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ABSTRACT: In this study, a wrapper approach was applied to
objectively select the most important variables related to two different
anaerobic digestion imbalances, acidogenic states and foaming. This
feature selection method, implemented in artificial neural networks
(ANN), was performed using input and output data from a fully
instrumented pilot plant (1 m* upflow fixed bed digester). Resuits for
acidogenic states showed that pH, volatile fatty acids, and inflow rate were
the most relevant variables. Results for foaming showed that inflow rate
and total organic carbon were among the relevant variables, both of which
were related to the feed loading of the digester. Because there is not a
complete agreement on the causes of foaming, these results highlight the
role of digester feeding patterns in the development of foaming. Water
Environ. Res., 82, 492 (2010).
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Introduction

Anaerobic digestion is a complex process that can be affected
by several imbalances. Among them, foaming is one of the most
frequent operational problems (Svensson et al., 2007). Foaming
can clog gas pipes, entrap solids, cause stirring difficulties, and
lead to failures in monitoring devices. There is not complete
agreement on the parameters that favor conditions for foaming
forming bacteria. Some authors state that proper control of feeding
will prevent excessive foaming (Massart et al., 2006; Schafer et
al., 2006). Others state that pretreatment of the feed is necessary to
avoid foaming (Barjenbruch and Kopplow, 2003; Elliott and
Mahmood, 2007). Some claim that the presence of filamentous
bacteria in the activated sludge system is the main cause of
foaming in the anaerobic digester during activated sludge
treatment (Pagilla et al., 1997; Westlund et al., 1998). In parallel,
many of the anaerobic digestion disturbances end up in acidogenic
states. These entail high volatile fatty acid (VFA) concentrations
associated with a decrease in pH and methanogenic inhibition,
with the related decrease in methane production (Guiot, 1991).
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For example, in Carrasco et al. (2004), low hydraulic retention
times (HRT) and organic overloads cause acidogenic states.
Moreover, toxicants can cause VFAs to accumulate via methan-
ogenic bacteria inhibition and inhibition from accumulation of
long chain fatty acids (Hickey et al., 1987; Lalman and Bagley,
2001). But acidogenic states are not the only cause of VFA
buildup and are sometimes difficult to detect (Dupla et al., 2004).
For this reason, and because they are a challenging topic from a
scientific and industrial point of view, both imbalances will be
considered as case studies.

Because anaerobic digestion processes are complex systems,
many variables have to be monitored to diagnose the state of the
process. To simplify the diagnosis process, it is important to
reduce the amount of information needed whenever possible.

Many techniques have been widely used to reduce amounts of
information in terms of features, variables, and dimensions in
complex processes (Ruiz et al., 2004). Some of them are statistical
(e.g., principal component analysis [PCA] and nonlinear discrim-
inant analysis) and others are machine learning techniques such as
several neural networks methods (e.g., self-organizing maps and
radial basis function networks). In Ng et al. (2008), it is stated that
PCA and other transformation-based feature reduction methods do
not select features from the original feature set. Those methods
transform the feature set into a lower-dimensional feature vector
by combining several features. Transformation-based feature
reduction methods do not reduce the cost of future sample
collection and storage. Moreover, the newly created feature vector
typically is difficult to interpret. For example, in the physiology
field, a feature vector may be composed of blood pressure times
the square of body height; this feature does not help people
understand the problem. Neural networks provide a new suite of
nonlinear algorithms for feature extraction (using hidden layers)
and classification (e.g., multilayer perceptrons). Even with
seemingly different underlying principles, most of the well-known
neural networks models are implicitly equivalent or similar to
classical statistical pattern recognition methods. Despite these
similarities, neural networks do offer several advantages, such as
unified approaches for feature extraction and classification and
flexible procedures for finding good, moderately nonlinear
solutions (Jain et al., 2000).

There are several ways to use artificial neural networks (ANN)
at wastewater treatment plants (WWTP). Belanche et al. (2000),
for example, used ANN to predict bulking in an activated sludge
system. It also has been used to diagnose the state of the anaerobic
digestion process. Sahely and Bagley (2001), for example,
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-Figure 1—Detailed scheme of the method to choose the most relevant variables (RMSE = root mean square error; ANN

= artificial neural networks).

developed a Bayesian belief network to infer the unbalanced states
of the anaerobic digester; Steyer et al. (1997) used a hybrid ANN
and fuzzy system to identify dangerous or faulty episodes. Ozkaya
et al. (2007) used ANN to predict methane produced in landfills,
and Strik et al. (2005) used it to model trace compounds in biogas.

The aim of this research was to select the most relevant variables
for anaerobic digestion imbalances using a feature selection method
on real data from a pilot plant. Feature selection improves
monitoring by reducing the number of probes and other monitoring
instrumentation required and minimizing the amount of information
needing to be stored in fully instrumented systems. Variable
selection also can be useful for ranking available information in
case of probe failures. Variable reduction can be used to identify
which variables are worth monitoring to prevent foaming in

anaerobic digestion because the causes are not well known. Results
can then be used to choose the relevant variables as inputs to
develop knowledge-based systems to assess the risk of foaming in
real plants or in simulations, which Comas et al. (2008) did with
activated sludge. Innovation related to the feature selection method
used in this work is beyond the scope of this work.

Materials and Methods

Artificial Neural Networks. A neural network can be
regarded as a nonlinear mathematical function that transforms a
set of input variables into a set of output variables. The exact
architecture of the ANN is determined by the number of nodes
(neurons) and the layers in which they are distributed: the more
neurons and layers, the more complex the ANN structure will be.
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Figure 2—Layout of the upflow anaerobic fixed bed used in this study.
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Table 1—Characteristic of the wastewater treated (COD =
chemical oxygen demand).

Component Range
Total COD (g/l) [12-34]
Soluble COD (g/l) [7.6-31]
Volatile fatty acids (g/l) [1.5-10]
Total suspended solids (g/l) [2.4-10]
Volatile suspended solids (g/l) [1.2-5.4]
Phenol (mg/l) [90-275]
pH [4.5-5.2]

Therefore, it will always be better to have simpler structures
because more complex structures require higher training and
computation times. Typically, ANNs have an input layer, one or
more hidden layers, and an output layer. Each node in the hidden
and output layers contains a function (transfer function) that
makes the node active ifa certain threshold is reached. Transfer
functions are governed by a set of parameters called “weights”,
the values of which can be determined based on a set of examples
of the required mapping. The training process can be compared to
the fitting of a polynomial curve through a set of data points. Each
data point consists of an input value and an output value. The
output values are called “target values”. To train the ANN, an
error between the calculated and desired outputs is calculated.
This error function depends on the input data points and the
weights. Therefore, the training process is an optimization strategy
to minimize the error function by varying the weights until an
optimum set of weights is found (Bishop, 1994; Jain et al., 1996).

This study used a neural network toolbox script for static
models for use in MATLAB 3.0 or higher. Three layers were
chosen in all the ANN architectures: an input layer, a hidden layer
with sigmoid transfer functions, and an output layer with linear
transfer functions for outputs (Jain et al., 1996). The exact number
of nodes was determined before starting the method by training
and validating the ANN with different numbers of nodes (from 1
to 10). The ANN with the best validation results was chosen. The
initialization method was performed using the Nguyen-Widrow
algorithm option, which initializes the weights with random
values, later selecting their probability distributions to make all
neurones active for the expected data ranges (Nguyen and
Widrow, 1990). It also provided automatic data scaling and
weights conversion. Bayesian regularization was used to prevent
over-fitting.

The Wrapper Approach. The feature/variable selection
method used in this study was based on a wrapper approach,
which uses the leave-one-out searching approach (Kohavi and
John, 1997). In each step, this method evaluates the accuracy of
the learning algorithm when one of the features is left out. It then
removes the feature yielding the least reduction in accuracy, such
as, for example, validation error (Ng et al., 2008). The ANNs were

Table 3—Main reference artificial neural network features.

Maximum Minimum Standard

standard standard deviation

deviation deviation error of
Hidden error of the error of the the Reference
neurons residuals residuals residuals  error
1 0.15 0.01 0.0545 0.1294

used as learning algorithms to select a subset of features; the root
mean squared error (RMSE) was used as evaluation criteria
(Figure 1).

The first step was to run the training-and-validation process ten
times using the reference ANN with all the input variables and the
respective output (i.e., occurrence of acidogenic states in the first
case study and estimated risk of foaming in the second). Each
training process was performed with 70% of the total data
randomly selected. The rest of the data (i.e., 30%) was used for the
respective validations. The average RMSE of the ten training-and-
validation processes was calculated and stored as the reference
erTor.

Next, one input variable was removed, and a new ANN (ANNI1
in Figure 1) was trained and validated ten times without it. This
last step was repeated for each input variable ending up with »—
ANNI for each removed input variable with their related average
RMSE1. Whenever a relevant variable was removed, the average
RMSEI1 of the related ANN1 increased with respect to the average
reference error. On the other hand, whenever a nonrelevant
variable was removed, the RMSEl1 of the related ANNI
decreased. Therefore, the variables in which RMSE1 was higher
than the reference error were selected as relevant variables.

To assess the quality of the results, the second part of the
method was devoted to showing that at least the same precision
(an RMSE equal to the reference error) can be obtained with less
input variables. Among the relevant variables, the one with the
higher RMSE] was selected first, and a new ANN (ANN2) was
trained ten times using it as the only input. If the related average
RMSE (RMSE2) was higher than the average reference error, then
no improvement was found. In this case, the variable with the
second highest average RMSE] is selected and a new ANN2 is
trained (ten times) with both variables. Again, the average
RMSE2 is compared with the reference error. This iterative
process is repeated until an average RMSE2 lower than the
average reference RMSE is obtained.

Pilot Plant. Experimental data were obtained using an upflow
anaerobic fixed-bed process of 1 m® from INRA, France. Its
schematic layout is shown in Figure 2. The reactor was a circular
column 3.5 m high with a 0.6 m diameter, and a total volume of
0.982 m>. The support used, Cloisonyl with 180 m*/m> specific
surface, filled 0.0337 m>, leaving 0.948 m® of effective volume.
The support created 135 m? of surface. Three storage tanks of

Table 2—Input variables for the acidogenic states case study.

Hydrogen Methane Volatile fatty acids Chemical
pH in the Gas flow percentage in the  percentage in the concentration in oxygen demand
Inflow rate digester rate gas phase gas phase digester in digester
gln (L/h™Y phDig qGas (L/h77) h2Gas (%) ch4Gas (%) vfaDig (mg/L™")  codtDig (mg/COD-L™")
494 Water Environment Research, Volume 82, Number 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dalmau et al.

Table 4—Root mean squared error (RMSE) 2 for
acidogenic states using the selected variables in
relevance order (ANN = artificial neural networks;
codtDig = total chemical oxygen demand in digester;
gqln = inflow rate; vfaDig = volatile fatty acid
concentration in digester; and phDig = pH in digester).

ANN input
variables

codtDig,
codtDig qin

codtDig, codtDig, qin,
qin, vfaDig vfaDig, phDig

RMSE2 0.1856 0.13106 0.13175 0.10952

27 m® each were connected to a dilution tank (not shown) by a
60 m long piping system with a 0.1 m diameter. The wastewater
came from a wine distillery and had the characteristics shown in
Table 1. The anaerobic digestion process was fully instrumented
with online sensors both in the liquid phase (pH, flow rates, VFA,
total organic carbon [TOC], and chemical oxygen demand [COD]
concentrations) and in the gas phase (i.e.CO,, CHy, H,). For
further details about the pilot plant’s features and instrumentation,
see Lardon et al. (2004).

The process was designed to be operated at an HRT of three days
with input COD of 15 g/L. Over the 10 years of operation of the
process, average COD removal was more than 90% during normal
conditions; however, in some cases (i.e., specific experiment to
evaluate the robustness of the process), HRT could vary between
one day and several weeks (with very low input liquid flow rate),
leading to high concentration of VFAs being produced (up to 9 g/L)
and very low biogas production. Of course, in these cases, the
performance of the process was very low, but this allowed the
process response to be evaluated under different conditions.

Results

Case Study: Acidogenic States. The acidogenic states case
study comprised three months of data corresponding to almost 400
inputs and outputs collected every six hours. Table 2 shows the
seven input variables.

Outputs for the ANN training and validation (i.e., acidogenic
states occurrence) were provided by a fuzzy modular expert system
presented in Lardon et al. (2005). In this fuzzy system, several states
of the process were diagnosed: normal, acidogenic, underload,
organic overload, hydraulic overload, and toxics. For each of the 389
input vectors, Lardon’s fuzzy system was used to evaluate the
occurrence of acidogenic states between 0 and 1 (1 being the most
likely acidogenic state occurrence). Thus, for training and validation
of each ANN, an output vector with pieces of 389 data was used,
indicating that the acidogenic state occurred between 0 and 1.

Reference Artificial Neural Networks. Table 3 shows the
main features of the reference ANN. When the standard deviation

0.0350 §
0.0300

codtDig

0.0250 4
0.0200 4
0.0150 - vfaDig

ey

0.0100
0.0050
0.0000
-0.0050
-0.0100 - qGas

Figure 3—Average root mean square error (RMSE) minus
average reference RMSE for each removed input variable
(vfaDig = volatile fatty acids in digester; qin = inflow rate;
qGas = gas flow rate; phDig = pH in the digester; h2Gas
= hydrogen percentage in gas phase; codtDig = total
chemical oxygen demand concentration in digester; and
ch4Gas = methane percentage in gas phase).

error of the residuals falls between the maximum and minimum
values, which are set a priori, the ANN can be considered to be
correctly trained. Values of the standard deviation error equal to
the minimum boundary indicate over-fitting, which means that
higher than necessary precision has been obtained at the expense
of good generalization ability. When the standard deviation error
of the residuals is equal to the maximum boundary, however, poor
precision has been obtained.

The next step was to train the different ANNIs. Figure 3
presents the resulting average RMSE1 for each training; each
label indicates the ANN trained without the shown variable.

The highest difference corresponds to the ANN trained and
validated without the COD in digester, codtDig, variable. This
indicates that this variable is the most important for ANN
performance. In order of decreasing relevance, the variables are:
inflow rate (qIn), VFA concentration in the digester (vfaDig), and
pH in the digester (phDig).

The input variable with the highest validation error was used
first to train ANN2, or the ANN with the selected variables. To
find out the input variable combination with the minimum RMSE
2, the variable which had the highest validation error among the
remaining variables was added to the first ANN2 as an input (i.e.,
first ANN with vfaDig, second with phDig, and third, qln).
Results are provided in Table 4.

Because the codtDig is the most relevant variable, training of
ANNS s 2 starts with this variable. This variable alone, however, is
not enough to diagnose acidogenic states with better precision
than the reference ANN (reference error = 0.1294). When

Table 5—Input variables for foaming case study (VFA = volatile fatty acids; TOC = total organic carbon; qin = inflow
rate; viaDig = VFA concentration in digester; tocsDig = TOC concentration in digester; phin = pH in the inflow; co2Gas
= carbon dioxide percentage in gas phase; and ch4Gas = methane percentage in gas phase).

Carbon dioxide Methane

VFA concentration TOC in pH in the pH in the percentage in the percentage in
Inflow rate in digester digester inflow digester gas phase the gas phase
gln (L/h™") vfaDig (mg/L™")  tocsDig (mgTOC/L™") phin phDig co2Gas (%) ch4Gas (%)
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Table 6—Main reference artificial neural network features.

Maximum Minimum

standard standard Standard

deviation deviation deviation Refer-
Hidden error of the error of the error of the ence
neurons residuals residuals residuals error
8 0.15 0.01 0.10734 0.11700

codtDig is combined with the next relevant variable (gIn), the
precision of the resulting ANN (RSME2) is not lower than
reference error. When vfaDig is combined with codtDig and gln,
the RSME2 of the resulting ANN2 is increased, but it is still
higher than the reference error. The best result was obtained when
the four variables were used together (codtDig, gIn, vfaDig, and
phDig). These results—for phDig, vfaDig, and codtDig—are
widely recognized as key variables when diagnosing acidogenic
states (Bjornsson et al., 1997; Guiot, 1991; Tartakovsky et al.,
2000). Nevertheless, it is important to consider that, in addition to
codtDig, vfaDig, and phDig, other variables somehow not directly
related to acidogenic states could be chosen, of which gln is the
most appropriate.

Case Study: Foam Forming. Experimental data used for the
case study to detect foam forming were obtained from the same
pilot plant. Some of the available variables were derivatives of the
measured variables of the process. To avoid possible redundancy,
these derivatives were not used. In addition, derivatives typically
are not calculated in real plants. Other variables, like temperature
and alkalinity, are not used because they were kept relatively
constant, and it would be difficult to extract information from
their profile. Table 5 presents the input variables. For this study,
more than 8000 inputs and output data points were collected in
total, equivalent to approximately two months of data. As output,
foaming appearance in the digester was used, based on the
heuristic knowledge provided by experts. When foaming appeared
in the digester, high variations of the gas flow rate and pressure
appeared because of the slug release of gas bubbles trapped inside
the foam. As a result, fuzzy system was used to ensure a suitable
foaming index between 0 and 1. Although foaming can be
determined in this way, this approach typically is used to study
variables influence or relation. Overall, a set of 8133 data was
used for this case study, which included one foaming episode at
the end of the period. The main reference ANN features for this
case study are presented in Table 6.

The average RMSE of the reference ANN and the seven ANNs
1 are presented in Table 7.

Figure 4 shows the differences between the RMSE of each variable
and the reference RMSE. As shown, five variables had an RMSE

Table 7—Reference artificial neural network (ANN) and
ANN1 average root mean squared error (qin = inflow
rate; vfaDig = volatile fatty acids concentration in
digester; tocsDig = total organic carbon concentration
in digester; phin = pH in inflow; co2Gas = carbon dioxide
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Figure 4—Average root mean square error (RMSE) minus
average reference RMSE for each variable (qin = inflow
rate; qGas = gas flow rate; vfaDig = volatile fatty acids in
digester; tocsDig = total organic carbon concentration in
digester; phin = pH in inflow; phDig = pH in the digester;
co2Gas = carbon dioxide percentage in gas phase; and
ch4Gas = methane percentage in gas phase).

higher than the reference RMSE. Therefore, the selected as relevant
variables were inflow rate (gIn); TOC in the digester (tocsDig); pH in
the inflow (phln); carbon dioxide percentage in the gas phase
(co2Gas); and methane percentage in the gas phase (ch4Gas).

To train ANN2s, first tocsDig was selected. Because its average
RMSE?2 is higher than the average reference RMSE, the second
most relevant variable was added and ANN 2 was trained again.
Table 8 summarizes the average RMSE?2 for each ANN.

In all cases, RMSE2 was higher than the reference error. A t-
test comparing the averages between each RMSE2 and the RMSE
of the reference ANN, however, revealed that in the last ANN2
(last column in Table 8), the average RMSE 2 was not
significantly different than the reference RMSE. This means that
although the average RMSE 2 was not lower than the reference
RMSE, by removing two variables from the whole input, similar
results can be obtained. This can be important in terms of saving
sensors and for monitoring relevance.

The higher relevance of phln over phDig probably is because
pH is controlled in the anaerobic digesters. In which case, phDig
will show more constant behavior than pH in the influent;
therefore, phln will provide more information than phDig. The
significance of gas-related variables (i.e., c02Gas and ch4Gas)
likely is because of the approach taken to determine foaming—the
fuzzy system that was used. The addition of co2Gas to the relevant
variables, however, reduces RMSE2. According to Zhao and
Viraraghavan (2004), high CO, production is representative of
poor digestion and may lead to foaming. Other selected variables,
such as tocsDig and gIn, also have relevance as indicated by the
literature. In the study of Ross and Ellis (1992), increasing organic

Table 8—Average root mean squared etror 2 (RMSE2) for
the relevant variables (tocsDig = total organic carbon
concentration in digester; phin = pH in inflow; ch4Gas =
methane percentage in gas phase; qin = inflow rate;
c02Gas = carbon dioxide percentage in gas phase).

percentage in gas phase; and ch4Gas = methane tocsDig, tocsDig,
percentage in gas phase). tocsDig, phin, phin,
tocsDig, phin, ch4Gas, ch4Gas, qin,
qin vfaDig tocsDig phin phDig co2Gas ch4Gas tocsDig phin ch4Gas qln co2Gas
0.11934 0.11377 0.12764 0.12654 0.11328 0.11796 0.12179 RMSE 2 0.12666 0.12256 0.12141 0.12138 0.11944
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loading rates and detention times were shown to cause foaming.
Massart et al. (2006) stated that inconsistent feeding in the
digester is a cause of foaming.

Conclusions

Real data from a pilot plant were used to select the most
relevant variables for acidogenic states and foaming using a
wrapper approach. Results showed that it is possible to monitor
and control the process using less probes or alternative variables.
The feature selection method provided alternatives to monitor the
process in case of probe failures. It also was shown that ANN and
feature selection methods successfully can be used in complex
environmental systems to select relevant information.

For foaming, two out of seven variables were shown not to be
relevant because of the complexity of this microbiology-related
problem, indicating that many variables are involved. Neverthe-
less, when diagnosing or controlling the conditions, the selected
variables are helpful indicators of what is worth controlling to
avoid excessive foaming. As shown, results are supported by some
of the current literature on this topic from an operational point of
view. The information extracted with this approach also can be
used to develop knowledge based-systems when applied to
complex problems by helping, for example, to decide which
variables to choose as inputs.
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