 

Monclús, H. (2011) Development of a decision support system for the integrated control of membrane 
bioreactors, University of Girona, Girona, Spain. 

Monclús, H., Buttiglieri, G., Ferrero, G., Rodriguez-Roda, I. and Comas, J. (2012) Knowledge-based 
control module for start-up of flat sheet MBRs. Bioresource Technology 106, 50-54. 



 11. BIBLIOGRAPHY 

163 

Monclús, H., Ferrero, G., Buttiglieri, G., Comas, J. and Rodriguez-Roda, I. (2011) Online monitoring of 
membrane fouling in submerged MBR. Desalination 277(1-3), 414-419. 

Monclús, H., Sipma, J., Ferrero, G., Rodriguez-Roda, I. and Comas, J. (2010a) Biological nutrient 
removal in an MBR treating municipal wastewater with special focus on biological phosphorus 
removal. Bioresource Technology 101(11), 3984-3991. 

Monclús, H., Zacharias, S., Santos, A., Pidou, M. and Judd, S. (2010b) Criticality of flux and aeration for 
a hollow fiber membrane bioreactor. Separation Science and Technology 45(7), 956-961. 

Monti, A., Hall, E.R., Dawson, R.N., Husain, H. and Kelly, H.G. (2006) Comparative study of biological 
nutrient removal (BNR) processes with sedimentation and membrane-based separation. 
Biotechnology and Bioengineering 94(4), 740-752. 

Naessens, W., Maere, T. and Nopens, I. (2012a) Critical review of membrane bioreactor models - Part 
1: Biokinetic and filtration models. Bioresource Technology 122, 95-106. 

Naessens, W., Maere, T., Ratkovich, N., Vedantam, S. and Nopens, I. (2012b) Critical review of 
membrane bioreactor models – Part 2: Hydrodynamic and integrated models. Bioresource Technology 
122(0), 107-118. 

Ndinisa, N.V., Fane, A.G. and Wiley, D.E. (2006a) Fouling control in a submerged flat sheet membrane 
system: Part I - Bubbling and hydrodynamic effects. Separation Science and Technology 41(7), 1383-
1409. 

Ndinisa, N.V., Fane, A.G., Wiley, D.E. and Fletcher, D.F. (2006b) Fouling control in a submerged flat 
sheet membrane system: Part II - Two-phase flow characterization and CFD simulations. Separation 
Science and Technology 41(7), 1411-1445. 

Ng, T.C.A. and Ng, H.Y. (2010) Characterisation of initial fouling in aerobic submerged membrane 
bioreactors in relation to physico-chemical characteristics under different flux conditions. Water 
Research 44(7), 2336-2348. 

Nopens, I., Benedetti, L., Jeppsson, U., Pons, M.N., Alex, J., Copp, J.B., Gernaey, K.V., Rosen, C., Steyer, 
J.P. and Vanrolleghem, P.A. (2010) Benchmark Simulation Model No 2: finalisation of plant layout and 
default control strategy. Water Science and Technology 62(9), 1967-1974. 

Odriozola, J., Beltrán, S., Sancho, L., Dalmau, M., Comas, J., Rodriguez-Roda, I. and Ayesa, E. (2013) 
Model-based optimisation of MBR plants for C and N removal, Narbonne, France. 

Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L. and Reis, M.A.M. (2007) 
Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Research 
41(11), 2271-2300. 



11. BIBLIOGRAPHY 

164 

Pendashteh, A.R., Fakhru'l-Razi, A., Chaibakhsh, N., Abdullah, L.C., Madaeni, S.S. and Abidin, Z.Z. 
(2011) Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural 
network. Journal of Hazardous Materials 192(2), 568-575. 

Philippe, N., Stricker, A.E., Racault, Y., Husson, A., Sperandio, M. and Vanrolleghem, P. (2013) 
Modelling the long-term evolution of permeability in a full-scale MBR: Statistical approaches. 
Desalination 325, 7-15. 

Quinlan, J.R. (1992) Learning with continuous classes. Adams & Sterlings, E. (ed), pp. 343-348, 
Singapore. 

Rieger, L., Gillot, S., Langergraber, G., Ohtsuki, T., Shaw, A., Tákacs, I. and Winkler, S. (2012) Guidelines 
for Using Activated Sludge Models, IWA Publishing London. 

Rivas, A., Irizar, I. and Ayesa, E. (2008) Model-based optimisation of Wastewater Treatment Plants 
design. Environmental Modelling & Software 23(4), 435-450. 

Robles, A., Ruano, M.V., Ribes, J. and Ferrer, J. (2012) Sub-critical long-term operation of industrial 
scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system. Separation and 
Purification Technology 100, 88-96. 

Rodriguez-Roda, I., Comas, J., Poch, M., Ferrero, G., Sipma, J., Clara, P., Canals, J., Rovira, S. and 
Monclús, H. (2011) PATENTE-Procedimiento automatizado de control en tiempo real de un bioreactor 
de membranas y su sistema de control correspondiente. University of Girona and Ambiente-INIMA, 
O.M. (eds), Spain. 

Roeleveld, P.J. and Van Loosdrecht, M.C.M. (2002) Experience with guidelines for wastewater 
characterisation in The Netherlands. Water Science and Technology 45, 77-87. 

Rosenberg, M., Gutnick, D. and Rosenberg, E. (1980) Adherence of bacteria to hydrocarbons: A simple 
method for measuring cell-surface hydrophobicity. FEMS Microbiology Letters 9(1), 29-33. 

Rosso, D., Larson, L.E. and Stenstrom, M.K. (2008) Aeration of large-scale municipal wastewater 
treatment plants: State of the art. Water Science and Technology 57, 973-978. 

Sabia, G., Ferraris, M. and Spagni, A. (2013) Effect of solid retention time on sludge filterability and 
biomass activity: Long-term experiment on a pilot-scale membrane bioreactor treating municipal 
wastewater. Chemical Engineering Journal 221, 176-184. 

Saltelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004) Sensitivity Analysis in Practice: A Guide 
to Assessing Scientific Models.  (2004). . 



 11. BIBLIOGRAPHY 

165 

Sarioglu, M., Insel, G., Artan, N. and Orhon, D. (2008) Modelling of long-term simultaneous 
nitrification and denitrification (SNDN) performance of a pilot scale membrane bioreactor. Water 
Science and Technology 57(11), 1825-1833. 

Sarioglu, M., Insel, G., Artan, N. and Orhon, D. (2009) Model evaluation of simultaneous nitrification 
and denitrification in a membrane bioreactor operated without an anoxic reactor. Journal of 
Membrane Science 337(1–2), 17-27. 

Scholz, M. (2005) Review of recent trends in Capillary Suction Time (CST) dewaterability testing 
research. Industrial and Engineering Chemistry Research 44(22), 8157-8163. 

Soleimani, R., Shoushtari, N.A., Mirza, B. and Salahi, A. (2013) Experimental investigation, modeling 
and optimization of membrane separation using artificial neural network and multi-objective 
optimization using genetic algorithm. Chemical Engineering Research and Design 91(5), 883-903. 

Stricot, M., Filali, A., Lesage, N., Spérandio, M. and Cabassud, C. (2010) Side-stream membrane 
bioreactors: Influence of stress generated by hydrodynamics on floc structure, supernatant quality 
and fouling propensity. Water Research 44(7), 2113-2124. 

Takács, I., Patry, G.G. and Nolasco, D. (1991) A dynamic model of the clarification-thickening process. 
Water Research 25(10), 1263-1271. 

Tan, T.W. and Ng, H.Y. (2008) Influence of mixed liquor recycle ratio and dissolved oxygen on 
performance of pre-denitrification submerged membrane bioreactors. Water Research 42(4-5), 1122-
1132. 

Tchobanoglous, G., Burton, F.L. and Stensel, H.D. (2003) Wastewater Engineering: Treatment and 
Reuse, McGraw-Hill, New York. 

Tian, Y., Chen, L. and Jiang, T. (2011a) Characterization and modeling of the soluble microbial products 
in membrane bioreactor. Separation and Purification Technology 76(3), 316-324. 

Tian, Y., Chen, L., Zhang, S. and Zhang, S. (2011b) A systematic study of soluble microbial products and 
their fouling impacts in membrane bioreactors. Chemical Engineering Journal 168(3), 1093-1102. 

Tiranuntakul, M., Schneider, P.A. and Jegatheesan, V. (2011) Assessments of critical flux in a pilot-scale 
membrane bioreactor. Bioresource Technology 102(9), 5370-5374. 

Torfs, E., Vlasschaert, P., Amerlinck, Y., Bürger, R., Diehl, S. and Farås, S. (2013) Towards improved 1-D 
settler modelling: calibration of the Bürger model and case study, Chicago, IL, USA. 

Trussell, R.S., Merlo, R.P., Hermanowicz, S.W. and Jenkins, D. (2006) The effect of organic loading on 
process performance and membrane fouling in a submerged membrane bioreactor treating municipal 
wastewater. Water Research 40(14), 2675-2683. 



11. BIBLIOGRAPHY 

166 

van den Brink, P., Satpradit, O.-A., van Bentem, A., Zwijnenburg, A., Temmink, H. and van Loosdrecht, 
M. (2011) Effect of temperature shocks on membrane fouling in membrane bioreactors. Water 
Research 45(15), 4491-4500. 

Van den Broeck, R., Krzeminski, P., Van Dierdonck, J., Gins, G., Lousada-Ferreira, M., Van Impe, J.F.M., 
van der Graaf, J.H.J.M., Smets, I.Y. and van Lier, J.B. (2011) Activated sludge characteristics affecting 
sludge filterability in municipal and industrial MBRs: Unraveling correlations using multi-component 
regression analysis. Journal of Membrane Science 378(1-2), 330-338. 

Van den Broeck, R., Van Dierdonck, J., Caerts, B., Bisson, I., Kregersman, B., Nijskens, P., Dotremont, 
C., Van Impe, J.F. and Smets, I.Y. (2010) The impact of deflocculation-reflocculation on fouling in 
membrane bioreactors. Separation and Purification Technology 71(3), 279-284. 

Van den Broeck, R., Van Dierdonck, J., Nijskens, P., Dotremont, C., Krzeminski, P., van der Graaf, 
J.H.J.M., van Lier, J.B., Van Impe, J.F.M. and Smets, I.Y. (2012) The influence of solids retention time on 
activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR). Journal of 
Membrane Science 401–402(0), 48-55. 

Vanhooren, H., Meirlaen, J., Amerlink, Y., Claeys, F., Vangheluwe, H. and Vanrolleghem, P.A. (2003) 
WEST: modelling biological wastewater treatment. Journal of Hydroinformatics 5(1), 27-50. 

Verrecht, B., Judd, S., Guglielmi, G., Brepols, C. and Mulder, J.W. (2008) An aeration energy model for 
an immersed membrane bioreactor. Water Research 42(19), 4761-4770. 

Verrecht, B., Maere, T., Benedetti, L., Nopens, I. and Judd, S. (2010a) Model-based energy 
optimisation of a small-scale decentralised membrane bioreactor for urban reuse. Water Research 
44(14), 4047-4056. 

Verrecht, B., Maere, T., Nopens, I., Brepols, C. and Judd, S. (2010b) The cost of a large-scale hollow 
fibre MBR. Water Research 44(18), 5274-5283. 

Vesilind, P.A. (1968) Design of prototype thickeners from batch settling tests. . Water Sewage Works 
115(7), 302-307. 

Wang, Z., Wu, Z. and Tang, S. (2009) Extracellular polymeric substances (EPS) properties and their 
effects on membrane fouling in a submerged membrane bioreactor. Water Research 43(9), 2504-
2512. 

Wilén, B.M. and Balmér, P. (1999) The effect of dissolved oxygen concentration on the structure, size 
and size distribution of activated sludge flocs. Water Research 33(2), 391-400. 

Witten, I.H., Frank, E. and Hall, M.A. (2011) Data mining: Practical machine learning tools and 
techniques, Morgan Kaufmann  



 11. BIBLIOGRAPHY 

167 

Wu, J., He, C. and Zhang, Y. (2012) Modeling membrane fouling in a submerged membrane bioreactor 
by considering the role of solid, colloidal and soluble components. Journal of Membrane Science 397–
398(0), 102-111. 

Wu, J.L., Le-Clech, P., Stuetz, R.M., Fane, A.G. and Chen, V. (2008) Effects of relaxation and 
backwashing conditions on fouling in membrane bioreactor. Journal of Membrane Science 324(1-2), 
26-32. 

Zarragoitia-González, A., Schetrite, S., Alliet, M., Jáuregui-Haza, U. and Albasi, C. (2008) Modelling of 
submerged membrane bioreactor: Conceptual study about link between activated slugde biokinetics, 
aeration and fouling process. Journal of Membrane Science 325(2), 612-624. 

Zsirai, T., Aerts, P. and Judd, S. (2013) Reproducibility and applicability of the flux step test for a hollow 
fibre membrane bioreactor. Separation and Purification Technology 107, 144-149. 

Zuthi, M.F.R., Ngo, H.H. and Guo, W.S. (2012) Modelling bioprocesses and membrane fouling in 
membrane bioreactor (MBR): A review towards finding an integrated model framework. Bioresource 
Technology 122(0), 119-129. 

Zuthi, M.F.R., Ngo, H.H., Guo, W.S., Li, J.X., Xia, S.Q. and Zhang, Z.Q. (2013) New proposed conceptual 
mathematical models for biomass viability and membrane fouling of membrane bioreactor. 
Bioresource Technology 142, 737-740. 
 
 


	Agraïments. Acknowledgements
	Table of contents
	Resum. Resumen. Summary
	List of publications
	1. Introduction
	1.1. Background
	1.2. Membrane bioreactor technology
	1.3. Models for membranes bioreactors
	1.4. Control and optimisation: state of the art
	1.5. Antecedents

	2. Objectives
	3. Methodology
	3.1. Experimental systems
	3.2. Analytical methods
	3.3. Modelling software tools

	4. Results I. Development of a decision tree for the integrated operation of nutrient removal MBRs based onsimulation studies and expert knowledge
	5. Results II. Model-based optimisation of a full-scale hybrid MBR
	6. Results III. Modelling MBR fouling with deterministic and data-driven models
	7. Results IV. Towards integrated operation of MBRs: effects on aeration on biologicaland filtration performance
	8. Results V. Full-scale validation of a control system for energy saving inmembrane bioreactors for wastewater treatment
	9. Discussion
	10. Conclusion
	11. Bibliography



