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University of Girona, Campus Montilivi, P4 Building,
Girona, E17071, Spain,

{pablo.gay, beatriz.lopez, albert.pla, jordi.saperas, carles.pous}@udg.edu

Abstract

The use of family information is a key issue to deal with inheritance illnesses.

This kind of information use to come in the form of pedigree files, which

contain structured information as tree or graphs, which explains the family

relationships. Knowledge-based system should incorporate the information

gathered by pedigree tools to assess medical decision making. In this paper,

we propose a method to achieve such a goal, which consists on the definition

of new indicators, and methods and rules to compute them from family trees.

The method is illustrated with several case studies. We provide information

about its implementation and integration on a case-based reasoning tool. The

method has bee experimentally tested with breast cancer diagnosis data. The

results show the feasibility of our methodology.
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1. Introduction

Family history has been important for preventing several inheritance dis-

eases, as it is one of the key variables in the Gail model [1] for breast cancer

diagnosis. Family information is usually gathered thanks to pedigree soft-

ware (as Cyrillic [2]), which allows to annotate relationships, healthy states,

genetic markers, and much more data on patients and relatives, in a tree

structured way. Thus, to improve medical care, knowledge based system

should incorporate the information about families collected thanks to this

kind of tools.

Data processing on pedigree software has been traditionally faced from

a statistical point of view. However, statistics are not easy in this kind of

structured scenarios, most popular statistics tools can conduct to inappro-

priate or absurd conclusions, and other methods for compositional data are

required. On the other hand, expert physicians can evaluate at a glance, from

the structure, density and another heuristic knowledge, the risk of a member

of the family for suffering an inheritance illness. The skill of evaluating the

information of the family is something that is acquired by experience, and

difficult to transmit to other, novice physicians. Our research concerns the

development of tools that capture the heuristic knowledge of expert physi-

cians, finding out measures from the tree structure that conducts as close as

possible to the predictions made by them. Providing a method to extract

the relevant information from family trees enables the integration of pedigree

tools with medical knowledge based system so other physicians can also use
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inheritance data in their decision making.

The contribution of this paper is our methodology towards achieving such

integration. It includes the definition of structured data-based indicators

which are computed by analyzing the information contained in pedigree files.

The methodology is presented first under the assumption of a simple, hierar-

chical family, and then is extended to cover more complex situations (second

marriages, and so on). Our research is constrained to the data we have on

breast cancer, an illness in which inheritance has been proved to be a key

factor. Nevertheless, we believe that other inheritance illnesses can benefit

from our results.

This paper is organized as follows. First we provide information about

the structured data on Section 2. Next, in Section 3, we describe our method-

ology to evaluate a set of indicators from pedigree files. In Section 4 case

studies are provided, and in Section 5 the experimentation performed so far

is shown and discussed. Then, in Section 6 we expose some related work

and, finally, we end the paper in Section 7 with some conclusions and future

work.

2. Structured Family Data

Our starting point is the family information gathered in the very well-

known standard that nowadays is one of the most used for pedigree informa-

tion sharing: the GEDCOM format (GEnealogy Data COMmunication) [3].

This format consists of a header section, records, and a trailer section. Within
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Figure 1: This figure represents an example of a GEDCOM file pedigree tree created using
Cylillic. Family members are represented through squares (males) and circles (females)
and relationships using lines.

these sections, records represent people, families, sources of information, and

other miscellaneous records, including notes. In our case, the information

we require is the family relationships and the people’s relevant medical data

records such as if she is affected by a disease or has some results on a previ-

ously performed genetic test.

As shown in Figure 1, the representation of a GEDCOME file allows

physicians to quickly understand the family structure and also the inherited

factors on the members. Squares/circles represent males/females members of

the family respectively; members in the same horizontal level belong to the

same generation, horizontal lines between members in the same generation

represents marriage relations, and vertical lines between members who be-

long to different generations represent parenthood and childhood relations.
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Regarding the individual information, a crossed line over the member means

she is deceased; when the member is in black it means that she is affected

by the illness, a plus next to the member means that the member has been

genetically tested and has the disease causing mutation, a minus means the

member has no the mutation and nothing implies that he has not been tested

correspondingly.

3. Methodology

With the information included in the pedigrees, we can extract informa-

tion in the form of indicators and use them into a knowledge-based system

to estimate the risk of suffering the illness. Several indicators can be defined,

depending if we want to evaluate the family as a whole or at the individual

level. In the former case, statistics-based indicators can be used, while in

the second case, the value of an indicator assigned to an individual depends

on its position on the family tree. Then, the structure of the family tree is

important, and new, structure data-based methods are required. Figure 2

shows the different indicators presented in this paper. They can be combined

or not depending on the particularities of the medical application. All of the

indicators can feed a medical knowledge-based system to support medical

decision making.

Regarding the interpretation of the family structure, an extension to the

method is required to appropriately compute the indicators in complex pedi-

grees with multiple roots. Such extension is presented at the end of this
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Figure 2: Indicators for inheritance illnesses risk assessment.

section.

3.1. Statistic-Based Indicators

Statistics-based indicators are the ones currently used by physicians and

provide general information about the pedigree. They can be estimated

without having any knowledge on the pedigree structure. We have considered

three of them: the global affectation, the global mutation, and the global

penetration indicator.

3.1.1. Global Affectation Indicator

The global affectation indicator is one of the most basic statistic-based

indicators, because it represents the probability of affected family members

regarding the whole population (in our case, the family). The global affecta-

tion indicator Ag is formally defined as follows:
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Ag =
A

T
(1)

Where:

• A stands for the total amount of people who had or have suffered the

illness.

• T stands for the total amount of family members in the pedigree (fam-

ily) under study.

For example, suppose the pedigree shown at Figure 3 composed by 10

members, two of them having developed the illness (members 4 and 7).

Therefore, the global affectation indicator is Ag = 2/10 = 0.2).

3.1.2. Global Mutation Indicator

The global mutation indicator estimates the probability of being a carrier

of the mutated gene responsible of the disease, regarding the population. The

global mutation indicator, Mg is defined as follow:

Mg =
M

T
(2)

Where:

• M stands for the total of people who had or have mutated genes re-

sponsible of the inheritance disease.
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Following the example of Figure 3, in this case there are four family

members who have been tested positive for the genetic predisposition (2, 4,

6 and 8), so the global mutation indicator is Mg = 4/10 = 0.4).

3.1.3. Global Penetration Indicator

The global penetration indicator represents how aggressive is the specific

mutation which affects the pedigree. Specifically, the global penetration in-

dicator Pg informs about how many of the mutations have actually become

an affectation. It is computed as follows:

Pg =
A

M
(3)

With this indicator, we can know how probable is that a carrier becomes

an affected. Again, in the example of Figure 3, there are four members who

carry the responsible gene (members 2, 4, 6 and 8) but actually just two of

them developed the illness (members 4 and 7), hence the global penetration

indicator is Pg = 2/4 = 0.5.

Statistics-based indicators can be few discriminative, since they provide

the same information to all of the members of the family independently of the

branch of the family. Our proposal is to complement it with the structured

data-based indicators.

3.2. Structured Data-Based Indicators

Structured data-based indicators include information about the pedigree

structure. This kind of indicators allows differentiating between members
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Figure 3: Family tree simple example. The statistics-based indicators are Ag = 2/10 = 0.2,
Mg = 4/10 = 0.4 and Pg = 2/4 = 0.5.

of two pedigrees with the same amount of affected and mutated members

by considering where these mutations and affectations are and how are they

related to the other members. The indicators are defined at individual and

family levels, both, for affectation and mutation information. The former

analyze the information concerning a single member of the family, while the

latter aggregates the individual indicators for a given family.

3.2.1. Individual Inherited Indicator

This indicator defines the ratio regarding the amount of family members

that are or were affected by the illness taking into account their relationships.

To estimate the inherited affectation indicator of a member of a pedigree

we need two information pieces: the ancestor’s history and the indirect di-

versification factor. First, the ancestor’s history of a member δ(m) is based

on the generation era: the oldest family member, the one at the top of the
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family tree, is assigned the era zero, his sons the era one, his grandsons the

era two and so on. Then, δ(m) estimates the history of the healthy/affected

ancestors of a node, according to the following equation:

δ(m) =

era(m)∑
k=1

statek × 2k (4)

Where:

• era(m) is the generation era of the m member.

• statek is 0 if the k ancestor of m is healthy; 1 otherwise

Marriages are managed as a unity; the healthy state of marriage node is

computed as the worst case of the couple.

To illustrate this indicator, let us suppose the situation of Figure 4. The

era values are shown at the left of the Figure.

Members A to F are leaf nodes, while N1 to N5 are inner nodes with

offspring. The ancestors of node A are: N4 (era 2), N2 (era 1), N1 (era 0).

Since there is a single affected ancestor in the history of A, N1, the ancestor

history of A is finally computed as δ(A) = (1× 20) + (0× 21) + (0× 22) = 1.

Analogously, nodes B, D, and F have δ(B) = δ(D) = δ(F ) = 1, and the

inner nodes δ(N4) = δ(N2) = 1. Leaf node C is also affected so its value

is δ(C) = 20 + 22 = 5. Node E is affected as well as its two first ancestors,

therefore δ(E) = 20 + 21 + 23 = 11. Finally, node F is the same case as node

E regarding their common ancestors but it is not affected, so the value is

δ(F ) = 20 + 21 = 3.
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Algorithm 1 : AI(node, era, idf, delta)

1: if node is affected then
2: newDelta = delta+ 2era

3: else
4: newDelta = delta
5: end if
6: if node has offspring then
7: indicator = 0
8: newSegment = idf

offspring size

9: newEra = era+ 1
10: for all p in node’s offspring do
11: indicator += AI(p, newEra, newSegment, newDelta)
12: end for
13: return indicator
14: else
15: return newDelta× idf
16: end if

Second, the indirect diversification factor represents how many times the

precedence branch of a node has been split. The more a branch splits, the

less value it has. To compute it, we assign a unitary length segment to

the top node representing the tree root. Then the segment is split into

equal sub-segments, one for each descendant node. The descendant nodes

repeat this process (but just with the sub-segment they were assigned, not

the whole 1-length segment) until the node under study is reached. The

indirect diversification factor of a node, IDF(m), is computed as the length

of his corresponding sub-segment.

To illustrate the IDF, an example is provided in Figure 4. The top node

(N1) has been assigned a 1-length line segment. Since it has two descendant

nodes, those have a 1/2-length segment each one. Then, on the left tree
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branch (i.e., following down N2) there are three descendants, therefore the

1/2-length on the left is split into three 1/6-length segments; as C and D are

leaves, then IDF (C) = IDF (D) = 1/6. Since the left node is still not a leaf,

the 1/6-length is again split into two sub-segments attaching a 1/2-length

line segment to nodes A and B (i.e. IDF (A) = IDF (B) = 1/12). The right

tree branch proceeds in the same way, obtaining IDF (E) = IDF (F ) = 1/12.

Finally, the inherited affectation indicator of a node AI(m) is computed

as a function of its ancestors δ(m) and its IDF(m). Inspired in grounded

mathematical models [4], we have chosen the times function to combine both

components, as follows:

AI(m) = IDF × δ(m) (5)

Algorithm 1 summarizes the method to compute the individual inherited

affectation indicator.

3.2.2. Individual Inherited Mutation Indicator

The inherited mutation indicator represents the probability with which a

concrete family member could inherit a mutation by considering her ancestors

information.

Given a member m of the family, the inherited mutation indicator, MI(m),

is defined as follows:

MI =
|MA(m)|
|Anc(m)|

(6)
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Figure 4: Example of the individual inherited affectation indicator.

Where:

• Anc(m) is the set of valid ancestors of m (see below).

• MA(m) ⊆ Anc(m) is the set containing all the family ancestors of m

who have the mutated gene.

Physicians know how to explore appropriately the ancestors of a given

member. After several interviews, we have acquired a set of rules to be

applicable in the search of the ancestor of a given member. They are provided

in Table 1. A graphic example for each rule is provided in Figure 5. Then,
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the set of valid ancestors, Anc(m), is computed according to these rules.

Table 1: Rules for tree exploration (bottom-up search).

Figure 5: Graphic representation of the conditions of the ancestor’s exploration rules. The
gray node represents the family member under test.

For example, suppose we want know the MI of the member 9 of Figure 3.

The immediate ancestors of 9 are 3 and 4. They trigger rule 7 condition

(node 4 is female with positive testing, and father is unknown); thus node 4

is selected according to the rule’s consequent. Next, the ancestors of 4 are

analyzed: 1 and 2. They trigger rule 7 again, and then the female 2 is selected.

Since there is no more information about 2 ancestors, the bottom-up search

is stopped. The set of valid ancestors carrying out information about the

illness that can influence the member under study is Anc(9) = {4, 2}. Both

ancestors have the mutation proved positive, so MA(9) = 4, 2. Therefore,

MI(9) = 2/2 = 1. Note then the difference between the statistics-based

indicator regarding mutation obtained in the previous section Mg and the

new value computed for the individual member 9.
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Rule Conditions (Premise) Action (Consequent)

Rule 1. Actual family member tested
positive for the genetic muta-
tion.

No ancestor is explored, due we
have the certainty that this mem-
ber has the mutated gene.

Rule 2. Actual family member tested
negative for the genetic muta-
tion.

No ancestor is explored, due we
have the certainty that this mem-
ber does not have the mutated
gene.

Rule 3. Mother tested positive and fa-
ther negative for the genetic
mutation.

Mother’s ancestors are explored
due the father has been tested
negative.

Rule 4. Mother tested negative and fa-
ther positive for the genetic
mutation.

Father’s ancestors are explored
due the mother has been tested
negative.

Rule 5. Both mother and father tested
positive for the genetic muta-
tion.

Both mother and father’s ances-
tors are explored.

Rule 6. Both mother and father tested
negative for the genetic muta-
tion.

There is no need to continue ex-
ploring because neither mother
or father could propagate the
mutated gene.

Rule 7. Mother tested positive for the
genetic mutation and father is
unknown.

Mother’s ancestors are explored.

Rule 8. Mother tested negative for the
genetic mutation and father is
unknown.

Father’s ancestors are explored
due the mother has been tested
negative.

Rule 9. Father tested positive for the
genetic mutation and mother is
unknown.

Father’s ancestors are explored.

Rule 10. Father tested negative for the
genetic mutation and mother is
unknown.

Mother’s ancestors are explored.

Rule 11. Both mother and father are un-
known.

Father’s ancestors are explored if
there are no mutated genes be-
tween mother’s ancestors.
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3.2.3. Family Inherited Indicators

Previous individual indicators can be applied to all of the youngest mem-

bers of the family, representing the current generation, in order to obtain

a family indicator, both, for the affectation and the mutation information.

Moreover, they could be combined in a single indicator (family integration

indicator) to assess about the risk of a family member to suffer the illness.

Family Inherited Affectation Indicator. The family inherited affectation in-

dicator, FAI , regards the information of the inherited affectation indicator

of the youngest members of a family, i.e. of the leaves of a family tree. It is

computed by aggregating the results of all the leaves, as follows:

FAI =
∑

∀l|l is leaf

IDF (l)× δ(l) (7)

And following the example of Figure 4 we obtain the following results:

FAI = IDA × δ(A) + IDB × δ(B) + IDC × δ(C)+

+IDD × δ(D) + IDE × δ(E) + IDF × δ(F ) =

=
1

12
+

1

12
+

5

6
+

1

6
+

11

4
+

3

4
= 4.67

Family Inherited Mutation Indicator. Given the individual inherited muta-

tion indicators of all of the youngest members of a family, the family inherited

mutation indicator consists on the addition of all of them, as follow:
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FMI =
∑

∀l|l is leaf

MI(l) (8)

Family Integration Indicator. At this point we have provided ways of esti-

mating different indicators which give us information about the mutation

state and the affection rate in the family tree structure. As in the case of the

global indicators, both kinds of indicators can be combined to set up a family

integrator indicator relating the mutations and affectations evolution of the

individuals over the tree, which provide a better indicator for representing

the disease spreading in a given branch of the family.

Our proposal is based on a weighted average operator [5], thus given

the individual affectation and mutation indicators of a family, the family

integrator, FI is as follows:

FI(m) = f(FAI ,MI) = αFAI + βMI (9)

Where:

• α, β ∈ [0, 1] are weights expressing the importance of affectation and

mutation correspondingly, and α + β = 1.

The selection of one value for α and β could be experimentally set ac-

cording to the problem domain.
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3.3. Extension to Multi-Rooted Pedigrees

Along this section, we have assumed that the pedigree has a unique root

(see Figure 1), but there are situations where the specific family member

who is being considered for the study has information from both, mother’s

and father’s ancestors, like E in Figure 6 top. In this situation, a topological

sorting solution is required. Topological sorting concerns the definition of

the order in which nodes should be traversed in a complex graph.

Figure 6: Tree example with multiple ancestors root.

In our case, instead of forcing a single list of ancestors, we propose the

division of the multi-rooted pedigrees into single-root pedigrees like the ones

we have been working until now, evaluate the indicators in each single-root

tree, and provide the results in a confidence interval. The extremes of the
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interval are the maximum and minim values obtained.

In order to do that, we first select all the family members without ances-

tors (pedigree’s roots), and create from them new, single-rooted pedigrees.

Obviously, we avoid the repetition of the same pedigree that could be created

by selecting the husband and the wife of the same root. They are considered

as a unique entry point to the pedigree. For example, if we look again at

Figure 6, we can see that we have four family members from the top pedi-

gree’s roots. Since the four root candidates represent two marriages (two real

roots), just one of them for each relation is necessary. Two pedigrees like the

ones at the bottom of Figure 6 are created.

Then the indicators are estimated for each individual pedigree and instead

of providing a final value, a value interval is provided. By this means, we

assert that the family members that are the common branch of the different

pedigrees have at least the worst estimated value and at maximum the best

one.

4. Case Studies

This section shows real examples of pedigrees appropriately modified as

case studies to visualize the utility of the indicators introduced in this paper.

The first examples are simple and have been artificially generated to demon-

strate the benefits of using structured data-based indicators. Figure 7 shows

three times the same tree structure where changes among trees rely on the

position where an affected node is detected. The node target of the study is
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Case Ag Mg Pg AI

Figure 7.a 0.2 0.4 0.5 5
Figure 7.b 0.2 0.4 0.5 2
Figure 7.c 0.2 0.4 0.5 1

Table 2: Global indicators and AI according to where the affected node is situated within
the tree structure

at the bottom, and it is highlighted inside a dashed box. As Table 2 shows,

statistics-based indicators do not change independently on who the affected

node is. Conversely, the individual inherited indicators depend directly on

where the affected node is placed in the family.

Figure 7: Figures a, b and c present the same family tree except for the location of their
affected node.

Second case study is provided in Figure 8. It shows a simple family tree

(Figure 8.a) to which more nodes are gradually added (Figures 8.b and 8.c).

The node under study is highlighted inside a dashed box. The amount of

mutated/affected nodes is not increased from one tree to the other.

As Table 3 shows, Ag and Mg indicators decrease their value quickly

when more nodes are added. Pg is static because, as previously exposed,
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the amount of mutated/affected is not modified. Regarding the structured

data-based indicators, AI shows a similar behavior as Ag and Mg, but in

this case, it decreases proportionally slower. In contrast, MI does not follow

the same pattern as the other indicators. The reason rely on the exploration

rules applied (Section 3.2.2). Figure 8.a follows Rules 9 and 7 so they only

explore the father and the grandmother of the specified node. Then, in

Figure 8.b, both father and mother have no information about mutations

(neither + or -) so both are explored following Rule 11, and Rule 4 is used

when the grandfather is explored. Finally, in Figure 8.c, since both parents

contain the mutated gene, Rule 5 is triggered and next, when exploring the

grandparents, we use again Rule 11.

Figure 8: Figures a, b and c present a similar family tree structure except for the amount
of brothers/sisters in the second era and the location of the mutated nodes. The node
under study is highlighted inside a dashed box.
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Case Ag Mg Pg AI MI

Figure 8.a 0.16 0.33 0.5 1 1
Figure 8.b 0.11 0.22 0.5 0.33 0.25
Figure 8.c 0.08 0.15 0.5 0.2 0.5

Table 3: Indicators of the tree structures in Figure 8.

About the family inherited affectation indicator, we expect to behave sim-

ilarly than the global indicators since they summarize the information of the

whole family. Thus let us suppose the pedigrees depicted in Figure 9. The

first pedigree, Figure 9.a, is a simple tree which has been modified so it does

not include any of the genetic nor affectation information. Since it does not

contain any trace of information, the results are zero for all of the indicators.

In Figure 9.b, affectation information is included, so the global affectation in-

dicator grows until a 0.39. Figure 9.c includes genetic information; therefore,

the global mutation indicator is 0.22. If both are considered (Figure 9.d),

the global penetration escalates until 1.75, which represents a high level of

penetration given that there are more affected nodes than mutated. The case

study of Figure 9.e consists in a highly complex multi-rooted pedigree. All

of the global indicators obtained are summarized in Table 4, together with

the family inherited indicators. It’s easy to see the evolution of the values

according to the cases and the mutated/affected elements introduced, as in

the global indicators. The family integrator indicator FI in this case has

been estimated using ‘α = β = 0.5 and, as can be seen, the value depends

directly in the era where the affected node is detected.
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Figure 9: Case studies. (a) Pedigree free of disease. (b) Pedigree with some of the members
affected. (c) Pedigree with with members who are carriers of the genetic mutation. (d)
Combination of (b) and (c). (e) Case study of a real multi-rooted pedigree.

5. Experimental Results

The implementation of our methodology has been done in Java and pro-

vided as a plugin for eXiT*CBR [6], a tool for case-based medical diagnosis

support. The GUI is simple (see Figure 10), so that the user provides the

information about:

• The indicators to be computed.
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Case Ag Mg Pg FAI FMI FI
Figure 9.a 0 0 0 0 0 0
Figure 9.b 0.39 0 0 5.8 0 2.90
Figure 9.c 0 0.22 0 0 5.17 2.58
Figure 9.d 0.39 0.22 1.75 5.8 5.17 5.48
Figure 9.e 0.16 0.22 0.78 [4.33,3.56] [4.5,5.5] [4.47,4.03]

Table 4: Comparative between the different statistics-based indicators against the struc-
tured data-based (family) indicators regarding the case studies.

• The comma separated value file with the list of the GED files corre-

sponding to the families to be analyzed.

• The directory where the GED files are located.

• The name for the results file.

When choosing the inherited mutation option, both family indicators in-

troduced in this paper are calculated. The penetrance indicators are com-

puted as a post process, if both, affectation and mutation are chosen, since

it is derived from them.

To test the benefits of our methodology we have used our breast cancer

data which consists of 347 families (GED files)1. Among all of the individ-

uals, we have clinical information from 553 members to validate the results

obtained; that is, we know if the individual has suffered or not the illness

(155 and 399 correspondingly).

1Unfortunately the data is not public due to medical constraints. Any researcher
interested can send an e-mail to the authors, to ask for permission to the medical staff.
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Figure 10: GUI for the implemented methodology.

All of the indicators have been computed for the 553 individuals. Re-

garding the parameters of the family integration indicator they are set to

0.5 each (i.e., α = β = 0.5 in the equation from Equation 9). To measure

the experiments we use the confusion matrix and the true positive and true

negative rates that can be derived from it. The confusion matrix relates

the number of false positive (FP, healthy people detected as ill sufferers),

false negatives (FN, ill sufferers predicted as healthy), true positives (TP, ill

sufferers predicted correctly) and true negatives (TN, healthy people with

right prognosis). The true positive (tp) rate relates the number of ill suf-

ferers detected with the indicators regarding the total of known patients

(i.e. TP / (TP+FN)); the true negative (tn) rates the number of individuals
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with indicators given zero information with all healthy people (that is, TN /

(TN+FP)). The threshold value to predict that a person could be ill sufferer

is 0; that is, a person with an indicator value higher than zero is considered

as a candidate to develop the illness. This threshold should be revised in a

future work with the feedback of physicians.

Table 5 provides the results obtained. Analyzing the results, we observe

that the global affectation indicator is not able to discriminate between pa-

tient suffering the illness and healthy people, labeling all members as possible

candidates for suffering the illness. The individual inherited affectation in-

dicator is able to discriminate up to 83.23% of the ill people; although the

tp-rate does not achieve the 100% and this is a costly situation. An inter-

esting result is the family inherited affectation indicator that results in an

equivalent behavior than the global affectation indicator, as could be ex-

pected, since it covers all members of the family.

Regarding mutation, it is a weak indicator for illness risk assessment, as

some physicians anticipate. There are a lot of people that could have a given

mutation but it is not a definitive factor for developing the illness.

However, it is important to highlight the fact that the individual indicator

(MI) reach up to the 91.98% for tn-rates, outperforming the global indicator

in almost the double. Analyzing in detail mutations, we know that there

were 36 proven mutations in the family tree; the global mutation indicator

identifies 249 possible individuals who can have the mutation, close to the

family inherited mutation indicator (240), while the individual inheritance
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Indicator FP TP FN TN tp-rate (%) tn-rate (%)
Ag 399 155 0 0 100.00 0.00
Mg 187 62 93 212 40.00 53.13
Pg 187 62 93 212 40.00 53.13
AI 112 129 26 287 83.23 71.93
MI 32 28 127 367 18.06 91.98
FAI 399 155 0 0 100.00 0.00
FMI 182 58 97 216 37.42 54.27
Pb 399 155 0 0 100.00 0.00

Table 5: Experimental results.

only 60, thanks to the inheritance rules designed. So the rules seem to play

a key issue on appropriately assigning mutation risks to individuals.

Concerning the penetration indicator, it is dominated by the mutation

results, while the branch penetration by the affectation indicator. These

results require further research.

Finally, it is important to highlight that those indicators represent a first

step towards the automation of the evaluation of the information stored in

pedigrees, so that they can be available to be combined with other clinical

data in order to achieve more accurate prognosis.

6. Related Work

There are some methods that deal with inheritance information due to

the interest of evaluating the disease risk factors by the aggregation of cases

(i.e. persons suffering the illness). However, most of the works concerns the

use of pedigree information in order to determine features of a particular

population under study. In [7], for example, several approaches are studied
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to determine the right number of contributions that should be considered

from the ancestors in a given population. Most of the analyzed methods

are based on the inverse proportion to the addition of the square of all of

the features under study. Our approach also takes into account this inverse

proportion, but in this case, instead of using the square, we exponentially

modify the information according to the distance of the ancestor to the cur-

rent population.

Another interesting work is [8] that apply aggregation methods to evalu-

ate cardiological risks taking into account fathers/soon exponential relation-

ships. Our proposal also includes an exponential relation, but taking into

account the complexity of the whole family, which includes hierarchical rela-

tionship of different generations, and different family trees as a consequence

of marriages. Thus, our work contemplates different sources of risks, depend-

ing on the different paths that can be followed in a graph-representation of

the family.

The most interesting insight of the [8] work is how the combination of

the different induced information from the same pedigree can be performed.

In particular, the authors propose several functions to combine risk and inci-

dence factors. Thus, we leave for a future work to use this kind of aggregation

methods, as well as other methods coming from the veterinarian field [9] and

decision theory [5].

Regarding breast cancer diagnosis BRCAPro [10] also deals with the prob-

lem of analyzing ancestors in order to find a possible mutation. BRCAPro

28



is limited in depth, analogously to the case of [8], but in this case up to 2

degrees of relationships are allowed (grandfather/mother, father/mother and

son). BOADICEA [11] and Tyrer-Cuzick [12] are similar-purpose tools.

An interesting work is [13] which describe the complexity of deriving the

individual risk from the population risk. Particularly the authors comment

three factors to take into account: having a family history or not, contribution

of the population model in the family predisposal, and how environmental

risk factors affect individuals. Based on these factors, the authors propose

a mathematical model to obtain individual values. Our work is related to

provide support to such kind of mathematical models; in this first work, we

are proposing the measure of the information contained in the family, but as

a future work, more complex models as the ones proposed in [13] or [14] that

merge population (statistics) models should be contemplated.

Finally, it is important to note that current pedigree tools, as PyPedal [15]

are including different methodologies to analyze the data included, so as to

summarize, as for example in the case of PyPedal, in eight different measures

(similar as the ones previously related). Then, we should expect in a future

that thus tools also incorporate the facility of analyzing pedigrees according

to user-provided methods, or domain-dependent methods. Our method could

be one of them.
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7. Conclusions

The need of dealing with pedigree analysis is a must when dealing with

inherited illnesses. However, most of the approaches to interpret data on fam-

ily histories are statistics based on the number of individuals in the family

instead of their relationships. In this work we presents a new way of com-

puting family risk based on indicators that takes into account the structure

of the family, as physicians use to do.

We provide a methodology based on three statistics-based indicators

(global affectation, global mutation, and global penetration indicators), plus

five structured data-based indicators (individual inheritance mutation, indi-

vidual inheritance affectation, family inheritance affectation and mutation,

and family integration indicators). To establish relationships among family

members, a rule-based algorithm is provided for simple pedigrees (tree-like

structures), while an interval based solution is provided for more complex

situations (graphs due to second marriages, etc.).

We have illustrated our methodology on several case studies. Moreover,

our method has been implemented and integrated in a case-based reasoning

tool that supports medical decision making. The experimentation has been

carried out in a breast cancer diagnosis domain, showing that the inheritance

information computed with our indicators can be more discriminative than

statistics approaches.

Having a way to compute indicators, the next step of our research is to

discuss the results with physicians to enrich our methodology. This future
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work comprehends the combination of statistics and structured data based

indicators (we have only tackled combinations among structured data based

indicators). Our ultimate goal is to provide to the physicians with a powerful

tool that supports their decision making taking into account the interrela-

tionships among population values and individual information, that it is still

an open problem.
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