
eXiT*CBR.v2: Distributed case-based reasoning tool

for medical prognosis

Albert Pla, Beatriz López, Pablo Gay, Carles Pous

University of Girona, Girona, Spain
{albert.pla,beatriz.lopez,pablo.gay,carles.pous}@udg.edu

Abstract

In this work we propose a user-friendly medically oriented tool for prog-
nosis development systems and experimentation under a case-based reason-
ing methodology. The tool enables health care collaboration practice to be
mapped in cases where different doctors share their expertise, for example, or
where medical committee composed of specialists from different fields work
together to achieve a final prognosis. Each agent with a different piece of
knowledge classifies the given cases through metrics designed for this pur-
pose. Since multiple solutions for the same case is useless, agents collaborate
among themselves in order to achieve a final decision through a coordinated
schema. For this purpose, the tool provides a weighted voting schema and an
evolutionary algorithm (genetic algorithm) to learn robust weights. More-
over, to test the experiments, the tool includes stratified cross-validation
methods which take the collaborative environment into account. In this pa-
per the different collaborative facilities offered by the tool are described. A
sample usage of the tool is also provided.

Keywords: medical prognosis, case-based reasoning, multi-agent system,
distributed reasoning, genetic algorithms,

1. Introduction

Medical research and practice is no longer conceived without the support
of decision support tools that facilitate the tasks of the physicians. There
are currently a lot of tools available off-the-shelf, but most of them are delib-
erately generic, (that is, designed to be used in any domain), while the focus
of the tool is the kind of technique it employs (e.g. DROOLS for rule-based

Preprint submitted to Decision Support Systems November 18, 2013



systems [1], or jCOLIBRI for case-based reasoning (CBR) [2]). Technique
oriented tools support decision making according to the underlying theory,
but the development of domain oriented tools brings the advantage of pro-
viding an adequate interface to their targeted users, offering added value as
well as enhancing technology acceptance [3]. In the medical field, several
particularities have been identified in [4], and we have addressed some of
them with the development of a medically specific case-based reasoning tool
called eXiT*CBR [5]. In particular, we provide support and interpretation
of results in medical metrics, experiment reproducibility and heterogeneous
data management.

eXiT*CBR was originally designed to provide support to isolated users,
but nowadays physicians work in teams, sharing information among several
units (endocrinology, paediatrics, etc) of a given hospital. As such, we have
extended our tool to support the collaboration of medical collectives.We have
renamed the tool as eXiT*CBR.v2 to distinguish it from the previous version.
In the first version we considered a plain data input - a table - in which rows
are cases and columns are attributes. This kind of plain input was used by
physicians mainly for research purposes, as it is the format in which statistical
tools such as SPSS [6] work. However, physicians are starting to adopt
electronic health record (EHR) standards for sharing information with a view
to improving the quality of health care [7]. Such standards capture health
care data comprehensively, while enabling interoperability among hospitals
and research projects. The manner in which individual clinical statements are
recorded determines the context for their interpretation [7].Thus keeping the
EHR structure in decision support tools, so that EHR fragments correspond
to particular clinical settings, seems to be the best way of maintaining the
appropriate context for their interpretation. In the second version of the
tool, presented in this paper, we enhance it with a multi-agent approach
that allows such context to be preserved.

Although the tool has undergone many changes due to the shift from iso-
lated to distributed environments, we have retained the v1 interface in order
to minimise possible disruptions in the work of current v1 users who wish to
adopt the newest version of the tool. Thus, we have added additional work-
ing modes that allow the collaboration of different medical teams, offering
privacy and scalability factors for the development of medical applications.
First, privacy refers to the willingness to keep data apart from a centralised
case repository [8]. This is an important issue in medicine, where physicians
exchange opinions or recommendations, for example, but rarely patient data.

2



The question of patient data ownership is unresolved and bound by legal con-
siderations [4, 7]. And second, it is very important to consider scalability,
which ”concerns the impracticability of processing a centralised case base
when dealing with very large amounts of data” [8]. Contemporary data are
not just medical notes and clinical information, but also high-quality images
(from magnetic resonance imaging devices or computer tomography scans),
process signals (from spirometers) and other formats that require thousands
of bytes to be stored. Additionally, problem coverage can be improved when
problems are solved by using different experts, and thus, wider knowledge [8].
The purpose of the distributed approach offered by the eXiT*CBR.v2 tool
is to enable the collaborative work techniques in the previous eXiT*CBR.v1
platform.

eXiT*CBR.v2 can help in the development of medical applications in
which several CBR systems cooperate in a distributed scenario. Physicians
and knowledge engineers can use the tool work together to determine the
parameters of a case-based reasoning application, including collaboration
among different clinical units. The tool includes a coordination mechanism
to enable cooperation among different CBR systems, a learning facility to
enhance cooperation, and a validation method which takes into account
the distributed environment. Like its predecessors, the current scope of
eXiT*CBR.v2 includes prognosis, thus supporting the development of deci-
sion support systems for predicting the likely output of a disease, and similar
classification tasks.

This paper is organised as follows: first, in Section 2, we briefly introduce
the fundamentals needed to understand our work. In Section 3, we then
present the architecture of our tool and its functionalities. In Section 4,
we illustrate the performance of our approach employed for breast cancer
prognosis. In Section 5, we compare the developed tool with other similar
softwares. Finally, in Section 6, we present our conclusions and proposals for
future work.

2. Background

In this section we introduce the main topics on which our software is
based, which are namely: case-based reasoning (CBR), cooperative multi-
agent systems and learning, and distributed case-based reasoning.

3



Figure 1: CBR stages from [9]

2.1. Case-based Reasoning

Case-based reasoning is a knowledge-based methodology which allows a
problem to be solved based on past experiences [9]. Reasoning by reusing past
experiences is a powerful and common way for humans to solve problems.
When faced with a problem, humans tend to search for similar past situations
and adapt the solution used to solve the current issue they are dealing with.
Case-based reasoning tries to transfer this behavior to Artificial Intelligence.
CBR seeks cases similar to the current one and analyses which decision or
classification was taken in order to reuse it in the present solution.

All CBR shares a set of common tasks: identify the problem to be dealt
with; find a similar past case; use the old case to propose a solution for the
new one; evaluate the suggested solution and update the knowledge base with
the new experience. CBR is consistently divided into four different stages,
which are repeated for every new case [9]: retrieve, reuse, revise and retain
(see Figure 1). The first stage, retrieve, searches for past situations similar
to the new one; the second stage, reuse, employs the retrieved situations to
propose a suitable classification or solution to the problem; the third stage,
revise, consists of supervising and validating the proposed classification (this
task is often carried out by a human expert); in the last stage, retain, it must
be decided wether or not the treated case should be included in the knowledge
database in order to help in future situations. See [10] for a discussion about
CBR as a special case of inductive inference, and their relationship with
rule-based and Bayesian reasoning.

The amalgam of options a CBR system designer is faced with in order to
build a CBR system is wide, due to the many different parameters and tech-

4



niques that can be used in each step. Several tools have been developed with
the aim of aiding the CBR system designer in the development process, with
most of them being object-oriented, since it is a software methodology that
provides flexibility and modularity to include new methods as required [11].
However, although generic tools can help, specific tools for a given domain
can constrain the search as well as provide user interfaces adequate to the
domain, as for example the first version of eXiT*CBR.

2.2. Cooperative Multi-agent Systems

Agents have been defined as autonomous, flexible computer systems able
to interact with other agents in order to achieve a goal [12]. How agents
interact in a multi-agent system (MAS) is the focus of study of distributed
artificial intelligence [13, 14]. In a MAS, agents carry out a social activity
thanks to a coordination mechanism. This mechanism consists of two main
components: agent communication and agent interaction protocols [15].

On the one hand agent communication protocols define the structure
of messages the agents should follow in order to understand each other.
In this respect, although, there are some standards (i.e. FIPA-IEEE [16],
KQML [17]), they are often complex to manage (i.e. too much informa-
tion in a message), therefore ad-hoc communication protocols are often used,
which simplifies message processing.

On the other hand, agent interaction protocols provide patterns for di-
alogues, so that agents can start and end an interaction with success (i.e.
avoiding endless waiting for answers due to communication failures, recog-
nising uncommitted actions of malicious agents, etc. ). Interaction protocols
are designed according to the coordination goal, and comprehend voting, auc-
tions, bargaining, market-based mechanism, contract-net, and coalitions [15].
The protocol is conditioned by the number of agents involved. For example,
voting is usually recommended when a great number of agents are involved
in a decision.

The problem a MAS designer is faced with is to choose the appropriate
coordination mechanism given the problem to be solved. The mechanism will
be strongly conditioned depending on wether the environment is cooperative
or competitive. In a cooperative scenario, agents collaborate in order to solve
a common goal. A cooperative system offers an improvement of computa-
tional efficiency, exploiting the different competencies (abilities, capacities)
of agents, and increases the information available for solving a problem (as,
for example, with a medical diagnostic problem in which several teams are

5



involved). In a competitive scenario, agents are selfish and interact because
they can increase their benefits by doing so.

Thus, cooperation is usually achieved by interaction protocols such as
voting and contract-net, while competitive MASs require the use of auctions,
bargaining, marked-mechanisms and others. Nevertheless, there is no crisp
categorisation of interaction protocols between cooperative and competitive
ones.

Finally, there are some tools to facilitate the implementation of a MAS,
which can be grouped as engineering or platforms tools. Engineering tools fa-
cilitate the definition of roles of agents and their interaction, following higher
abstract approaches developed using UML-like methodologies. Gaia [18] and
Prometheus [19] are examples of very well-known tools in this first group.
Platforms deal with low level communication issues, so that agent develop-
ers can focus on the strategic behavior of agents. JADE [20] is perhaps the
leading open source platform, and JACK is a popular commercial tool. Nat-
urally, some platforms are also designed to support some engineering tools
(as JACK is for Prometheus).

2.3. Multi-agent Systems and Learning

Machine learning is concerned with the improvement of intelligent agents
through their experience [21]. Machine learning has been an active research
topic in MAS, and it faces the following problems [15]:

• Learning about other agents

• Learning for coordination improvement

• Learning about communication.

First, agents are interested in improving their skills once they have in-
teracted with other agents. In a cooperative scenario, agents can learn their
role so that all agents complement each other, achieving a trade off between
quality and cost [22]. In a competitive scenario, agents can learn about their
opponent in order to improve their strategy. Second, as the results of agents
interactions emerge, agents can work towards better coordination to improve
their global behavior. From such improvement, conflicts on shared resources
can be minimised. Lastly, learning about communication processes leads to
improvement and a reduction in communication load.

6



The most popular techniques employed in MASs for learning are rein-
forcement learning and genetic algorithms (GA). The former is concerned
with the learning of control policies by experimentation in a given environ-
ment [23]. Learning is assessed by a reward function that assigns a numerical
value (pay off) to the actions taken by the agents. In the case of a MAS, the
environment includes other agents, so therefore agents improve their global
behavior by sharing learnt policies [24]. In contrast, GAs are adaptive algo-
rithms that solve problems by following a computational model of natural
evolutionary systems [23]. Candidate solutions to problems are coded as
chromosomes of a population, which is then evolved according to genetic op-
erators (crossover, mutation) until an improved solution is found. Haynes
et al. [25] were the first ones to apply this technique to discover cooperative
coordination mechanism in agents.

2.4. Distributed Case-based Reasoning

Case-based reasoning has been introduced in recent years for coordination
learning and reasoning in what is known as distributed case-based reason-
ing [26, 8]. In [8] the authors propose a classification for distributed case-
based systems according to two dimensions: knowledge and processing. For
knowledge, there are single or multiple case bases. For processing, two kinds
of approaches can be distinguished: single or multiple agents.

Multi-case-based reasoning (MCBR) works by enriching a case-based lo-
cal with cases from other bases with different task or execution environments
[27]. MCBR research then focuses on strategies to decide when to access case
bases and how to apply their cases.

Multi-agent means that more than one agent is involved in solving a prob-
lem, such as when different coverage of a given domain must be provided[28,
29]. Thus, in addition to the local-global principle, a social policy should be
added to CBR. While the local-global principle [30] relates to the synergies
between similarity functions at the feature level (e.g., similarities between
two age values) and how these similarities are aggregated at the case level,
the social policy combines the outcome of several case bases or agents.

In [31] some schemas for agent collaboration on problem solving are pro-
posed, including several voting approaches. Moreover, several schemas for
case exchange based on the machine learning dimension of case-based rea-
soning are provided.

The approach presented in this paper is simple, with the aim being to
support collaborative prognosis, as well as to bring decision support systems

7



Figure 2: eXiT*CBR. Left: version 1.0, tool for designing isolated CBR systems. Medical
data includes vocabulary, cases and attribute weights. Right: version 2.0, tool for designing
multi-agent cooperative CBR systems. Several vocabularies, cases and weights can be
provided; optionally, information of agent relevance (collaborative data) can be provided,
or otherwise learned.

closer to actual clinical practice. Further research should consider other
distributed case-based reasoning techniques. Thus, we focus on multiple
agents, each agent with a single case base.

3. eXiT*CBR.v2 Architecture

eXiT*CBR.v2 has been projected to support the design of distributed
case-based reasoning under a cooperative schema. Like its predecessor, it is
domain specific for medical prognosis, designed to deal with the particular
requirements of this domain as explained in [4]. In a nutshell, the tool sup-
ports development of and experimentation with new case-based reasoning
systems. It does this by providing a user-friendly navigation interface which
facilitates the analysis of experiments. It is adapted to the information physi-
cians use to work (receiver operator curves, ROC), and supports experiment
reproducibility by storing and tracking experiment information [5]. In this
paper we discuss new features of the v2 tool that complement the cooperative

8



nature of medical teams. They are: a cooperative coordination mechanism,
a learning mechanism for coordination, and MAS validation methods.

3.1. eXiT*CBR Basics

The tool is designed for conducting experiments which predict the likeli-
hoods of a patient illness under case-based reasoning methodology. Targeted
users include health care and medical staff working in collaboration. Users
can apply the tool to analyse the impact on prognosis and to consider the
inclusion/exclusion of certain variables, collaborators and derivable informa-
tion (such laboratory tests, radiology proves).

Physicians are required to provide the knowledge in CSV files that can
be managed by SPSS tools and the like. Knowledge contained in the CSV
file includes the vocabulary, case-base, and attribute relevance [32]. First,
vocabulary consists of attribute-value pairs, allowing numerical, categorical
and textual data representation. The vocabulary is provided together with
cases, in the headers (first rows) of the CSV file.

Second, the case base is provided in the CSV file, so that columns rep-
resent attributes, and rows represent cases. Since the tool is concerned with
prognosis, one of the attributes is labelled as the class, with value 0 or 1 to
indicate a negative result (the person has not suffered the illness) or pos-
itive (the person is ill)1. The use of case-based reasoning is, given some
person data, obtain the prognosis. The novelty of version 2 is that one or
multiple case bases may be used, enabling EHR handling through multiple
case-based agents.That is to say, when each EHR fragment is handled by an
agent (multi-agent system), the context of the EHR fragment’s interpretation
can be maintained. EHR fragments are provided in CSV files, one fragment
per agent.

And third, attribute relevance (weights) to be used in similarity measures
can be specified as special rows of the CSV files.

In addition to these classical knowledge repositories, when dealing with a
distributed system there is a need for information on the social policies that
govern agent coordination, and on how different EHR data contribute to the
final prognosis. Different EHR components are represented by independent
CSV files, and thus, agents in the distributed CBR system. The tool offers
the possibility of using an external file (i.e. a weights file) for expressing the

1This values are exchangeable.

9



relevance of each agent in the final result. The weights file also follows a
CSV format to facilitate its manipulation by editing tools commonly used by
physicians.

About the methods for use at every CBR stage, namely retrieve, reuse,
revise, and retain, the architecture of eXiT*CBR enables the incorporation
of user-defined methods while the tool, as it is, provides some methods by
default. These methods can be selected and parameterised from a friendly
interface, which permits the configuration file to be set up for the experiments
to be carried out. Thus, from the configuration file, a distributed CBR
system is generated (see Figure 2). Next, results of the experimentation are
graphically shown to the user.

Retrieve methods involve similarity measures, some which are local (Ham-
ming, Euclidean) and others global (e.g., average, weighted average). They
can be selected in the configuration file. At the current tool stage, simple
reuse methods (as the one described in [33]) are provided that do not require
particular knowledge. The inclusion of reuse knowledge, as simple rules, such
as those proposed for diabetes in [34], could be considered in the near future.
Regarding revision, in prognosis there is only two possible situations: the
prognosis is right or it is not. As prognosis involves future, it is difficult to
assess whether it is right or not when a system is running in a real environ-
ment. However, eXiT*CBR is devoted to experimentation and used to test
a user CBR system configuration according to some validation methodology
(see Section 3.4) in which the outcome of a problem is known in advance
(target). Therefore, it is possible to check if the current configured CBR
system provides right answers, by comparing the CBR system outcome with
the target. This is the method provided by default in eXiT*CBR. The user,
however can include in the tool other methods when required. Finally, there
is no retain method provided by the tool. The automatic incorporation of
cases in medical applications, without the supervision of a professional, is
still a matter of discussion in this domain. eXiT*CBR can be used once and
again for testing the CBR system resulting of changing the case base or other
system features that could be updated in the retain stage (as for example,
attribute relevance). Hence, the tool provides methods by default for the
stages of CBR as typically they are used in medical applications [35].

Finally, knowledge engineers can support physicians in experiments to
determine even more suitable parameters and methods, so as to exploit all
of CBR and MAS potentials. Engineers can add methods to the tool, as it
follows a modularity approach. Hybridisation with other reasoning methods

10



Figure 3: Agent voting schema

as well as with data mining tools is also possible. See [5] for further details.

3.2. Cooperative Coordination Mechanism

Cooperative case-based reasoning is deployed by assigning a different case
base to each agent, which is guided by the data organisation provided by
physicians. Organisational structure can be defined according to two different
approaches [15]:

• Functional decomposition by expertise, so that data from the endocri-
nologist or the cardiologist is kept separately, while prognosis with a
given patient is shared.

• Spatial decomposition by information source or decision point, where
some overlapping of data may occur. Exchanges of experiences with
different patients are used to asses a new prognosis.

Both organisations are valid mechanisms in a medical domain, and can be
uniformly dealt with in eXiT*CBR.v2. Thus, there are as many CBR agents
as departments or sources of information. CBR agents are able to interact
with each other, they provide their own opinion (prognosis and confidence),
then, a coordinator agent makes a final decision based on a weighted voting
schema (see Figure 3).

11



When a new case C needs to be solved, the coordinator agent delivers
the case to every CBR agent. Each agent j computes its own prognosis
following a case-based reasoning behavior. As a result, each agent sends its
own outcome back to the coordinator (e.g., 0 for negative or healthy cases
and 1 for positives or illness samples) and a confidence δ in its prognosis.
Both, prognosis and δ are the outcome of the CBR retrieve and revision
stages. Observe than in isolated systems, δ is not provided but it is in the
MAS approach. The δ value is determined as a function of the cases most
similar to C and the ratio between positive and negative solutions of these
most similar cases is also taken into account (see [33] for further details).
All the agents follow the same retrieve and reuse methods, but they use
different knowledge (vocabulary, cases or attribute relevance, depending on
the organizational structure).

The coordinator agent determines the solution to the case based on the
solutions of the different agents. For that purpose, the coordinator keeps a
weight wj concerning the reliability on each agent j (some other authors con-
sider these weights as trusts [36]). The weights have either been entered by
the users or learned by the tool (see next Section). Using agent weights and
confidences in the prognosis, the coordinator agent collects all the evidence
in relation to positive evidence (v+) and negative cases (v−) according to the
following weighted voting schema:

v+ =

∑
classj=+wj ∗ δj∑

classj=+wj

(1)

v− =

∑
classj=−wj ∗ δj∑

classj=−wj

(2)

where wj is the agent weight and δj is the agent’s confidence in its prognosis.
If v+ is greater than v− the coordinator classifies the case as positive (illness),
a lesser result will be classified as negative (healthy).

Although Equations 1 and 2 are similar to the ones usually used in the re-
trieval phase, they aggregate information to work towards multi-agent system
outcomes. These equations are related to the social component of distributed
case-based reasoning, and operate at a higher level than the local-global prin-
ciple discussed in [30] (see also Section 2.4).

12



3.3. Coordination Learning Using Genetic Algorithms

Weights quality is directly related to prognosis accuracy; consequently,
the process of assigning a weight to each agent is not trivial. In terms of EHR,
physicians may assume that some data related to a certain illnes are more
informative than others, or that the data reliability depends on the health
care staff that provide it. To facilitate this task, eXiT*CBR.v2 provides a
feature to learn agents weights using a GA [23].

Weight learning is performed by the coordinator agent, which interacts
with all of the case-based agents. In this sense, it is important to observe that
weight learning focuses on the improvement of the coordination mechanism,
and tries to model a trust value for each case-based agent. For example, some
physicians prefer the information coming from one radiologist as opposed to
another, because they trust the former’s experience much more. Information
reliability is handled by the agent (people, hospital units) and not at the case
level. Thus, weight learning should be considered as a learning facility which
is complementary to the one provided by case-based reasoning methodology.
In the future, a case-based system can be added inside the coordinator to fine
tune the trust obtained by the GA. The GA solves the cold start problem.

The GA implementation we made consists of the following steps:

1. Create a randomly generated population of phenotypes

2. Calculate the fitness function for each phenotype in the population

3. Sort the phenotype population from best to worst

4. For each phenotype
(a) Select a phenotype to form a pair
(b) With a probability pc cross them over to form a pair of offspring
(c) With a probability pm mutate the pair of offspring

5. Mash the best phenotypes of each population in order to create a new
one.

6. Repeat step 2 until the population error is stacked.

In our implementation, each phenotype is composed of a set of weights
(one for each agent). The fitness function consists of building and testing
the distributed CBR system that follows the phenotype crx and obtaining
an evaluation rate on a cases set. It is then defined as follows:

fitness(crx) = (1− error(crx))3 (3)

error(crx) =

∑l
j=1 |realj − predictedj|

l
(4)

13



Where l is the number of cases in which the GA is tested, realj is the real
class for case j, and predictedj is the CBR classification result. As a result, at
the end of the GA run, the phenotype with a higher fitness function contains
the best set of weights.

GAs usually overfits the cases set [37]. To reduce the incidence of overfit-
ing, the process of using a GA to determine the weights is repeated several
times with different cases sets. Thus, after m runs of the GA on a number
of n CBR agents, we get a collection of m possible weights for each agent.
The m different results obtained are then averaged through multi-criteria
decision methods (MCDM) (see Figure 4). These techniques significantly
increase system performance and robustness [38]. eXiT*CBR.v2 offers the
option of using different MCDM based on different statistics (means, vot-
ing, errors, etc) for combining weights obtained in the GA runs on different
datasets, namely:

• Mean value: the weights obtained are the mean weights of the different
GA runs.

• Error based: the weights are calculated using the prediction error ob-
tained during the GA runs. Agents with a lower prediction error are
those with a higher weight.

• Rated ranking: This approach ranks the agents in each GA from the
highest to lowest weight. Agents that obtain a higher mean ranking
are those with higher weights.

• Voted ranking. As with the previous method, in this approach the
agents are ranked according to the weight obtained in each GA run,
then, final weights are assigned according to the most repeated ranking
position in the GA runs.

3.4. MAS Cross-Validation Methods

As stated in the introduction, the aim of eXiT*CBR.v2 is to facilitate
the development of CBR systems that are composed by a user-selected set of
methods and their parameters. In order to evaluate the accuracy and other
measures of the created system, a validation method is required to test them.

Stratified cross-validation is a very well-known technique that is used
when small data sets are available [39, 40]. This is often the case with medical

14



Figure 4: Weight learning schema.

applications. Under the assumption that there is a set C of previous cases
available for training the CBR system, stratified cross-validation consists of
generating different partitions P1, . . . , Pn in C, running the CBR system in
each of the partitions, obtaining different results according to the particular
evaluation measures (such as recall, precision, fault-positives, etc. [1]), and
finally the process concludes by averaging the results across all the partitions.
Each partition Pi consists of two parts: training cases and test cases, with
the training cases composed of many more cases than the test cases. Cases
are randomly assigned as training or test cases in each partition, without
repetition and maintaining the class distribution. Usually, the methods are
parameterised by either a k constant or a p percentage that indicates the
difference between the amount of training and test cases in the partitions.
For example, a p = 10%, means that the size of test cases is 10% of the total
size of Pi; while k = 10 means that there will be 10 partitions.

There is a natural extension of the stratified cross-validation method -
from isolated systems to distributed environments - by adding an additional
level, which we call groups. There are as many groups as agents, and each
group Gi contains the cases known by the agent Ai. Thus, all groups can
contain the same cases, but different attributes per case (functional decom-
position). Conversely, groups can have different cases, but each of them will

15



have the same attributes (spatial decomposition).
eXiT*CBR.v2 currently offers the possibility of implementing both ap-

proaches, which allows the user to test the feasibility of building a distributed
system and also compare the benefits of an isolated one (as shown in the case
study of Section 4).

3.4.1. Folders for Spatial Decomposition

In this approach, all agents receive cases with the same contents (as
in [31]). Using cross-validation in this way, it is possible to enhance the
collaboration of experts in the same field who have different past experi-
ences. This is quite close to evidence-based reasoning, typical in medicine.
Evidence-based medicine looks for the best answer to medical questions by
tracking down, with maximum efficiency, the best evidence (from clinical ex-
amination, diagnostic laboratory, published literature, or other sources) [41],
then, physicians collaborate in a peer-to-peer way to conclude final medical
outcome. With our tool, none of the agents have in its case base the case to
be tested, rather they have different case bases that cover part of the domain
(also known as case-based bias [31]). For each test case, each agent reports
its result according to its case-base, then prognosis is computed as per the
voting schema shown in Equations 1 and 2.

Given a partition Pi, as many group folders Gj
i as agents are generated

(see Figure 5). Each group contains part of the training cases of Pi. Groups
can be disjoints or not, meaning that agents may have different past experi-
ences, with or without some degree of overlapping. Test cases of a partition
are used to query all agents.

3.4.2. Folders for Functional Decomposition

In a functional decomposition, agent expertise is not overlapped. For
example, several physicians can contribute to the gathering of patient infor-
mation relating to an illness according to their speciality, whether it be an
endocrinologist, a radiologist, etc. This information can include tests and
examinations performed on the patient as well as the interpretation of these
tests according to the physician’s expertise. In this situation, information is
often kept in relational data-bases (such as the one depicted in Figure 7, left)
with different authorisations views. From the database, partition folders are
generated so that each group contains all the cases, but the information per
case is partial, according to which segment/view of the database the agent
is allowed to access (see Figure 6).

16



When testing the system, all of the agents receive the same test case.
None of them will have an identical case in their case-base, but all of them
share the same experiences (i.e. different data from the same patients). On
this basis, they will output their prognosis, and their combined contribution
will lead to the final result.

4. Sample Tool Usage

In this section we provide the reader with an example of our tool’s capa-
bilities. The application chosen in this article for illustrative purposes is in
breast cancer prognosis. eXiT*CBR.v2 is being used for medical researchers
trying to set up an application tool to provide support for clinical practice.
As such, they should start from cases coming from a previous clinical study.

When predicting likelihood of a patient suffering breast cancer, informa-
tion from several departments is required. This information is gathered in a
relational data base, such as the one shown in Figure 7, left. The database
consists of 871 cases: 628 healthy women and 243 women with breast can-
cer. The MAS approach naturally follows the same organisation as that of
the data-base, as shown in Figure 7 right, resulting in a MAS with eight
specialised case-based agents: an epidemiologist agent, a toxic habits agent,
a dietetic habits agent, an adolescent habits agent, a gynecological history
agent, a pathological history agent, a radiological history agent and a neo-
plastic history agent.

Note that in a clinical study data may be made available in a centralised
way, though when deploying the system in a real-life scenario the data may
belong to different departments that would like the information to remain
private. As stated previously, the issue of patient data ownership remains
unsettled, and is bound by legal considerations[4, 7]. Collaboration can take
place at a high level, providing opinions, but rarely sharing patient details.
Thus, eXiT*CBR.v2 allows the distributed CBR system to be configured
as it would be deployed in a real scenario, so as to provide support for an
oncologist making a final prognosis. The question is, how do the different
specialisations influence the final decision?

As a first approach, the system designer could try an experiment in which
all the agents collaborate to the same degree (with the same weight in the
voting schema proposed in Equations 1 and 2). For this purpose, the designer

17



Data

Base

P1

All cases Partitions Parts

…

Train1

Test1

Groups

Train2

Test2

Trainn

Testn

…

Agent 1

Agent 2

Agent n

P2

Train1

Test1

Train2

Test2

Trainn

Testn

Pm

Train1

Test1

Train2

Test2

Trainn

Testn

Figure 5: Stratified cross-validation for spatial MAS organisations.

Data

Base

P1

P2

Pn

All cases Partitions Parts

…

Train1

Test1

Agent 1

Train2

Test2

Agent 2

Trainn

Testn

Agent n

… …

Figure 6: Stratified cross-validation for functional MAS organisations.

18



Figure 7: Relational data-base for a functional organisation of a MAS

defines the MAS system according to a simple user interface (see Figure 8) 2.
The parameters to be provided are organised in the following blocks:

• Experimentation: parameters in this block are used to define the
type of experiment to be performed: batch, cross-validation, MAS-
cross-validation.

• Data: parameters of this block are used to define the source of the
database, the attribute that represents the illness (class) and the direc-
tory where the results will be stored.

• Pre-process: in this section, the user can operate the data sets in
order to normalise or to discretise the data if necessary.

• Model Generation: this block contains the parameters relevant to
the different methods available for each CBR stage.

2Further details can be found in the tutorial provided in http://exitcbr.udg.edu/

19



Figure 8: eXiT*CBR v2 parameter interface.

• Multiagent: when executing a MAS experiment, the user must either
specify the file and directory where agents’ weights are stored or in-
dicate that the weights will be learned. In this last case, the learning
methodology must be specified and, if necessary, also the MCDM.

The first and last blocks are highlighted in Figure 8, where the new function-
alities explained for the first time in this paper are included.

As a result, the user obtains a visualisation of system behavior in the
form of a ROC curve, (See Figure 9), which displays the relation between
true and false positive ratios, and the area under the curve (AUC) value,
which explains the quality of the classifier. The result is not satisfactory
since an ideal classifier would have an AUC of 1.

Next, the system designer can decide to use the learning facility to as-
sign weights to agents. To do so, a new distributed CBR system has been
set up, but with the change of a single parameter on the user interface.
Instead of ”LoadWeightsFromFile” the user has written ”LearnWeightsM-
CDM MCDMalgorithm” .

New results can be overlapped in eXiT*CBR.v2 thanks to the experiment
navigation facility. As a result, the user can obtain the graphic shown in
Figure 10, where it is possible to observe how the usage of collaborative
CBR agents improves the performance of the system, increasing the AUC up

20



Figure 9: ROC for the first MAS-CBR experiment. Functional cross validation with 50
data sets. Area Under the Curve of 0.755

to 0.863.
Finally, the distributed system is compared against a centralised CBR.

For this purpose, the CBR designer need only change the parameter of the
interface called ”experimentation method”. Now, the ROC output of the
experiment has an AUC of 0.819 while the MAS execution had an AUC of
0.863. The navigation tool facilitates the comparison between experiments,
facilitating the user task of deciding when to run a single CBR or when a
MAS is a better solution.

In all cases we have followed a functional approach for the cross-validation
procedure where 90% of the data has been used for training and the remaining
10% for testing.

In conclusion, we have illustrated how the user can change from a multi-
agent collaborative approach to a single one in an easy way, learning weights
with a single change of the eXiT*CBR.v2 parameters, to display the effects
of the changes in the resulting CBR system.

21



Figure 10: ROC outputs comparison of the experiments performed.

5. Comparison with similar tools

There are now a number of tools similar to eXiT*CBR.v2 which have
been developed by other research groups. The software closest to our appli-
cation is probably jCOLIBRI [2], developed by the Universidad Complutense
de Madrid (UCM). In terms of the multi-agent capability focus of this pa-
per, jCOLIBRI has been recently extended in a multi-agent approach called
D2ISCO [42]. Although the authors present the tool for distributed CBR as
an extension of their previous jCOLIBRI tool, they are offering a specific tool
for recommender system prototyping. Thus our approach, which addresses
the need to constrain the scope to a particular task (as prognosis) or domain
(i.e., medical), seems the only way to provide useful tools for supporting
systems development. Another important difference in our tool is the fact
that we are providing multi-agent learning mechanisms as a starting point
for dealing with agents weights. These weights are related to trust values
in D2ISCO, evolved through agents interaction. In our approach, weights
cannot be evolved due to the constraint imposed by the domain, rather they
are learnt. The GA we are proposing is a method available by default, but
it will be possible to add many other approaches in the future.

Other related software for developing CBR systems in distributed ap-

22



proaches is Noos [43]. Noos is an agent platform that has been used to
test the feasibility of distributed case-based reasoning systems [31], but it
is not conceived as a specific distributed CBR toolkit, which we offer with
eXiT*CBR.v2. Elsewhere, more mature coordination mechanisms than the
voting schema presented in this paper have been proposed, such as the AMAL
protocol for argumentation processes[44] (see [8], for example, for a broad sur-
vey). Our specific aim is to support collaborative prognosis, by extending
the existing eXiT*CBR tool, but future work should also consider study the
methods in [44] so as to render them useful to physicians for clinical practice.

Other publications have made reference to tools for developing MASs,
such as those explained in the Section 2, as well as other tools that provide
integration kits (see, for example, CBR Works [45] which is implemented in
CORBA [46]) so that different CBR systems can cooperate. However, the
tool is not designed per se to test MAS CBR systems.

An example of where case-based reasoning has been applied in MASs
for agent coordination can be seen with CAKE (Collaborative Agent-based
Knowledge Engine [47]). CAKE supports collaborative business by integrat-
ing workflow technology, agents and humans. In such a context, high flex-
ibility for business processes, tasks and agents is required, and case-based
reasoning is used to meet the requirements of a specific situation.

There are other popular case-based reasoning tools, but unlike eXiT*CBR.v2,
they do not support the collaborative work. Among them, it is interesting
to highlight CBRShell [48] which also provides an agent-based algorithm for
weight learning. As with our tool, cases are also provided via a comma sep-
arator value file. However, it lacks of modularity, and a single similarity
method is provided only to solve classification problems. eXiT*CBR.v2 al-
lows the definition of several methods for the different stages of case-based
reasoning.

Among other available tools that also include case-based reasoning tech-
nology are Orenge [49] and AIS [50]. Orange is a commercial retrieval engine
which supports maintenance issues related to the case base and is able to
deal with case generalisation. One of the main drawbacks of Orenge is the
proprietary language required for representing the knowledge (vocabulary,
similarity measures, reuse rules). AIS is a commercial semantic middleware
for organisational search and classification problems, supporting marketing
activities in enterprises as well as costumer information data mining analysis.
Some collaborators of AIS offer a free, alternative tool called myCBR [51].
Based exclusively on CBR, it has more flexibility for defining similarity mea-

23



sures, and includes a semantic module. For a detailed comparison of other
tools against the non-agent version of eXiT*CBR, see [5].

Regarding domain specificity, Orange [52] is a data mining tool which
allows the user to install some additional widgets to deal with bioinformatic
problems, as well as microarray and genomic data. We think that Orange
presents some complements to our case-based reasoning tool, which should be
studied in future work to find appropriate synergies and connections. How-
ever, unlike eXiT*CBRv2, Orange, as well as other well-known free available
data mining tools such as Weka [53], do not consider collaborative decision
making.

The application of GA to case-based reasoning has been studied to the
retrieval phase for feature and instance learning, as in [54, 55, 56]. We
understand that in the future we need to complement our approach with these
studies and consider the synergies between feature learning and classifier
weight learning, together with local similarity measures, such as those studied
in [57].

6. Conclusions and Future Work

Collaborative medical decision making is a reality today, and thus we
need to provide physicians with tools that take into account such a col-
laborative working mode. In this paper we have presented eXiT*CBR.v2, a
distributed-case-based reasoning tool which works towards supporting the de-
velopment and experimentation of medical decision-making in a distributed
environment. Thus, we are empowering the previous version of the tool
(eXiT*CBR.v1) with facilities for CBR systems to interact in open, col-
laborative environments. Like its predecessor, eXiT*CBR.v2 is focused on
medical prognosis, while keeping the original user-friendly interface designed
for testing medical applications, to therefore minimise possible disruption in
the work of current v1 users who wish to adopt the next version of the tool.
The new tool includes a collaborative mechanism for agents under a voting
schema, methods that support learning for coordination and cross-validation
for spatial and functional MAS organisations.

We illustrate the use of the tool through several experiments carried out
with a breast cancer database, and we show how easy it is to compare dis-
tributed approaches that maintain naturally distributed clinical organisation,
compared to centralised systems. As a future work, we intend to include other
methods to generate executable CBR systems for exploitation purposes that

24



could be valid even in mobile platforms. The addition of other coordination
mechanisms should be also explored, as well as the extension to other related
tasks (diagnosis).

Acknowledgements

This research project has been partially funded through the projects la-
beled TIN2008-04547, DPI2011-24929 and CTQ2008-06865-C02-02 and the
grants UDG-BR10/18 and FPU-AP2009-2831.

7. Bibliography

[1] J. Comunity, Drools 5 - the business logic integration platform,
http://www.jboss.org/drools (Accessed 6 2010).

[2] B. Dı́az-Agudo, P. A. González-Calero, J. A. Recio-Garćıa, A. A.
Sánchez-Ruiz-Granados, Building CBR systems with jCOLIBRI, Sci.
Comput. Program. 69 (2007) 68–75.

[3] N. C. Perry, M. W. Wiggins, M. Childs, G. Fogarty, Can reduced pro-
cessing decision support interfaces improve the decision-making of less-
experienced incident commanders?, Decision Support Systems 52 (2012)
497–504.

[4] K. Cios, G. Moore, Uniqueness of medical data mining, Artificial Intel-
ligence in Medicine 26 (2002) 1–24.

[5] B. López, C. Pous, A. Pla, P. Gay, J. Sanz, J. Brunet, eXiT*CBR:
A framework for case-based medical diagnosis development and experi-
mentation, Artificial Intelligence in Medicine 51 (2011) 81–91.

[6] SPSS software, http://www-01.ibm.com/software/analytics/spss/
[Accessed: 14/06/2012].

[7] D. Kalra, Electronic health record standards, in: IMIA Yearbook of
Medical Informatics, IMIA and Schattauer GmbH, 2006, pp. 136–144.

[8] E. Plaza, L. McGinty, Distributed case-based reasoning, Knowl. Eng.
Rev. 20 (2005) 261–265.

25



[9] A. Aamodt, E. Plaza, Case-based reasoning: Foundational issues,
methodological variations, and system approaches, AI Communications
7 (1994) 39–59.

[10] I. Gilboa, L. Samuelson, D. Schmeidler, A unified model of induction,
Tech. rep., MIT Economics, http://economics.mit.edu/files/4558
[Accessed: 14/06/2012] (2009).

[11] E. A. M. L. Abdrabou, A.-B. M. Salem, Case-based reasoning tools from
shells to object-oriented frameworks, in: ICCOMP’08, World Scientific
and Engineering Academy and Society (WSEAS), 2008, pp. 781–786.

[12] M. Wooldridge, An Introduction to MultiAgent Systems, 1st Edition,
John Wiley & Sons, 2002.

[13] N. R. Jennings, Coordination techniques for distributed artificial intel-
ligence, John Wiley & Sons, Inc., New York, NY, USA, 1996, Ch. 7, pp.
187,210.

[14] T. W. Malone, K. Crowston, The interdisciplinary study of coordination,
ACM Comput. Surv. 26 (1994) 87–119.

[15] G. Weiss (Ed.), Multiagent systems: a modern approach to distributed
artificial intelligence, MIT Press, Cambridge, MA, USA, 1999.

[16] N. Islam, G. A. Mallah, Z. A. Shaikh, FIPA and MASIF standards: a
comparative study and strategies for integration, in: Proceedings of the
2010 National Software Engineering Conference, NSEC ’10, ACM, New
York, NY, USA, 2010, pp. 7:1–7:6.

[17] T. Finin, R. Fritzson, D. McKay, R. McEntire, KQML as an agent com-
munication language, in: Proceedings of the third international confer-
ence on Information and knowledge management, CIKM ’94, ACM, New
York, NY, USA, 1994, pp. 456–463.

[18] F. Zambonelli, N. R. Jennings, M. Wooldridge, Developing multiagent
systems: The Gaia methodology, ACM Trans. Softw. Eng. Methodol.
12 (2003) 317–370.

[19] F. Bergenti, M. P. Gleizes, F. Zambonelli (Eds.), Methodologies and
Software Engineering for Agent Systems. The Agent-Oriented Software
Engineering handbook, Kluwer Publishing, 2004.

26



[20] F. Bellifemine, A. Poggi, G. Rimassa, JADE: a FIPA2000 compliant
agent development environment, in: Proceedings of the fifth interna-
tional conference on Autonomous agents, AGENTS ’01, ACM, New
York, NY, USA, 2001, pp. 216–217.

[21] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, D. D. Edwards,
Artificial intelligence: a modern approach, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1996.

[22] G. Weiß, M. Nickles, M. Rovatsos, F. A. Fischer, Specifying the inter-
twining of cooperation and autonomy in agent-based systems, J. Net-
work and Computer Applications 30 (3) (2007) 1196–1215.

[23] M. Mitchell, An introduction to genetic algorithms, A Bradford book,
MIT Press, 1996.

[24] M. Tan, Multi-agent reinforcement learning: Independent vs. coopera-
tive agents, in: Proceedings of the Tenth International Conference on
Machine Learning, Morgan Kaufmann, 1993, pp. 330–337.

[25] T. Haynes, R. Wainwright, I. Sen, Evolving cooperation strategies, in:
Proceedings of the First International Conference on Multi–Agent Sys-
tems, MIT Press, 1995, pp. 45–0.

[26] M. V. Nagendra Prasad, E. Plaza, Corporate memories as dis-
tributed case libraries, in: Proc. 10th Banff Knowledge Acquisition for
Knowledge-based Systems Workshop, volume 2, 1996, pp. 1–19.

[27] D. B. Leake, R. Sooriamurthi, Automatically selecting strategies for
multi-case-base reasoning, in: Proceedings of the 6th European Con-
ference on Advances in Case-Based Reasoning, ECCBR ’02, Springer-
Verlag, London, UK, UK, 2002, pp. 204–233.

[28] L. McGinty, B. Smyth, Collaborative case-based reasoning: Applications
in personalised route planning, in: Aha, DW & Watson, I (eds.): Proc. of
the Fourth International Conference on Case-Based Reasoning, ICCBR,
Springer-Verlag, 2001, pp. 362–376.

[29] C. Hayes, P. Cunningham, M. Doyle, Distributed CBR us-
ing XML, Tech. Rep. Computer Science Technical Report

27



TCD-CS-1998-06, The University of Dublin, Trinity College,
http://hdl.handle.net/2262/13005 [Accessed: 14/06/2012] (1998).

[30] R. Bergmann, Experience Management Foundations, Development
Methodology, and Internet-Based Applications, LNCS 2432, Springer,
2002, Ch. 4. Assessing Experience Utility.

[31] S. Ontañón, Ensemble case based learning for multi-agent systems,
Ph.D. thesis, Universitat Autonoma de Barcelona (2005).

[32] M. M. Richter, Knowledge containers,
http://pages.cpsc.ucalgary.ca/ mrichter/Papers/Knowledge%20Containers.pdf

[Accessed: 14/06/2012] (2006).

[33] C. Pous, P. Gay, A. Pla, J. Brunet, J. Sanz, T. R. Cajal, B. López,
Modeling reuse on case-based reasoning with application to breast can-
cer diagnosis, in: Proceedings of the 13th International Conference on
Artificial Intelligence: Methodology, Systems, and Applications, AIMSA
’08, Springer-Verlag, 2008, pp. 322–332.

[34] P. Herrero, An insulin boulus calculator based on case-based reasoning,
in: Diabetes Technology Meeting, Springer-Verlag, 2011.

[35] I. Bichindaritz, S. Montani, L. Portinale, Special issue on case-based
reasoning in the health sciences, Applied Intelligence 28 (2008) 207–209.

[36] A. Birk, Boosting cooperation by evolving trust, Applied Artificial In-
telligence 14 (2000) 769–784.

[37] L. A. Becker, M. Seshadri, Comprehensibility and overfitting avoidance
in genetic programming for technical trading rules, Tech. rep., Worcester
Polytechnic Institute (May 2003).

[38] B. López, C. Pous, P. Gay, A. Pla, Multi criteria decision methods for
coordinating case-based agents, in: Proceedings of the 7th German con-
ference on Multiagent system technologies, MATES’09, Springer-Verlag,
Berlin, Heidelberg, 2009, pp. 54–65.

[39] S. Borra, A. Di Ciaccio, Measuring the prediction error. A comparison
of cross-validation, bootstrap and covariance penalty methods, Comput.
Stat. Data Anal. 54 (2010) 2976–2989.

28



[40] J. Demsar, Statistical comparisons of classifiers over multiple data sets,
Journal of Machine Learning Research 7 (2006) 1–30.

[41] R. C. Brownson, J. G. Gurney, G. H. Land, Evidence-based decision
making in public health, J Public Health Management Practice 5 (1999)
86–97.

[42] S. González-Sanz, J. A. Recio-Garćıa, B. Dı́az-Agudo, D2ISCO: Dis-
tributed deliberative CBR systems with jCOLIBRI, in: Proceedings of
the 1st International Conference on Computational Collective Intelli-
gence. Semantic Web, Social Networks and Multiagent Systems, ICCCI
’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 321–332. doi:978-3-
642-04441-0 28.

[43] E. Plaza, J. L. Arcos, F. Martin, Cooperative Case-Based Reasoning,
Vol. 1221, Spriger-Verlag, 1997, Ch. 7, pp. 180–201.

[44] S. Ontañón, E. Plaza, An argumentation-based framework for delibera-
tion in multi-agent systems, in: Proceedings of the 4th international
conference on Argumentation in multi-agent systems, ArgMAS’07,
Springer-Verlag, 2008, pp. 178–196.

[45] S. Schulz, CBR-Works - A state-of-the-art shell for case-based applica-
tion building, in: Proceedings of the 7th German Workshop on Case-
Based Reasoning, GWCBR’99, Wrzburg, Springer-Verlag, 1999, pp. 3–5.

[46] Common object request broker architecture (CORBA),
http://www.omg.org/spec/CORBA/ [Accessed: 14/06/2012].

[47] R. Bergmann, A. Fressmann, K. Maximini, R. Maximini, T. Sauer, Case-
based support for collaborative business, in: Proceedings of the 8th Eu-
ropean conference on Advances in Case-Based Reasoning, ECCBR’06,
Springer-Verlag, Berlin, Heidelberg, 2006, pp. 519–533.

[48] AIAI, CBR Shell, http://www.aiai.ed.ac.uk/project/cbr/CBRDistrib/
[Accessed: 14/06/2012].

[49] T. Roth-Berghofer, Developing maintainable case-based reasoning sys-
tems: Applying SIAM to empolis Orenge, in: M. Nick, K.-D. Althoff
(Eds.), CEUR Workshop Proceedings Volume 67, CEUR-WS.org, 2003.

29



[50] AIS, http://www.attensity.com/ [Accessed: 14/06/2012].

[51] myCBR, mycbr-project.net [Accessed: 14/06/2012].

[52] Orange, http://orange.biolab.si/ [Accessed: 14/06/2012].

[53] I. Witten, E. Frank, Data mining: practical machine learning tools and
techniques, 2nd edition, Morgan Kaufmann, San Francisco, CA, USA,
2005.

[54] P.-C. Chang, C.-Y. Lai, R. Lai, A hybrid system by evolving case-based
reasoning with genetic algorithm in wholesaler’s returning book fore-
casting, Decision Support Systems 42 (2006) 1715–1729.

[55] H. Ahn, K. jae Kim, I. Han, Hybrid genetic algorithms and case-based
reasoning systems, in: J. Zhang, J.-H. He, and Y.Fu (Eds.): CIS, LNCS
3317, Springer, 2004, pp. 922–927.

[56] J. Jarmulak, S. Craw, R. Crowe, Genetic algorithms to optimise CBR
retrieval, in: EWCBR ’00: Proceedings of the 5th European Workshop
on Advances in Case-Based Reasoning, Springer-Verlag, 2000, pp. 136–
147.

[57] A. Stahl, T. Gabel, Local similarity measures using evolution programs
to learn, in: Proceedings of the Fifth International Conference on Case-
Based Reasoning, Springer, 2003, pp. 537–551.

30


