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dans la vie rien n’est jamais plat”
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sector més jove destacar la gent que ja marxava quan jo vaig començar Samat,
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tament de qúımica, no deixo de recordar les victòries a les JODETE!
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Summary of the Thesis

The identification of an atom within the molecule is a crucial concept that
permits the decomposition of physical quantities into atomic (and diatomic)
contributions. Bader’s Quantum Theory of Atoms in Molecules (QTAIM) still
provides nowadays one of the most widely used and accepted definitions for
an atom in the molecule. In QTAIM, the topology of the electron density
is cleverly used to derive the atomic basins and the sharp boundaries that
define them. There are two disadvantages to the method, namely the appear-
ance of (spurious) non-nuclear attractors (NNA), which makes the analysis in
chemical terms rather difficult, and the computational cost associated to the
construction of the complex-shaped atomic domains.
In this thesis a new topological definition of fuzzy Voronoi cells is proposed,
reproducing to some extent the results of the QTAIM analysis at a much
reduced computational cost. The new atomic definition is also flexible enough
to either ignore the presence of spurious non-nuclear attractors or to readily
incorporate them in the analysis.
Clearly, the mere subdivision of the physical space into atomic basins does
not render any atomic property other than their volume. Instead, we are
interested in assigning different physical quantities to the individual atoms (or
molecular fragments), which will be associated to the effective contributions of
that quantity within the molecule. A second key ingredient to extract chemical
information from wave function analysis is thus the proper definition of the
physical quantities of interest, typically in terms of the integral over the space
of the appropriate one- (two) particle density functions. Two main factors are
focused in this thesis: the local spin and the effective orbitals of the atom
within the molecule.

xxi



xxii SUMMARY OF THE THESIS

The spin properties of a system are typically characterized by the spin density
(difference between alpha and beta electron densities). However, there are
singlet systems such as diradicals or antiferromagnets for which the spin density
vanishes in every point of the space, but still one assumes the existence of some
localized spins. Several formulations have been proposed in the literature to
account for the presence of local spins in molecular systems from ab initio wave
functions.

In this thesis we have derived a new general formulation based on the de-
composition of the expectation value of the spin squared operator into atomic
and diatomic contributions, in such a way that the atomic terms reveal the
existence of effective local spin in the atoms or fragments, and the diatomic
ones inform about the existence and nature of the couplings between the local
spins. This new formulation fulfills all necessary physical requirements that
have been imposed to date. In particular, it is able to distinguish the situa-
tions of two spins coupled to form a bond from a genuine antiferromagnetic
interaction. Appropriate formulations have been derived for 3D-space atomic
definitions, as well as for the so-called Hilbert-space analysis. The latter proved
to be a non-trivial task due to an inherent ambiguity in its application to the
decomposition of genuine two-electron quantities.

The examination of the one- and two-center contributions is what we refer to
the local spin analysis. In this thesis we have applied this new methodology
to a number of chemical problems of interest. In particular, we have analyzed
the connection between the local spin analysis and the nature of the chemical
bond. It has been found that the presence of significant local spins in bonded
molecules flags deviations from the classical bonding prototypes, that is, the
extent of local spin is a measure of the deviation of a bond from perfect covalent
character. A remarkable finding of this work is that the C2 molecule in its
ground state has all ingredients to be categorized as a diradical, ruling out the
existence of a conventional quadruple bond.

We have also applied the local spin analysis to detect and quantify the polyrad-
ical character in molecules. The descriptors obtained from the local spin anal-
ysis can be used to define a general index, ∆(k), that measures how close a real
molecular system is to an ideal system of k perfectly localized spin centers.



xxiii

The main advantage of this index is that, contrary to most approaches in the
literature, it is calculated in the same manner from both multireference and
unrestricted single-determinant wave functions, for any electronic state.
In the case of diradicals and diradicaloids, the ∆(0) and ∆(2) indexes have been
used to measure deviation from a nonradical and a perfect diradical picture,
respectively. The first attempt of actual quantification of triradical character
has been accomplished using the values of the ∆(3) index. The electronic
structure of prototype radical systems such as benzyne isomers, propellanes
and a number of organic diradical and triradicals have been scrutinized in
detail to illustrate the new approach.
Another tool that aims at the characterization of the state of the atom within
the molecule is Mayer’s effective atomic orbitals (eff-AOs). In this approach
the net atomic population is expressed in terms of an orthonormal set of atomic
hybrids and their occupation numbers. The shape and occupation number of
the hybrids faithfully reproduce the core and valence shells of the atoms.
In this thesis we have carried out for the first time the eff-AOs in the framework
of QTAIM analysis for a general wave function. Apart from their conceptual
significance, we have shown that the molecular orbitals of a calculation can
be exactly expressed as a linear combination of this orthonormalized set of
numerical atomic orbitals. This has also permitted to establish a connection
between Hilbert-space and 3D-space analysis: Mulliken population analysis
carried out on this basis set exactly reproduces the original QTAIM atomic
populations of the atoms.
On the other hand, one cannot withstand the importance of the classical con-
cept of oxidation state (OS). In coordination chemistry, the OS of the metal
atom is typically defined as “the charge it would bear if all the ligands were
removed along with the electron pairs that were shared with the central atom”.
Thus, formal OS are obtained by assigning integer number of electrons to the
atoms/ligands according to some rules, which however, in complicated bond-
ing situations, may be rather ambiguous. Oxidation states are intrinsically
related to the electronic distribution, but electronic or spin populations are
only a pointer of the atom’s OS.
In this thesis we have shown that the eff-AOs can be utilized to derive the
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most appropriate atomic electron configurations for the atoms or molecular
fragments in the molecule. Accordingly, we have introduced a simple and
general way to derive effective oxidation states (EOS) from the analysis of the
electron density. Moreover, the occupation numbers of the eff-AOs can be used
to quantify to which extent a particular wave function conforms to the ideal
OS assignation. The method is general and it can formally be applied to any
molecular system but the focus is on organometallic complexes for which the
knowledge of the OS is important to understand the chemistry of the complex.
For practical applications on transition metal complexes we have proposed a
hierarchical strategy based on the partitioning of the molecular system into
fragment/ligands prior to the eff-AO analysis.
Finally, the combination of local spin analysis and the eff-AOs (among other
tools) have permitted us to gain a deeper insight into the elusive nature of
the [Cu3S2]3+ core. In particular, the scrutiny of the eff-AOs points to a pre-
dominant formal CuII oxidation state, whereas the lack of any significant local
spins in the core is at odds with the suggested existence of antiferromagnetic
coupling among the Cu and S atoms.



Resum de la Tesi

La identificació d’un àtom dins d’una molècula és un concepte fonamental que
permet la descomposició de quantitats f́ısiques en contribucions atòmiques ( i
diatòmiques ) . La teoria d’àtoms en molècules de Bader (QTAIM) propor-
ciona avui en dia una de les definicions més àmpliament utilitzades i accep-
tades per a un àtom en la molècula. D’acord amb la QTAIM, la topologia de
la densitat electrònica s’utilitza per trobar les conques atòmiques i els ĺımits
estrictes que les defineixen. El mètode presenta dos desavantatges: per una
banda, l’aparició dels anomenats atractors no nuclears (NNA), que dificulta
l’anàlisi en termes qúımics, i per altra banda el cost computacional associat
a la construcció dels dominis atòmics. En aquesta tesi es proposa una nova
definició de les cel.les de Voronoi difuses que reprodueixen, en certa mesura,
els resultats de l’anàlisi QTAIM amb un cost computacional molt menor. La
nova definició atòmica permet ignorar la presència de NNA o incorporar-los
fàcilment en l’anàlisi.
És evident que la subdivisió de l’espai f́ısic en conques atòmiques no representa
cap propietat atòmica en śı mateixa a part del volum àtomic. El que resulta
interessant és l’assignació de diferents magnituds f́ısiques locals als àtoms o
fragments moleculars. Deixant de banda la definició atòmica, un ingredient
clau per extreure informació qúımica a partir de l’anàlisis de la funció d’ona
és la definició adequada de les quantitats f́ısiques, t́ıpicament en termes de
la integral sobre l’espai de les funcions densitats corresponents a una o dues
part́ıcules. En aquesta tesi ens hem centrat en dues propietats: L’esṕın local
(local spin) i els orbitals àtomics efectius (effective atomic orbitals).
Les propietats d’esṕın d’un sistema es caracteritzen t́ıpicament per la densitat
d’esṕın(diferència entre les densitats electròniques alfa i beta). No obstant,

xxv
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hi ha sistemes singlet com ara dirradicals o complexes antiferromagnètics pels
que la densitat d’esṕın s’esvaeix en cada punt de l’espai, tot i que s’assumeix
l’existència d’espins locals. S’han proposat diverses formulacions en la liter-
atura per donar compte de la presència d’espins locals en sistemes moleculars
a partir de les funcions d’ona ab initio. En aquesta tesi hem derivat una nova
formulació general basada en la descomposició del valor esperat de 〈 Ŝ 2 〉, en
contribucions atòmiques i diatòmiques, de tal manera que els termes atòmics
revelen l’existència d’espins locals en els àtoms o fragments i les diatòmiques
informen sobre l’existència i la naturalesa dels acoblaments entre ells. Aque-
sta nova formulació compleix amb tots els requisits f́ısics necessaris que s’han
imposat fins ara. En particular, és capaç de distingir entre dos espins acoblats
per formar un enllaç covalent i una veritable interacció antiferromagnética.

L’anàlisi de les contribucions d’un i dos centres a 〈 Ŝ 2 〉 és el que anomenem
anàlisi de l’esṕın local. En aquesta tesi hem aplicat aquesta nova metodologia
a una sèrie de problemes qúımics d’interès. En particular, s’ha analitzat la
relació entre l’esṕın local i la naturalesa de l’enllaç qúımic. S’ha trobat que la
presència d’esṕın local indica desviacions dels prototips d’enllaç clàssics, és a
dir, el grau d’esṕın local és una mesura de la desviació del caràcter covalent
d’un enllaç. Una troballa notable d’aquest treball és que la molècula C2 en el
seu estat fonamental té tots els ingredients per ser classificada com un diradical,
descartant l’existència d’un quart enllaç convencional.

També hem aplicat el local spin analysis per detectar i quantificar el caràcter
poliradical en molècules. Els valors d’esṕın local s’han utitlitzat per definir un
nou ı́ndex, ∆(k) , que estima la desviació d’un sistema molecular real respecte
un sistema ideal de k espins perfectament localitzats. El principal avantatge
d’aquest ı́ndex és que, contràriament a la majoria dels descriptors de la bib-
liografia, es pot utilitzar tant per funcions d’ona multireferencials com per
funcions d’ona d’un sol determinant d’Slater, aix́ı com per a qualsevol estat
electrònic.

En el cas de dirradicals i diradicaloids, ∆(0) i ∆(2) s’han utilitzat per a mesurar
la desviació respecte d’un no radical i un sistema diradical perfecte respectiva-
ment. El primer intent de quantificació real del caràcter triradical s’ha acon-
seguit mitjançant valors de l’́ındex ∆(3). L’estructura electrònica de diradicals
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i triradicals orgànics s’ha analitzat en detall per il.lustrar el nou mètode.

Una altra eina que té com a objectiu la caracterització de l’estat de l’àtom dins
de la molècula són els orbitals àtomics efectius (eff-AOs) de Mayer. En aquest
context la població atòmica neta s’expressa en termes d’un conjunt ortonormal
d’h́ıbrids atòmics i els seus números d’ocupació. La forma i les ocupacions
dels h́ıbrids reprodueixen fidelment els orbitals interns i els de valència dels
àtoms. En aquesta tesi hem implementat per primera vegada els eff-AOs en
el marc de l’anàlisi QTAIM per una funció d’ona general. A més de la seva
importància conceptual, hem demostrat que els orbitals moleculars d’un càlcul
es poden expressar exactament com una combinació lineal d’aquest conjunt
ortonormalizat d’orbitals atòmics numèrics. Això també ha permès establir
una connexió entre els anàlisis en els espais de Hilbert i l’espai tridimensional.

D’altra banda, el concepte clàssic d’estat d’oxidació (OS) és un dels més im-
portants dins l’àmbit de la qúımica. En la qúımica de coordinació, l’OS es
defineix generalment com “la càrrega que queda al metall després de retirar
tots els lligands en la seva configuració de capa tancada”. Per tant, els OS
formals s’obtenen mitjançant l’assignació de nombres enters d’electrons als
àtoms / lligands d’acord amb algunes regles predefinides. No obstant, hi ha
situacions en que aquesta assignació pot ser bastant ambigua. Els OS estàn
intŕınsecament relacionats amb la distribució electrònica, però les poblacions
electròniques o d’esṕın són només una primera indicació de l’OS de l’ àtom.

En aquesta tesi s’ha demostrat que els eff-AOs es poden utilitzar per derivar les
configuracions electròniques més apropiades per als àtoms o fragments molec-
ulars en la molècula . En conseqüència, hem introdüıt una forma simple i
general per derivar estats d’oxidació eficaços (EOS) a partir de l’anàlisi de la
densitat electrònica. D’altra banda, els números d’ocupació dels eff-AOs es
poden utilitzar per quantificar en quina mesura una funció d’ona en partic-
ular s’ajusta a l’assignació ideal d’OS. El mètode és general i formalment es
pot aplicar a qualsevol sistema molecular pero en aquest treball ens centrem
en complexes organometàl.lics, que són els més rellevants en aquest context.
Com a aplicació pràctica, en els complexos de metalls de transició hem pro-
posat una estratègia jeràrquica basada en la partició del sistema molecular en
fragments/lligands abans de l’anàlisi dels eff-AOs.
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Finalment, la combinació de l’anàlisi de l’esṕın local i els eff-AOs (entre altres
eines) ens han permès obtenir una visió més ajustada de la naturalesa del
complexe [Cu3S2]3+. En particular, els eff-AOs indiquen un estat d’oxidació
formal CuII , mentre que la manca d’espins locals significatius en el nucli va en
contra de l’existència d’acoblaments antiferromagnètics entre els àtoms de Cu
i S.



Resumen de la Tesis

La identificación de un átomo dentro de una molécula es un concepto fun-
damental que permite la descomposición de cantidades f́ısicas en contribu-
ciones atómicas (y diatómicas). La teoŕıa de àtomos en moléculas de Bader
(QTAIM) proporciona hoy en d́ıa una de las definiciones más ampliamente
utilizadas y aceptadas para un átomo en la molécula. De acuerdo con la
QTAIM, la topoloǵıa de la densidad electrónica se utiliza para encontrar las
cuencas atómicas y los ĺımites estrictos que las definen. El método presenta
dos desventajas: por un lado, la aparición de los llamados atractores no nu-
cleares (NNA), que dificulta el análisis en términos qúımicos, y por otro lado
el coste computacional asociado a la construcción de los dominios atómicos.
En esta tesis se propone una nueva definición de las celdas de Voronoi difusas
que reproducen, en cierta medida, los resultados del análisis QTAIM con un
coste computacional muy menor. La nueva definición atómica permite ignorar
la presencia de NNA o incorporarlos fácilmente en el análisis.
Es evidente que la subdivisión del espacio f́ısico en cuencas atómicas no repre-
senta ninguna propiedad atómica en śı misma mas que la del volumen atómico.
Lo que resulta interesante es la asignación de diferentes magnitudes f́ısicas lo-
cales a los átomos o fragmentos moleculares. Dejando de lado la definición
atómica, un ingrediente clave para extraer información qúımica a partir del
análisis de la función de onda es la definición adecuada de las cantidades
f́ısicas, t́ıpicamente en términos de la integral sobre el espacio de las funciones
densidades correspondientes a una o dos part́ıculas. En esta tesis nos hemos
centrado en dos propiedades: El esṕın local (local spin) y los orbitales atómicos
efectivos (effective atomic orbitals).
Las propiedades de esṕın de un sistema se caracterizan t́ıpicamente por la

xxix



xxx RESUMEN DE LA TESIS

densidad de esṕın (diferencia entre las densidades electrónicas alfa y beta).
No obstante, hay sistemas singulete como por ejemplo dirradicales o comple-
jos antiferromagnèticos por los que la densidad de esṕın se desvanece en cada
punto del espacio, a pesar de que se asume la existencia de espines locales.
Se han propuesto varias formulaciones en la literatura para dar cuenta de la
presencia de espines locales en sistemas moleculares a partir de las funciones
de onda ab initio. En esta tesis hemos derivado una nueva formulación general
basada en la descomposición del valor esperado de 〈 Ŝ 2 〉, en contribuciones
atómicas y diatómicas, de tal manera que los términos atómicos revelan la
existencia de espines locales en los átomos o fragmentos y las diatómicas in-
forman sobre la existencia y la naturaleza de los acoplamientos entre ellos.
Esta nueva formulación cumple con todos los requisitos f́ısicos necesarios que
se han impuesto hasta ahora. En particular, es capaz de distinguir entre dos
espines acoplados para formar un enlace covalente y una verdadera interacción
antiferromagnética.

El análisis de las contribuciones de uno y dos de centros a 〈 Ŝ 2 〉 es lo que
denominamos anàlisis del esṕın local. En esta tesis hemos aplicado esta nueva
metodoloǵıa a una serie de problemas qúımicos de interés. En particular, se ha
analizado la relación entre el esṕın local y la naturaleza del enlace qúımico. Se
ha encontrado que la presencia de esṕın local indica desviaciones de los prototi-
pos de enlace clásicos, el grado de esṕın local es una medida de la desviación
del carácter covalente de un enlace. Un hallazgo notable de este trabajo es que
la molécula C2 en su estado fundamental tiene todos los ingredientes para ser
clasificada como un diradical, descartando la existencia de un cuarto enlace
convencional. También hemos aplicado el local spin analysis para detectar
y cuantificar el carácter poliradical en moléculas. Los valores de esṕın local
se han utitlizado para definir un nuevo ı́ndice, ∆(k), que estima la desviación
de un sistema molecular real frente a un sistema ideal de k espines perfecta-
mente localizados. La principal ventaja de este ı́ndice es que, contrariamente
a la mayoŕıa de los descriptores de la bibliograf́ıa, se puede utilizar tanto por
funciones de onda multireferenciales cómo para funciones de onda de un solo
determinante de Slater, aśı como para cualquier estado electrónico. En el caso
de dirradicales y diradicaloides, ∆(0) y ∆(2) se han utilizado para medir la
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desviación respecto de un no radical y un sistema diradical perfecto respec-
tivamente. El primer intento de cuantificación real del carácter triradical se
ha conseguido mediante valores del ı́ndice ∆(3) . La estructura electrónica de
diradicales y triradicales orgánicos se ha analizado en detalle para ilustrar el
nuevo método.

Otra herramienta que tiene como objetivo la caracterización del estado del
átomo dentro de la molécula son los orbitales atómicos efectivos (eff-AOs) de
Mayer. En este contexto la población atómica neta se expresa en términos
de un conjunto ortonormal de h́ıbridos atómicos y sus números de ocupación.
La forma y las ocupaciones de los h́ıbridos reproducen fielmente los orbitales
internos y los de valéncia de los átomos. En esta tesis hemos implementado
por primera vez los eff-AOs en el marco del análisis QTAIM para una función
de onda general. Además de su importancia conceptual, hemos demostrado
que los orbitales moleculares de un cálculo se pueden expresar exactamente
como una combinación lineal de este conjunto ortonormalizado de orbitales
atómicos numéricos. Esto también ha permitido establecer una conexión entre
los análisis en el espacios de Hilbert y el espacio tridimensional. Por otro lado,
el concepto clásico de estado de oxidación (OS) es uno de los más importantes
dentro del ámbito de la qúımica. En la qúımica de coordinación, el OS se
define generalmente como ’la carga que queda al metal después de retirar
todos los ligandos en su configuración de capa cerrada’. Por lo tanto, los OS
formales se obtienen mediante la asignación de números enteros de electrones a
los átomos/ligandos de acuerdo con algunas reglas predefinidas. No obstante,
hay situaciones en que esta asignación puede ser bastante ambigua. Los OS
están intŕınsecamente relacionados con la distribución electrónica, pero las
poblaciones electrónicas o de esṕın son sólo una primera indicación del OS del
átomo.

En esta tesis se ha demostrado que los eff-AOs se pueden utilizar para derivar
las configuraciones electrónicas más apropiadas para los átomos o fragmentos
moleculares en la molécula. En consecuencia, hemos introducido una forma
simple y general para derivar estados de oxidación eficaces (EOS) a partir del
análisis de la densidad electrónica. Por otro lado, los números de ocupación
de los eff-AOs se pueden utilizar para cuantificar hasta que punto una función
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de onda en particular se ajusta a la asignación ideal de OS. El método es
general y formalmente se puede aplicar a cualquier sistema molecular pero
en este trabajo nos centramos en complejos organometàlicos, que son los más
relevantes en este contexto. Como aplicación práctica, en los complejos de
metales de transición hemos propuesto una estrategia jerárquica basada en la
partición del sistema molecular en fragmentos/ligandos antes del análisis de
los eff-AOs.
Finalmente, la combinación del análisis del esṕın local y los eff-AOs (entre otras
herramientas) nos han permitido obtener una visión más ajustada de la natu-
raleza del complejo [Cu3S2]3+. En particular, los eff-AOs indican un estado de
oxidación formal CuII, mientras que la carencia de espines locales significativos
en el núcleo va en contra de la existencia de acoplamientos antiferromagnèticos
entre los átomos de Cu y S.



Chapter 1

Introduction

The growth in computing power over the last decades alongside with the ad-
vances in electronic structure methods have increased the reliability of predict-
ing molecular properties. Unfortunately, the more sophisticated the electronic
structure are, the further those methods are to the language of chemistry.1

Quantum chemistry is written in the language of physics, that is, a wave func-
tion describing particles and their interactions. Therefore, a molecule is viewed
as a system of electrons and nuclei interacting with each other. From a classi-
cal point of view, chemistry deals with atoms that are kept together by bonds
to form a molecule. This view is still necessary and useful for the prediction
of chemical properties and for the elucidation of chemical structures.2 Quan-
tum mechanics puts forward the Schrödinger equation whose solution leads to
the exact wave function. However, in practice this equation is always solved
approximately. It is noteworthy to remark that some of the approximations
made to solve the Schrödinger equation are based on classical or pre-quantum
chemistry concepts. For example, the valence bond method is based on the
electron-pair bond formalism.3

While some researchers advocate for the abandon of the chemical view and
several concepts accompanying it (bond order, bond ionicity or aromaticity)
this jargon is deeply rooted in the chemistry community and it cannot be so
easily ignored. It thus is of high importance to establish bridges between the

1
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two views of a molecular system: the “physical” one of interacting particles
and the “chemical” one of atoms kept together by bonds. This thesis aims to
shed some light into the field of extracting chemical information from wave
function analysis. The thesis can be divided into three parts. The first one
deals with the formulation of a new atom in molecule definition. In the second
part we propose a new methodology to obtain local spins from wave function
analysis. Finally, we study the electron configurations of the atom within the
molecule and retrieve their oxidation states from a particular analysis of the
effective atomic orbitals (eff-AOs).

1.1 Wave functions, reduced density matrices
and cumulants

A pure quantum state can be fully described by a wave function Ψi(~x1, ..., ~xN),
where N is the number of electrons and ~x their spatial and spin coordinates
(~x = ~r, ~σ). Within the Born-Oppenheimer approximation, the wave functions
are typically obtained as approximate solutions of the time-independent non-
relativistic electronic Schrödinger equation

ĤΨi(~x1, ..., ~xN) = EiΨi(~x1, ..., ~xN) (1.1)

where Ĥ is the electronic Hamiltonian of the system that only depends on the
spatial coordinates of the particles, and Ei are the energies of the different
states. Moreover, according to the antisymmetry principle, the wave function
must be antisymmetric with respect to the interchange of coordinates of two
particles, for instance

Ψ(~x1, ..., ~xi, ..., ~xj, ..., ~xN) = −Ψ(~x1, ..., ~xj, ..., ~xi, ..., ~xN). (1.2)

In the case of mixed or ensembles states, the description of the system is
provided by the so-called N -density matrices,4
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ρN(~x ′1, ..., ~x ′N ; ~x1, ..., ~xN) = Ψ∗(~x ′1, ..., ~x ′N)Ψ(~x1, ..., ~xN). (1.3)

In this sense, the N -density matrix is a more complete object than the wave
function. The diagonal elements (~x ′ = ~x) of 1.3 are related to the proba-
bility density or probability distribution of the system according to the Born
interpretation of the wave function. The product

ρN(~x1, ..., ~xN ; ~x1, ..., ~xN)d~x1 · · · d~xN (1.4)

gives us the probability of finding simultaneously electron 1 between ~x1 and
~x1 + d~x1, electron 2 between ~x2 and ~x2 + d~x2 and so on.

From the N -density matrix we can obtain lower-rank density matrices by inte-
gration of the appropriate coordinates. Of particular interest for the purpose
of this thesis are the first- and second-order reduced density matrices (1-RDM
and 2-RDM, respectively). The operators in quantum chemistry only involves
the coordinates of one- or two-electron, therefore, their expectation values can
be fully written in terms of the first- and second- order RDM. The 1-RDM is
defined as

ρ(~x ′1; ~x1) = N
∫
ρN(~x ′1, ~x2, ..., ~xN ; ~x1, ~x2, ..., ~xN)d~x2 · · · d~xN . (1.5)

Its diagonal elements are the electron density ρ(~x), that is related to the proba-
bility of finding one electron between ~x and ~x+d~x independently of the position
of the other electrons. By integrating the spin coordinates of the diagonal part
of eq. (1.4) one obtains the so-called spinless density

ρ(~r1) = ρα(~r1) + ρβ(~r1), (1.6)

which depends only on the spatial coordinates of the electrons (~r). Simulta-
neously, one can define the spin density as

ρs(~r1) = ρα(~r1)− ρβ(~r1). (1.7)
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The 2-RDM, assuming the so-called McWeeny normalization, reads as

ρ(2)(~x ′1, ~x ′2; ~x1, ~x2) = N(N − 1)
∫
ρN(~x ′1, ~x2, ..., ~xN ; ~x1, ~x2, ..., ~xN)d~x3 · · · d~xN

(1.8)
It is Hermitian

ρ(2)(~x ′1, ~x ′2; ~x1, ~x2) = ρ∗(2)(~x1, ~x2; ~x ′1, ~x ′2), (1.9)

antisymmetric w.r.t. each set of indexes

ρ(2)(~x ′1, ~x ′2; ~x1, ~x2) = −ρ(2)(~x ′2, ~x ′1; ~x1, ~x2) (1.10)

ρ(2)(~x ′1, ~x ′2; ~x1, ~x2) = −ρ(2)(~x ′1, ~x ′2; ~x2, ~x1), (1.11)

and symmetric with respect to particle permutation

ρ(2)(~x ′1, ~x ′2; ~x1, ~x2) = ρ(2)(~x ′2, ~x ′1; ~x2, ~x1) (1.12)

By integrating over the spin coordinates

ρ(2)(~r ′1, ~r ′2;~r1, ~r2) =
∫
ρ(2)(~x ′1, ~x ′2; ~x1, ~x2)|~σ ′

1=~σ1,~σ ′
2=~σ2d~σ1d~σ2, (1.13)

we can obtain the so-called spinless 2-RDM as a sum of the spin components
as

ρ(2)(~r ′1, ~r ′2;~r1, ~r2) = ραααα(2) (~r ′1, ~r ′2;~r1, ~r2) + ρββββ(2) (~r ′1, ~r ′2;~r1, ~r2)

+ραβαβ(2) (~r ′1, ~r ′2;~r1, ~r2) + ρβαβα(2) (~r ′1, ~r ′2;~r1, ~r2). (1.14)

The spinless 2-RDM can be written in terms of the the spinfree cumulant,
Γ(~r1, ~r2;~r ′1, ~r ′2), the genuine two-electron quantity, and the spinless 1-RDM:

ρ2(~r ′1, ~r ′2;~r1, ~r2) = ρ(~r ′1;~r1)ρ(~r ′2;~r2)− 1
2ρ(~r ′1;~r2)ρ(~r ′2;~r1)

−1
2ρ

s(~r ′1;~r2)ρs(~r ′2;~r1) + Γ(~r ′1, ~r ′2;~r1, ~r2) (1.15)

For single-determinant wave functions, the 2-RDM can be entirely written in
terms of the 1-RDM because their cumulant matrix is zero. The diagonal of eq.
(1.14) is the so-called pair density, ρ(~r1, ~r2). This density has been extensively
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employed to study the electron pair density structure of the chemical bond.5

Another widely used density used in chemical bonding analysis is the exchange-
correlation density6

ρXC(~r1, ~r2) = ρ(~r1, ~r2)− 1
2ρ(~r1)ρ(~r2) (1.16)

We will take advantage of the matrices and densities defined in this section
to develop tools to describe electron localization in molecules. For practical
applications, we will use the program DMN,7 written by Matito and Feixas, in
order to construct 1-RDM and 2-RDM from commercial quantum chemistry
packages, such as Gaussian03.8

1.2 Electron spin

In 1924, Pauli demonstrated that four quantum numbers are necessary to
characterize the electrons, thus explaining the shell-like structure of an atom.
Actually the contribution of Pauli was the fourth quantum number itself, the
spin, an intrinsic property of the electron as proved a year later in the experi-
ment of Uhlenbeck and Goudsmit. In quantum mechanics, spin represents an
angular momentum. The spin is a pure quantum property, it does not have
any classical analogue. As an angular momentum the spin of an electron is
described by a vector, for which each of its components is associated with the
corresponding operator

ŝ = (ŝx, ŝy, ŝz). (1.17)

From these one can define the operator associated to the modulus of the spin
angular momentum (total spin squared operator)

ŝ2 = ŝ 2
x + ŝ 2

y + ŝ 2
z. (1.18)

From the postulates of quantum mechanics it can be derived that the op-
erators of any angular momentum motion (it also applies to orbital angular
momentum) fulfill the following commutation rules (in a.u.)
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[ŝx, ŝy] = iŝz, [ŝx, ŝz] = iŝy, [ŝy, ŝz] = iŝx

[ŝ2, ŝx] = [ŝ2, ŝy] = [ŝ2, ŝz] = 0 (1.19)

These conditions prevent the full determination, in general, of the three com-
ponents of the spin vector. What can be known is the modulus and one of
the components (usually the z component is chosen). It is easy to show that
these quantities are governed by a single parameter, the spin quantum num-
ber s. The spin functions f(ω), where ω represents the spin coordinate, are
eigenfunction of the ŝ2 operator

ŝ2f(ω) = s(s+ 1)f(ω), (1.20)

and the ŝz

ŝzf(ω) = msf(ω) (1.21)

where ms is the projection of the spin vector on a chosen axis (the z-component).
Since electrons have s=1

2 , and ms=[-1
2 , 1

2 ], the spin states of an electron can
be described by two functions, α(ω) (s=1/2 and ms=1/2) and β(ω) (s=1/2
and ms=-1/2). These spin functions are orthonormal

∫
α∗(ω)α(ω)dω =

∫
β∗(ω)β(ω)dω = 1, (1.22)

and

∫
α∗(ω)β(ω)dω =

∫
β∗(ω)α(ω)dω = 0. (1.23)

The action of the different individual one-electron spin operators over the
corresponding alpha and beta one-electron spin functions yields the well-known
relations

ŝxα(ω) = 1
2β(ω) ŝyα(ω) = i

2β(ω) ŝzα(ω) = 1
2α(ω)

ŝxβ(ω) = 1
2α(ω) ŝyβ(ω) = − i

2α(ω) ŝzβ(ω) = −1
2β(ω) (1.24)
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and
ŝ2α(ω) = 3

4α(ω) ŝ2β(ω) = 3
4β(ω). (1.25)

For an N -electron system, the total spin operator is given by the components

Ŝx =
N∑
i

ŝx(i) Ŝy =
N∑
i

ŝy(i) Ŝz =
N∑
i

ŝz(i) (1.26)

and its modulus

Ŝ 2 =
N∑
i

|~si|2 +
N∑
i 6=j

~si~sj =
N∑
i

ŝ 2
x(i) + ŝ 2

y(i) + ŝ 2
z(i) + (1.27)

+
N∑
i 6=j

ŝ x(i)ŝ x(j) + ŝ y(i)ŝ y(j) + ŝ z(i)ŝ z(j).

From eq. (1.27) it can be seen that the Ŝ 2 operator has one- and two-electron
terms. Therefore, the expectation values of it can be expressed through the
one- and second-order reduced density matrices. The eigenvalues of the Ŝ 2

operator fulfill the conditions of any angular momentum operator so that

Ŝ2f(ω1, ..., ωN) = S(S + 1)f(ω1, ..., ωN) (1.28)

and

Ŝzf(ω1, ..., ωN) = mSf(ω1, ..., ωN), (1.29)

where S is the total spin quantum number and mS=-S,-S+1,...S-1,S. The
f(ω1, ..., ωN) are the corresponding polielectronic spin eigenfunctions. Their
construction for a large number of particles is not a trivial task.9

Since the electronic Hamiltonian of the non-relativistic time-independent Schrö-
dinger equation does not depend on the spin coordinates, Ŝ 2 and Ŝz commute
with Ĥ. Therefore, the spin quantum numbers S and mS of a pure spin state
can be obtained from the exact eigenvalues of the electronic non-relativistic
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time-independent Schrödinger equation Ψi(~x1, ..., ~xN). As we have mentioned
before, Ĥ only depends on spatial coordinates, but the wave functions con-
tains spin coordinates to completely describe the electrons. Polyelectronic
wave functions are built under the orbital approximation, by which the elec-
trons are described by individual functions (orbitals). The so-called Slater
determinant is an antisymmetric wave function of a N -electron system, of the
form

Ψ(~x1, ..., ~xN) = (N !)− 1
2

∣∣∣∣∣∣∣∣∣∣∣∣

ϕi(~x1) ϕj(~x1) · · · ϕN(~x1)
ϕi(~x2) ϕj(~x2) · · · ϕN(~x2)

... ... ...
ϕi(~xN) ϕj(~xN) · · · ϕN(~xN)

∣∣∣∣∣∣∣∣∣∣∣∣
(1.30)

where ϕ(~x) represents the one-electron spinorbitals. In the simplest approach
spinorbitals depend on the spatial and spin coordinates as

ϕ(~x) = ϕ(~r)s(ω), (1.31)

where the first term of the r.h.s. is the spatial orbital, and the second is the
spin function. Restricted spinorbitals are those with the same spatial part for
α and β electrons while in unrestricted spinorbitals the spatial part of electrons
α and β can be different. It can be shown that any Slater determinant formed
by a set of spinorbitals is always an eigenfunction of the total Sz operator,
with eigenvalue mS=1

2(Nα-N β), where Nα and N β are the number of α and β
electrons, respectively. Any closed-shell restricted Slater determinant, so that
Nα=N β, is also eigenfunction of Ŝ 2 with eigenvalue and S = 0. Any high-spin
restricted open-shell determinant is also eigenfunction of Ŝ 2 with the eigen-
value S(S+1) and S=Ms=1

2(Nα-N β). Any unrestricted Slater determinant is
not in general an eigenfunction of Ŝ 2. It is also important to note that re-
stricted Slater determinants with the same mS value can be linearly combined
to produce spin-adapted configurations that will be eigenfunctions of Ŝ 2.10
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1.3 Atoms in molecules

Atoms are the building blocks of chemistry but from the perspective of quan-
tum mechanics they are not observables. Since Lewis theory11 most chemistry
has been rationalized using the concept of an atom in a molecule. For in-
stance, we know from undergraduate organic courses that carbon binds to
itself in many different ways, forming mostly single, double, triple and aro-
matic bonds. Although the carbon atom is the same building block in all these
bonds, the character of each carbon is clearly different. In order to characterize
the electronic structure of these molecules it is convenient to distinguish and
characterize the role of the atoms that form these molecules, i.e., to define an
atom in a molecule. Therefore, any AIM is a conceptual construct but with an
irrefutable utility. By characterizing atoms inside a molecule we are defining
an atomic partition. An atomic partition (or partitioning) is a well-defined
method to subdivide the molecule into its constituting atoms. An atomic
partition provides the means to define atomic properties that can be used to
(chemically) rationalize the electronic structure of a given molecule. In this
sense, atomic domains are a useful tool to define partial charges, partial multi-
poles and to perform a bonding analysis. Taking advantage of different AIM’s
definitions, quantum chemists have defined atomic populations, bond orders
descriptors,12–18 energy partitioning,19,20 aromaticity indexes,21,22 among other
useful tools. The definition of the atom within the molecule is the first step
towards an analysis of the wave function in classical chemical terms.

There is not a unique way to define an atomic partition and, to some extent, all
the proposals are, in one way or another, arbitrary. Therefore, it is important
to know the limitations and the drawbacks of the partition we employ. Over the
last decades23–32 several AIM definitions have been proposed. In this section
we will briefly summarize the AIM definitions used in Chapters 3-7. We will
put more emphasis on the definition of the so-called Becke atoms because it is
the basis for the new AIM proposed in Chapter 3.
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1.3.1 Hilbert-space analysis

Within the MO-LCAO (molecular orbitals as linear combination of atomic
orbitals) approach, the molecular orbitals (MO) are expanded on a finite set
of atomic-centered one-electron functions {χµ(~r)} as

ϕi(~r) =
∑
µ

cµiχµ(~r). (1.32)

Where cµi is the expansion coefficient of the atomic orbital µ in the molecular
orbital i. The set of functions centered on a given atom conform an atomic
Hilbert subspace {χµ(~r)}|µ∈A. In this context, an atom can be defined by
its nucleus and the subspace of one-electron basis set centered on it. Any
molecular quantity can be decomposed in terms of atomic, diatomic or in
general poliatomic contributions. For instance, a molecular orbital can be
rewritten as a sum of its atomic counterparts as

ϕi(~r) =
∑
A

∑
µ∈A

cµiχµ(~r). (1.33)

Most interesting is the decomposition of the electronic density. It can be
written in terms of the atomic orbital basis as

ρ(~r) =
∑
µν

Dµνχ
∗
ν(~r)χµ(~r), (1.34)

where D is the spin-less first-order density matrix in the atomic orbital basis
representation. Matrix D contains contributions from the alpha and beta first-
order density matrices, Pα and Pα, respectively.

D = Pα + Pβ. (1.35)

By integrating eq. (1.34) one obtains the total number of electrons of the
system

N =
∫
ρ(~r)d~r =

∑
µν

Dµν

∫
χ∗ν(~r)χµ(~r)d~r =

∑
µν

DµνSνµ =
∑
µ

(DS)µµ, (1.36)
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where matrix S is the atomic overlap matrix, with elements

Sνµ =
∫
χ∗ν(~r)χµ(~r)d~r. (1.37)

The summation at the r.h.s. of eq. (1.36) can be grouped according to which
atom the basis function is attached to. This naturally permits to express the
total number of electrons as a sum of atomic contributions, or Mulliken’s23

atomic gross populations NA

N =
∑
A

∑
µ∈A

(DS)µµ =
∑
A

NA. (1.38)

Alternatively, one can also write eq. (1.38) in the form

N =
∑
A

∑
B

∑
µ∈A

∑
ν∈B

DµνSνµ =
∑
A

NAA +
∑
A 6=B

NAB (1.39)

where NAA and NAB + NBA are the Mulliken’s23 net and overlap populations,
respectively.

Other quantities can be obtained by integrating two-electron densities. For
instance, as proposed by Mayer, by decomposing the exchange density one
can get bond orders (BO) and free valences. In Chapter 4 we tackle the
decomposition of the spin squared operator under the Hilbert-space framework.
The integrations in eq. (1.37) are analytical for Gaussian functions. Therefore,
its implementation is straightforward and the computational cost associated
with the analysis is very small. Moreover, the errors associated with any
numerical integration method are avoided. However, the analysis also presents
some drawbacks, namely

• Basis set dependency. It has been observed that the results are moder-
ately depending on the basis set used.33

• It shows unphysical results for basis sets without marked atomic charac-
ter e.g. diffuse basis functions. The use of these functions is mandatory
for the correct description of molecular systems, especially those with
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partial charges such as anions. Therefore, most Hilbert-space analysis
done in molecules suffer from this drawback.34

• Ill-defined in the complete basis set limit (CBS).

• Inapplicable beyond the LCAO-MO approximation e.g. if plane waves
are used to expand the MO of the system.

However, other approaches can be used to avoid these inconveniences. One
alternative is the 3D-space analysis.

1.3.2 Three-dimensional space analysis

In the framework of the 3D-space analysis the atom is identified by a region of
the physical space or atomic domain and its nucleus. If the atomic domains are
disjoint, then the decomposition of a physical quantity into atomic contribu-
tions can be simply carried out by integration over the corresponding atomic
domains ΩA as

∫
f(~r)d~r =

∑
A

∫
ΩA

f(~r)d~r∫
f(~r1, ~r2)d~r1d~r2 =

∑
A,B

∫
ΩA

∫
ΩB

f(~r1, ~r2)d~r1d~r2, (1.40)

where one can see that one and two-electron quantities quite naturally de-
compose into one-center and one- and two-center contributions, respectively.
Voronoi cells and the topological atom from QTAIM by Bader26 are examples
of 3D-space partitioning with strict boundaries. Bader’s QTAIM is based on
the topological properties of the electron density.

Topology of the electron density

The density is a continuous function defined at every point of the real (three-
dimensional) space. Therefore, it easily renders to a topological analysis. The
calculation of the gradient of a function provides the set of critical points (CPs)
of the function:

~∇ρ(~rc) = 0. (1.41)
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The characterization of these critical points is done through the analysis of the
second derivatives of the density at the critical point. All the second derivatives
of the density are collected in the so-called Hessian matrix:

H[ρ](~rc) =


∂2ρ(~r)
∂x2

∂2ρ(~r)
∂x∂y

∂2ρ(~r)
∂x∂z

∂2ρ(~r)
∂y∂x

∂2ρ(~r)
∂y2

∂2ρ(~r)
∂y∂z

∂2ρ(~r)
∂z∂x

∂2ρ(~r)
∂y∂z

∂2ρ(~r)
∂z2


~r=~rc

(1.42)

that is a real symmetric matrix and thus can be diagonalized,

H[ρ]L = LΛ (1.43)

i.e., put in a diagonal form,

Λ =


∂2ρ(~r)
∂x2

1
0 0

0 ∂2ρ(~r)
∂y2

1
0

0 0 ∂2ρ(~r)
∂z2

1


~r1=~rc

=


λ1 0 0
0 λ2 0
0 0 λ3

 (1.44)

where (λ1 ≤ λ2 ≤ λ3) are the three eigenvalues of the Hessian matrix, i.e.,
the curvatures. We will label each critical point according to its rank and
signature as (ω, σ). The difference between the number of positive and negative
eigenvalues is the signature, and the total number of non-zero eigenvalues is
the rank. Assuming non-zero eigenvalues we can classify the CP by the sign
of its curvatures. Each positive curvature contributes +1 to the signature and
every negative curvature adds -1, giving four different CP types:

• (3,-3). Attractor or Nuclear Critical Point (ACP). All the cur-
vatures are negative in a ACP, and thus this CP is a maximum of the
electron density. These regions usually coincide with an atomic position
and an atom-in-molecule within QTAIM theory is characterized by one
and only one ACP. Although it is not usual one may encounter maxima
of the electron density which do not coincide with an atomic position;
those are known as non-nuclear maxima (NNA).

• (3,-1). Bond Critical Point (BCP). A BCP shows two negative
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curvatures and a positive one. The BCP is found between two ACP. The
positive eigenvalue (λ3) corresponds to the direction connecting these
two ACP and the negative eigenvalues form a plane in the perpendicular
direction. The existence of a BCP is used as an indicator of the presence
of a chemical bond between the atoms identified by the two ACPs.

• (3,+1) Ring Critical Point (RCP). A RCP has two positive cur-
vatures and one negative one (λ1). Its presence indicates a ring struc-
ture, which seats in the plane formed by the positive eigenvalues. If the
molecule is planar the RCP is located in the minimum of the electron
density inside the ring structure.

• (3,+3) Cage Critical Point (CCP). A CCP has three negative eigen-
values and it is thus a minimum of the electron density. Its presence
indicates a cage structure and the CCP locates close to its center.

The topology of electron density fulfills the Poincaré-Hopf expression, that
gives the relationship that should be fulfilled between the number of critical
points:

nACP − nBCP + nRCP − nCCP = 1. (1.45)

In fig. (1.1) we can see the density isocountor in dark blue, and the position of
ACPs in red spheres, BCPs in green spheres and the bond path in yellow lines
for the water molecule. The gradient lines (perpendicular to the isocountor
lines) are depicted in cyan and they all end up in the infinity or in the separatrix
surface defining the boundaries of the atomic domains. The atoms in molecules
as defined by QTAIM have their boundaries limited by the zero-flux surface in
the gradient vector field of the electron density. This zero-flux surface is given
by:

∇ρ(~r) · ~n(~r) = ~0 ∀~r ∈ S(~r), (1.46)

where n(~r) is the unit vector perpendicular to the zero-flux surface S(~r) or
separatrix. This surfaces show the boundaries between AIMs which are, there-
fore, non-overlapping regions.
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Figure 1.1: Topological analysis of the electron density for the water molecule.

There are two disadvantages to the method, namely the appearance of spuri-
ous non-nuclear attractors, which makes the analysis in chemical terms rather
difficult, and the computational cost associated to the construction of the
complex-shaped atomic domains. As mentioned before, non-nuclear attractors
are maxima of the molecular densities not located on any nuclear position.

Fuzzy atoms
An alternative is to consider the so called fuzzy atoms. Within this framework,
atoms do not present strict boundaries but they can overlap. Over the last
years it has been shown how concepts like bond orders,27,28,35 overlap popu-
lations,27 valences27 or energy components,36 effective atomic orbitals37 could
be generalized to the framework of the “fuzzy” atoms.
In order to treat the different schemes, disjoint atoms or “fuzzy” atoms, in a
common framework, one can introduce a non-negative weight function wA(~r )
for each atom and each point of the 3D space satisfying the requirement

∑
A

wA(~r ) = 1. (1.47)

In the case of the “fuzzy” atoms, the value of wA(~r ) is large in the vicinity of
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the nucleus of atom A and quickly becomes negligible outside. In the special
case of disjoint atomic domains, such as those of QTAIM26 or Voronoi cells,
wA(~r ) = 1 for points inside the atomic domain of A and wA(~r ) = 0 outside of
it.

The decomposition of a physical quantity into atomic contributions can be
performed by inserting the identity (1.47) one or two times for the one and
two-electron integrals, respectively

∫
f(~r)d~r =

∑
A

∫
wA(~r)f(~r)d~r∫

f(~r1, ~r2)d~r1d~r2 =
∑
A,B

∫∫
wA(~r1)wB(~r2)f(~r1, ~r2)d~r1d~r2. (1.48)

The first “fuzzy” atom definition was proposed by Hirshfeld.25 In this scheme
the atomic weight of atom A at a given point in the space is determined by
the ratio

wA(~r ) = ρ0
A(~r )∑

B ρ
0
B(~r ) , (1.49)

where ρ0
A(~r ) represents the promolecular density of the atom A.

In the classical Hirshfeld definition the resulting shape of the atoms in the
molecule are strongly dependent on the choice of the promolecular state of the
atom. Bultinck et al.29 proposed an improved Hirshfeld-Iterative scheme that
corrects this dependency by an iterative process to obtain promolecular atomic
densities that integrate to the same (usually fractional) number of electrons as
do the atoms in the molecule

∫
ρ0
A(~r)d~r = NA 6= ZA, (1.50)

where ZA is the atomic number of atom A and NA is the actual population of
the atom in the molecule.
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An alternative to compute the atomic weight was proposed by Salvador and
Mayer27 making use of the Becke atoms; i.e., the fuzzy atomic Voronoi cells
introduced by Becke in the context of his celebrated multicenter numerical
integration scheme.38

Becke’s atomic weights, wA(~r ), are algebraic functions which strictly satisfy
the sum rule (1.47). In addition, they also fulfill wA(~RA) = 1 and wB(~RA) = 0.
That is, the region (point) of the space occupied by the nucleus is fully asso-
ciated to its corresponding atom.a

The scheme was formulated as follows. Let us consider two nuclei, A and B, at
a distance RAB. For any point in the space, ~r, one can calculate the following
quantity

µAB = rA − rB
RAB

, (1.51)

where rA and rB represent the distances of that point to nucleus A and B,
respectively. The values of µAB for different points of the space are summarized
in fig. (1.2). The surface µAB = 0 corresponds to the perpendicular plane
that bisects the internuclear axis (i.e., the face of the Voronoi cell), whereas
µAB = −1 and µAB = 1 conform with the line extending from nucleus A to
infinity and from nucleus B to infinity, respectively. Thus, the points of the
space for which µAB < 0 are within the Voronoi cell of atom A. That of atom
B is formed by those where µAB > 0. The following step function

sA(µAB) =

 1 −1 ≤ µAB ≤ 0
0 0 < µAB ≤ 1

(1.52)

can be used to define the Voronoi cell of atom A in this case.

In order to generalize the scheme for a general system formed by a set of atoms
one needs to compute the µAB and step functions for all pair of atoms, and

aThis is not necessarily the case for Hirshfeld based fuzzy atom definitions.
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

Figure 1.2: Schematic representation of the confocal elliptical coordinate µAB.
for atoms A and B.

construct a weight function to define the atomic Voronoi cell of atom A as

wA(~r) = PA(~r)∑
B PB(~r) (1.53)

where
PA(~r) =

∏
B 6=A

sA(µAB). (1.54)

The step function (1.52) can be replaced by a continuous, monotonically de-
creasing function in the range (-1,1), fulfilling the requirements s(−1) = 1 and
s(+1) = 0 in order to define the fuzzy Voronoi cells. For that purpose Becke
suggested the simple polynomial function

skA(µAB) = 1
2[1− fk(µAB)] (1.55)
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Figure 1.3: Becke’s cutoff profiles of the weight function for different values of
the stiffness parameter k. Atom A to the left, B to the right.

where
f1(µ) = 3

2µ−
1
2µ

3 (1.56)

and

fk(µ) = f [ fk−1(µ)] (1.57)

The integer k is known as the stiffness parameter and controls the decay (see
fig. (1.3)) of the atomic weight from the value of one at the nuclear position
to zero at the position of the neighboring atoms. Mathematically speaking, k
determines the order of the polynomial function of eq. (1.57).
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Figure (1.3) depicts such profile as a function of k. The larger the value of
k the steeper is the cutoff profile. For larger values of k the shape of the
step-function (eq. (1.52)) is reproduced.
The fuzzy Voronoi cells thus defined do not account for the different atomic
sizes in heteronuclear systems, as the faces of the Voronoi cells exactly bisect
the internuclear axis between the two neighboring atoms. In order to define a
shifted cutoff profile one can use the same cutoff function (1.55) but using as
argument the following transformed coordinate

νAB = µAB + aAB(1− µ2
AB), (1.58)

where −1/2 ≤ aAB ≤ 1/2 in order to ensure that −1 ≤ νAB ≤ 1. The position
of the cell boundary is now controlled by the value of the parameter aAB, which
in the new coordinates is given by the condition νAB = 0.
At the point where the shifted cell boundary intersects the interatomic plane
one has

µAB = rA − rB
rA + rB

(1.59)

Becke suggested to relate the ratio rA/rB with the relative size of the atoms
A and B making use of some set of reference fixed atomic radii R0

A and R0
B as

rA
rB

= R0
A

R0
B

= χAB (1.60)

Substituting (1.60) into (1.59) and using the condition νAB = 0 one gets the
following relationship between aAB and χAB

aAB = 1− χ2
AB

4χAB
. (1.61)

In fig. (1.4) one can see how the cell boundary is shifted from the midpoint of
the internuclear axis when the radius of the atom on the left is twice as large
(χ = 2) as that of the atom on the right.

To summarize, the shape of the Becke atoms (the value of the atomic weights)
is fully determined by the set of fixed atomic radii used and the stiffness
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Figure 1.4: Shifted interatomic profiles of the weight function for k = 3 and
χAB = RA

RB
= 2. Atom A to the left, B to the right.

parameter. The former determines the size of the atomic Voronoi cells, whereas
the latter controls the shape of the cutoff profile, i.e., to which extent two
neighboring atoms share the physical space between them. In the original
paper, Becke used the set of empirical atomic radii of Bragg and Slater39 and
k = 3, on the basis of a better performance of his numerical integration scheme.
An alternative to the use of the fixed set of empirical radii is to use an internal
criterion to determine the position of the cell boundaries between all neigh-
boring atoms. Thus, instead of a set of fixed radii one needs to establish a
strategy to define the set of χAB values, where A and B represent any pair of
atoms sharing a cell boundary. Mayer et al.27 proposed a new criterion based
on the position of the extremum (typically a minimum) of the density along
the internuclear axis connecting every two neighboring atoms to determine
the location of the corresponding interatomic cell boundary. That scheme was
later referred to as Becke-ρ,28 and can be considered as a good and efficient
adaptation of Bader’s partitioning.
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1.3.3 Effective atomic densities

The formalism of the atomic and diatomic effective densities was first intro-
duced by Vyboishchikov et al.40 The main feature of the formalism is that it
allows, in a common framework, the derivation of the working expressions for
atomic populations, bond orders, atomic valences, molecular energy compo-
nents, etc. for any kind of AIM definition. Within this formalism, the one-
and two-electron densities are exactly decomposed into components that can
be considered their one-center and one- and two-center contributions, respec-
tively.

In the simplest case, one can define the effective atomic contributions to the
electron density, ρA(~r), simply fulfilling ρ(~r) ≡ ∑N

A ρA(~r). The integral over
the whole space of this function for atom A quite naturally yields the electron
population associated to the atom

∫
ρA(~r)d~r = NA. (1.62)

The actual numerical value depends upon how ρA(~r) is defined. In the frame-
work of 3D-space analysis, ρA(~r) can be written in general as

ρA(~r) = wA(~r)ρ(~r), (1.63)

where wA is the non-negative weight function fulfilling conditions given in eq.
(1.47). The actual definition of atom in the molecule (“fuzzy” or disjoint) is
contained in the shape of the atomic weight functions.

In the case of Hilbert-space analysis, the effective atomic density can be most
suitable written in terms of the matrix elements of the LCAO density matrix
as

ρA(~r) =
∑
µ∈A

∑
ν

Dµνχ
∗
ν(~r)χµ(~r). (1.64)

It is trivial to see that the integration of eq.(1.64) yields Mulliken’s gross
population of atom A as defined in eq. (1.38).
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One advantage of using the formalism of effective atomic densities is that one
can switch from 3D-space to Hilbert-space formulae or vice versa simply by
taking the appropriate form of the effective densities involved in the calcula-
tion.

1.3.4 Mapping between 3D and Hilbert-space analyses

A correspondence between 3D-space and Hilbert-space analysis can also be es-
tablished by introducing a mapping between the atomic overlap matrices (used
in the framework of 3D-space analysis) and their Hilbert-space counterparts.18

Let us consider for simplicity a closed-shell system with doubly occupied molec-
ular orbitals. In the framework of 3D-space analysis, the gross atomic popu-
lation of atom A is obtained as

NA =
∫
wA(~r)ρ(~r)d~r =

∑
µν

DµνS
A
νµ = 2

∑
µν

occ∑
i

c∗νiS
A
νµcµi = 2 tr(C+SAC),

(1.65)
where

SAνµ =
∫
wA(~r)χ∗ν(~r)χµ(~r)d~r (1.66)

are the elements of the atomic overlap matrix SA and C is the matrix contain-
ing the orbital coefficients of the occupied molecular orbitals. The Mulliken
gross population can be written in terms of the molecular orbital coefficients
as

NA = 2
∑
µ∈A

∑
ν

occ∑
i

c∗νiSνµcµi = 2 tr(C+SηAC) (1.67)

where ηA is a block-truncated unit matrix with all elements equal to zero ex-
cept ηAµµ = 1 for µ ∈ A. Comparing eqs. (1.65) and (1.67) one can put into
correspondence with the atomic overlap matrix in atomic orbital basis SA the
matrix product SηA. Note that this Mulliken’s effective atomic overlap matrix
is non symmetric.

When looking for an AIM, we are not only simply interested in a subdivision
of the space, but rather in splitting global properties into the individual atoms
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and atoms pairs. Taking advantage of the AIM definitions we can describe for
instance local spins within a molecule. In the next section the origins of the
local spin analysis will be reviewed.

1.4 Local spin

In the last years there has been a growing interest in recovering local spins from
ab initio wave functions.41–52 Clark and Davidson proposed the first definition
of the local spins in 2001.41 They were motivated by the phenomenological
Heisenberg Hamiltonian

Ĥ = −
∑
A<B

JABŜAŜB, (1.68)

where JAB is the so-called exchange coupling constant and ŜA and ŜB are
atomic spin operators. Usually, when the Heisenberg Hamiltonian53,54 is ap-
plied, the value of the local spins and the atoms to which the spins are located
are assigned in a knowledge-based manner. They proposed an alternative ap-
proach by computing quantities like < ŜAŜB > from ab initio wave functions.
They defined local spin operators ŜA by projecting the overall spin operator
Ŝ. These local operators are consistent with the definition of angular momen-
tum operators. The expectation values of ŜA and ŜAŜB, are considered as the
atomic and diatomic contributions to the overall 〈 Ŝ 2〉 value, respectively. The
formalism was applied to diatomic molecules,41,42 hydrocarbons,41 transition
metal complexes,41,42 and organic diradicals.41–43

This formalism leads to < ŜAŜB >= −3
8BOAB (where BO stands for the the

Mayer bond order) and < ŜA >= 3
8
∑
B 6=ABOAB for single determinant closed-

shell systems. That is, the diatomic term is proportional to the BO of the given
pair of atoms, and the atomic contribution is proportional to the sum of the
BO involving the given atom. Even for genuine diamagnetic systems treated
at the single determinant level the formalism attributes some local spins.

This unphysical result provided by the Clark and Davidson approach moti-
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vated Mayer to propose an alternative.44 The new formalism was based on the
partition of the expectation value of the Ŝ 2 operator in the spirit of classical
population analysis. The expectation value of the Ŝ 2 operator is decomposed
as a sum of atomic and diatomic contributions:

〈 Ŝ 2〉 =
∑
A

〈 Ŝ 2〉A +
∑

A,B 6=A
〈 Ŝ 2〉AB. (1.69)

In the case of single-determinant wave functions Mayer obtained expressions
for the atomic and diatomic contributions to 〈 Ŝ 2 〉 depending only on the
molecular spin-density matrix. Such a decomposition trivially leads to zero
atomic spins for any closed-shell restricted wave function. This decomposition
was carried out originally in the framework of the Hilbert-space analysis. The
generalization of the formulae to the 3D physical-space analysis was already
outlined by Mayer44 and was explored by Alcoba et al.48 using both Bader’s
QTAIM26 domains and Becke’s “fuzzy” atoms.38

The first attempt for a 〈 Ŝ 2〉 decomposition scheme (eq. (1.69)) for a general
wave function , i.e. beyond a single determinant description, was proposed by
Alcoba et al.45 The components of 〈 Ŝ 2〉 were expressed in terms of the total
spin-density matrix and therefore zero spins were obtained for every singlet
state system, even for singlet dirradicals. Therefore, using this formalism, a
genuine diamagnetic molecule could not be distinguished from a singlet di-
radical or an antiferromagnet. For such cases, if treated with a proper wave
function, one may assume the existence of local spins even though the global
system is a singlet.
Later on, Mayer46 proposed an alternative formulation for a general wave func-
tion on the basis of several physical requirements, namely:

i) to obtain zero local spins for closed-shell restricted wave functions.

ii) proper asymptotics, i.e., in the dissociation limit the atoms/fragments
should have the same local 〈 Ŝ 2〉 value as the respective free atoms/fragment
radical moieties.
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iii) the formula used for a general wave function should reduce to that used in
the single-determinant case if applied to single-determinant wave functions.

In his formulation, the atomic and diatomic components of 〈 Ŝ 2 〉 were ex-
pressed in terms of the value that they would have in the single-determinant
case, plus correction terms arising form the deviation of the first-order density
matrix from the indempotency, as well as contributions from the cumulant of
the second-order density matrix (both vanish for single determinant wave func-
tions thus fulfilling requirement iii.). These correction terms were distributed
between atomic and diatomic contributions in such a way fulfillment of condi-
tion ii was guaranteed. The Hilbert-space realization of the formalism given
in ref. 47 corroborated the physical expectations in all cases.
For instance, small atomic contributions were obtained for every closed-shell
molecule at equilibrium distance, including e.g. the carbon atoms of singlet
π-conjugated systems such as benzene calculated at the CASSCF level of the-
ory. At the same time, large local spins were found for the square cyclo-
butadiene which is known to be a “molecular antiferromagnet”. Furthermore,
the CASSCF dissociation curves of O2 molecule for both singlet and triplet
states lead to atomic local-spin values that tend asymptotically to 2, as ex-
pected for the 3P2 state of the free oxygen atom. Similarly, ethylene dissociates
into two triplet methylene radicals, and so forth.

Although it seemed as there was no further freedom to choose another local-
spin decomposition scheme, Alcoba et al.49 showed that this was not the case.
These authors introduced yet another requirement for the partitioning of 〈 Ŝ 2〉
for non-singlet states, namely

iv) the one and two-center components should be independent of the Sz value
(in the absence of a magnetic field).

Their local spin formulation scheme used spin-free quantities such as the den-
sity of effectively unpaired electrons55 and the “spin-free cumulant matrix”,
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which depend on the spin-free first- and second-order reduced density matri-
ces.56,57 Their Hilbert-space local-spin results are similar to, but not identical
with those obtained by Mayer and Matito,47 and keep the physical requirement
of Sz independence. But most importantly, the Mayer and Acoba formulations
gave different results even for singlet states, where the dependence on the
spin density of the Mayer formulation vanished. Therefore, it was clear that Al-
coba’s formulation was not merely correcting for the dependence of the Mayer
expressions on the spin density, but it corresponded actually to a different
approach. This motivated us to deeply investigate both formulations in order
to find any connection between them. In Chapters 4 these approaches are
presented and discussed.

1.5 Effective atomic orbitals

The effective atomic orbitals (eff-AOs)4,37,58–61 were introduced by Prof. Mayer
with the aim of recovering the classical concept of electron configuration (1s,
2s, 2p orbitals or their hybrids) of an atom within a molecule from the a
posteriori analysis of the wave function. The formalism was first proposed al-
most two decades ago in the framework of Hilbert-space analysis,58 and then it
was generalized for an arbitrary Hermitian bilinear “localization functional”.59

More recently it was applied to the case of “fuzzy” atoms.37 It had also been
formulated in the context of Bader’s QTAIM,60 but that version was never
actually realized. We will tackle this problem in Chapter 1.5.

By performing the eff-AOs analysis one obtains for each atom of the molecule
a set of orthogonalb hybrids and their respective occupations. What makes
this procedure appealing is the fact that independently of the basis set used
in the ab-intio calculation, one obtains as much populated atomic hybrids as
orbitals in a minimal basis setc. Therefore, an “effective minimal basis set”
can be extracted from a wave function, even if plane-waves are used to expand

bThe hybrids belonging to different atoms are not in general orthogonal to each other
except if the atoms are defined by strict boundaries.

cSpecial provisions should be made in the case of hypervalent systems
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the wave function of the system.61

In order to shortly introduce the formulation of the eff-AOs let us consider a
system with n orthonormalized doubly occupied orbitals ϕi(~r), i = 1, 2 . . . , n.
For each atom A of the molecule one can define the intra-atomic part of every
MO within the general 3D-space framework as

ϕAi (~r) ≡ ϕi(~r)wA(~r) (1.70)

where wA(~r) is a non-negative weight function which defines the fuzzy domain
of atom A in the molecule. One can build a n × n overlap matrix of the
“intraatomic” MOs, QA, with elements

QA
ij =

∫
ϕAi
∗(~r)ϕAj (~r)d~r. (1.71)

The Hermitian matrix QA is diagonalized by the unitary matrix UA

UA, †QAUA = diag{λAi }. (1.72)

The eff-AOs for atom A are obtained as a linear combination of the intraatomic
part of the MOs as

χAi (~r) = 1√
λAi

n∑
µ

UA
µiϕ

A
µ (~r) i = 1, nA (1.73)

where nA is the number of non-zero eigenvalues λAi . The latter are the corre-
sponding occupation numbers of the eff-AOs, with 0 < λA,σi ≤ 1 .
The eff-AOs of atom A can also be obtained from the diagonalization of the
matrix PSA, where P is the LCAO density matrix and SA is the atomic over-
lap matrix in the actual (AO or MO) basis.59 This alternative also permits the
straightforward generalization of the method both to the unrestricted single-
determinant case and the correlated level.

In the case of non-overlapping or disjoint atoms and for single-determinant
wave functions, the localized orbitals obtained are identical to those of the do-
main averaged Fermi holes (DAFH) analysis before the isopycnic transforma-
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tion. In the eff-AOs analysis, however, the relevant objects are the truncated
localized orbitals.

The concept of DAFH was introduced by Ponec some years ago in order to
shed light on the nature of chemical bonding.62–75 The original definition of the
DAFH was formulated in terms of the conditional probability and the concept
of Fermi holes but it can also be derived from the exchange-correlation density.
For each atom or fragment in the molecule one can define the DAFH density
as

g(~r) =
∫

ΩA

ρ(~r1, ~r2)d~r2 −
∫

ΩA

ρ(~r1)ρ(~r2)d~r2. (1.74)

The first step after having determined the DAFH functions consists in the
diagonalization of the matrix that represents g(~r) in a proper basis. In the
second step, the eigenvalues and eigenvectors resulting from the previous di-
agonalization are subjected to a isopycnic76 localization.

1.6 Oxidation states from first principles

The concept of oxidation state (OS) is widespread in transition metal chemistry
and in the study of redox and catalytic reactions. The reactivity, spin-state,
spectroscopic and geometrical features of transition metal complexes are often
rationalized on the basis of the oxidation state of the metal center. According
to the IUPAC,77 the formal OS is typically defined as “the charge it would
bear if all the ligands were removed along with the electron pairs that were
shared with the central atom”. Jørgensen78 proposed that an OS derived by a
dn configuration, in principal a measurable quantity (by Mossbauer or Raman
spectroscopy), should be called physical or spectroscopic OS. In some cases
formal and spectroscopic OS coincide but in complicated bonding situations
involving non-innocent ligands or in intermediates or transition states of cat-
alytic reactions the formal and the physical OS may diverge. For instance
in fig. (1.5) the two situations are depicted for a phenolato/phenoxyl iron
complex.79
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Figure 1.5: Schematic representation of an Fe atom with a non-innocent ligand.

Geometrical parameters have been used to derive OS from empirical data,
for instance by using the Bond-Valence-Sum method.80–82 This method uses
empirically determined metal-ligand distances of complexes with well-known
OS to extrapolate the OS of other systems by their metal-ligand distances.

The oxidation state is intrinsically related to electronic distribution. How-
ever, as for the case of AIM or local spin, OS is not an observable according
to quantum mechanics. Therefore, there are no rigorous definitions of them
from electronic structure calculations. Several methods to determine OS from
first principles have appeared in the literature.83–87 For instance, populations
analysis have been widely used,3,88 but even though electronic populations do
change with oxidation/reduction of the metal center, they are only a pointer
of the oxidation state. One can also use spin populations but they need a
previous knowledge of the electronic structure (spin state), and, in addition,
they are clearly futile in pure singlet states.
The Mulliken and Becke-ρ charges of a series of octahedral complexes (see
table (1.1)) are gathered in table (1.2). Only for some of the systems (marked
in green) Becke-ρ charges approximate the well-known OS of these systems.
Thom et al.83 suggested a more sophisticated method based on the decomposi-
tion of localized molecular orbitals into atomic contributions, the so-called lo-
calized orbital bonding analysis (LOBA) approach. They used different orbital
localization methods such as, Boys, Pipek-Mezey, and Edmiston-Ruedenberg
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Table 1.1: Set of octahedral complexes and their oxidation states
VII [V Cl6]4− [V (H2O)6]2+ [V (CN)6]4− [V (CO)6]2+

MnII [MnCl6]4− [Mn(H2O)6]2+ [Mn(CN)6]4− [Mn(CO)6]2+

MnIII [MnCl6]3− [Mn(H2O)6]3+ [Mn(CN)6]3− [Mn(CO)6]3+

FeII [FeCl6]4− [Fe(H2O)6]2+ [Fe(CN)6]4− [Fe(CO)6]2+

FeIII [FeCl6]3− [Fe(H2O)6]3+ [Fe(CN)6]3− [Fe(CO)6]3+

NiII [NiCl6]4− [Ni(H2O)6]2+ [Ni(CN)6]4− [Ni(CO)6]2+

ZnII [ZnCl6]4− [Zn(H2O)6]2+ [Zn(CN)6]4− [Zn(CO)6]2+

orbitals. A population analysis of the resulting localized orbitals is then used
to assign electrons to the different atoms. In order to study complicated sit-
uations the authors performed a calibration to define a threshold to decide
whether or not a given electron is localized on a metal center.

Table 1.2: Mulliken (left) and Becke-ρ (right) charges for a set of transition
metal complexes.

Cl− H2OHS H2OLS CN− CO Cl− H2OHS H2OLS CN− CO
VII 0.98 1.12 - 0.05 0.64 1.60 1.76 - 1.60 1.64

MnII 1.10 1.24 1.18 0.10 0.64 1.36 1.64 1.70 1.53 1.53
MnIII 0.93 1.58 1.52 0.35 0.80 1.46 2.05 2.09 1.58 1.67
FeII 0.86 1.22 1.15 0.01 0.51 1.27 1.63 1.77 1.46 1.44
FeIII 0.99 1.64 1.48 0.24 0.66 1.44 2.06 1.98 1.49 1.58
NiII 0.99 - 1.08 -0.19 0.31 1.27 - 1.59 1.24 1.30
ZnII 1.02 - 1.06 -0.03 0.52 1.25 - 1.45 1.15 1.19

A few years later, Sit et al.85 presented a new method based on the separa-
tion of the actual occupation of the metal d-type orbitals from the condensed
metal charge. A 5x5 matrix for each spin is constructed by projecting the
wave functions onto the d-type AOs of the central metal atom. This matrix is
then diagonalized and its eigenvalues indicate the number of occupied d-type
orbitals assigned to the metal. The procedure has been applied to a series of
TM complexes but it can not be employed to systems with metal-metal bonds.

Doubtless there is need for more computational approaches to deal with diffi-
cult cases. In this thesis we propose a new formalism based on the definition
of the physical OS. That is explored in Chapter 6 by taking advantage of the
eff-AOs.





Chapter 2

Objectives

The main objective of this thesis is the development and application of new
tools for the analysis of the electron distribution in molecules, focusing on the
concepts of local spins, and oxidation state. The precedents of the local spin
analysis and the derivation of oxidation states from ab initio calculations have
been introduced in Chapter 1. In this chapter the detailed objectives of the
thesis will be presented.

The concept of the atom within the molecule is crucial to recover chemical
concepts from first principles. One of the most accepted in the literature are
that provided by the quantum theory of atoms in molecules (QTAIM), by
Bader. The relatively high computational cost associated with the integration
over the atomic domains in large systems represents a limitation of this atomic
definition. Moreover the presence of spurious non-nuclear attractors in some
cases restricts its use. The first aim of this thesis is to propose a new
atom in molecule definition based on the “fuzzy” atoms being able
to perform similar to the QTAIM topological atom.

Several definitions of the concept of local spin have appeared in the literature
in the last years. As there are in principle infinite ways to decompose 〈 Ŝ 2〉 into
atomic and diatomic contributions a series of physical requirement have been
imposed to restrict the decomposition. The second goal of this thesis is
to establish a relationship among the different definitions of the lo-
cal spin proposed to date and to introduce new physical requirement

33
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in order to find a unique, physically sound definition of the local spin.

The formalism of the local spin can be realized in both the Hilbert-space and
the three-dimensional real space. There is an apparent ambiguity in decom-
posing two-electron quantities in the framework of Hilbert-space analysis, in
particular for the Mulliken-type scheme. The third objective of the thesis
is to generalize the formalism of the decomposition of 〈 Ŝ 2 〉 in the
framework of three-dimensional space and Hilbert-space analysis,
clarifying the ambiguity that appears in the latter.

The local spin analysis is a relatively novel and unemployed descriptor of the
electron distribution in molecules. In order to gain a deeper understanding of
the information that the local spin analysis can provide, the fourth objec-
tive of the thesis is to explore the relation between the local spin
and the chemical bond.

The presence of local spins can be intuitively related to the presence of radical
centers in a molecule. The fifth objective of the thesis is to explore the
application of the local spin analysis to detect and quantify polyrad-
ical character.

The last part of the thesis is devoted to the derivation of oxidation states from
the analysis of the wave function. The concept of eff-AOs was introduced with
the aim of recovering the atomic electron configurations from an a posteri-
ori analysis of an ab initio calculation. The formalism of the eff-AOs within
QTAIM was proposed some years ago by Mayer but until now it was never
numerically realized. The sixth goal of this thesis is to compute for the
first time the eff-AOs within QTAIM and to describe the prominent
role of these orbitals. The classical chemical concept of oxidation states can
be naturally obtained through the electron configuration of the atom within
the molecule, the seventh goal of the thesis is to define a simple and
general strategy to obtain oxidation states by using the information
provided by the eff-AOs.



Chapter 3

On the definition of a new
“fuzzy” atom scheme

3.1 An approximation to Bader’s topological
atom
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A new, more flexible definition of fuzzy Voronoi cells is proposed as a computationally efficient al-
ternative to Bader’s Quantum Theory of Atoms in Molecules (QTAIM) partitioning of the physical
space for large-scale routine calculations. The new fuzzy scheme provides atomic charges, delocal-
ization indices, and molecular energy components very close to those obtained using QTAIM. The
method is flexible enough to either ignore the presence of spurious non-nuclear attractors or to read-
ily incorporate them by introducing additional fuzzy Voronoi cells. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4818751]

The identification of an atom within the molecule is a
crucial concept that permits the decomposition of physical
quantities into atomic (and often also diatomic) contributions.
Bader’s Quantum Theory of Atoms in Molecules (QTAIM)1

represents nowadays one of the most widely used definitions
of atom in the molecule. In QTAIM, the topology of the elec-
tron density is cleverly used to derive the atomic basins and
the sharp boundaries that define them. The resulting atoms
in the molecule possess some particular properties, namely,
the virial theorem is fulfilled within each basin of the sys-
tem. Such topological atoms are extensively used in the lit-
erature for different applications, from a number of different
electron population/distribution2 analysis to molecular energy
components3, 4 among others.

There are two disadvantages of the method. First, the
analysis of the electron density may lead to so called non-
nuclear attractors (NNA), i.e., basins that have no nucleus as-
sociated to it. Whereas such objects do exist in condensed
phase5, 6 or molecules such as Li2,7 a particular combina-
tion of level of theory and basis set may give rise to spuri-
ous NNAs in dipole-bound water cluster anions8 or simple
molecules such as C2H2

3 or Si2H2.9 The existence of such
spurious NNAs makes any analysis in chemical terms rather
difficult and ambiguous.9, 10 Second, the detailed exploration
of the topology of the electron density and specially the cum-
bersome integration over the complex-shaped atomic domains
may be a rather time consuming procedure, as compared with
alternative definitions of atom in the molecule. The system-
atic use of the method in quantum chemical applications of
systems of growing complexity such as fullerenes may be
compromised.

An alternative to QTAIM within 3D-space analysis are
atomic definitions that introduce overlapping or “fuzzy”
boundaries. Such “fuzzy” atoms are best represented by in-
troducing a non-negative weight function wA(�r ) for each
atom A and each point of the 3D space, which satisfies the

a)pedro.salvador@udg.edu

requirement

∑
A

wA(�r ) = 1 (1)

everywhere. It is assumed that the atomic weight function is
large “inside” of atom A and small “outside.” Of course, in
the special case of QTAIM, wA(�r ) = 1 for points inside the
atomic basin of atom A and wA(�r ) = 0 outside of it.

Over the last years we have shown that many quan-
tities such as bond orders, overlap populations,11 energy
components,12 effective atomic orbitals, or local spins could
be generalized and computed in the framework of the “fuzzy
atoms.” For that mere purpose we have often made use of the
simplest Becke’s atoms; i.e., the fuzzy atomic Voronoi cells
introduced by Becke13 in the context of his celebrated multi-
center numerical integration scheme.

Becke’s atoms were originally devised for effective nu-
merical integration of three-dimensional functions of marked
atomic character. Becke’s atomic weights, wA(�r ), are alge-
braic functions, which strictly satisfy the sum rule of Eq. (1).
In addition, they also fulfill wA( �RA) = 1 and wB( �RA) = 0 for
B �= A; that is, the region (point) of the space occupied by the
nucleus is fully associated to its corresponding atom.

The scheme can be formulated as follows. Let us consider
two nuclei, A on the left-hand side and B on the right-hand
side, at a distance RAB. For any point of the space, �r , one can
calculate the following quantity

μAB = rA − rB

RAB

, (2)

where rA and rB represent the distance of that point to nucleus
A and B. The surface μAB = 0 corresponds to the perpendicu-
lar plane that bisects the internuclear axis (i.e., the face of the
Voronoi cell), whereas μAB = −1 and μAB = 1 conform with
the line extending from nucleus A to infinity and from nu-
cleus B to infinity, respectively. Thus, the points of the space
for which μAB < 0 are within the Voronoi cell of atom A. The

0021-9606/2013/139(7)/071103/4/$30.00 © 2013 AIP Publishing LLC139, 071103-1
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following step function

sA(μAB) =
{

1 −1 ≤ μAB ≤ 0

0 0 < μAB ≤ 1
(3)

can be used to define the Voronoi cell of atom A.
In order to generalize the scheme for a system formed by

a set of atoms, one can define the atomic Voronoi cell of atom
A as

wA(�r) = PA(�r)∑
B PB(�r)

, where PA(�r) =
∏
B �=A

sA(μAB).

(4)
The step function (3) can be replaced by a continuous,

monotonically decreasing function in the range (−1, 1), ful-
filling the requirements s(−1) = 1 and s(+1) = 0 in order
to define the fuzzy Voronoi cells. Becke suggested the simple
polynomial function

sk
A(μAB) = 1

2
[1 − fk(μAB)], (5)

where f1(μ) = 3
2μ − 1

2μ3 and fk(μ) = f [ fk−1(μ)]. The in-
teger k is known as the stiffness parameter and controls the
shape of the cutoff profile. The larger the value of k the steeper
is the cutoff profile.

The fuzzy Voronoi cells thus defined do not account for
the different atomic sizes in heteronuclear systems, as the
faces of the Voronoi cells exactly bisect the internuclear axis
between the two neighboring atoms. A shifted cutoff profile
can be obtained with the cutoff function (5) using as an argu-
ment the following transformed coordinate:

νAB = μAB + aAB

(
1 − μ2

AB

)
, (6)

where −1/2 ≤ aAB ≤ 1/2 in order to ensure that −1 ≤ νAB

≤ 1. The position of the cell boundary is now controlled by
the value of the parameter aAB, which in the new coordinates
is given by the condition νAB = 0. At the point where the
shifted cell boundary intersects the interatomic plane, one has

μAB = rA − rB

rA + rB

. (7)

Becke suggested to relate the ratio rA/rB with the relative size
of the atoms A and B making use of some set of reference
fixed atomic radii R0

A and R0
B as

rA

rB

= R0
A

R0
B

= χAB. (8)

In his original paper, Becke used the set of empirical
atomic radii of Bragg and Slater14 and the value k = 3, on
the basis of a better performance of his numerical integration
scheme.

Even though Becke’s atoms are only mathematical con-
structs, we have shown that, with some special provisions,
they can be readily used as atoms in molecules models, from
which chemically sound values of atomic populations, bond
orders, or one and two-center energy components can be ob-
tained. However, the use of a set of fixed atomic radii is a clear
limitation of this model, basically because same atoms are
treated on equal footing in different chemical environments,
i.e., partial ionic character of atoms may not be properly taken
into account.

One way to sort out this problem is to use an internal
criterion to determine the position of the cell boundaries be-
tween all neighboring atoms. Thus, instead of a set of fixed
radii, one needs to establish a strategy to define the set of χAB

values, where A and B represent any pair of atoms sharing a
cell boundary. In Ref. 11, some of us proposed as a criterion
to use the position of the extremum (typically a minimum) of
the density along the internuclear axis connecting every two
neighboring atoms to locate their cell boundary. That scheme
was later referred to as Becke-ρ in Ref. 15. A similar scheme
making explicit use of the bond critical points of the density
was also proposed by Francisco et al.16 Not surprisingly, the
Becke-ρ scheme typically yielded electron populations, bond
orders, and energy components close to those obtained by ap-
plying the disjoint QTAIM atoms.15–17

There is, however, a limitation of the original formulation
of Becke-ρ, that also applies to the original Becke scheme
itself. We just need to recall that the transformation (6) does
not permit an arbitrary shift of the cell boundary because if
|aAB | > 1

2 the transformation, and hence the resulting cutoff
profile, would not be monotonic. The maximum possible shift
of the cell boundary occurs when the atomic radii of the two
atoms differ by a factor of 1 + √

2 (ca. 2.4). Such ratio may be
easily reached when involving pairs of atoms of most different
size and electronegativity, which renders a limitation of the
method when used as an alternative to QTAIM. It is fair to
note that such limitation in the shift of the cell boundaries was
already noted by Becke in the Appendix of Ref. 13, which
apparently has passed unnoticed so far.

In order to be able to fully accommodate the criterion
behind the original definition of the Becke-ρ scheme, we pro-
pose here the following alternative transformation:

ν ′
AB = 1 + μAB − χAB(1 − μAB)

1 + μAB + χAB(1 − μAB)
. (9)

One can easily verify that ν ′
AB = μAB at the limit values of

μAB = −1 and μAB = 1, and also if χAB = 1, i.e., in the
homonuclear case.

The alternative new transformation is monotonic for any
value of χAB, so it can be applied to shift the cell boundary
to any position along the internuclear axis. It is worth to note
that the transformations (6) and (9) lead to different cutoff
profiles, even within the limits of applicability of the former.
The differences are minimal yet the new definition exhibits
a somewhat less sharp profile, as shown in Figure S1 of the
supplementary material.18

We have implemented this new scheme, henceforth,
topological fuzzy Voronoi cells (TFVC), in our APOST-3D
program.19 For TFVC, we have adopted a stiffness parame-
ter of k = 4. We have observed a better overall agreement
with QTAIM atomic populations than for k = 3 without a sig-
nificant loss of numerical accuracy in the overall integration.
The agreement with the QTAIM bond orders or delocaliza-
tion indices (DIs) also improves with k = 4, in particular for
non-bonded atoms. The observation that in benzene the DI
between carbon atoms in para position is larger than in meta
position20 is better reproduced with this TFVC model.

In our implementation, a rather modest grid of 40 ra-
dial and 146 angular points per atom typically yields the total
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number of electrons with an error of ca. 10−3. For the numeri-
cal integration of other quantities such as one-electron energy
components, we use a larger grid of 70 × 434 points per atom.
In a most recent implementation of QTAIM integrations,21

the author uses up to 0.87M grid points per atom for a typ-
ical run. The reduction of the atomic grid size in fuzzy ap-
proaches is dramatic due to the lack of strict atomic bound-
aries. These methods can integrate all centers at once and
scale linearly with the total number grid points, essentially for
any level of theory. Most recently, delocalization indices for a
set of fullerenes were determined using Becke-ρ.22 We have
included in the supplementary material18 a comparative anal-
ysis of the accuracy of TFVC and QTAIM for a challenging
endohedral complex.

Another advantage of the TFVC scheme is that it is flex-
ible enough to either ignore the presence of spurious NNAs,
as described above, or to readily incorporate them if necessary
by defining extra fuzzy Voronoi cells centered on the position
of the attractors. In the supplementary material,18 we provide
illustrative examples of the TFVC method with NNAs.

Finally, it is worth to note that, strictly speaking, there are
no boundaries in the fuzzy Voronoi cells. Thus far we have
referred to cell boundary between atoms A and B to the inter-
secting plane for which μAB = 0. Hence, each pair of Voronoi
cells (atoms), whether they are chemically bonded or not, has
a formal boundary, whose location must be established. In the
Becke-ρ method,11 if two atoms were too far to be consid-
ered as neighbors (the distance was larger than twice the sum
of their fixed atomic radii), the ratio given in Eq. (8) was used
to locate the fuzzy cell boundary. This leads to some inconsis-
tencies when dealing with intermolecular interactions of bond
dissociation curves, where atoms sharing cell boundaries may
be too far away to be neighbors. In TFVC, we have adopted
another criterion that also avoids any use of arbitrary fixed
atomic radii. Thus, a given pair of atoms are not considered
as neighbors if their midpoint is closer to a third nucleus or
attractor of the molecular system. In that case, the formal cell
boundary is placed at the midpoint, that is, a χAB = 1 value is
taken.

We have computed with TFVC the atomic populations
and delocalization indices of the molecular set described in
Ref. 2, which features a number of hydrides as well as pro-
totypical organic molecules. The hydrides have been chosen
because the limits of applicability of the original Becke-ρ
scheme are easily reached when one of the involved atoms
is a hydrogen. The wavefunctions and densities have been ob-
tained at the fully optimized Hartree-Fock and B3LYP levels
of theory with the cc-pVTZ basis set. The agreement between
the TFVC and QTAIM atomic charges at B3LYP level for
the molecular set is very good, as indicated by the values of
R2 and the slopes and intercepts of Fig. 1. Homonuclear di-
atomics and equivalent atoms have been excluded in the com-
parison. The results at the Hartree-Fock level are very simi-
lar and are not discussed. The mean unsigned error between
TFVC and QTAIM charges is below 0.12, and the larger dis-
crepancies are observed for hydrides involving 3rd period
atoms with electronegativity similar to that of the H atom.
The agreement between the TFVC and QTAIM delocaliza-
tion indices is also strikingly good (see Fig. 2). The mean

FIG. 1. QTAIM vs TFVC atomic charges for the molecular set.

unsigned error is 0.06 and the largest one is just 0.25. The
corresponding plots using k = 3 are included in the supple-
mentary material.18

An obvious physical limitation of the TFVC method is
that the cell boundaries are described by planes, whereas in
QTAIM they are typically curved. However, neither the over-
lapping character of the boundaries nor their curvature seems
to be critical for TFVC integrations to be close to QTAIM.
In our experience, it is when the electron density on the in-
teratomic region is very flat (and large) that the QTAIM and
TFVC values are more likely to diverge (see the supplemen-
tary material18 for a deeper analysis).

Finally, for illustration purposes we have also compared
the behavior of the TFVC scheme in the decomposition of the
Hartree-Fock molecular energy.3, 16 Table I gathers the differ-
ent contributions (namely, kinetic, electron-nuclear repulsion,
Coulomb, and exchange) to the one and two-center energy
components for hydrogen fluoride at the RHF/cc-pVTZ level
of theory. The QTAIM results have been obtained with the
program AIMALL.23 The overall accuracy of the numerical
integration, expressed as the difference between the total en-
ergy and the sum of the one- and two-center terms separately,
is similar for all methods. The two-electron numerical inte-
grations in TFVC and Becke-ρ schemes have been carried
out using solely a pair of rotated grids of 40 × 146 points per

FIG. 2. QTAIM vs TFVC delocalization indices for the molecular set.
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TABLE I. Atomic populations, DI, integrated laplacian, and atomic and di-
atomic energy terms (in a.u.) for HF molecule computed at the HF/cc-pVTZ
level of theory. T, Ven, VCoul , Vx , Etot, and δEtot are the kinetic, electron-
nuclear attraction, Coulomb repulsion, exchange, total energies, and integra-
tion error, respectively.

Term QTAIM TFVC Becke-ρ

N(H) 0.219 0.237 0.582
N(F) 9.778 9.762 9.418
DI (H,F) 0.394 0.425 0.913
Lapl.(H) 0.0001 − 0.0102 − 0.2002
Lapl.(F) 0.0000 0.0168 0.2009
T(H) 0.2382 0.2464 0.4223
T(F) 99.8173 99.8090 99.6331
Ven(H) − 0.4417 − 0.4641 − 0.8911
Ven(F) − 243.7306 − 243.6379 − 241.8384
Ven(H,F) − 6.7086 − 6.7794 − 8.1515
VCoul (H) 0.0322 0.0361 0.1705
VCoul (F) 54.8719 54.7666 52.8938
VCoul (H,F) 1.0091 1.1062 2.8473
Vx (H) − 0.0152 − 0.0168 − 0.0709
Vx (F) − 10.3095 − 10.2964 − 10.0606
Vx (H,F) − 0.1253 − 0.1369 − 0.3179
Etot(H) − 0.1865 − 0.1985 − 0.3691
Etot(F) − 99.3509 − 99.3587 − 99.3721
Etot(H,F) − 0.5206 − 0.5059 − 0.3179
δEtot 0.88 × 10−3 0.66 × 10−3 0.20 × 10−3

atom, as described in Ref. 12. On the other hand, the value
of the Laplacian of the density integrated over the atomic do-
main is a typical measure of the fulfillment of the zero-flux
condition within QTAIM. The value obtained with TFVC (ca.
10−2) is one order of magnitude smaller than that obtained
with Becke-ρ scheme. This value is somewhat too large com-
pared with QTAIM, however, it does not seem to influence
too much the values of the different one and two-center con-
tributions to the energy. The TFVC energy contributions are
much closer to QTAIM that to the Becke-ρ ones, especially
the purely electrostatic ones. It is worth to note that for the
sake of better comparison, the Becke-ρ values on Table I have
been obtained using k = 4. Thus, the main difference between
TFVC and Becke-ρ in this case is the proper location of the
fuzzy cell boundary.

In conclusion, the TFVC method represents fast and sim-
ple atoms in molecules scheme that can be routinely used to

extract chemical information from large-scale ab initio cal-
culations. The method presented here can be regarded as a
general purpose computationally more efficient alternative to
Bader’s QTAIM.
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FIG. S2. QTAIM vs TFVC with stiffness parameter k = 3 atomic charges for the molecular set.
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A. Performance of TFVC for non-nuclear attractors

The TFVC method can be easily adapted to deal with non-nuclear attractors (NNAs) of

the density. We present here some results for acetylene (for which the particular combination

of level of theory and basis set lead to the formation of a spurious NNA in the midpoint of

the C-C bond) and the dimeric Mg(I) compound of Fig.S4, that exhibits a genuine NNA

between the two Mg atoms. The atomic coordinates have been taken from Ref. S1, and the

large diisopropylphenyl groups have been replaced by methyl groups. The wavefunction has

been obtained at the BP86/6-31+G** level of theory.

FIG. S4. Model dimeric Mg(I) compound with the NNA between the Mg centers

On Table S1 one can see that the electron population of the NNA on acetylene is clearly

underestimated with the TFVC method with respect to QTAIM by more than 1 electron.

The populations of the H atoms are quite similar. The density on the interatomic region

between the two C atoms is extremely flat, so the value of the density at the NNA is similar

to that of the bcp connecting the C atom. As a result, small displacements of the position

of the fuzzy Voronoi boundary are translated into important changes on populations of

the two basins. Indeed, with a shift of 0.07Å on the location of the fuzzy boundary the

TFVC population of the NNA increases to 1.60. It is worth to note that the zero-flux

surface between the NNA and the C atom does not deviates too much from planarity, which

indicates that the shape of the TFVC and QTAIM basins is not too different. In the case

of the dimeric Mg(I) compund, the differences between QTAIM and TFVC populations of

the genuine NNA and neighboring atoms are still significant.
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Nevertheless, there is no fundamental difference in describing an atom or a NNA with

TFVC. The observed deviations should not be associated to the nature of the attractor but

to the shape of the density in the interatomic regions. In fact, after careful analysis we have

come to the conclusion that neither the overlapping character of the boundaries, nor their

curvature are critical for TFVC populations to be close to QTAIM. In Figures S5 and S6 we

compare the shape of the atomic basins with QTAIM and TFVC for H2O and H2S systems

described at the RHF/cc-pVTZ levels of theory. The H2S correspond to the worst case of

our molecular set.

In the case of H2O the curvature of the zero-flux surface is very pronounced so the shape

of the QTAIM and TFVC atoms are quite different. Yet, the integrated electron populations

(see TableS1) are strikingly close. The same occurs with hydrogen fluoride, for instance. On

the other hand, in H2S the shape of the QTAIM and TFVC boundaries are quite alike but

the differences in the integrated quantities are significant (almost 1 e for the S atom), similar

to those observed for the NNA of acetylene.

In conclusion, our results indicate that when the electron density on interatomic region

is very flat (and large), small deviations on the location of the fuzzy Voronoi boundaries can

produce significant changes on the integrated quantites, and thus the QTAIM and TFVC

are more likely to diverge.

TABLE S1. Atomic populations of selected atoms and NNAs with QTAIM and TFVC methods.

Molecule/Atom QTAIM TFVC

Acetylene/C 5.274 5.848

Acetylene/H 0.861 0.930

Acetylene/NNA 1.727 0.442

Mg dimer/Mg 10.695 11.070

Mg dimer/NNA 0.825 0.154

H2O/O 9.272 9.258

H2S/S 16.635 17.502
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FIG. S5. Voronoi cell boundary (dashed line) and interatomic surface paths (red lines) for H2O in

the molecular plane.

FIG. S6. Voronoi cell boundary (dashed line) and interatomic surface paths (red lines) for H2S in

the molecular plane.
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B. Convergence of TFVC numerical integrations

The goal of the accompanying manuscript is to present a new, more flexible, atomic

definition for an atom in a molecule that mimics some of the features of Bader’s QTAIM.

It is not about an efficient implementation of an existing scheme.The method is claimed

to be efficient because of its simplicity, not because of the way it has been implemented

computationally, which at present is still far from optimum. Thus, in our implementation of

TFVC we use the same grid size and shape for all atoms int he system, and the numerical

integrations of all atoms are performed at once, contrary to most QTAIM implementations

when one typically carries out the basin integrations atom by atom.

In Table S2 we gather some data about the change on the atomic populations with the

size of the atomic grid used for the numerical integrations. We have chosen for illustration

a endohedral complex of the helium atom and adamantane, which allegedly is a challenging

system for topological analysis. We have collected the partial atomic charges of the He and

C atoms ( Ct atoms exhibit a single C-H bond, the Cs present two), overall accuracy of the

numerical integration of the electron density and CPU times. We include also data from Ref.

22. Note that one can hardly compare CPU times with other programs that perform QTAIM

analysis because they probably involve integrations of a number of different functions and

in this case they ran on a different architecture.

We feel more relevant to discuss the number of grid points per atom used for the numerical

integration. In Ref. 22 the author used almost a million integrations points, for an overall

accuracy of 2.0E-03. With an even larger grid and special provisions an excellent accuracy

of 7.5E-05 was finally achieved. In our case we use for a typical run a combination of

40x146=5840 integrations points per atom to perform the integrations of the density, MOs

and two-electron integrations. Only in the case of one-electron energy contributions we use

up to 70x434=30380 integration points to achieve better accuracy on the energy contribution

(see Table I of the accompanying manuscript). The reduction is dramatic but merely because

the shape of the atomic basins is considerably less cumbersome in TFVC compared with

QTAIM, so less number of integration points are needed to achieve sufficient accuracy.

The data on Table S2 show an almost monotonic improvement of the overall integration

accuracy with the atomic grid size, which is not alway the case. The He@adamantane

system shows indeed some difficulties of the TFVC to achieve an acceptable accuracy with
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the typical 40x146 atomic grid. For this challenging system a 50x230 grid is necessary. The

overall accuracy could probably be further improved by using different grid sizes for different

atoms. On the other hand, the CPU times shows that the method scales rather linearly with

the atomic grid size.

TABLE S2. Partial atomic charges for He, Ct and Cs atoms of He@adamantane. Sum indicates

the overall integration error on the sum of electrons populations. CPU time in minutes on a

single-processor Intel Xeon CPU X5650 @ 2.67GHz

Atomic grid He Ct Cs Sum CPU (min)

30x110 -0.2653 0.2417 0.1562 -5.4E-02 6.5

40x110 -0.2694 0.2396 0.1564 -5.9E-02 9.5

40x146 -0.2779 0.2447 0.1601 -2.1E-02 12.5

50x146 -0.2760 0.2457 0.1592 -2.4E-02 15

50x230 -0.2709 0.2494 0.1601 3.7E-03 28

50x434 -0.2681 0.2483 0.1599 -1.8E-03 76

70x434 -0.2680 0.2483 0.1597 -2.5E-3 152

TWOE-LLGa -0.0988 0.1046 0.0628 2.0E-03 113

TWOE-GLGa -0.0989 0.1040 0.0630 7.5E-05 653

a Data from ref. 22. LLG used 0.87M grid points for all atoms. GLG used 2.3M and

4.2M grid points for He and C atoms, respectively. CPU times on an Intel Core i7, 1.8 GHz

laptop dual-core processor.
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Chapter 4

On the proper definition of local
spin

4.1 Toward a unique definition of the local
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The decomposition of hŜ2i for a general wave function has been carried out in the framework of

the Hilbert-space analysis. The one and two-center components fulfill all physical requirements

imposed to date. An inherent ambiguity of the Hilbert-space decomposition of a two-electron

quantity, in particular using a Mulliken-type scheme, is also discussed in detail. The formalism of

effective atomic densities has allowed us to derive in a simple manner appropriate expressions for

the decomposition of hŜ2i in the framework of Hilbert space analysis that are consistent with

Mulliken population analysis and related quantities. Using a particular mapping we have derived

the Hilbert-space expressions also in the framework of Löwdin population analysis in a

straightforward manner. The numerical results obtained with the latter formalism have

proved to be more robust and reliable.

1 Introduction

The concept of local spin emerges in a quite natural fashion

when describing the electronic structure of systems with

diradical character such as non-Kekulé molecules or transi-

tion state structures of chemical reactions. Heisenberg

Hamiltonian models also invoke the concept of local spin in

order to assess the nature of spin–spin interactions between

magnetic centers. Often, the spin properties of a molecule can

be characterized by the spin density. There are, however, cases

where the overall system is a singlet (where there is no spin

density), but for which the existence of some local spin is

assumed. In the last few years there has been a growing

interest in recovering local spins from the analysis of the wave

function of ab initio calculations.1–15 Different schemes have

been proposed in the literature, most of which are rooted in

the decomposition of the expectation value of the spin squared

operator into atomic and diatomic contributions, for both

single-determinant and correlated wave functions. Because the

partitioning of the single physical quantity hŜ2i, which in the

case of singlet wave functions is zero, into components is not

unique, a number of physical requirements4,9,15 have been

introduced.

(i) One should get no spins whatever for covalent systems

described by a closed-shell RHF wave function using doubly-

filled orbitals.

(ii) If the wave function is properly dissociating, then the

asymptotic values of the atomic spins obtained for the atoms

at large distances should coincide with the corresponding

values of the free atoms.

(iii) In an open-shell system the overall hŜ2i does not depend
on the actual Ŝz projection of the electronic state (multiplet)

considered, so one may request to have hŜ2i components that

do not depend on Ŝz either.

(iv) No two-center terms should appear in the case of single-

electron systems (or ROHF systems with a single unpaired

electron).

In a previous paper15 we showed that the following general

expression

hŜ2i= 3
4

R
u(

-
r1) d

-
r1 +

1
2

R R
[G(-r1,

-
r2)� 1

2
rs(-r1;

-
r2)r

s (
-
r2;

-
r1)] d

-
r1d

-
r2

� 1
2

R R
[G(-r1,

-
r2;

-
r2,

-
r1) � 1

2
rs (-r1;

-
r1)r

s(
-
r2;

-
r2)] d

-
r1d

-
r2
(1)

is the natural starting point to derive atomic and diatomic

components of hŜ2i that satisfy requirements (i) to (iv). This

equation is written in terms of the density of effectively

unpaired electrons, u(
-
r), defined by Takatsuka et al.16 as

u(
-
r) = 2r(-r) �

R
r(-r; -

r0)r(-r0; -
r)d

-
r0, (2)

the spin-density matrix

rs(-r; -
r0) = ra(-r; -

r0) � rb(-r; -
r0), (3)

and the spin-less cumulant of the second order density matrix,

G(-r1,
-
r2;

-
r01,

-
r02), which vanishes for single-determinant wave

functions and can be defined as the sum of the usual (spin-

dependent) cumulants as

Gð~r1;~r2; ~r 01;~r 02Þ ¼
X
s;s0

Gss0ss0 ð~r1;~r2; ~r 01;~r 02Þ ð4Þ
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where

Gss0ss0 ð~r1;~r2; ~r 01;~r 02Þ ¼ rss
0ss0

2 ð~r1;~r2; ~r 01;~r 02Þ

� rsð~r1;~r 01Þrs
0 ð~r2;~r 02Þ

� dss0 ½rsð~r1;~r 02Þrsð~r2;~r 01Þ�:

ð5Þ

In ref. 15 we obtained one and two-center contributions for a

general wave function in the framework of the 3D-space analysis,

i.e., for ‘‘fuzzy atoms’’17 and Bader’s atomic domains.18

In this paper we wish to undertake the decomposition in the

context of the so-called ‘‘Hilbert-space analysis’’.19 The motivation

is twofold: first, aside its conceptual relevance, the Hilbert-space

decomposition does not require atomic numerical integrations, in

contrast to the 3D-space analysis; thus it is exact (is free of the

numerical errors of that integration). Also, the significant

reduction in the computational cost of the decomposition may

be relevant for very large systems, especially as compared to the

3D-space methods with complicated atomic basins of Bader’s

analysis. However, there is an apparent ambiguity in decomposing

two-electron quantities in the framework of Hilbert-space analysis

(in particular for theMulliken-type scheme), which to date has not

received due attention. In this paper we also wish to analyze in

more detail this problem, which is particularly relevant in the case

of the decomposition of hŜ2i. That ambiguity will be exposed in

the next section. Then, we will briefly describe the formalism of

effective atomic densities,20 which will allow us to derive in a

straightforward manner the most appropriate expressions for the

decomposition of hŜ2i in the framework of Hilbert space analysis.

Finally, some numerical results at the correlated level will be

presented and discussed.

2 Alternative summation schemes in the

Hilbert-space analysis

The decomposition of physical quantities into atomic and

diatomic contributions is rooted on the identification of an

atom within the molecule. Since practical quantum chemistry

mostly uses atom-centered basis sets, the atom may be identi-

fied with its nucleus and the subspace spawned by the set of

atomic basis functions centered on it. The simplest example of

application of such Hilbert-space analysis is Mulliken popula-

tion analysis,21 perhaps the most familiar method to determine

the number of electrons associated with an atom. Mulliken’s

gross population of atom A is defined as:

NA ¼
X
m2A

X
n

DmnSnm ¼
X
m2A
ðDSÞmm; ð6Þ

where the notation m A A indicates that the summation runs

over all atomic basis functions centered on atom A. We recall

in this context that matrix DS is the proper finite basis

representation of the first-order density matrix if an over-

lapping basis set (S a I) is used.22

In a similar manner, the Mayer–Wiberg (closed-shell for

simplicity) bond order,23 BAB, between atoms A and B is

defined as

BAB ¼
X
m2A

X
s2B
ðDSÞmsðDSÞsm: ð7Þ

Inspecting the expression in eqn (6), one can see that

the overlap integrals enter it in a somewhat non-symmetric

manner: one of the subscripts (m) is serving for subdividing the

quantity into atomic contributions, while another (n) is a

‘‘dummy’’ index, for which summation over the whole basis

is performed—it is used to form the matrix-product DS. This

difference may be connected with the fact that for overlapping

basis sets matrix DS is twice the projection matrix performing

the projection of any vector d of LCAO coefficients on the

subspace of the occupied molecular orbitals as DSd.22 The

same distinction appears also in eqn (7) of the Mayer–Wiberg

bond order. In the case of real orbitals, one could get exactly

the same Mulliken atomic populations also in the formP
m2A ðSDÞmm, i.e., by using matrix SD which performs the

analogous projection of the row-vectors dw as dwSD. While in

the first case the systematization of the terms according to the

individual atoms corresponds to the subscript coming from the

‘‘ket’’ part of the overlap integral, in the second one it

corresponds to the subscript coming from its ‘‘bra’’ part.

It seems logical to stick to one of these possibilities (we prefer

the first one), and use it in all types of analyses. Thus the

splitting of the terms in the expression of the bond order index

eqn (7) corresponds to the subscripts of the overlap integrals

coming from the ‘‘kets’’.

In principle, if an expression contains products with two

overlap matrices, then a subdivision into atomic and diatomic

contributions by taking one subscript from ‘‘bra’’ and another

from ‘‘ket’’ is also possible. In the case of the bond order, that

leads to a modified definition of the bond order index24 as

B0AB ¼
X
m2A

X
n2B
ðSDSÞmnDnm ð8Þ

As the bond order is a component of the integral of the

exchange density, formally both definitions could be accepta-

ble: they represent different decompositions of that integral

into a sum of one- and two-center contributions. However,

there is a serious argument favoring the definition of eqn (7).

The modified, non-symmetric, definition eqn (8) gives results

that are much less ‘‘chemical’’ than those given by the original

one: it cannot, for instance, recover the integer values for first-

row diatomics (e.g., 3 for N2) if a minimal basis set is used, as

does the original definition of eqn (7). Another argument

against such type of ‘‘bra’’–‘‘ket’’ mixing is the high degree

or arbitrariness that would be introduced in the case of e.g.

Generalized Population Analysis,25 typically used to detect

patterns of multicenter bonding, where the expressions may

contain three, four or more overlap matrices. Furthermore, it

has been shown26 that one can introduce a particular mapping

(see Appendix) between the atomic overlap matrices of the

atomic orbitals and the conventional overlap matrix that

permits finding a one-to-one correspondence between the

Hilbert-space and the more general 3D-space analyses expres-

sions of quantities like bond orders, atomic valences or energy

components. Such a general mapping is not possible for

expressions involving subdivision of the terms according to

both ‘‘bra’’ and ‘‘ket’’ subscripts.

These considerations are of interest in the present context

because in the recent paper by Alcoba et al.9 a decomposition
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of hŜ2i is performed in a manner that one index of the overlap

matrix is assigned according to the term coming from the

‘‘bra’’ and another coming from the ‘‘ket’’. (These authors

distinguish between them by using both subscripts and super-

scripts, which, however, do not represent covariant and con-

travariant indices.) Therefore, their decomposition is

consistent only with the use of the alternative bond order

formula eqn (8).w
In the next section we will briefly describe the formalism of

effective atomic densities,20 which will allow us to derive in a

straightforward manner the most appropriate expressions for

the decomposition of hŜ2i in the framework of Hilbert space

analysis.

3 Effective atomic density matrices formalism

The formalism of the atomic and diatomic effective densities is

based on the exact decomposition of one- and two-electron

densities into components that can be considered their one-

center and one- and two-center contributions, respectively.

These atomic and diatomic densities are identified with the

contributions of each atom and pairs of atoms to the overall

density, and can be used to derive in a common framework

atomic populations, bond orders, atomic valences, molecular

energy components, etc. for any kind of atom in molecule

definition. In the simplest case, one can define the effective

atomic contributions to the electron density, rA(
-
r), simply

fulfilling rð~rÞ �
PN

A rAð~rÞ. The integral over the whole space

of this function for atom A quite naturally yields the electron

population associated with the atom
R
rA(

-
r)d

-
r = NA. (9)

The actual numerical value depends upon how rA(
-
r) is defined.

In the framework of 3D-space analysis, rA(
-
r) can be written in

general as

rA(
-
r) = wA(

-
r)r(-r) (10)

where wA is a non-negative weight function defined for each

atom and each point of the 3D space satisfying
P

A wAð~rÞ ¼ 1.

The actual definition of atom in the molecule (‘‘fuzzy’’ or

disjoint) is contained in the atomic weight functions.

In the case of Hilbert-space analysis, the effective atomic

density can be most suitable written in terms of the matrix

elements of the LCAO density matrix as

rAð~rÞ ¼
X
m2A

X
n

Dmnw�nð~rÞwmð~rÞ: ð11Þ

It is trivial to see that the integration of eqn (11) yields

Mulliken’s gross population of atom A, in accord with eqn (6).

In a similar manner, by combining the appropriate effective

atomic contributions of the first-order density matrix to build

effective diatomic exchange densities:

rAB
x (

-
r;

-
r0) = 1

2
[rA(

-
r;

-
r0)rB(

-
r0;

-
r) + rB(

-
r;

-
r0)rA(

-
r0;

-
r)] (12)

where

rAð~r;~r 0Þ ¼
X
m2A

X
n

Dmnw�nð~rÞwmð~r 0Þ ð13Þ

is the atomic component of the first order spin-less density

matrix r(-r,-r0). One can easily recover upon integration of

eqn (12) the expression of eqn (7) for the Mayer–Wiberg

(closed-shell) bond orderZZ
rAB
x ð~r;~r 0Þd~r d~r 0 ¼

1

2

X
m2A

X
n

DmnSns
X
s2B

X
l

DslSlm

þ 1

2

X
m2B

X
n

DmnSns
X
s2A

X
l

DslSlm

¼
X
m2A

X
s2B
ðDSÞmsðDSÞsm ¼ BAB

ð14Þ

and so forth.

One advantage of using the formalism of effective atomic

densities is that one can switch from 3D-space to Hilbert-space

formulae or vice versa simply by taking the appropriate form

of the effective densities involved in the calculation. In a recent

paper15 we have put forward an improved general formula for

the decomposition of hŜ2i applicable for both single-determinant

and correlated wave functions. The numerical implementation

of the resulting one- and two-center components was origin-

ally carried out in the 3D-physical space. Here we will make

use of the formalism of the atomic and diatomic effective

matrices depicted above to derive in a simple manner the

appropriate one and two-center components of hŜ2i in the

framework of Hilbert-space analysis.

This exercise is of particular interest here because of the

formal ambiguity affecting Hilbert-space decompositions in

the selection of the indices put forward in the previous section.

We most definitely recommend to stick to the assignment of

subscripts that will be obtained here, which is consistent with

both Mulliken population analysis and the original bond order

definition eqn (7).

4 Decomposition of hŜ2i
Within the formalism of the effective atomic densities, the

respective one- and two-center contributions to hŜ2i can be

formally written from the general expression of eqn (1)

simply as

hŜ2iA = 3
4

R
uA(

-
r1)d

-
r1 +

1
2

R R
[GAA(

-
r1,

-
r2)

� 1
2
rsA(

-
r1;

-
r2)r

s
A(

-
r2;

-
r1)] d

-
r1d

-
r2 � 1

2

R R
[GAA(

-
r1,

-
r2;

-
r2,

-
r1)

� 1
2
rsA(

-
r1;

-
r1)r

s
A(

-
r2;

-
r2)] d

-
r1d

-
r2 (15)

and

hŜ2iAB = 1
2

R R
[GAB(

-
r1,

-
r2) � 1

2
rsA(

-
r1;

-
r2)r

s
B(

-
r2;

-
r1) d

-
r1d

-
r2

� 1
2

R R
[GAB(

-
r1,

-
r2;

-
r2,

-
r1)� 1

2
rsA(

-
r1;

-
r1)r

s
B(

-
r2;

-
r2)] d

-
r1d

-
r2,

(16)

where the atomic (in the case of u(
-
r) and rs(-r1,

-
r0)) and diatomic

(in the case of the cumulants, G) densities have been conveniently

used, instead of their global counterparts in eqn (1).

w It has recently been discovered that this type of decomposition had
also been used by some of us7 in the decomposition of hŜ2i from a
formula different from eqn (1) as a result of a programming error: two
subscripts have been interchanged by a mistake in the treatments of
the cumulants.
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In order to be consistent with the definitions of eqn (11) in

the framework of Hilbert-space analysis, the effective atomic

contributions of the density of effectively unpaired electrons

and the spin density matrix must be taken as

rsAð~r; ~r 0Þ ¼
X
m2A

X
n

Ps
mnw
�
nð~rÞwmð~r 0Þ ð17Þ

and

uAð~rÞ ¼
X
m2A

X
n
½2Dmn � ðDSDÞmn �w�nð~rÞwmð~rÞ; ð18Þ

where we have made use of eqn (2).

The spin-less cumulant, G, being a genuine two-electron

quantity, consists of atomic (if A = B) and diatomic (A a B)

contributions:

GABð~r1;~r2;~r 01;~r 02Þ ¼
X
m2A

X
s2B

X
n;l

Gmsnlw�nð~r1Þw�lð~r2Þwmð~r 01Þwsð~r 02Þ

ð19Þ

where Gmsnl are the corresponding matrix elements of the

cumulant in the atomic orbital basis.

Substituting eqn (17)–(19) into (15) and integrating, one

obtains, after some manipulations, the final expression for the

atomic components of hŜ2i

hŜ2iA ¼
3

4

X
m2A
½2ðDSÞmm � ðDSDSÞmm� �

1

4

X
m;n2A

ðPsSÞmnðPsSÞnm

þ 1

4

X
m;n2A

ðPsSÞmmðPsSÞnn

þ 1

2

X
m;s2A

X
n;l

ðGmsnl � GmslnÞSlsSnm:

ð20Þ

Similarly, for the diatomic spin components one gets

hŜ2iAB ¼ �
1

4

X
m2A

X
n2B
ðPsSÞmnðPsSÞnm

þ 1

4

X
m2A

X
n2B
ðPsSÞmmðPsSÞnn

þ 1

2

X
m2A

X
s2B

X
n;l

ðGmsnl � GmslnÞSlsSnm:

ð21Þ

In the single-determinant case the cumulants vanish and these

formulae reduce to those derived independently in ref. 27.

Eqn (13) and (14) of Alcoba et al.9 are similar to our

eqn (20) and (21). In that paper, however, aside from the

fact that the authors started from a formula different from

eqn (1) – therefore the coefficients of the different terms of

eqn (20) and (21) are different – the authors also chose a

different convention in the treatment of the cumulant part: one

index of the overlap matrix is assigned according to the term

coming from the ‘‘bra’’ and another coming from the ‘‘ket’’.

From now on we will refer to that different convention as

formula with ‘‘interchanged’’ indices.

Hilbert-space analysis is not restricted to Mulliken’s recipe.

Another alternative scheme is Löwdin population analysis,28

in which the atomic orbitals are first transformed to an

orthogonal basis. Even though it is less often used, Löwdin

analysis typically exhibits less basis set effects than Mulliken’s.

Indeed, it is well-known that Mulliken-based analyses can

yield meaningless results if combined with diffuse functions

lacking marked atomic character.29 In the Löwdin basis

the overlap matrix is a unit matrix and, as a consequence,

the schemes with conventional and ‘‘interchanged’’ indices are

equivalent.

5 Numerical results

We have written a program that performs the decomposition

of hŜ2i described above in the framework of the Hilbert-space

analysis for both Mulliken and Löwdin schemes, using the

appropriate effective atomic overlap matrices outlined in the

Appendix. Since Löwdin analysis is not strictly rotational

invariant30 with Cartesian 6d atomic orbitals, we recommend

its use only with pure 5d orbitals. We have included results

with 6d functions only for comparison purposes. The first- and

second-order density matrices have been obtained using a

modified version of Gaussian-03 program suite31 and an

auxiliary program32 that reads and processes CISD and

CASSCF outputs. All calculations have been carried out with

the geometrical structure of the molecules optimized at the

current level of theory unless otherwise stated.

To assess the numerical effect on the use of the different

summation schemes in the Hilbert-space analysis, we have

studied the H2 molecule at the CASSCF(2,4) level for several

basis sets. Table 1 gathers the local spin values on the H atom

for the conventional hŜ2iH and ‘‘interchanged’’ index conven-

tions hŜ2iintH within Mulliken’s scheme. The values for Löwdin

hŜ2iLH and 3D-space analysis hŜ2i3DH (using Becke atoms) are

also included for comparison.

The local spin values using eqn (20) are close to zero in all

cases, in line with the physical expectations. The numbers

exhibit reasonably small basis set dependence and are also very

similar to those obtained in the framework of 3D-space

analysis. Using the alternative formula with ‘‘interchanged’’

indices the values are somewhat too large, as compared with

the ‘‘conventional’’ ones, and suffer from strong basis set

effects, especially when combining two sets of diffuse functions

and Cartesian 6d 10f orbitals. With this extended basis set

Table 1 Atomic local spin values calculated at the CASSCF(2,4) level
for the H2 molecule at interatomic distance RH–H = 0.746 Å for
several basis sets

Basis set hŜ2iH hŜ2iintH hŜ2iLH hŜ2i3DH

cc-pVDZ 0.036 0.060 0.028 0.034
cc-pVTZ 0.035 0.051 0.025 0.034
cc-pVQZ 0.039 0.066 0.027 0.036
cc-pVTZ (6d) 0.035 0.052 0.027 0.034
cc-pVQZ (6d 10f) 0.043 0.089 0.028 0.036
aug-cc-pVDZ 0.038 0.069 0.025 0.034
aug-cc-pVTZ 0.020 0.031 0.026 0.036
aug-cc-pVQZ 0.035 0.044 0.026 0.036
d-aug-cc-pVQZ 0.045 0.130 0.024 0.034
aug-cc-pVTZ (6d) 0.046 0.115 0.027 0.036
aug-cc-pVQZ (6d 10f) 0.055 0.192 0.026 0.036
d-aug-cc-pVQZ (6d 10f) 0.095 0.891 0.023 0.034
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even the hŜ2iH value (0.095) is considerably larger than the

rest. The hŜ2iLH and hŜ2i3DH values show virtually no basis set

dependency. However, it seems that for the smaller basis sets

Mulliken’s values are closer to the 3D-space ones than

Löwdin’s.

The recommended Mulliken-type decomposition has also

been applied to a series of singlet molecules and the results are

presented in Table 2. The optimized geometries and the

wavefunctions were obtained at the CISD/6-31G** level of

theory (with Cartesian 6d functions). Note that for these

systems the overall hŜ2i value is zero, but small local atomic

spins can be induced by correlation fluctuations. One

should only expect the presence of significant diatomic

contributions in singlet systems if there would be any anti-

ferromagnetic coupling that could be distinguished from

covalent bonding.

As anticipated, the molecules of the HnX series (HF, H2O,

and NH3) show small values of local spin. The only systems

with atomic spin contributions larger than 0.1 are homo-

nuclear diatomic Li2 and Be2, with hŜ2iLi = 0.156 and

hŜ2iBe = 0.175, respectively. These values are consistent with

those obtained within the framework of 3D-space analysis.15

On the other hand, in the series of hydrocarbons the local

spins on the C atoms reported here show relevant differences.

Within the 3D-space formulation the atomic spin contribu-

tions were always below 0.1.15 In the Hilbert-space framework

both CH4 (hŜ2iC = 0.320) and C2H6 (hŜ2iC = 0.199) present

quite significant local spin on the C atoms. The most striking

finding in Table 2 is the negative local spin on the C atom

obtained for C2H2. Since there is no physical explanation for a

negative value of hŜ2iC, we tried to understand this odd

behavior. The local spin obtained at the same level of theory

with the 3D-space formulation was 0.083,15 which rules out

the truncated CISD wave function as responsible for the

spurious number. In order to check for basis set effects on the

local spin for this system, we have computed the hŜ2iC values at

the CISD/6-31G** optimized geometry using several basis sets.

The results are gathered in Table 3. The results using Löwdin

and 3D-space schemes are also included. The hŜ2iC is still

negative for most basis sets, except for the STO-3G, 6-311G

and aug-cc-pVDZ basis sets. Note the completely meaningless

value of �2.926 obtained with Mulliken’s scheme with the

quite standard aug-cc-pVTZ basis set.z Moreover, since

negative values appear for both small and relatively large

basis sets with and without polarization functions it is difficult

to draw any general conclusion from the data. However, the

local spin on C atoms using both Löwdin’s and the 3D-space

formulation is always small and positive, as it should be. One

can see a systematic lowering of the value upon inclusion of

polarization functions and no significant effects of the diffuse

functions.

In this context it is worth noting that rather odd numbers

have been obtained in the literature when combining Mulliken

analysis techniques and genuine two-electron quantities from

correlated wave functions. For instance, Vyboishchikov

et al.33 found unphysically positive correlation contributions

for diatomic energies at the CID level of theory. On the other

hand, the bond order indices that in the correlated case make

use of the actual pair density (the so-called delocalization

index, DI34–39) have also been a matter of debate as, for the

simplest case of H2 described with Weinbaum’s classical

correlated wave function, the DI gives just 0.39.38 One can

conclude once again that in some cases one can get spurious

results when decomposing quantities that explicitly include the

second-order density matrix in the framework of Mulliken

analysis. Fortunately, according to our experience, the patho-

logical case of acetylene seems to be quite exceptional (e.g. no

such problems occur for the isoelectronic N2 molecule). Never-

theless, the Hilbert-space results using Löwdin’s scheme prove

to be much more robust and reliable, especially for large

basis sets.

Finally, we have also considered several radical (doublet)

and diradical singlet molecules. In principle, the magnitude of

the local spin values and the diatomic spin components,

compared to the ideal values for localized spins, can help to

quantify the diradical character of the molecule. For a system of

two perfectly localized anti-parallel spins on centers A and B,

Table 2 CISD/6-31G** atomic hŜ2iA and diatomic hŜ2iAB values for
a set of singlet molecules at optimized geometries

Molecule hŜ2iA/hŜ2iAB Molecule hŜ2iA/hŜ2iAB

H2 H 0.036 C2H6 C 0.199
H–H �0.036 H 0.024

Li2 Li 0.156 C–C �0.122
Li–Li �0.156 C–H �0.069

Be2 Be 0.175 C� � �H 0.034
Be–Be �0.175 H–H 0.018

HF H 0.006 H� � �H �0.015
F 0.006 C2H4 C 0.056
H–F �0.006 H 0.024

H2O H 0.013 C–C �0.094
O 0.013 C–H �0.036
O–H �0.007 C� � �H 0.055
H� � �H �0.006 H–H �0.002

NH3 N 0.061 H� � �Hcis �0.026
H 0.019 H� � �Htrans �0.014
N–H �0.020 C2H2 C �0.139
H� � �H 0.000 H 0.019

CH4 C 0.320 C–C 0.147
H 0.026 C–H 0.048
C–H �0.080 C� � �H �0.056
H� � �H 0.018 H� � �H �0.006

Table 3 Atomic hŜ2iC components for acetylene molecule computed
at the CISD level of theory with different basis sets

Basis set hŜ2iC hŜ2iLC hŜ2i3DC

STO-3G 0.012 0.179 0.159
6-31G �0.074 0.119 0.114
6-31G** �0.136 0.082 0.084
6-31G**(6d) �0.139 0.080 0.083
6-311G 0.030 0.119 0.113
6-311G** �0.118 0.085 0.085
6-311G**(6d 10f) �0.143 0.091 0.084
cc-pVDZ �0.162 0.078 0.085
cc-pVTZ �0.271 0.087 0.079
cc-pVTZ(6d 10f) �0.146 0.104 0.078
aug-cc-pVDZ 0.729 0.078 0.087
aug-cc-pVTZ �2.926 0.092 0.078

z For this peculiar molecule, a non-nuclear attractor is found for the
STO-3G and cc-pVTZ basis sets, having no apparent effect on the
local spin values.
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a proper (without spin contamination) wave function would

yield local values of hŜ2iA = hŜ2iB =3/4 and hŜ2iAB = �3/4,
for an overall value of hŜ2i= 0, characteristic of a singlet. In

the case of a molecular system with a singly localized unpaired

electron on a center A, one can expect a local value of hŜ2iA
close to 3/4 (if this ideal system is described at the ROHF level

of theory then hŜ2iAR3/4 and all diatomic spin contributions

exactly vanish).15

The local spin analysis for benzyl and allyl radicals and the

set of diradical ortho-, meta- and para-benzyne molecules in

the singlet electronic state are gathered in Table 4. Benzene

molecule has also been included for comparison. The systems

have been studied at the CASSCF/6-31G** level of theory

with appropriate active spaces, i.e., full p-valence and appro-

priate s orbitals for the radical systems. We report only the

results obtained for Mulliken-type analysis. Using Löwdin or

3D-space schemes does not change significantly the values for

these systems.

Non-negligible local spin (0.114) is observed on the C atoms

of benzene, due to the fluctuation of p-electrons induced by the

electron correlation. The sign of the diatomic contributions is

consistent with the chemical picture displayed in Fig. 1a. Such

localization of the spins is also consistent with the observed

decrease in the electronic aromaticity indices upon inclusion

of electron correlation40 (note that a single-determinant

restricted description of benzene gives identically zero local

spins). Of course, the magnitude of the local spin and the

diatomic spin contributions is very small compared to the ideal

3/4 value, as one could anticipate for a genuine diamagnetic

system.

In phenyl radical the unpaired electron is localized on a s
orbital at/near C1 (in which the H atom is absent). The local

spin in the remaining C atoms is slightly greater than that in

the case of benzene, as well as the magnitude and sign pattern

of the diatomic spin components. The local spin value of the

radical center (0.968) exceeds the ideal value of a singly

localized electron (3/4). Furthermore, the hŜ2i12 value

increases (in absolute value), as well as the local spin on C2

with respect to the benzene. Of course, one cannot expect these

contributions to be fully additive as the shape of the p-orbitals
in the phenyl radical system is modified by the presence of the

unpaired s electron, and there can also be some s–p interplay.

Nevertheless, one can conclude that there must be a parallel

alignment of the local spin arising from the p and s electrons

in the radical center, as indicated in Fig. 1b.

The analysis of the allyl radical gives a completely different

picture. In this case there are significant local spin contri-

butions from all C atoms. The main local spin centers are

C1 and C3 atoms, with a value of 0.440, and the central C2

atom also contributes 0.145. The diatomic terms reveal

partial anti-ferromagnetic coupling (�0.145) between C1

and C2, and a ferromagnetic one of similar magnitude

(0.151) between C1 and C3. It is worth noting that the diatomic

spin components would vanish for a ROHF description of this

system. Thus, it is clear that in this case there is a significant

interplay between the three p electrons of the system, as

depicted in Fig. 1g.

Among the set of diradical benzyne isomers, para-benzyne

exhibits local spin features similar to the phenyl radical. The

local spin on the radical centers (atoms C1 and C4) is 0.962 and

the diatomic spin contribution hŜ2i14 = �0.862 indicates anti-

ferromagnetic coupling. The hŜ2i12 value is similar to that

obtained for the phenyl radical, and the diatomic values

involving the remaining atoms with contributions from the

Table 4 Atomic hŜ2iC and diatomic hŜ2iCC components at the
CASSCF/6-31G** level of theory. Active spaces used are (6,6) for
benzene, (7,7) for phenyl radical, (8,8) for ortho-, meta- and para-
benzyne and (3,3) for the allyl radical

C1 C2 C3 C4 C5 C6

Benzene
C1 0.114 �0.101 0.079 �0.069
Phenyl radical
C1 0.968 �0.145 0.100 �0.103
C2 0.129 �0.102 0.079 �0.071 0.078
C3 0.127 �0.102 0.080
C4 0.118
o-Benzyne
C1 0.324 �0.304 0.086 �0.075 0.080 �0.110
C3 0.130 �0.107 0.079
C4 0.115 �0.092
m-Benzyne
C1 0.540 �0.101 �0.344 �0.056 0.069 �0.104
C2 0.133 0.066 �0.065
C4 0.116 �0.097 0.074
C5 0.121
p-Benzyne
C1 0.962 �0.171 0.125 �0.862
C2 0.145 �0.106 �0.072 0.078
Allyl radical
C1 0.440 �0.145 0.151
C2 0.145

Fig. 1 Localized spins picture emerging from the local spin analysis.

Circled arrows represent the s contributions, small arrows indicate the

p counterpart.
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p orbitals are close to the case of benzene. The overall picture of

this system is consistent with a s,s-diradical, as depicted in

Fig. 1d.

The diradical character decreases in the case of ortho- and

meta-benzyne. In the former, the local spin on atoms C1 and

C2 is just 0.324, substantially smaller than the ideal value of

3/4 for a fully localized electron. Concomitantly, the diatomic

hŜ2i12 value decreases to �0.304. Since both values practically

compensate each other, the local spin contribution from the

s electrons is largely confined in these two atoms. Therefore,

the small magnitude of the local spin indicates that the two

electrons must exhibit some genuine pairing, leading to an

increase in the bonding interaction between the two atoms

relative to benzene. Indeed, the computed bond orders for

ortho-benzyne and benzene are 2.12 and 1.38, respectively. The

diatomic terms involving the remaining atoms are again quite

similar to the case of benzene. The negative hŜ2i16 value of

�0.110 could have its origin merely in the p electron system.

Hence, it is difficult in this case to establish whether the picture

of the system is the one displayed in Fig. 1c or the one with the

s spins of atoms C1 and C2 interchanged. We have also

performed the analysis for a CASSCF(2,2) wave function

(at the same geometry) where only the s electrons are corre-

lated. In this case the local spin on the C1 atom is just 0.271.

The estimate of 0.11–0.13 contribution of the p part for this

system seems to point towards an anti-parallel arrangement of

the s and p electrons on the C1 and C2 atoms, as depicted in

the figure.

The meta-benzyne molecule represents an intermediate

situation between the ortho and para isomers. There are

however some interesting features. First of all, the local spin

on the C1 and C3 atoms amounts to an intermediate value of

0.540, but the diatomic term is just �0.304. Intuitively one

could conclude that the contribution of the s to the local spin

is not fully compensated between the two atoms, as in the case

of ortho-benzyne. However, since the contribution of the

p electrons to the hŜ2i13 value is positive (indicating parallel

alignment), it partially compensates for a larger negative

contribution from the anti-parallel arrangement of the s
electrons. In this sense it is noticeable that for this molecule

the hŜ2i12 value (�0.101) is exactly the same as in benzene, and

also very similar to the hŜ2i16 one (�0.104). However, due to

symmetry, a parallel or anti-parallel alignment of the s and p
local spin contributions is not possible for both atoms C1 and

C3, as shown in Fig. 1e and f. As these atoms are equivalent by

symmetry, the picture of the localized spins of this system must

be a combination of the two (equivalent) configurations. This

suggests that the s and p contributions to the local spin of this

molecule could be additive to a large extent. Indeed, the values

of the atomic and diatomic terms involving C2, C4, C5 and C6

centers are very similar to those of benzene. Also, the local

spin on the C1 atom for a CASSCF(2,2) wave function is

0.469. After adding the estimate contribution of the p part

(ca. 0.1) one gets a value that is only slightly larger than the

actual value of 0.540.

In summary, the diradical character of the three isomers

increases from ortho to para, in agreement with other analysis.41

The local spin analysis allows for a deeper insight into how the

local spins are distributed in the centers and its magnitude.

6 Conclusions

We have carried out the decomposition of the expectation

value of the spin operator for a general wave function in the

framework of the Hilbert-space analysis that fulfills all the

requirements imposed to date. We have shown that there is

an ambiguity affecting Mulliken-type decompositions in the

selection of the indices where the atoms are centered. We

definitely recommend to stick to the assignment of subscripts

that is consistent with Mulliken population analysis and the

original Mayer–Wiberg bond orders. The results obtained are

in good agreement with physical expectation and, in general,

do not depend too much on the basis set. For the particular

case of acetylene one can get spurious results when performing

the decomposition of quantities that explicitly depend upon

the second-order density matrix, even with small basis sets.

We show that Löwdin’s scheme is more robust and reliable in

all cases.

7 Appendix

7.1 Mapping between 3D and Hilbert space analyses

One can introduce a mapping between the atomic overlap

matrices (used in the framework of 3D-space analysis) and

their Hilbert space analogues in order to establish a one-to-one

correspondence between the expressions obtained for 3D-space

and Hilbert-space analyses.

Let us consider for simplicity a closed-shell system with

doubly occupied molecular orbitals. In the framework of

3D-space analysis, the gross atomic population of atom A is

obtained as

NA ¼
Z

wAð~rÞrð~rÞd~r ¼
X
mn

DmnS
A
nm

¼ 2
X
mn

Xocc
i

c�niS
A
nmcmi ¼ 2 trðCþSACÞ; ð22Þ

where

SA
nm ¼

Z
wAð~rÞw�nð~rÞwmð~rÞd~r ð23Þ

are the elements of the atomic overlap matrix SA and C is the

matrix containing the orbital coefficients of the occupied

molecular orbitals. The Mulliken gross population defined in

eqn (6) can be also written in terms of the molecular orbital

coefficients as

NA ¼ 2
X
m2A

X
n

Xocc
i

c�niSnmcmi ¼ 2 trðCþSZACÞ ð24Þ

where ZA is a block-truncated unit matrix with all elements

equal to zero except ZAmm = 1 for m A A. Comparing eqn (22)

and (24) one can put into correspondence with the atomic

overlap matrix in atomic orbital basis SA the matrix product

SZA. It is easy to see that if one expresses one- and two-center

terms of ref. 15 in the atomic orbital basis and replaces the

matrix elements SA
mn by the [SZA]mn ones, the one- and two-

center terms of eqn (20) and (21) can be recovered. Note that

thisMulliken’s effective atomic overlap matrix is non-symmetric,

and this is the reason why the ‘‘interchanged’’ indices convention
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mentioned above leads to different expressions for the one-

and two-center components. In that scheme one essentially

uses both SZA and ZAS matrices. Thus, the one- and two-

center contributions of hŜ2i in the framework of Löwdin

analysis can be easily derived if an analogous mapping could

be established. In Löwdin population analysis one has

NL
A ¼

X
m2A

X
ns

S1=2
nm DmsS

1=2
sn ; ð25Þ

which can also be expressed in terms of the MO coefficients as

NL
A ¼ 2

X
m2A

X
ns

Xocc
i

c�siS
1=2
sm S1=2

mn cni ¼ 2 trðCþS1=2ZAS1=2CÞ

ð26Þ

Comparing this expression with eqn (22) and (24) it is easy to

identify S1/2ZAS1/2 as the appropriate Löwdin’s effective atomic

overlap matrix. Note that in this case, the atomic overlap

matrix is symmetric, which means that in the framework of

Löwdin analysis the conventional and ‘‘interchanged’’ index

schemes are equivalent.
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Chapter 5

The local spin analysis:
Chemical bonding and radical
character

5.1 Local spin and chemical bonding
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5.2 Quantification of diradical character by the
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Abstract

Diradical species are analyzed on the light of the local spin analysis. The

atomic and diatomic contributions to the overall 〈Ŝ2〉 value are used to detect

the diradical character of a number of molecular species mostly in their singlet

state, for which no spin density exists. A general procedure for the quantifi-

cation of diradical character for both singlet and triplet states is achieved by

using a recently introduced index that measures the deviation of an actual

molecule from an ideal system of perfectly localized spin centers. The index

is of general applicability and can be easily determined in equal footing from

a multireference or an open-shell single-determinant wave function.

Keywords: Local spin analysis, diradical character, benzyne isomers, propel-
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Introduction

Salem1 defined diradicals as molecules with two electrons occupying two near
degenerate orbitals. Indeed, how close to degeneracy these orbitals are (HOMO-
LUMO gap) or more generally the singlet-triplet gap is one of the characteristic
features of diradical systems. Diradicals are important in chemistry since they
emerge as intermediates of many chemical reactions.2 Pure, ideal diradicals such
as a dissociated H2 singlet can be easily characterized theoretically from different
indicators, depending on the nature of the wave function. However, the quantifi-
cation of the diradical or diradicaloid3 character of short-lived singlet diradicals is
not so trivial because the formally unpaired electrons do interact to some extent.
There is a continuum between the closed-shell spin-paired and the perfectly local-
ized spin-entangled situations, as exemplified by the dissociation curve of singlet
H2.

Several indices have been proposed in the literature in order to detect and quan-
tify the diradical character of molecular systems, the simplest probably being the
value of 〈Ŝ2〉 of a broken symmetry spin-unrestricted wave function.4,5 For a sys-
tem with an equal mixture of singlet and triplet components one should expect a
〈Ŝ2〉 value close to 1.6 Accordingly, Bachler et al.7 proposed the following index

nrad = 1−
√

1−〈Ŝ2〉BS, (1)

where 〈Ŝ2〉BS represents a UHF broken-symmetry wave function. An alternative in-
dex can be built making explicit use of the occupation numbers of spin-unrestricted
natural orbitals (UNOs). In a system with diradical character, a pair of bonding an
antibonding orbitals are typically associated with the two radical sites. The closer
to 1 the occupation of the antibonding orbital is, the higher the diradical character.
Jung and Head-Gordon3 and Bachler et al. 8 used the occupation numbers obtained
from perfect-pairing approaches and Lopez et al. used the occupation number com-
puted at the natural orbital functional (NOF) level of theory9 to assess the extent
of diradical character of different molecules. Rivero et al. also studied the extent
of radical character from the occupation numbers that are close to one from a spin-
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projected Hartree-Fock calculation.10 Similarly, Kamada et al.11 used the index,

y =
(1−T )2

1+T 2 and T =
nHOMO−nLUMO

2
(2)

where nHOMO and nLUMO are the occupations of the bonding and antibonding
UNOs. In a purely closed-shell system nHOMO = 2 and nLUMO = 0, and hence
y = 0. When the occupations of the two orbitals are equal the system is a pure
diradical and y = 1.

When a multiconfigurational wave function is used the occupation numbers of
the orbitals of the radical sites can be replaced by the weights of appropriate con-
figurations of the CI expansion. In the simplest two-electrons in two-orbitals (the
so-called magnetic orbitals) model, the 2x2 CI wave function is build up from a
configuration in which the bonding combination of the magnetic orbitals is doubly
occupied, and another that includes the double excitation to the antibonding com-
bination of the magnetic orbitals. Bachler et. al.7 proposed the following indicator
for diradical character

nCI
rad =

√
2 |cd| (3)

where cd is the weight of the doubly-excited configuration. Later on, other authors
suggested an improved version12 that also incorporates the weight of the other con-
figuration

d = 2

√
c2

0c2
d

c2
0 + c2

d
. (4)

None of the indices described above is of general applicability. Beyond diradi-
cals a signature of polyradical character may be derived from the shape and occu-
pation of the natural orbitals.10,13 The applicability of the indices given in Eqns. (1)
to (4) is thus restricted to diradical systems that can be well described with a two-
electron two-orbital model. A noteworthy alternative is the analysis of the so-called
density of effectively unpaired electrons, u(~r), defined by Takatsuka et al. 14 as

u(~r) = 2ρ(~r)−
∫

ρ(~r;~r ′)ρ(~r ′;~r)d~r ′. (5)

This quantity can be easily obtained at any level of theory from the first-order den-
sity matrix, ρ(~r;~r ′), and provides a spatial distribution of the unpaired or "odd"
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electrons in the system, even if the spin density vanishes (e. g. for multiconfigura-
tional singlet wave functions). The total number of unpaired electrons, ND, can be
recovered upon integration of u(~r) over the whole space. The topology u(~r) and the
ND values have been used by Staroverov and Davidson to analyze the evolution of
the radical character upon a chemical reaction, e.g. the Cope rearrangement.15,16

Cheng and Hu17 found a good correlation between ND and the singlet-triplet gap
for a set of B2P2 ring derivative diradicaloids. Moreover, population analysis tech-
niques such as Mulliken16 or QTAIM18 have also been applied to recover the av-
erage number of unpaired electrons on a given atom/fragment. It is worth to note
that Mulliken populations of u(~r) are identical to Mayer’s free valence index19,20

for singlet wave functions.
In singlet diradicals the presence of some local spin associated to a given atom

or fragment of the molecular system is assumed. The spin properties of molecu-
lar systems are usually characterized by the analysis of the spin density. In fact,
spin-unrestricted single-determinant calculations often result in broken-symmetry
solutions with non-vanishing spin density. In this case, however , the state of the
system is not described as a pure singlet, as it appears contaminated with higher
spin states. When a proper multireference wave function is used to describe a pure
singlet the spin density exactly vanishes at all points of the space. Yet, one can still
invoke the concept of local spin in the system.

Local spins can be retrieved from wave function analysis by a number of decom-
position schemes.21–27 The most appropriate approach to the problem, as pointed
out by Mayer,23 is probably the exact decomposition of the expectation value of the
spin-squared operator into a sum of atomic and diatomic contributions as

〈Ŝ2〉= ∑
A
〈Ŝ2〉A + ∑

A,B 6=A
〈Ŝ2〉AB. (6)

A proper formulation of eqn. (6) can provide vanishing one- and two-center terms
for restricted single-determinant wave functions (thereby distinguishing electron
pairing in bonds from antiferromagnetic coupling), and non-zero ones for pure sin-
glets described by correlated wave functions, thus overcoming the limitation of use
of the spin density. The actual expressions for the one- and two-center contributions
fulfilling these conditions, henceforth local spin analysis, can be found elsewhere.27
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In the local spin analysis, the 〈Ŝ2〉A values indicate and quantify the presence
of local spin within the molecule, namely on atom/fragment A. The magnitude and
sign of the diatomic contributions 〈Ŝ2〉AB with B 6= A inform about the nature of
the couplings between these local spins.21,28,29 The physical interpretation of the
〈Ŝ2〉A and particularly 〈Ŝ2〉AB values is somewhat intricate, and has been recently
discussed in detail in several papers.30,31

The ability of both local spin methods and the density of effectively unpaired
electrons to capture the diradical nature of molecular systems has already been dis-
cussed in the recent literature.15,16,32–36 However, their use as a general index for
the quantification of the diradical character has not yet been fully explored. This is
the main goal of the present work.

Computational Details

Since nondynamical correlation is essential to describe the low-spin components of
diradicals, the use of a multireference method is mandatory. All wave functions
for the molecular systems studied have been obtained at the CASSCF level with
the cc-pVTZ basis set, unless otherwise indicated. For the simple diradical model
systems the STO-3G basis set in combination with CASSCF or UHF levels of the-
ory has been used instead. The first- and second-order density matrices have been
obtained using a modified version of Gaussian0337 and an auxiliary program38 that
reads and processes the CASSCF outputs. All local spin components are given in
atomic units. All calculations have been carried out at the geometrical structure of
the molecules optimized at the current level of theory, unless otherwise indicated.
The local spin analysis has been performed with the program APOST-3D.39 For this
work we have make use of the atomic domains provided by the recently introduced
topological fuzzy Voronoi cells (TFVC) scheme.40 It is a fuzzy-atom based alter-
native41 to Bader’s QTAIM domains that produces very similar results with much
less computational effort.40
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Results and discussion

Local spin vs density of effectively unpaired electrons

In Figures 1 and 2 we plot the evolution of the indices of Eqn. 1-4 for diradical
character for a simple model system, namely the dissociation of a singlet H2 into
two doublet H atoms described with minimal basis at the UHF and FCI levels of
theory, respectively. The values of the number of effectively unpaired electrons
averaged over one of the H atom, NH

D and the local spin, 〈Ŝ2〉H , are also included.
The later has been rescaled to vary from 0 to 1 for better comparison.
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Figure 1: Indices for diradical character along dissociation of H2 model system at
the UHF level of theory. 〈Ŝ2〉H values have been rescaled (see text).

For a single-determinant wave function the diradical character is exactly zero for
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all indices when no BS solution exists (see Figure 1). As the H-H distance stretches
and a BS solution is found, the diradical character monotonically increases in all
cases. At large distances all indices tend to 1, indicating a perfect diradical. For
intermediate distances, the index y from Eqn.(2) seems to underestimate the extent
of diradical character with respect to the other indicators. Both the local spin and the
number of effectively unpaired electrons closely follow the value of 〈Ŝ2〉. For this
model system the nrad index is equivalent to the occupation of the LUMO orbital
(nLUMO).
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Figure 2: Indices for diradical character along dissociation of H2 model system at
the FCI level of theory. 〈Ŝ2〉H values have been rescaled

For correlated wave functions the diradical character predicted by the different
indices is always different from zero. The d index of Eqn. (4) yields a 20% of
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diradical character for H2 at the equilibrium distance (0.74 Å), which is probably
somewhat too large. The local spin and number of effectively unpaired electrons on
the H atoms give a similar and much smaller diradical character, and the index given
in eqn. (3) lies in between. In this case, the occupation of the LUMO (antibonding)
orbital consistently yields a smaller diradical character than the other indices. At
intermediate atomic distances the differences between all indices are smaller than
in the case of the UHF-BS description.

It is worth to note that Clark and Davidson32 also applied their local spin for-
malism to the dissociation profile of diatomics such as H2 at RHF, UHF and FCI
levels of theory. In their method, the 〈Ŝ2〉A value also tends to 3/4 at the dissociation
limit, but for interatomic distances near equilibrium it tends to 3/8 of the bond order.
The non-vanishing local spin contributions for a genuinely diamagnetic system like
H2 at equilibrium distance difficult their use as indicators of diradical character.

We have just seen that both the number of effectively unpaired electrons and
the local spin analysis quantify in a similar manner the diradical character for a
simple model system. Indeed, several studies have shown that both are very useful
tools for the characterization of the spin distribution in actual molecular systems, in
particular for singlet states.15,16,32–35 However, u(~r) also exhibits some unattractive
peculiarities. First of all, the upper bound for ND was found to be 2N, where N is
the total number of electrons. Thus, the number of effectively unpaired electrons
may be larger than the actual number of electrons.42 This unphysical upper bound
hinders the use of ND as an absolute index for radical character. Another rather
puzzling result was found in the dissociation of O2 in its 3Σ−g ground state into two
triplet 3P oxygen atoms. Staroverov and Davidson42 obtained a value of ND=5 at
the dissociation limit, i.e., each O atom carries an average of 2.5 unpaired electrons,
instead of the expected value of 2 for an isolated triplet. It is worth mentioning that
this finding motivated an alternative definition of u(~r) by Head-Gordon,43 although
not without controversy.44,45

We have further explored this paradigmatic system by considering for a number
of different electronic states the dissociation of O2 into two O atoms. In the dissoci-
ation limit one can have either two radical centers with two unpaired electrons each
(when the O2 dissociates into two triplet 3P oxygen atoms), or no spin centers at all
when it dissociates into two 1D singlet O atoms. Note that neither situations can be
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described with eqns. (1) to (4). In Table 1 we collect the values of ND and local
spin on the O atoms upon dissociation for several molecular (and atomic) electronic
states. The wave functions have been obtained at the CASSCF(8,6)/6-31G* level of
theory.

Table 1: Number of effectively unpaired electrons (ND) and local spin values for the
O atoms, 〈Ŝ2〉O, at the dissociation limit of several O2 molecular electronic states.

Molecular Atomic
elec. state ND 〈Ŝ2〉O1 / 〈Ŝ2〉O2 elec. statea

3Σ−g 5 2 / 2 3P/3P
1∆g 4 2 / 2 3P/3P
1Σ+

g 5 2 / 2 3P/3P
1Σ−u 5 2 / 2 3P/3P
3Πu 4 2 / 2 3P/3P
1Πg 5 2 / 2 3P/3P
1Πu 5 2 / 2 3P/3P
1∆u 5.33 0 / 0 1D/1D
1Πu 4.99 0 / 0 1D/1D

a Atomic electronic states at the dissociation limit

For the ground 3Σ−g state, a value of ND=5 is obtained upon dissociation into two
triplet 3P oxygen atoms, as already noted by Staroverov and Davidson.42 However,
this is not always the case. For instance, for the dissociation of the 1∆g and 3Πu

states into two triplet O atoms, the expected ND=4 value is recovered. The 1∆u state
dissociates into two 1D singlet oxygen atoms, but the ND value is 16/3, consistent
with the uniform distribution of 8 electrons into 6 degenerate p orbitals. Thus, by
looking at the ND values at the dissociation limit one can not distinguish two triplet
from two singlet oxygen atoms (in this case the distinction is evident from the en-
ergy values). Moreover, different ND values can be obtained for a system consisting
of two dissociated triplet oxygen atoms, depending on the overall electronic state.
It is worth to note that using Head-Gordon’s43 alternative formulation one would
obtain ND=4 in all cases (in fact, as long as the natural occupations are greater or
equal than 1).

On the other hand, the local spin values always yield the expected values for the
dissociating oxygen atoms. Matito and Mayer24 already reported proper asymp-
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totics of the atomic local spin contributions for the lowest-lying triplet and singlet
states. We have considered here the dissociation of five more molecular singlet and
triplet states that dissociate into two 3P oxygen atoms and in all cases 〈Ŝ2〉O = 2 (see
Table 1). For the states that dissociate into two singlet 1D oxygen atoms, namely
1∆u and 1Πu, the local spin analysis yields 〈Ŝ2〉O = 0. The diatomic spin compo-
nents also differentiate when the two oxygen triplets are coupled as a singlet, like in
the 1∆g state for which 〈Ŝ2〉O,O =−2, or as a triplet, like in the 3Σ−g state, for which
〈Ŝ2〉O,O =−1 is obtained.

Thus, the local spin analysis appears to be more suitable tool than the number
of effectively unpaired electrons when it comes to the formal breaking of more than
one bond. This is in essence because the 〈Ŝ2〉A terms include contributions from the
cumulant of the second order-density matrix, whereas the number of effectively un-
paired electrons is obtained only from the first-order density matrix. Accordingly,
our goal, which is the quantification of diradical character, will be better accom-
plished by making use of the descriptors obtained from the local spin analysis.

Quantification of diradical character in molecules

The spin distribution of diradical species has already been analyzed in the light
of the number of effectively unpaired electrons and different local spin indicators.
Typically studied examples are benzyne isomers.26,46–48 Clark and Davidson an-
alyzed their electronic structure making use of the density of effectively unpaired
electrons49 and also their local spin formalism.32,33 The evolution of local spins32

and the number of unpaired electrons34 along reactive processes involving benzyne
were also discussed in detail.

For the present work we have studied a number of diradical and diradicaloid
species at equilibrium geometries. The species considered are depicted in Figure 3.
For all of them we have performed the local spin analysis, but the results will not be
discussed in detail here (for that we refer to the supporting information). Instead,
we will focus essentially on the actual quantification of the diradical character. For
this purpose, only the atomic contributions of the local spin analysis will be taken
into account.
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Figure 3: Diradicals and diradicaloids considered in this work

Most recently we have introduced as a general measure of k-radical character
the following index

∆(k) =

√
∑A(〈Ŝ2〉A−〈Ŝ2〉idA )2

n
, (7)

where the 〈Ŝ2〉idA represent the atomic ideal values and n is the total number of
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atoms/fragments considered in the local spin analysis (for most applications the
hydrogen atoms can be safely ignored.)31 Since the “ideal” value for the diatomic
terms depends upon the particular electronic state (singlet, triplet, ... ) and also the
type of wave function (broken-symmetry vs multireference), the index only uses the
atomic contributions of the local spin analysis. The main advantage of this index is
that, contrary to most approaches in the literature, it is calculated in the same manner
from both multireference and unrestricted single-determinant wave functions, and
for any electronic state. The smaller the ∆(k) value the closer the system is to a
reference picture of k perfectly localized spin centers. So far, the use of eqn. 7 has
been restricted to k = 3, for the quantification of the triradical character.31

For diradical or diradicaloid species in singlet-state one can calculate both ∆(0)

and ∆(2) values. The former will measure average deviation from a nonradical
closed-shell picture, and the latter will indicate the deviation from a perfect diradi-
cal. This provides a numerical criterion to identify diradicaloids as either diradicals
or nonradical species.

Table 2: k-radical character index, ∆(k), for a set of diradicals and diradicaloids.
Values in parenthesis computed at the UB3LYP level of theory.

Singlet Triplet
Molecule ∆(0) ∆(2) ∆(2)

ortho-benzyne 0.18 0.28 0.14
meta-benzyne 0.28 0.19 0.13
para-benzyne 0.49 0.12 0.12

TME 0.77 0.02 0.05

(CH)2(CH2)2 0.41 (0.42) 0.12 (0.12) 0.12 (0.12)
(BH)2(PH2)2 0.10 (0.00) 0.46 (0.53) 0.39 (0.34)
(BH)2(NH2)2 0.17 (0.18) 0.41 (0.40) 0.38 (0.36)

[1,1,1]propellane 0.02 0.47 –
[2,2,2]propellane (RC-C=1.536Å) 0.01 0.36 –
[2,2,2]propellane (RC-C=1.988Å) 0.16 0.22 –
[2,2,2]propellane (RC-C=2.532Å) 0.05 0.33 –

The computed ∆(0) and ∆(2) values for the species of Figure 3 are gathered on
Table 2. The trends of the ∆(0) and ∆(2) values along the series of singlet ortho-,
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meta- and para-benzyne are very illustrative. For ortho-benzyne ∆(0) = 0.18 and
∆(2) = 0.28, indicating a smaller deviation of this species with respect to a closed-
shell picture. For meta-benzyne the situation is just the opposite, and the system is
better identified as a diradical. For para-benzyne the ∆(2) value is very small (0.12)
and much smaller than the ∆(0) one (0.49), which is consistent with a diradical
picture. Thus, both ∆(0) and ∆(2) values are able to reproduce the assumed trend
ortho < meta <para of the diradical character of benzyne isomers.32,46,47 For triplet
states only the ∆(2) values are meaningful. The values are quite small and do not
differ too much from one isomer to another. The trend along the series is the same
as for the singlet states, i.e., , triplet para-benzyne is more diradical than ortho-
benzyne.

Sometimes the spin delocalization hinders the recognition of the formal spin
centers, like in the well-studied tetramethylenethane (TME) diradical.50,51 At the
CASSCF level of theory the lowest energy structure has D2 symmetry, with a di-
hedral angle relating the two allyl moieties of 70.6 deg. The active space included
6 electrons and 6 orbitals (in the D2h symmetry they correspond to the set of 6 π
orbitals.) The results of the local spin analysis are discussed in detail in the support-
ing information. Essentially, the analysis reveals that TME is made up from two
independent allyl radicals bonded by the central carbon atoms. The spin distribu-
tion among the atoms of the allyl fragments is very similar for both the singlet and
triplet states.

Thus, for this molecule it is more appropriate to consider two allyl fragments in
eq. 7, instead of all atoms separately. The local spin contribution of a molecular
fragment is simply obtained by summing up all atomic and diatomic contributions
of the atoms that form the molecular fragment. The ∆(2) value taking the two allyl
moieties as spin centers is very small (0.02) in the singlet state, and somewhat larger
in the triplet (0.05) due to the enhanced delocalization of the spins between the two
moieties. The ∆(0) value is clearly too large to consider this system as a closed-shell
species at all.

The distinction between a singlet diradical and a nonradical closed-shell species
is sometimes not so evident. Diphosphadiboretanes and their analogues are some of
the most controversial systems discussed in the literature. Scheschkewitz et al. 52
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reported several years ago a 1,3-diphospha-2,4-diboretane derivative singlet diradi-
cal that exhibited indefinite stability at room temperature. Several theoretical stud-
ies3,8,17,53 followed that work, aimed at the quantification of the diradical character
of this species and its analogues. We depict on Figure 3 some of these four-member
ring diradicaloids. The species (CH)2(CH2)2 corresponds to a planar transition state
structure on the singlet potential energy surface of bicyclobutane (a triplet state lies
ca. 2-3 kcal/mol lower in energy.) (BH)2(PH2)2 is simplest diphosphadiboretane
and (BH)2(NH2)2 is a diaza-analogue of the former. This system is interesting be-
cause even though it exhibits a much shorter B-B distance (2.04 Å) than in diphos-
phadiboretane (2.60 Å), its diradical character was estimated to be smaller.53

We have studied these systems with an unrestricted single-determinant wave
function (UB3LYP) for both their singlet and triplet states. We have also consid-
ered a single-point CASSCF(2,2) wave function at the UB3LYP optimized struc-
tures for comparison. For the singlet states, the atomic local spin values are very
similar for CASSCF(2,2) and UB3LYP methods, provided a broken-symmetry so-
lution is found for the latter (the local spin contributions are exactly zero for a
restricted single-determinant wave function, as in (BH)2(PH2)2). Remarkably, a
broken-symmetry wave function that yields a wrong value of 〈Ŝ2〉 does seem to
provide appropriate atomic 〈Ŝ2〉A contributions. The flaw of the broken-symmetry
solution is found on the diatomic spin-spin interactions between the local spin cen-
ters: the UB3LYP values are significantly smaller than the CASSCF(2,2) ones. Yet,
the negative sign still indicates the antiparallel arrangement of the local spins (see
supporting information). For triplet states the local spin analysis yields very similar
one- and two-center contributions for both methods. This is not surprising since
with a CASSCF(2,2) approach the mS = |S| state is described by a ROHF wave
function. Therefore, since the indices of eqn. 7 use only the atomic local spin con-
tributions, their values for a broken-symmetry and a CASSCF wave function will
be very similar.

We find that singlet (CH)2(CH2)2 is best described as a diradical. The ∆(2)

value is similar to that of para-benzyne (0.12), whereas ∆(0) is much larger. These
values are indeed almost the same for CASSCF(2,2) and UB3LYP wave functions.
The ∆(0) value for (BH)2(PH2)2 is trivially zero at the UB3LYP level of theory,
as it corresponds to a restricted closed-shell solution. For CASSCF(2,2) the value
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slightly increases to 0.10 but still is significantly smaller than the ∆(2) value. Clearly,
this species can not be considered a diradical, in agreement with Jung et al. .53 For
the diaza analogue, ∆(0) increases to ca. 0.17 and ∆(2) decreases to 0.41. Thus,
(BH)2(NH2)2 is more diradical than (BH)2(PH2)2, but still it is best described as a
closed-shell species. For triplet states, the local spin analysis reveals in the case of
(BH)2(PH2)2 and (BH)2(NH2)2 that the four atoms of the ring exhibit similar but
small local spin contributions (see supporting information). The large ∆(2) values
for the triplet states of (BH)2(PH2)2 and (BH)2(NH2)2 are thus consistent with the
observed delocalized-spin picture.

Finally, the nature of the central C-C bond in strained systems such as propel-
lanes has been subjected to debate in the literature for years. The formal picture
of these species in the absence of this bond would be a diradical. However, the
diradical character in the ground state has been ruled out in the case of [1,1,1]pro-
pellane by Wu et al.,54 on the basis of a large vertical singlet-triplet gap (over 100
kcal/mol). The authors used a detailed Valence Bond analysis to classify the central
C-C interaction as charge-shift bond. Lobayan et. al.55 also analyzed the density of
unpaired electrons and its topology for this species at the CISD level of theory and
ruled out the presence of a 3c-2e bond. Yet, the overall number of unpaired elec-
trons (ND) they obtained at the CISD/6-31G* level of theory was quite significant
(ca. 1.22).

We have performed the local spin analysis for [1,1,1]propellane and [2,2,2]pro-
pellane species at the CASSCF(10,10)/cc-pVTZ//UB3LYP/cc-pVTZ level of the-
ory. The results are gathered on Table 3. For [1,1,1]propellane, the central C-C
distance is 1.568 , very similar to that of ethane for the same level of theory (1.528
). We have found that the local spin on the central C atoms is completely negligible.
In fact it is even smaller than the local spin con the C atoms of ethane described
at the same level of theory (0.009 and 0.018, respectively). Accordingly, the ∆(0)

value is very close to zero (0.018), as expected for a nonradical species. For this
level of theory we obtain an overall ND=0.46, a value significantly smaller than that
obtained by Lobayan and in more agreement with a nonradical picture.
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Table 3: Local spin on central C atoms, central C-C bond orders (see text) and
total number of unpaired electrons for ethane and several propellane species at the
CASSCF(10,10)/cc-pVTZ//UB3LYP/cc-pVTZ level of theory

Molecule RC-C BOC-C BOC-C 〈Ŝ2〉A ND
(Å) (fluct.) (exch.)

ethane 1.528 0.78 0.91 0.018 0.318

[1,1,1]propellane 1.568 0.44 0.66 0.009 0.463

[2,2,2]propellane 1.536 0.77 0.87 0.028 0.095
1.988a 0.33 0.43 0.313 1.082
2.532 0.00 0.15 0.091 0.700

a Transition state structure.

The potential energy surface of [2,2,2]propellane was studied in detail by David-
son56 with different levels of theory with the 6-31G* basis set. There are two similar
minimum energy structures for the singlet state. In the most strained one, the central
C-C distance is ca. 1.54 Å. Another minimum energy structure is found at a much
longer C-C distance (2.54 Å). Both are connected by a transition state structure at
an intermediate distance of ca 2 Å. Both UB3LYP and CASSCF(n,n) methods with
n=2,4,8 yield similar structures and energetics. The strained minimum structure is
about 5-10 kcal/mol higher in energy than the stretched one, and the barrier for the
interconversion (from the strained structure) is about 15-20 kcal/mol.56 The mul-
tireference average quadratic coupled cluster (MRAQCC) results obtained by Antol
et. al.57 with the same basis set were very similar to those reported by Davidson. It
is worth to note that Davidson found that a low-energy broken-symmetry solution
occurs from a C-C distance of ca. 1.7 Å at the UHF/6-31G* level, whereas for
UB3LYP the broken-symmetry solution only exists between C-C distances of 1.9
to 2.3 Å.

We have optimized the three structures at the UB3LYP/cc-pVTZ level of theory.
Only the transition state structure lead to a broken-symmetry solution. Then we
carried out single-point energy calculations at the CASSCF(10,10)/cc-pVTZ level
to perform the local spin analysis. The a1’, a2" and two sets of e’ and e” orbitals
were included in the active space. For the strained minimum (RC-C=1.536Å) the
local spin in the central C atoms is again negligible (0.028), and so is the number
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of unpaired electrons ( ND=0.095). The corresponding ∆(0) value is similar to that
obtained for [1,1,1]propellane.

In the stretched global minimum structure (RC-C=2.532Å) there is no central
C-C bond. The bond orders are 0.15 and 0.00 for the exchange and fluctuation for-
mulations, respectively).58 Also, the number of unpaired electrons is significantly
larger than for the strained structure (ND=0.70). Yet, the local spin on the central
C atoms is still very small (0.091). The ∆(2) value of 0.33 is too large to consider
this species as a diradical at all, specially when compared with the value for ∆(0)

(0.05). Since the UB3LYP description of this species is spin-restricted, ∆(0)=0 by
definition at this level of theory.

The transition state structure (RC-C=1.988Å) does exhibit significant local spin
in the central C atoms (0.31), as well as larger number of effectively unpaired elec-
trons (ND=1.08). The ∆(0) and ∆(2) values are 0.16 and 0.22, respectively. Thus,
the diradicaloid character at the transition state is larger than that of the minimum
energy structures, but the species is still best pictured as a nonradical.

Conclusions

The general quantification of diradical character from wave function analysis is
shown to be a non-trivial task, particularly for singlet states. In this work we illus-
trate how the descriptors obtained from a local spin analysis can be used to define
a general measure of the diradical character. Indices ∆(0) and ∆(2) quantify devi-
ation from a nonradical and a perfect diradical picture, respectively. The method
reproduces the expected trend ortho-benzyne<meta-benzyne<para-benzyne of di-
radical character, for both the singlet and the triplet states. Also, it is found that
diphospadiboretane and its diaza-analogue are best described as closed-shell and
delocalized-spin species in their singlet and triplet states, respectively. The analysis
performed on strained propellanes also confirm their nonradical nature, even in the
absence of the central C-C bond.
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SUPPLEMENTARY INFORMATION

Diradical character from the local spin analysis
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Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química,
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e-mail: Pedro.Salvador@udg.edu

1 The local spin analysis

In the local spin analysis, the 〈Ŝ2〉A values indicate and quantify the presence of
local spin within the molecule, namely on atom/fragment A. The magnitude and
sign of the diatomic contributions 〈Ŝ2〉AB with B 6= A inform about the nature of the
couplings between these local spins. The physical interpretation of the 〈Ŝ2〉A and
particularly 〈Ŝ2〉AB values is somewhat intricate, and has been recently discussed in
detail in several papers.1,2 We provide here a brief account of its general character-
istics for ideal systems.

When two perfectly localized spins are coupled as a singlet, a proper multiref-
erence wave function is needed to account for the spin properties of the system.
In that case, the local spin analysis yields 〈Ŝ2〉A = 3/4 and 〈Ŝ2〉AB = −3/4, which
account for the expected overall 〈Ŝ2〉 = 0. The 〈Ŝ2〉A value is consistent with the
corresponding 〈Ŝ2〉 = s(s+ 1) value for the isolated one-electron system and the
negative sign of 〈Ŝ2〉AB indicates that the two local spins are coupled as a singlet
(entangled). With a single-determinant broken symmetry description of the same
system one would obtain similarly 〈Ŝ2〉A = 3/4, but now 〈Ŝ2〉AB = −1/4, for an
overall value of 〈Ŝ2〉 = 1. Both 〈Ŝ2〉A and 〈Ŝ2〉AB monotonically decrease as the
two spins become more amd more delocalized. In the limiting case of a closed-
shell single-determinant description, all local spin contributions exactly vanish.

107



If the two perfectly localized spins on centers A and B are parallel, the local spin
analysis would yield 〈Ŝ2〉A = 3/4 and 〈Ŝ2〉AB = 1/4, for an overall value of 〈Ŝ2〉=
2, as expected for a triplet. The one-center term is again consistent with a one-
electron system, and the positive sign of the diatomic contribution now indicates
that the local spins are parallel. In a parallel-spins situation, if the two spins are not
perfectly localized the value of 〈Ŝ2〉AB decreases, but that of 〈Ŝ2〉A increases. The
latter is an indication of partial triplet character on the given center.

2 Local spin analysis of diradicals and diradicaloids
Tetramethyleneethane (TME) is a well-studied diradical.3,4 This molecule has been
optimized under three different symmetry constrains, namely D2, D2h and D2d at
the CASSCF level of theory. The active space included 6 electrons and 6 orbitals
(in the D2h symmetry they correspond to the set of 6 π orbitals.) The lowest energy
structure has D2 symmetry, with a C1-C2-C4-C5 dihedral angle (α) of 70.6 deg (see
Figure 1).

The results of the local spin analysis are gathered on Table 1. The atomic and
diatomic spin components are almost independent of the rotation with respect to the
central C-C bond. The vertical singlet-triplet gaps, sometimes used to assess the
radical character,4 are not too different for the D2, D2h, and D2d structures (-1.33, -
3.91, and -2.05 kcal/mol, respectively). We will focus on the results obtained for the
global minimum (D2 symmetry). The main spin centers are C1 and the symmetry
equivalent C3, C5, and C6, with 〈Ŝ2〉C values of 0.35 and 0.36 for the singlet and
triplet states (the local spin involving the H atoms is negligible). The diatomic spin
terms 〈Ŝ2〉C1,C2 and 〈Ŝ2〉C1,C3 (and their symmetry equivalents) also equal in both
electronic states. The sign of these spin contributions indicates the alternation of
the spins within each allyl fragment, as indicated in Figure 1. The main differences
between the local spin distribution of the singlet and triplet states are found in the
diatomic terms involving the C atoms on the different allyl fragments. In the singlet
state, the atoms 1, 3, and 4 have parallel spins, as indicated by the sign of 〈Ŝ2〉C1,C3

and 〈Ŝ2〉C1,C4 terms, whereas centers 2, 5, and 6 exhibit antiparallel arrangement
with respect to them.
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Figure 1: Numbering scheme of tetrathyleneethane (TME) and local spin distribu-
tion of the singlet state.

The diatomic terms 〈Ŝ2〉C1,C5 present a rather small value of -0.17. However,
this value accounts for most of the expected diatomic spin contribution of -3/4 be-
tween the two allyl centers, as there are four such diatomic contributions equivalent
by symmetry. In the triplet state, the local spins on the C atoms of one of the allyl
moieties are flipped with respect to the singlet state. The four symmetry-equivalent
diatomic terms 〈Ŝ2〉C1,C5 = 0.05 account for the spin-spin interactions between the
allyl moieties.

The diatomic spin contribution between atoms C2 and C4 is almost zero. More-
over, the one- and two-center contributions involving atoms C1, C2 and C3 are very
similar to those observed for a single allyl radical.5 In fact, summing up all one-
and two-center contributions for all atoms of each allyl moiety gives a local spin
on each fragment very close to 3/4 in all cases (see bottom of Table 1). Thus, the
TME molecule can be regarded as a diradical made up from two independent allyl
radicals bonded by the central carbon atoms. The local spin analysis unravels the
spin distribution among all centers or fragments on the same footing both different
electronic states, i.e., even if no spin density exists.
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Table 1: Local spin analysis of the TME molecule for the singlet (S) and triplet (T)
states of different geometries.

Atom/Atom pair D2 (α = 70.6) D2h (α = 0) D2d (α = 90)
Fragment/ Fragment pair S T S T S T

C1 0.36 0.37 0.36 0.37 0.35 0.37
C2 0.14 0.14 0.14 0.14 0.14 0.14

C1,C2 -0.09 -0.09 -0.08 -0.09 -0.09 -0.09
C1,C3 0.08 0.08 0.08 0.08 0.08 0.08
C1,C4 0.03 -0.01 0.03 0.00 0.03 -0.01
C1,C5 -0.17 0.05 -0.17 0.04 -0.17 0.05
C1,C6 -0.18 0.05 -0.19 0.04 -0.17 0.05
C2,C4 -0.01 -0.01 -0.02 -0.02 -0.01 0.00
allyl 0.77 0.80 0.79 0.81 0.76 0.79

allyl1,allyl2 -0.77 0.20 -0.79 0.19 -0.76 0.21

Diphosphadiboretanes and their analogues are some of the most controversial
diradicaloid systems discussed in the literature. For these systems we have carried
out the local spin analysis with both an unrestricted single-determinant (UB3LYP)
and a CASSCF(2,2) wave function for comparision, and for both their singlet and
triplet states. The results are gathered on Table 2.

Table 2: Local spin analysis of four-member ring diradicaloids for different spin
states and levels of theory

〈Ŝ2〉A/〈Ŝ2〉AB
Molecule Atom/Atom pair CASSCF UB3LYP

Singlet Triplet Singlet Triplet
C 0.58 0.59 0.59 0.59

(CH)2(C’H2)2 C’ 0.05 0.05 0.05 0.06
C-C -0.46 0.15 -0.16 0.16
B 0.10 0.27 0.00 0.32

(BH)2(PH2)2 P 0.09 0.26 0.00 0.22
B-B -0.04 0.03 0.00 0.05
B 0.19 0.28 0.20 0.31

(BH)2(NH2)2 N 0.14 0.25 0.15 0.24
B-B -0.07 0.03 -0.03 0.05

110



The local spin values (atomic terms) for singlet states are very similar for
CASSCF(2,2) and UB3LYP methods, provided a broken-symmetry solution is
found for the latter. For singlet states, the species with a larger local spin contribu-
tions is (CH)2(CH2)2. The value for the CASSCF(2,2) wave function (0.58) is not
too far from that expected for a perfectly localized electron (3/4). In (BH)2(NH2)2

the local spin is significantly smaller (0.19), which should indicate a much weaker
diradical character. In the case of the diphosphadiboretane species the local spin is
almost negligible (0.10), consistent with a residual diradical character.

For triplet states the local spin analysis yields very similar one- and two-center
contributions for both methods. This is not surprising since with a CASSCF(2,2)
approach the mS = |S| state is described by a ROHF wave function. The atomic
contributions of (CH)2(CH2)2 are essentially the same as in the singlet state. The
diatomic term involving the two main local spin centers is now positive, indicating
parallel arrangement of the spins. In the case of (BH)2(PH2)2 and (BH)2(NH2)2 the
four atoms of the ring exhibit similar but small contributions. In fact, the sum of the
terms reported on Table 2 is still far from the overall 〈Ŝ2〉 ≈ 2 value. This is because
the hydrogen atoms (omitted thus far) exhibit small but significant contributions of
ca. 0.05-0.10. Thus, these species do not exhibit significant spin centers and the
molecular spin is delocalized over all atoms.
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The effective atomic orbitals have been realized in the framework of Bader’s atoms in molecules the-
ory for a general wavefunction. This formalism can be used to retrieve from any type of calculation a
proper set of orthonormalized numerical atomic orbitals, with occupation numbers that sum up to the
respective Quantum Theory of Atoms in Molecules (QTAIM) atomic populations. Experience shows
that only a limited number of effective atomic orbitals exhibit significant occupation numbers. These
correspond to atomic hybrids that closely resemble the core and valence shells of the atom. The
occupation numbers of the remaining effective orbitals are almost negligible, except for atoms with
hypervalent character. In addition, the molecular orbitals of a calculation can be exactly expressed
as a linear combination of this orthonormalized set of numerical atomic orbitals, and the Mulliken
population analysis carried out on this basis set exactly reproduces the original QTAIM atomic pop-
ulations of the atoms. Approximate expansion of the molecular orbitals over a much reduced set of
orthogonal atomic basis functions can also be accomplished to a very good accuracy with a singular
value decomposition procedure. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4807775]

INTRODUCTION

The concept of atom in a molecule has always craved
for a proper definition. However, we are lacking a single,
unambiguous one. Instead, over the last decades a number
of schemes or formalisms have been devised to identify the
atom within a molecule.1–10 Probably, any of such schemes
considers the nucleus as part of the atom, so the differences
always arise in how the electron population distributed in the
physical space (or in the Hilbert-space) is subdivided into
atomic shares.

Within the LCAO approach, the atom may be identi-
fied with the subspace of the basis functions attached to it.
Such approach leads to the so-called Hilbert-space analyses,11

such as the classical Mulliken1 or Löwdin2 population anal-
ysis of the density. Despite their simplicity, Hilbert-space
analyses have been criticized by their restricted applicabil-
ity (the use of atom-centered basis functions is necessary)
and their notable basis set dependence. The latter repre-
sents a true flaw when using extended basis sets includ-
ing diffuse functions.12 Alternative population analyses based
upon occupation numbers13, 14 carried out onto an AO basis
set different from the extended one minimize the basis set
dependence.

A different strategy is to subdivide the physical three-
dimensional (3D) space into atomic regions or domains,
which represent (together with the nucleus) the atom. These
domains may be defined disjoint, like in Bader’s atoms in
molecule theory4 (often referred to as QTAIM—“quantum
theory of atoms in molecules”), or may be allowed to
overlap, like in the different flavors of “fuzzy” atoms.3, 5–10

a)E-mail: pedro.salvador@udg.edu

The 3D space formalism represents a perfect counterpart
of the Hilbert-space analysis. Indeed, by introducing a
proper mapping,15, 16 one can find a one-to-one correspon-
dence between the expressions of quantities such as atomic
populations and bond orders,5 energy components,17–19 or
local spins,20 obtained in these two frameworks. Of course,
the actual values of these quantities derived from one or
another formalism differ. Moreover, the QTAIM analysis
may yield domains with so-called non-nuclear attractors,
which correspond to regions of the space with no nucleus
associated. Often, the appearance of a non-nuclear attractor
is an artifact of the basis set applied, such as in the case of
acetylene.21, 22 In such cases, it may be worth to use another
partitioning of the space.

When looking for an atom in a molecule, obviously we
are not merely interested in a subdivision of the 3D space
into atomic volumes, but rather in assigning different physi-
cal quantities to the individual atoms (or their groups). Any
physical quantity is expressed as the expectation value of
one-electron (two-electron) operators, and it can also be writ-
ten in terms of the integral over the space of the appro-
priate one-electron (two-electron) density functions. Hence,
the subdivision of the space into atomic regions naturally
leads to the decomposition of different physical quantities
into atomic (diatomic) terms that can be considered the
effective atomic (or diatomic) values of that physical quantity
within the molecule. This has been extensively accomplished
within the QTAIM framework, partly due to the special prop-
erties provided by the zero-flux condition, such as the local
fulfillment of the virial theorem.4 However, it has been shown
that one can obtain quantities such as atomic populations and
valences,5 energy components,17–19 or local spins20 for essen-
tially any atom in molecule definition. Similarly, the atom in

0021-9606/2013/138(21)/214107/9/$30.00 © 2013 AIP Publishing LLC138, 214107-1
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the molecule can also be characterized from the analysis of
the density matrix.23–25

Probably, the most appropriate entities that serve to char-
acterize the state of the atom within the molecule are the
so-called effective atomic orbitals (“effective AOs”).26–31 In
this approach, one obtains for each atom a set of orthogonal
atomic hybrids and their respective occupation numbers usu-
ally adding up to the net population of the atom. A remarkable
feature of this scheme is that, for a given molecular system,
irrespective of the basis set size applied in the calculation,
one in practice obtains the same number of significantly pop-
ulated atomic hybrids. This number has always been found
equal to the number of the orbitals in a classical minimal ba-
sis, which means that in this manner one obtains “effective
minimal basis sets” by performing a posteriori analyses of the
calculations (special provisions should be made in the case of
hypervalent systems). This happens to be the case even if no
atom-centered basis functions are used at all.31 These atomic
hybrids closely mimic the core and valence shells of the atom,
as anticipated on the basis of classical notions of electron con-
figuration of the atom/fragment within the molecule.

This formalism was first introduced nearly two decades
ago in the framework of Hilbert-space analysis,27 and then it
was generalized for an arbitrary Hermitian bilinear “localiza-
tion functional.”28 It was applied to the case of “fuzzy” atoms
a few years ago.30 It had also been formulated in the context
of Bader’s QTAIM,29 but until now that version was never
actually realized.

When the atoms are associated with non-overlapping do-
mains, as is the case of Bader’s QTAIM, the “effective AOs”
have special properties that make them very appealing from
both conceptual and practical points of view, as will be shown
later on. The first feature is that the “effective AOs” associ-
ated to different atoms are also orthogonal, as a direct conse-
quence of not sharing at all the physical space. Also, because
the atoms are not allowed to overlap, the atom’s net and gross
populations are equal. In other words, the sum of the occupa-
tion numbers of the “effective AOs” of a given atom is equal
to its atomic population.

It is fair to note that the formalism of the domain-
averaged Fermi hole analysis32, 33 (DAFH) also produces or-
bital functions in the framework of QTAIM (or other AIM
schemes). With the DAFH analysis, one first obtains a set of
domain orbitals and orbitals occupancies, that have their ori-
gin in the average of the exchange-correlation density over a
space domain, typically the union of several atomic domains.
These orbitals are then localized via a non-unitary isopycnic
transformation,34 leading to a new set of objects that are inter-
preted in terms of bonding orbitals, lone pairs, and dangling
valences. Even though their origin is different, the DAFH and
“effective AO” analyses share some similarities, particularly
when the DAFH analysis is carried out over a single atomic
domain. In fact, in the restricted single-determinant case the
orbitals before isopycnic localization, sometimes denoted as
domain natural orbitals,33 are exactly the same as the original
“effective AOs.”29

The special features of the “effective AOs” in the frame-
work of QTAIM (or any disjoint partition of the space in
general) suggests that they could be used as (numerical)

atomic basin-centered orthogonal basis set, in which the ac-
tual molecular orbitals of the molecule can be expanded. Fur-
thermore, since the “effective AOs” can be obtained even if
no atomic basis functions are used at all31 (e.g., plane wave
calculations), this formalism can be used to actually retrieve
from such type of calculations a proper set of orthogonal
atomic basis functions.

Of course, the fact that the molecular orbitals can be ex-
pressed as a linear combination of an alternative set of basis
functions, even if it is orthonormal and has a reduced num-
ber of functions, adds no special chemical relevance per se.
But, as we show in the “Theoretical Methods” section, in this
particular basis, the Hilbert-space and 3D space analyses turn
out to be fully equivalent numerically. Thus, the Mulliken
population analysis of the density carried out on the basis of
“effective AOs” exactly reproduces the original QTAIM
atomic populations of the atoms.

In other words, these “effective AOs” appear to be the
genuine atomic orbitals of Bader’s theory, perhaps one of the
few ingredients missing in QTAIM’s toolbox.

THEORETICAL METHODS

Let us consider a system with n orthonormalized doubly
occupied orbitals ϕi(�r), i = 1, 2. . . , n, and the division of the
3D space into Nat disjunct atomic domains �A defined, e.g.,
by Bader’s “topological” QTAIM method. Let us for each
atom A (A = 1, 2, . . . , Nat) form the n × n Hermitian matrix
QA with the elements

QA
ij =

∫
�A

ϕ∗
i (�r)ϕj (�r)dv. (1)

Matrix QA is essentially the “atomic overlap matrix” in the
basis of the MOs ϕi.

Furthermore, for each atom A we define the “intraatomic”
part ϕA

i of every MO ϕi as

ϕA
i (�r) =

{
ϕi(�r) if �r ∈ �A;

0 if �r �∈ �A.
(2)

Thus,

QA
ij = 〈ϕA

i |ϕA
j 〉, (3)

i.e., QA is the overlap matrix of the orbitals ϕA
i .

Owing to the disjunct character of the atomic domains,
one obviously has

ϕi(�r) =
Nat∑
A

ϕA
i (�r). (4)

We diagonalize the Hermitian matrix QA by the unitary
matrix UA

UA†QAUA = �A = diag{λA
i }. (5)

It can be shown that every λA
i ≥ 0, as is the case for every

overlap matrix.
For each atom A, we can define nA (nA ≤ n) “effec-

tive atomic orbitals” χA
μ (�r) as linear combinations of the
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“intraatomic” parts ϕA
i (�r) of the MOs as

χA
μ (�r) = 1√

λA
μ

n∑
i=1

UA
iμϕA

i (�r) ; μ = 1, 2, . . . , nA, (6)

where nA is the number of non-zero eigenvalues λA
i .

One may consider rewriting the original MOs as linear
combinations of the set of “effective AOs” with non-zero
eigenvalue of different atoms, with the appealing result that
the atomic populations calculated by the Hilbert-space anal-
ysis in the basis of the “effective AOs” are equal to those
obtained by the 3D AIM analysis. The proof is given in
Appendix A. Similarly, it can be seen that the classical Wiberg
bond orders index calculated on the orthogonal basis of “ef-
fective AOs” exactly coincides with the bond orders15 or
(delocalization indices35).

In practice, the dimension of the “effective AO” basis has
nothing to do with the dimension of the LCAO basis (if any)
used in the original calculation. Equation (6) indicates that the
maximum number of “effective AOs” that can be obtained is
Nat × n, which can be both less or more than the total number
of the LCAO basis functions. Indeed, the proof provided in
Appendix A considers up to n “effective AOs” per atom.

Moreover, experience shows that the number of “effec-
tive AOs” with significant occupation numbers on each atom
is limited, and typically much smaller than the number n of
the doubly occupied orbitals in the whole molecule. The re-
maining “effective AOs” with very small occupation numbers
should have a marginal significance. Thus, one may think over
expressing the molecular orbitals, to a good approximation as
a linear combination of a (numerical) atomic basis set build
up from a subset of the “effective AOs” (selected by an oc-
cupation number criterion), in an expansion similar to that of
Eq. (A3) but with nA < n. Since only a limited number (com-
pared to the number of basis functions) of “effective AOs”
typically exhibit significant occupation numbers, each molec-
ular orbital could be expressed as a linear combination of a
much reduced set of orthogonal basis functions with distinct
atomic character, which may permit a much simpler analysis
in chemical terms, specially when the MOs are expanded over
an extended AO basis.

In order to obtain the new LCAO coefficients, one can
make use of the singular value decomposition (SVD) tech-
nique to perform a pairing between the set of “effective AOs”
from one side, and the set of doubly occupied MOs from the
other. The procedure is described in Appendix B. In the Re-
sults and Discussion section, we will illustrate numerically
how by this SVD process one can produce highly accurate
atomic populations using a very much reduced set of “effec-
tive AOs.” That is, the MOs can be expanded to a good ap-
proximation in terms of a minimal basis of “effective AOs.”

Finally, it is worth to note that the scheme described
above is not only applicable in the single-determinant closed-
shell case. As noted by one of us,28 the “effective AOs” of
atom A can also be obtained from the diagonalization of the
matrix PSA, where P is the LCAO density matrix and SA is
the atomic overlap matrix in the actual (AO or MO) basis. (In
the single determinant case, if the dimension of the atomic
basis applied is greater than the number of the occupied or-

bitals, there will be an appropriate number of strictly zero
eigenvalues.)

This alternative also permits the straightforward gen-
eralization of the method both to the unrestricted single-
determinant case and the correlated level, from which the P
matrix is readily available. In that case, the SVD method can
also be applied with some necessary adjustments, as indicated
in Appendix B.

COMPUTATIONAL DETAILS

We have obtained the “effective AOs” in the framework
of QTAIM for a series of molecules for illustrative purposes.
The analysis has been performed by our program apost-3D.36

The program includes a version of the grid-based scheme
proposed by Rodríguez et al.37 to integrate over atomic do-
mains without the explicit calculation of the zero-flux surface.
For the orbital plots, we have generated relatively large cubic
atom-centered grids of 60 × 60 × 60 points. The truncated
nature of these orbitals makes rather difficult to obtain high-
quality plots. An isosurface value of 0.15 has been used for
all plots.

The ab initio calculations have been carried out with
GAUSSIAN 0338 program, employing the B3LYP density
functional combined with cc-pVTZ basis set, unless other-
wise indicated. For the triradical nitrene of Figure 6, we have
also obtained the wavefunction at the complete active space
self-consistent field (CASSCF) level of theory with an ac-
tive space composed by 9 electrons and 9 orbitals. The active
space includes the six orbitals of the π system of the ring,
the σ orbital of the radical carbon, and the σ and π orbitals
on the nitrogen atom. All calculations have been carried out
at the geometrical structure of the molecules optimized at the
current level of theory.

RESULTS AND DISCUSSION

Figure 1 depicts the “effective AOs” obtained for the C
atom of methane. The corresponding occupation number is in-
dicated below each orbital plot. As in methane there are only
five doubly occupied MOs (in the single-determinant descrip-
tion), one can obtain up to five “effective AOs” for each atom.
Thus, in this case there appear no weakly occupied ones on
the carbon.

The first orbital can be clearly identified as a core 1s-type
orbital with an occupation number of 2.000. The next “ef-
fective AO” is a 2s-type orbital, with an occupation number

FIG. 1. “Effective AOs” for C atom in methane and their occupation
numbers.
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FIG. 2. “Effective AO” for H atom in methane and its occupation number.

of 1.189. The last plot of Figure 1 corresponds to one of the
three degenerated (in the present context we use this term to
denote orbitals with the same occupation numbers) 2p-type
atomic orbitals.

The main feature of the “effective AOs” is that they are
completely confined within the corresponding atomic domain,
i.e., in this case they are strictly cut at the boundary limit of
the Bader atom. We have chosen a relatively small isocontour
value on the plots to highlight this feature. The occupation
numbers are typically close to 2 for core orbitals or lone pairs,
while hybrids that are involved in bonding (valence “effective
AOs” ) present occupations that oscillate around 1, depending
upon how the atom is polarized by the presence of the neigh-
boring atoms. The most electronegative atoms exhibit higher
occupation numbers than the less electronegative ones. For
instance, for the CF4 molecule the “effective AOs” of the C
atom are strikingly similar to those of Figure 1 (only smaller
because the volume of the C atom is reduced), and only the
occupation numbers differ. In this case, the occupations of
the 2s- and 2p-type orbitals decrease to 0.444 and 0.296,
respectively.

In the case of the H atoms of methane, only the truncated
s-type orbital shown in Figure 2 has a significant occupation.
There are two additional “effective AOs” of p-type with much
lower occupations (less than 0.03, not shown).

The polarization of the H-atoms is already included in
the most populated effective AOs which (within the atomic

domain) need not to be pure s-functions. Similarly for carbon
atoms, although the number of effective AOs is the same as in
a minimal sp basis, the form of the orbitals may slightly devi-
ate from the ideal s or p, and reflect, therefore, the polarization
effects. The truncation of the orbitals, of course, introduces
another, much bigger, “polarization.”

The “effective AOs” with significant occupation numbers
of the C, N, and O atoms of fulminic acid (HCNO) are shown
in Figure 3. Again, five hybrids with non-negligible occupa-
tion numbers are obtained for each atom, associated to their
core and valence orbitals. The orbitals of all three atoms ex-
hibit similar shapes, and the occupation numbers of analogous
orbitals increase from C to O, following the increase of elec-
tronegativity. One can identify a 1s-type core orbital, with an
occupation close to 2 in all cases. A somewhat distorted 2s-
type orbital is also present in all atoms. Remarkably, a similar
orbital was also obtained for the C atom of the acetone from
a wavefunction expressed in terms of plane waves and in the
framework of the “fuzzy” atoms.31 The occupation number in
the case of the oxygen atom is almost 2, as the atomic do-
main has no boundary on the direction opposite to the nitro-
gen atom. Both carbon and nitrogen exhibit two boundaries,
so the corresponding hybrids are truncated from both sides. A
pair of degenerate 2p-type orbitals on each atom are involved
on the π system of this molecule. One can observe an appar-
ent correspondence between the hybrids on carbon and nitro-
gen atoms. Their respective occupation numbers reflect that
the atomic boundary between them is shifted towards the car-
bon atom. The two pairs of hybrids seem like “halves” (with
different shares) of a common C–N π bond. However, it is
worth to recall that they originate from two independent cal-
culations. Similar complementarity is also observed between
the two hybridized σ -type 2p-orbitals along the internuclear
axis of nitrogen and oxygen atoms, with occupations of 0.944
and 1.091, respectively.

The occupation number of the sixth “effective AO” of the
carbon atom is essentially zero (smaller than 0.01). In the oxy-
gen atom it is 0.03, but in the case of the nitrogen atom there

FIG. 3. “Effective AOs” and occupation numbers for the heavy atoms in fulminic acid.
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FIG. 4. Weakly occupied “effective AO” of the nitrogen atom of fulminic
acid.

is a pair of degenerate “effective AOs” with a more significant
occupation number of 0.133. This is a distinct manifestation
of the hypervalent character of nitrogen in this molecule. In
fact, Karadakov et al.39 already discussed this phenomenon
in this molecule with a rather involved analysis combining
valence-bond and CASSCF calculations.

The shape of this weakly occupied hybrid is shown in
Figure 4. It corresponds to a strongly polarized (its centroid
appears displaced from the nuclear position) d-type orbital in
a plane containing the four atoms, and with the proper orien-
tation in order to be involved in the pi-bonding system of the
molecule. Even though the occupation number is small, its
participation is necessary to explain how this nitrogen atom
can be involved in (formally) more than four covalent bonds
(three with the carbon atom and two with the oxygen atom).

Another example of hypervalent behaviour is given by
the sulfur atoms in the series CH3SOxCH3, x = 0, 1, 2. In this
case, occupation numbers of the “effective AOs” of the sulfur
atoms are displayed in Figure 5.

The first observation is that the sulfur atoms exhibit in
all cases five “effective AOs” with occupation number equal
to 2, that correspond to the doubly occupied 1s, 2s, 2p inner
shell. Inspection of the curve of the sulfur of dimethyl sulfide

FIG. 5. Occupation numbers (in descending order) of the “effective AOs” of
the sulfur atom of dimethyl sulfide, dimethyl sulfoxide, and dimethyl sulfone
molecules.

(squares) reveals the presence of two more almost doubly oc-
cupied hybrids, corresponding to lone pairs. The first has a
strong 3s character while the second one is of 3p-type, per-
pendicular to the plane formed by the sulfur and the two car-
bon atoms. The next two hybrids have an occupation close to
1 and are oriented towards the carbon atoms, indicating that
they are involved in the sulfur-carbon σ bonds. The occupa-
tions from the ninth hybrid drop to a very small value (∼0.05).
Hence, the number of “effective AOs” with significant occu-
pation number is again equal to the number of orbitals in the
classical minimal basis (nine orbitals for 3rd row elements).

The curve of dimethyl sulfoxide (diamonds) indicates
that there is only one lone pair. The 3p-type hybrid that in the
case of dimethyl sulfide corresponded to a lone pair, now ap-
pears oriented towards the oxygen atom with occupation num-
ber of 0.472. Such decrease in the occupation is caused by
the stronger electronegativity of the oxygen atom. The shape
of the two remaining hybrids involved in the sulfur-carbon σ

bonds is changed by the presence of the oxygen atom, but
their occupation numbers are remarkably similar to those ob-
tained in the case of dimethyl sulfide. In the inset of Figure 5,
one can see that in this case there appear two more“effective
AOs” with occupation numbers close to 0.10. These hybrids
are of d-type and contribute to provide a slight π character to
the sulfur-oxygen bonding. Similar to the case of the central
N atom in fulminic acid, the participation of these d-orbitals is
necessary to account for the formal double bond between the
S and O atoms. Finally, for the sulfur atom of the dimethyl
sulfone molecule there appear no doubly occupied valence
hybrids. Instead, the two hybrids that are to be involved in
the bonding with the oxygen atoms now exhibit occupations
of 0.482 and 0.381. Moreover, there is a larger number of
“effective AOs” with significant occupation numbers beyond
the valence shell. The inset of the figure shows that there are
essentially four hybrids of d-type that have a small but non-
negligible contribution. The occupation number of the fifth d-
type orbital (0.055) is very similar to that of the ninth hybrid
in the case of dimethyl sulfide molecule. Such a behaviour
is characteristic for the effective AOs of the hypervalent sul-
fur in the framework of the Hilbert space analysis, too; for an
early example see Ref. 27.

For illustrative purposes, we also consider a singular ni-
trene triradical40 molecule with a quartet ground state. We
have obtained the “effective AOs” from the wavefunctions
calculated for the quartet ground state at the CASSCF(9,9)
and B3LYP levels of theory. The respective occupation num-
bers for selected atoms (for their numeration see Fig. 6) are
gathered on Table I. The pictures of the orbitals do not differ
significantly and are not shown.

FIG. 6. Structure of the quartet fluorophenyl nitrene triradical.
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TABLE I. Occupation numbers (larger than 0.01) of selected atoms of the nitrene triradical (see Fig. 6) obtained at the B3LYP and CASSCF(9,9) (in paren-
theses) levels of theory.

Orbital C1 C3 C4 F1 N

1s 1.999 (1.999) 2.000 (2.000) 2.000 (2.000) 2.000 (2.000) 2.000 (2.000)
2s 1.131 (1.133) 1.295 (1.265) 1.074 (1.053) 1.998 (1.999) 1.991 (1.995)
2pa 0.916 (0.899) 0.969 (0.960) 0.862 (0.819) 1.914 (1.951) 1.144 (1.121)
2pb 0.845 (0.861) 0.865 (0.857) 0.793 (0.784) 1.942 (1.959) 0.983 (0.982)
2pc 0.342 (0.283) 0.769 (0.779) 0.584 (0.486) 1.639 (1.702) 1.349 (1.461)
d-type 0.034 (0.036) 0.039 (0.037) 0.032 (0.030) 0.061 (0.069) 0.034 (0.048)
d-type 0.030 (0.026) 0.018 (0.016) 0.029 (0.028) 0.044 (0.050) 0.032 (0.044)
d-type 0.027 (0.023) 0.013 (0.015) 0.027 (0.020) 0.027 (0.026) 0.012 (0.014)
d-type 0.025 (0.021) 0.011 (0.010) 0.017 (0.013)

aOut-of-plane.
bIn-plane.
cIn-plane towards the center of the ring.

The occupation numbers obtained with the two methods
are strikingly similar, not only between the strongly occu-
pied “effective AOs” but also between the weakly occupied
ones. The largest difference in the occupations is only about
0.10, found for a 2p hybrids of the N and C6 atoms. This indi-
cates a slight change in the polarity of the C4–N bond going
from B3LYP to CASSCF. Each of the atoms contributes to
the π system with roughly one electron except for F atoms,
in which the 2p “effective AOs” is essentially doubly occu-
pied (1.914). The 2p hybrids directed towards the center of
the ring exhibit different occupation numbers from one atom
to another. These “effective AOs” are the ones that are in-
volved in forming the σ -type C–F and C–N bonds, and the
radical center in C3. Thus, the occupation numbers of the
“effective AOs” for C4 and N (0.584 and 1.349) and for C1

and F (0.342 and 1.639) exhibit a good correspondence. That
close parallel between the unrestricted B3LYP and CASSCF
results may be understood if one takes into account that the
CASSCF method accounts for valence correlation only. The
use of a method which is able to account for the (basically
intra-atomic) angular correlation would perhaps make the re-
sults more complicated – but hardly lead to a different overall
picture.

The picture of Fig. 6 where one unpaired electron sits on
the C3 atom and two unpaired electrons sit on the N atom has
no straight correspondence with the “effective AO” analysis
given in Table I. In order to locate individual electrons (of a
given spin), one can obtain the “effective AOs” from the alpha
and beta densities separately.41

TABLE II. Occupation numbers of the valence “effective AOs” of the rad-
ical centers of the nitrene triradical (see Fig. 6) obtained at the B3LYP and
CASSCF(9,9) (in parentheses) levels of theory.

Orbital C3 alpha C3 beta N alpha N beta

2s 0.528 (0.506) 0.577 (0.566) 0.996 (0.997) 0.996 (0.997)
2pa 0.613 (0.651) 0.354 (0.309) 0.856 (0.854) 0.314 (0.287)
2pb 0.431 (0.419) 0.415 (0.419) 0.935 (0.952) 0.000 (0.000)
2pc 0.912 (0.936) 0.000 (0.000) 0.697 (0.723) 0.675 (0.723)

aOut-of-plane.
bIn-plane.
cIn-plane towards the center of the ring.

The respective occupation numbers for the two radical
centers are collected on Table II. Note that the values of
Table I are not exactly expressed as the sum of the occupa-
tion numbers of the alpha and beta contributions, as the “ef-
fective AOs” for each spin case are different. The differences
in the occupation numbers between B3LYP and CASSCF are
again minimal (less than 0.05). The radical center C3 is char-
acterized by an alpha “effective AO” with occupation close to
1, pointing outside the center of the ring. For the remaining
“effective AOs” of this atom, the alpha and beta occupation
numbers are similar, except for the out-of-plane hybrids form-
ing the π system of the molecule. In that case, the occupation
number of the alpha part almost doubles that of the beta. The
picture of the other radical center (N atom) is very similar.
The occupation numbers are in general larger than for the C3

atom, due to the more electronegative character of nitrogen.
There is a singly occupied “effective AO” of the alpha part,
that lies in the molecular plane, perpendicular to the C4–N
bond. But there is no singly occupied 2p orbital perpendic-
ular to the molecular plane. Instead, the occupation numbers
of these alpha and beta “effective AOs” are not too different
from those obtained for C3, and as a matter of fact, for the
rest of C atoms. Thus, the chemical picture that emerges from
the analysis of the “effective AOs” is that there are two σ -
type radical centers located on C3 and N atoms, but there is a
completely delocalized unpaired π -electron, as it is expected
for such a benzonoid species. This is in agreement with the
picture obtained from a local spin analysis.42

Finally, we illustrate how by the SVD procedure one can
expand the MOs to a very good accuracy using a reduced
subset of “effective AOs.” We have applied the method for
the alanine molecule computed with two different basis sets,
namely, the 6-31++G** and the cc-pVTZ. The results are
collected on Table III. We have used three different thresh-
olds for the occupation numbers to select the subset of “ef-
fective AOs.” For the cc-pVTZ basis set, up to 119 “effective
AOs” have occupation number above a threshold of 0.001.
This number decreases to just 71 for a threshold of 0.01, and
to just 37 for a threshold of 0.1. Indeed, for this molecule
the minimal basis set (1s for H atoms and 1s2s2p for the
rest) includes 37 atomic orbitals. Once the “effective AOs”
are selected, the SVD procedure is used to obtain the LCAO
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TABLE III. Accuracy of the SVD procedure for Ala molecule with two
basis sets (number of basis functions in parentheses). Ne indicates the number
of effective atomic orbitals with occupation number above the threshold. δ̄

and δmax are the average and maximum error in the atomic population values
after the SVD procedure.

6-31++G(d,p) cc-pVTZ
(156) (278)

Occ. number >0.001
Ne 114 119
δ̄ 8.9 × 10−4 8.8 × 10−4

δmax 1.9 × 10−3 1.6 × 10−3

Occ. number >0.01
Ne 69 71
δ̄ 7.6 × 10−3 7.3 × 10−3

δmax 1.7 × 10−2 1.6 × 10−2

Occ. number >0.1
Ne 37 37
δ̄ 3.2 × 10−2 3.1 × 10−2

δmax 9.8 × 10−2 8.9 × 10−2

coefficients of the MOs in the new numerical atomic basis.
Then, the atomic populations are calculated with classical
Mulliken population analysis on this basis set.

The δ̄ and δmax on Table III account for the average and
maximum error in the recomputed atomic populations, with
respect to those originally obtained by the 3D-space QTAIM
method. It is worth to recall that the total number of electrons
is conserved after this transformation. Thus, any lack of flex-
ibility of the numerical basis set to expand the MOs will be
translated in fluctuations of the atomic populations. With a
basis of 119 “effective AOs” the errors introduced are essen-
tially within the accuracy of the numerical integration. With a
basis of 71 elements, the average and maximum errors in the
atomic population are 0.007 and 0.016, respectively. In case
of using only the minimal basis set of 37 elements, the errors
increase but still one can see that the atomic populations can
be reproduced within 0.1 electrons. Interestingly, these results
appear to be almost independent of the original basis set.

It is worth to note that the use of the “effective AOs”
as a numerical basis set is not restricted to the framework of
QTAIM of disjunct atomic domains. In fact, in the framework
of “fuzzy” atoms the “effective AOs” do not strictly form an
orthogonal basis set but on the other hand they can be used to
construct in a systematic manner numerical basis sets of in-
creasing accuracy for atoms (or functional groups), that could
be used in fully numerical43 ab initio calculations. Of course,
one should expect that in the case of correlated methods the
size of the numerical basis set should be larger, for a better
description of the virtual orbitals.

CONCLUSIONS

The “effective AOs” have been realized in the framework
of Bader’s QTAIM. This formalism can be used to retrieve
from any type of calculation a proper set of orthogonal atomic
basis functions. They form an orthonormalized set of numer-
ical atomic orbitals, with occupation numbers that sum up to
the respective QTAIM atomic populations. Importantly, only

a limited number of “effective AOs” exhibit significant oc-
cupation numbers, i.e., these atomic hybrids closely mimic
the core and valence shells of the atom. In the case of hyper-
valent atoms, there appear additional hybrids with small but
non-negligible occupation numbers.

We have shown that the MOs can be exactly expressed as
a linear combination of this orthonormalized set of numerical
atomic orbitals. Moreover, the Mulliken population analysis
carried out on the basis of “effective AOs” exactly reproduces
the original QTAIM atomic populations of the atoms. Ap-
proximate expansion of the MOs over a much reduced set of
orthogonal atomic basis functions can also be accomplished
to a very good accuracy with a SVD procedure.

Thus, this shows that there is nothing fundamentally in-
appropriate with a Hilbert-space based population analysis.
The flaws of the classical Mulliken populations are rooted in
the use of unsuitable atomic basis functions, not in its mathe-
matical framework.44
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APPENDIX A: EQUIVALENCE OF HILBERT-SPACE
ANALYSIS IN THE BASIS OF EFFECTIVE AOs AND
QTAIM ANALYSIS

By virtue of the definition (2), orbitals χA
μ (�r) differ from

zero only in the atomic domain of atom A. They are orthonor-
malized

〈
χA

μ

∣∣χA
ν

〉 =
〈

1√
λA

μ

n∑
i=1

UA
iμϕA

i

∣∣∣∣∣∣
1√
λA

ν

n∑
j=1

UA
jνϕ

A
j

〉

= 1√
λA

μλA
ν

n∑
i,j=1

(UA†)μiQ
A
ijU

A
jν

= 1√
λA

μλA
ν

λA
μδμν = δμν (A1)

as a consequence of the eigenvalue equation (5). In fact,
orbitals χA

μ represent the functions obtained by performing
Löwdin’s “canonic” orthogonalization of the functions ϕA

i .
(Not to be confused with the usual Löwdin-orthogonalization
performed by using matrix S−1/2.)
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Relationship (6) can be trivially inverted, and one gets

ϕA
j =

nA∑
μ=1

UA∗
jμ

√
λA

μχA
μ . (A2)

Owing to this result and Eq. (4), the MOs can be written as
linear combinations of the “effective AOs” of different atoms

ϕi =
Nat∑
A

nA∑
μ=1

UA∗
iμ

√
λA

μχA
μ . (A3)

Thus, our analysis of the behaviour of the molecular orbitals
in the different atomic domains resulted in a special LCAO
expansion of the molecular orbitals. One can also introduce a
continuous numbering of the basis orbitals, and write

ϕi =
m∑

ν=1

Cνiχν, (A4)

where the overall dimension of the “effective AO” basis is

m =
Nat∑
A=1

nA, (A5)

and the orbitals χν with ν ≤ n1 are attributed to atom with
number A = 1, those with n1 + 1 ≤ ν ≤ n1 + n2 to atom
A = 2, and so on, For the LCAO coefficients Cνi, one obvi-
ously has

Cνi = UA∗
iμ

√
λA

μ. (A6)

If orbital χν belongs to atom A, then subscripts μ and ν are
trivially related as

μ = ν −
A−1∑
B=1

nB. (A7)

Owing to the orthogonality relationship (A1) and the disjunct
character of the atomic basins, the orbitals χν , ν = 1, 2, . . . , m
form an orthonormalized basis. Therefore, there are no over-
lap populations, and Mulliken’s net and gross populations co-
incide. Thus, the Hilbert space or LCAO population of atom
A in terms of the “effective atomic orbitals” is given by the
sum of the diagonal density matrix elements for the orbitals
belonging to that atom

QLCAO
A =

∑
ν∈A

Dνν = 2
n∑

i=1

∑
ν∈A

|Cνi |2=2
n∑

i=1

nA∑
μ=1

∣∣UA∗
iμ

√
λμ

∣∣2

= 2
n∑

i=1

nA∑
μ=1

UA
iμUA∗

iμ λμ =
n∑

i=1

nA∑
μ,ν=1

UA
iμUA∗

iν λμδμν

=
n∑

i=1

n∑
μ,ν=1

UA
iμ�μν(UA†)νi

= 2
n∑

i=1

(UA�AUA†)ii = 2
n∑

i=1

QA
ii, (A8)

where the inverse of Eq. (5) has been utilized. (The summa-
tion limit for μ, ν was increased from nA to n because that
meant only adding terms containing factors λμ = 0.)

The AIM population of atom A is given by

QAIM
A =

∫
�A

ρ(�r)dv = 2
∫

�A

n∑
i=1

|ϕi(�r)|2dv

= 2
n∑

i=1

∫
�A

|ϕi(�r)|2dv = 2
n∑

i=1

QA
ii . (A9)

Comparing Eqs. (A8) and (A9), we see that

QLCAO
A = QAIM

A , (A10)

i.e., the atomic population calculated by the Hilbert-space
analysis in the basis of the “effective AOs” is equal to that
obtained by the 3D AIM analysis.

APPENDIX B: APPROXIMATE EXPANSION OF THE
MOs IN THE BASIS OF “EFFECTIVE AOs”

Let us consider those “effective AOs” χA
μ , A = 1, 2,

. . . Nat which meet some criterion λA
μ ≥ t ≥ 0. Let their ef-

fective number be neff. In order to get an (approximate) ex-
pansion of the MOs, we should take enough “effective AOs,”
so it must be neff ≥ n.

Now we build the rectangular neff × n matrix Z, with
elements

Zμi = 〈χμ|ϕi〉. (B1)

With the SVD, the rectangular matrix is transformed as

U†ZV = �, (B2)

where U and V are unitary matrices of dimension neff × neff

and n × n, respectively, and � is a rectangular diagonal matrix
containing the singular values ξ i of Z. From the definition of
matrix Z and using Eq. (B2), one can write

neff∑
μ

n∑
j

U ∗
μi〈χμ|ϕj 〉Vji = ξi, (B3)

that is, the singular value ξ i is the overlap between the
function

ψi =
neff∑
μ=1

Uμiχμ, (B4)

which is a linear combination of the “effective AOs” and

ϕ′
i =

n∑
μ=1

Vjiϕj , (B5)

representing a molecular orbital after performing a unitary
transformation with the matrix V.

If ξ i = 1, the two functions have an overlap equal one,
ψ i and ϕ′

i are essentially (“almost everywhere”) equal to each
other, and one can write

ϕ′
i =

neff∑
μ

Uμiχμ. (B6)

That is, the columns of the unitary matrix U contain the
LCAO coefficients of each rotated MO in the orthogonal basis
of “effective AOs.”
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If ξ i is close to, but not exactly equal one, Eq. (B6)
represents an approximation to the (rotated) molecular
orbital. Under these circumstances, Eq. (A10) is no longer
strictly fulfilled but, since these approximated MOs form an
orthonormalized set, the number of electrons is conserved.
(The “effective AOs” χμ are orthonormalized and matrix U
is unitary, so we have n orthonormalized approximate MOs
ϕ′

i , so the closed shell determinant wavefunction constructed
by their use carries exactly as many electrons as the original
wavefunction containing the orbitals ϕi.)

Finally, the SVD method can also be applied in practice
beyond doubly occupied orbitals. First of all, in order to re-
duce the dimensionality of the problem, it is worth to consider
the natural orbital representation, ψnat

i , and thus perform the
pairing between the set of “effective AOs” on one side and a
reduced number of natural orbitals, nocc (chosen again by an
occupation number criterion). After the SVD process, each
rotated natural orbital is identified with a linear combination
of “effective AOs,” as in the previous case

nocc∑
j

Vjiψ
nat
j

∼=
neff∑
μ

Uμiχμ. (B7)

However, now it is more convenient to have the connection di-
rectly with the original set of natural orbitals, where the den-
sity matrix is diagonal. Multiplying Eq. (B7) by the matrix
element (V†)ik = V ∗

ki , and summing up over i, one gets

ψnat
k

∼=
neff∑
μ

nocc∑
i

Uμi(V†)ikχμ =
neff∑
μ

Wμkχμ, (B8)

where now the columns of matrix W = UV† gather the (ap-
proximate) LCAO coefficients of the original subset of natural
molecular orbitals over the “effective AO” basis.
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6.2 Oxidation states from wave function
analysis
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Chapter 7

The elusive [Cu3S2]3+ core: a
case of study

7.1 Bonding quandary in the [Cu3S2]3+ core:
insights from the analysis of domain aver-
aged Fermi holes and the local spin
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Abstract 

The electronic structure of the trinuclear symmetric complex [(tmedaCu)3S2 ]3+, whose Cu3S2 core 
represents a model of the active site of metalloenzymes involved in biological processes, has been in 
recent years the subject of vigorous debate. The complex exists as an open-shell triplet, and 
discussions concerned the question whether there is a direct S–S bond in the [Cu3S2]3+ core, whose 
answer is closely related to the problem of the formal oxidation state of Cu atoms. In order to 
contribute to the elucidation of the serious differences in the conclusions of earlier studies, we 
report in this study the detailed comprehensive analysis of the electronic structure of the [Cu3S2]3+ 
core using the methodologies that are specifically designed to address three particular aspects of the 
bonding in the core of the above complex, namely, the presence and/or absence of direct S–S bond, 
the existence and the nature of spin–spin interactions among the atoms in the core, and the formal 
oxidation state of Cu atoms in the core. Using such a combined approach, it was possible to conclude 
that the picture of bonding consistently indicates the existence of a weak direct two-center–three-
electron (2c–3e) S–S bond, but at the same time, the observed lack of any significant local spin in the 
core of the complex is at odds with the suggested existence of antiferromagnetic coupling among 
the Cu and S atoms, so that the peculiarities of the bonding in the complex seem to be due to 
extensive delocalization of the unpaired spin in the [Cu3S2]3+ core. Finally, a scrutiny of the effective 
atomic hybrids and their occupations points to a predominant formal CuII oxidation state, with a 
weak contribution of partial CuI character induced mainly by the partial flow of electrons from S to 
Cu atoms and high delocalization of the unpaired spin in the [Cu3S2]3+ core. 
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Chapter 8

Computer implementation:
APOST-3D program

The new methods developed in this thesis have been implemented in a new
program called APOST-3D.89 The origins of the new software were the ex-
isting codes AFUZZY90 and ENPART.91 The former was devised to compute
charges, bond orders, overlap populations and valences alongside with effective
atomic orbitals in the framework of the “fuzzy” atoms. The latter was designed
to compute energy partitioning for fuzzy atoms for either density functional
theory and wave function methods. Both programs were written in our labora-
tory by Pedro Salvador and have been recently united to release APOST-3D.
The abovementioned AFUZZY and ENPART, as well as a number of other
programs produced by Prof. I. Mayer have been made available to the sci-
entific community on the webpage http://occam.chemres.hu/programs/. The
present APOST-3D code will also be made available in the near future, along
with a short manual.

The main feature of APOST-3D is that it performs fast numerical integrations
of one- and two-electron functions that can be easily split into atomic or di-
atomic domains. Nowadays it can perform integration over atomic domains
using different atomic definitions such as Hirshfeld, Hirshfeld-Iterative, Becke,
Becke-rho, TFVC and QTAIM. The program can be used to compute atomic
populations, bond orders or delocalization indexes, free-valences, molecular en-
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ergy partitions, local spins, effective atomic orbitals, effective oxidation states,
conceptual DFT indexes, among other chemical properties.

The features of the program that have been implemented during the course of
this thesis are the following

Atom in Molecule Definitions: We have implemented a version of the grid-
based scheme proposed by Rodriguez92 to integrate over QTAIM’s atomic do-
mains without the explicit calculation of the zero-flux surface. The new TFVC
described has also been included in the software. We have also added a proper
mapping between the atomic overlap matrices used in the framework of 3D-
space analysis and their Hilbert-space analogues, such as Mulliken and Löwdin.
In this sense, we are able to use the same algorithms for both Hilbert-space
and 3D-space analysis.

Local Spin Analysis: All the decompositions for the local spin that have
appeared in the literature since the first one proposed by Clark and Davidson
are implemented in APOST-3D. By default the program computes the decom-
position described in Chapters 6-7 as it is the only one which fulfills all the
physical requirements imposed to date. To perform the local spin analysis for
correlated wave functions the 2-RDM is needed and most of the commercial
ab initio packages do not generate these matrices. To this end we have made
use of the DMN program by Matito and Feixas. Our algorithm to perform the
local spin analysis reads and processes the 2-RDM elements on the fly since
the 2-RDM does not need to be saved in memory.

Effective Atomic Orbitals: A spin resolved version of the eff-AOs has been
implemented. Morever, taking advantage of the QTAIM algorithm described
above we have included the possibility to generate Cube files to plot the eff-
AOs generated under the QTAIM framework. We have included a singular
value decomposition approach to expand (approximately) the MOs on a re-
duced set of eff-AOs.
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Oxidation States: We have implemented the algorithm to compute effective
oxidation states (EOS) and the confidence index of the assignation. Moreover,
in order to apply the EOS for large ligands, we have included the possibility
to perform the eff-AOs for fragments instead of single atoms.





Chapter 9

Results and discussion

Hereinafter the main results from Chapters 3-7 will be summarized. For the
sake of simplicity we have divided this Chapter in five main parts. The first
part deals with the new atom in molecule definition presented in Chapter 3.
In the second part the new formulation of the local spin is presented and its
main properties are outlined (Chapter 4). In the third part we summarize
the applications of the local spin analysis. From one side the relation between
the local spin and the chemical bond is established, and from the other side
we discuss the ability of the local spin analysis to characterize and quantify
the polyradical character (Chapter 5). In the fourth part we collect the main
achievements concerning the derivation of oxidation states from wave function
analysis, relying on the information provided by the eff-AO analysis of atoms
and molecular fragments. In the last part we summarize the results of the
application of the local spin, eff-AO and DAFH methodologies to a challenging
molecular system, namely the [Cu3S2]3+ core.

9.1 On the definition of a new “fuzzy” atom
scheme

Atoms are the building blocks of chemistry. Even when dealing with quantum
mechanics, where the atom is not an observable, theoretical and computational
chemists have the need to invoke the classical idea of atom in a molecule in

179



180 CHAPTER 9. RESULTS AND DISCUSSION

order to establish bridges between quantum and classical chemical concepts.

Several atom in molecules definitions have been reviewed in the introduction
of this thesis. Bader’s QTAIM is one of the most used but it is also one of
the computationally most expensive. Fuzzy-atom partitions have emerged as
a computationally cheaper alternative to QTAIM. The combination of Becke’s
atoms and the information provided by the topology of the density led to the
Becke-ρ atomic definition. This atom definition provides results quantitatively
similar to those obtained with Bader’s topological atoms. However, the orig-
inal Becke atom definition has an inherent limitation that affects atom pairs
with very different size and electronegativity. In particular, it can not accom-
modate shifts in the interatomic boundaries between atoms whose relative size
exceeds a value of 2.41.(It is important to recall here that the limitation was
already noted by Becke in his original manuscript but had passed unperceived).

Chapter 3 reviews the fuzzy atomic Voronoi cells introduced by Becke, and the
Becke-ρ scheme. The limitation of Becke’s scheme is explained in detail and a
modification of the original formulation is proposed to prevent the above men-
tioned limitation. The proposed modification (eq. (9.1)) affected the trans-
formation of the atomic pair coordinate µAB, needed to account for different
atomic sizes in heteronuclear systems. The new transformed coordinate reads
as follows

ν
′

AB = 1 + µAB − χAB(1− µAB)
1 + µAB + χAB(1− µAB) , (9.1)

where χAB accounts for the relative size of atoms A and B.

The new transformed coordinate fulfills all the original criteria of Becke’s for-
mulation and it is monotonic for any value of χAB. In the implementation of
the new scheme, called Topological Fuzzy Voronoi Cells (TFVC), we have cho-
sen a stiffness parameter k = 4. Parameter k controls the shape of the atom
pair cutoff profile. Interestingly, a modest grid of 40 radial and 146 angular
points per atoms is needed to achieve a total number of electrons with an error
of ca. 10−3. For the sake of comparison recent implementations of QTAIM
integrations use up to 0.87 million grid points per atom. Moreover, TFVC
scales linearly with the total number of grid points.
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Figure 9.1: QTAIM vs TFVC atomic charges for the molecular set described
in Chapter 3.

Contrary to the Becke-ρ scheme, TFVC fully avoids the use of a fixed set of
atomic radii. We introduce an additional criterion, so that a given pair of
atoms are not considered as neighbors if their middle point is closer to a third
nucleus or a NNA of the molecular system. An important feature of TFVC is
that a NNA can be either ignored or incorporated in the analysis, by defining
a new Voronoi cell.

Figures (9.1) and (9.2) display the correlation between the partial atomic
charges and DIs of a set of molecules (essentially a series of hydrides) at the
B3LYP/cc-pVTZ level. As indicated by the R2 and the slope values the agree-
ment between TFVC and QTAIM charges and DIs is very good. The mean
unsigned error between TFCV and QTAIM is 0.12 for charges and 0.06 for
DI’s.

A clear difference between QTAIM and TFVC schemes is that in the latter
the cell boundaries are described by planes, while in the former are typically
curved. This difference does not seem to affect the agreement between the
two atomic definitions in most cases. For instance, in the case of H2O (see fig.
(9.3)) the curvature of the zero-flux surface is very pronounced so the shape of
the QTAIM and TFVC atoms is quite different. Yet, the integrated electron



182 CHAPTER 9. RESULTS AND DISCUSSION

Figure 9.2: QTAIM vs TFVC delocalization indices for the molecular set de-
scribed in Chapter 3.

populations are strikingly close. The same occurs with hydrogen fluoride. On
the other hand, in H2S (see fig. (9.4)) the shape of the QTAIM and TFVC
boundaries are quite alike but the differences in the integrated quantities are
significant (almost 1 e for the S atom). To sum up, TFVC and QTAIM reach
its greater divergence when electron density is high and flat in the interatomic
region.

TFVC have also been tested for the decomposition of the Hartree-Fock molec-
ular energy. It has been compared against QTAIM and the original Becke-ρ
scheme. The value of the Laplacian of the density integrated over atomic do-
mains (an indicator of the fulfillment of the zero flux condition within QTAIM)
is ca. 10−2 for TFCV, ca. 10−1 for Becke-ρ and ca. 10−4 for typical numer-
ical implementations of QTAIM. The differences of the integrated Laplacian
between the methods does not seem to influence too much the values of the
energy contributions. In general, the TFVC integrated energy contributions
are much closer to QTAIM than the Becke-ρ ones.
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Figure 9.3: Voronoi cell boundary (dashed line) and interatomic surface paths
(red lines) for H2O in the molecular plane.

Figure 9.4: Voronoi cell boundary (dashed line) and interatomic surface paths
(red lines) for H2S in the molecular plane.
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9.2 On the proper definition of local spin

The spin density is usually the most used tool to characterize the spin proper-
ties of molecular systems. However, in the case of singlet diradicals, antiferro-
magnets or dissociation processes of molecules the spin density is not sufficient
to describe the physical situation as ρs(~r) = 0 for any pure singlet. A proper
spin description of these systems can only be done with multideterminant wave
functions or by broken symmetry approaches.

An alternative to the spin density is the local spin analysis. These proce-
dures consists on the decomposition of 〈 Ŝ 2〉 as a sum of atomic and diatomic
contributions:

〈 Ŝ 2〉 =
∑
A

〈 Ŝ 2〉A +
∑

A,B 6=A
〈 Ŝ 2〉AB. (9.2)

Several formulations of the local spin have been proposed to date. Because
there are in principle infinite ways to decompose 〈 Ŝ 2〉 into atomic and diatomic
terms, a number of physical requirements have been introduced, namely
(i) One should obtain no spins for covalent systems described by a closed-shell
RHF wave function using doubly filled orbitals.

(ii) If the wave function is properly dissociating, the asymptotic values of the
atomic spins obtained for the atoms at large distances should coincide with
the corresponding values of the free atoms.

(iii) The formula used for a general wave function should reduce to that used
in the single-determinant case if applied to single-determinant wave functions.

(iv) In an open-shell system the overall 〈 Ŝ 2〉 does not depend on the actual Ŝz
projection of the electronic state considered (mS value), so one may request to
have 〈 Ŝ 2〉 components that do not depend on mS either.

We have shown that these requirements are not sufficient to define a unique
formulation of the local spin. Actually, there is a continuum of formulations
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that fulfill the requirements above mentioned. To see that, let us write the
expectation value of Ŝ 2 for an N electron system as

〈 Ŝ 2〉 = 3
4

∫
ρ(~r1;~r1)d~r1 −

1
4

∫ ∫
ρ2(~r1, ~r2;~r1, ~r2)d~r1d~r2

−1
2

∫ ∫
ρ2(~r1, ~r2;~r2, ~r1)d~r1d~r2. (9.3)

Expressing the 2-RDM in terms of the 1-RDM, the spin density, and the cu-
mulant or the 2-RDM one obtains

〈 Ŝ 2〉 = 3
4

∫
ρ(~r1)d~r1 −

3
8

∫∫
ρ(~r1;~r2)ρ(~r2;~r1)d~r1d~r2

+1
8

∫∫
ρs(~r1;~r2)ρs(~r2;~r1)d~r1d~r2 + 1

4

∫
ρs(~r1)d~r1

∫
ρs(~r2)d~r2

−1
4

∫∫
Γ(~r1, ~r2)d~r1d~r2 −

1
2

∫∫
Γ(~r1, ~r2;~r2, ~r1)d~r1d~r2. (9.4)

The spin density and the cumulants vanish for single-determinant restricted
wave functions. However, the first and second terms on the r.h.s. of eq. (9.4)
can be decomposed into nonzero one-center and one- and two-center contribu-
tions respectively, thus not satisfying condition i).

By using the definition of the effectively unpaired electron density u(~r) , eq.
(9.4) can be transformed to

〈 Ŝ 2〉 = 3
8

∫
u(~r1)d~r1 −

1
4

∫∫ [
Γ(~r1, ~r2)− 1

2ρ
s(~r1;~r2)ρs(~r2;~r1)

]
d~r1d~r2

−1
2

∫∫ [
Γ(~r1, ~r2;~r2, ~r1)− 1

2ρ
s(~r1;~r1)ρs(~r2;~r2)

]
d~r1d~r2. (9.5)

All the terms of the r.h.s. of eq. (9.5) vanish for single-determinant restricted
wave functions. Moreover, since u(~r1) and

Γ(~r1, ~r2;~r′1, ~r′2)− 1
2ρ

s(~r1;~r′2)ρs(~r2;~r′1)

are spin-independent quantities, eq. (9.5) is the appropriate starting point to
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derive a decomposition fulfilling conditions i)-iv). Using the relationship

∫ [
Γ(~r1, ~r2)− 1

2ρ
s(~r1;~r2)ρs(~r2;~r1)

]
d~r2 = −1

2u(~r1) (9.6)

the first two terms of the r.h.s. of eq. (9.5) can be modulated in terms of a
parameter a and obtain a general expression like

〈 Ŝ 2〉 = a
∫
u(~r1)d~r1 − (1− 2a)

∫∫ [
Γ(~r1, ~r2)− 1

2ρ
s(~r1;~r2)ρs(~r2;~r1)

]
d~r1d~r2

−1
2

∫∫ [
Γ(~r1, ~r2;~r2, ~r1)− 1

2ρ
s(~r1;~r1)ρs(~r2;~r2)

]
d~r1d~r2. (9.7)

Within the 3D-space analysis the atomic and diatomic spin components from
eq. (9.7) can be obtained by introducing a non-negative weight function wA,
with

〈 Ŝ 2〉A = a
∫
wA(~r1)u(~r1)d~r1 − (1− 2a)

∫ ∫
wA(~r1)wA(~r2)

×
[
Γ(~r1, ~r2)− 1

2ρ
s(~r1;~r2)ρs(~r2;~r1)

]
d~r1d~r2 (9.8)

−1
2

∫ ∫
wA(~r1)wA(~r2)

[
Γ(~r1, ~r2;~r2, ~r1)− 1

2ρ
s(~r1;~r1)ρs(~r2;~r2)

]
d~r1d~r2

and

〈 Ŝ 2〉AB = − (1− 2a)
∫ ∫

wA(~r1)wB(~r2)
[
Γ(~r1, ~r2)− 1

2ρ
s(~r1;~r2)ρs(~r2;~r1)

]
d~r1d~r2

−1
2

∫ ∫
wA(~r1)wB(~r2)

[
Γ(~r1, ~r2;~r2, ~r1)− 1

2ρ
s(~r1;~r1)ρs(~r2;~r2)

]
d~r1d~r2, (9.9)

leading to a continuum of decompositions of 〈 Ŝ 2〉 fulfilling all requirements.
We have introduced an additional criterion to select one formulation from the
continuum. The criterion is based on the beaviour of eqs. (9.8) and (9.9)
when applied to a one-electron system. The value 〈 Ŝ 2〉 = 3/4 is an intrinsic
property of the electron. Therefore, the density distribution of the 〈 Ŝ 2〉 for a
single electron should simply be 3/4 times the electron density so that

〈 Ŝ 2〉 = 3
4

∫
ρ(~r)d~r. (9.10)
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For a single electron system (or ROHF systems with a single unpaired electron)
eq. (9.7) reduces to eq. (9.10) only if a = 3/4. Furthermore, a=3/4 is the only
value for which 〈 Ŝ 2〉A is always positive for a simple FCI model of a minimal
basis-set H2 system. It is important to see that no diatomic terms will appear
for a one-electron system, avoiding spurious self-coupling of the single electron.
The additional criterion reads as (v) no two-center terms should appear in the
case of single-electron systems.
Numerical results also indicate the a = 3/4 formula shows the smallest 〈 Ŝ 2〉
values for pure covalent systems at equilibrium distances (see table (9.1)).

Table 9.1: CASSCF(2,4) atomic 〈 Ŝ 2〉A values for the H2 molecule at optimized
geometries for several atomic definitions and values of the parameter a.

Atom in Molecule a cc-pVDZ cc-pVTZ cc-pVQZ
Becke 0 0.109 0.111 0.109

3/8 0.072 0.073 0.073
1/2 0.059 0.060 0.061
3/4 0.034 0.034 0.036

Hirshfeld 0 0.122 0.124 0.122
3/8 0.079 0.080 0.080
1/2 0.064 0.065 0.066
3/4 0.035 0.036 0.038

QTAIM 0 0.059 0.060 0.058
3/8 0.044 0.044 0.045
1/2 0.039 0.039 0.040
3/4 0.028 0.029 0.031

Results in table (9.1) also reveal that the 〈 Ŝ 2〉 values for a = 3/4 are almost
basis set independent. Additionally, the effect of the AIM definition on the
values 〈 Ŝ 2〉 is very small for the preferred selection of parameter a. The local
spin analysis has been applied to open shell systems (doublets and triplets)
and to closed shell systems treated at the correlated level. Interestingly, the
〈 Ŝ 2〉 values obtained with a = 3/4 are the smallest among the existing formu-
lations when applied to genuine diamagnetic systems treated at the correlated
level.
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The decomposition of 〈 Ŝ 2〉 can also be performed under the framework of the
Hilbert-space analysis. Within this framework numerical integrations are no
longer needed. Thus, the decomposition is in this sense “exact” and could be
rather easily implemented in most quantum chemistry codes.

There is, however, an apparent ambiguity in decomposing two-electron quan-
tities in the framework of Hilbert-space analysis that affects directly the de-
composition of 〈 Ŝ 2〉. To illustrate this ambiguity we have used the definition
of the Mayer-Wiberg bond order for closed-shells

BAB =
∑

µ∈A,σ∈B
(DS)µσ(DS)σµ. (9.11)

Inspecting the expression 9.11 one can see that both of the subscripts (µ and σ),
that serve for subdividing the quantity into diatomic contributions, come from
the “ket” part of the overlap integral. But, in principle, any expression that
contains products of two (or more) overlap matrices could also be subdivided
in atomic and diatomic terms by taking one subscript from “bra” and another
from “ket” (We refer to this convention as “interchanged” indices) . In the
case of the bond order this leads to the definition of the bond order by Sato
and Sakaki

B ′AB =
∑
µ∈A

∑
ν∈B

(SDS)µνDνµ. (9.12)

Numerical results obtained by using eq. (9.12) are much less “chemical” than
those obtained with the original Mayer-Wiberg expression (eq. (9.11)). By
using the formalism of the effective atomic densities, one can see that our pro-
posed decomposition of 〈 Ŝ 2〉 within the Hilbert-space framework is naturally
consistent with that of the original Mayer-Wiberg BO or Mulliken population
analysis. The one- and two-center contributions to 〈 Ŝ 2〉 can be written as

〈 Ŝ 2〉A = 3
4

∫
uA(~r1)d~r1 + 1

2

∫∫ [
ΓAA(~r1, ~r2)− 1

2ρ
s
A(~r1;~r2)ρsA(~r2;~r1)

]
d~r1d~r2

−1
2

∫ ∫ [
ΓAA(~r1, ~r2;~r2, ~r1)− 1

2ρ
s
A(~r1;~r1)ρsA(~r2;~r2)

]
d~r1d~r2, (9.13)
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and

〈 Ŝ 2〉AB = 1
2

∫∫ [
ΓAB(~r1, ~r2)− 1

2ρ
s
A(~r1;~r2)ρsB(~r2;~r1)

]
d~r1d~r2

−1
2

∫ ∫ [
ΓAB(~r1, ~r2;~r2, ~r1)− 1

2ρ
s
A(~r1;~r1)ρsB(~r2;~r2)

]
d~r1d~r2, (9.14)

where the effective atomic spin density is written as

ρsA(~r;~r ′) =
∑
µ∈A,ν

P s
µνχ

∗
ν(~r)χµ(~r ′), (9.15)

the atomic density of effectively unpaired electrons is

uA(~r) =
∑
µ∈A,ν

(
2Dµν − [DSD]µν

)
χ∗ν(~r)χµ(~r), (9.16)

and the atomic/diatomic spin-less cumulant reads as

ΓAB(~r1, ~r2;~r ′1 , ~r ′2 ) =
∑

µ∈A,σ∈B,ν,λ
Γµσνλ χ∗ν(~r1)χ∗λ(~r2)χµ(~r ′1 )χσ(~r ′2 ). (9.17)

This leads to the final expressions for the atomic terms

〈 Ŝ 2〉A = 3
4
∑
µ∈A

(
2 [DS]µµ − [DSDS]µµ

)
(9.18)

−1
4
∑
µ,ν∈A

[P sS]µν [P sS]νµ + 1
4
∑
µ,ν∈A

[P sS]µµ [P sS]νν

+1
2
∑
µ,σ∈A

∑
ν,λ

(Γµσνλ − Γµσλν)SλσSνµ,

and similarly for the diatomic spin components

〈 Ŝ 2〉AB = −1
4

∑
µ∈A,ν∈B

[P sS]µν [P sS]νµ + 1
4

∑
µ∈A,ν∈B

[P sS]µµ [P sS]νν(9.19)

+1
2

∑
µ∈A,σ∈B

∑
ν,λ

(Γµσνλ − Γµσλν)SλσSνµ.
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Table 9.2: Atomic local spin values calculated at the CASSCF(2,4) level for
the H2 molecule at interatomic distance RH-H=0.746 Å for several basis sets.

Basis set 〈 Ŝ 2〉H 〈 Ŝ 2〉intH 〈 Ŝ 2〉LH 〈 Ŝ 2〉3DH
cc-pVDZ 0.036 0.060 0.028 0.034
cc-pVTZ 0.035 0.051 0.025 0.034
cc-pVQZ 0.039 0.066 0.027 0.036

cc-pVTZ (6d)a 0.035 0.052 0.027 0.034
cc-pVQZ (6d 10f)b 0.043 0.089 0.028 0.036

aug-cc-pVDZ 0.038 0.069 0.025 0.034
aug-cc-pVTZ 0.020 0.031 0.026 0.036
aug-cc-pVQZ 0.035 0.044 0.026 0.036

d-aug-cc-pVQZ 0.045 0.130 0.024 0.034
aug-cc-pVTZ (6d) 0.046 0.115 0.027 0.036

aug-cc-pVQZ (6d 10f) 0.055 0.192 0.026 0.036
d-aug-cc-pVQZ (6d 10f) 0.095 0.891 0.023 0.034

a Cartesian d functions used.
b Cartesian d and f functions used.

Moreover, it is important to note that a mapping between the decomposition
of 〈 Ŝ 2〉 in the Hilbert- and 3D-space is only possible using the original Mayer-
Wiberg convention.
To assess the numerical effects on the use of different summation schemes in
Hilbert-space analysis we have studied the H2 molecule (see table (9.2)). We
have also included values for Löwdin (〈 Ŝ 2〉LH) and 3D-space analysis (〈 Ŝ 2〉3DH )
for comparison. 〈 Ŝ 2 〉H and 〈 Ŝ 2 〉intH correspond to the conventional and “in-
terchanged indices” Hilbert-space results, respectively. In the Löwdin basis
the overlap matrix is diagonal so the schemes with conventional and “inter-
changed” indices are the same.
The local spin values using eq. (9.18), that is, with the conventional Hilbert-
space scheme, are close to zero as expected for diamagnetic molecules. No
basis set dependencies have been detected in this case and the results are very
similar to those obtained in the framework of the 3D-space analysis. Using
the alternative “interchanged indices” formula the results exhibit a stronger
basis set dependence. The 〈 Ŝ 2 〉LH and 〈 Ŝ 2 〉3DH values are almost basis set
independent.
The preferred decomposition, eqs. (9.18) and (9.19), has been applied to a
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series of singlet molecules for illustration. For these systems the overall 〈 Ŝ 2〉
is 0 but small atomic local spin contributions appear induced by electron cor-
relation. Only in the case of an antiferromagnetic coupling large atomic local
spins should appear.

Table 9.3: Atomic 〈 Ŝ 2〉C components for acetylene molecule computed at the
CISD level of theory with different basis sets.

Basis set 〈 Ŝ 2〉C 〈 Ŝ 2〉LC 〈 Ŝ 2〉3DC
STO-3G 0.012 0.179 0.159
6-31G -0.074 0.119 0.114

6-31G** -0.136 0.082 0.084
6-31G**(6d) -0.139 0.080 0.083

6-311G 0.030 0.119 0.113
6-311G** -0.118 0.085 0.085

6-311G**(6d 10f) -0.143 0.091 0.084
cc-pVDZ -0.162 0.078 0.085
cc-pVTZ -0.271 0.087 0.079

cc-pVTZ(6d 10f) -0.146 0.104 0.078
aug-cc-pVDZ 0.729 0.078 0.087
aug-cc-pVTZ -2.926 0.092 0.078

a Cartesian d functions used.
b Cartesian d and f functions used.

The most striking result of our analysis is a negative local value of 〈 Ŝ 2 〉C
for the acetylene molecule. The truncated CISD wave function is not respon-
sible for this odd result because at the same level of theory but within the
3D-space framework 〈 Ŝ 2 〉C = 0.083. We have checked the basis set effects
on this system; the results are gathered in table (9.3). The 〈 Ŝ 2〉C values are
negative for all the basis sets except for STO-3G, 6-311G and aug-cc-pVDZ. A
completely meaningless value of -2.926 appears for the aug-cc-pVTZ basis set.
Negative values are obtained for both small and relatively large basis set, with
and without polarization functions, so it is difficult to find a general explana-
tion for this odd behavior. The 〈 Ŝ 2 〉LC and 〈 Ŝ 2 〉3DC values are always small,
positive and show a relative very small dependence. Similar odd behaviour
has been observed for the values of delocalization indices. There seems to be a
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shortcoming when combining Hilbert-space analysis and genuine two electron
quantities (i. e. using the 2-RDM) that deserves further analysis.

9.3 The local spin analysis: relationship with
chemical bonding and radical character

Once a unique formulation of the local spin has been established for any AIM
definition, we are in a position to gain insight on the interpretation of the
〈 Ŝ 2 〉A and 〈 Ŝ 2 〉AB values and their relation with the concept of a covalent
bond. For that purpose we have studied two ideal systems. The first one
is a two-electron homonuclear diatomic system in the singlet state treated at
the full configuration interaction (FCI) minimal basis level, consisting of two
hydrogen-like atoms labeled A and B. For such a system, the elements of the
atomic natural spinorbital overlap matrix within a general 3D-space framework
are

SAii = SBii = 1/2

SAij = −SBij = δ. (9.20)

In the dissociation limit δ = 1/2 but at interatomic distances this value can
slightly decrease. The analytical expression of the bond order (BO), the atomic
number of effectively unpaired electrons uA, 〈 Ŝ 2〉A, and 〈 Ŝ 2〉AB can be written
in terms of δ and the occupation of the antibonding natural spinorbital n as

BO = 1− 2n(1− n)(1 + 4δ2) (9.21)

uA = 4n(1− n) (9.22)

〈 Ŝ 2〉A = −〈 Ŝ 2〉AB = 3
2n(1− n)(1 + 4δ2). (9.23)

Let us consider now the same two-electron system but in the triplet state.
In this case, the BO, the atomic number of effectively unpaired electrons uA,
〈 Ŝ 2〉A, and 〈 Ŝ 2〉AB depends only upon δ, namely
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Figure 9.5: Evolution of the bond order (dotted) and 〈 Ŝ 2〉A (solid) for the two-
electron singlet model system (assuming δ = 1/2) with respect to the natural
spin orbital occupation, n.
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BO = 1− 4δ2 (9.24)

〈 Ŝ 2〉A = 7
8 −

1
2δ

2 (9.25)

〈 Ŝ 2〉AB = 1
8 + 1

2δ
2. (9.26)

The information provided by these two ideal systems can be summarized as
follows (see also fig. (9.5)). For the singlet state case described with a single-
determinant wave function (n = 0) the local spin analysis yields 〈 Ŝ 2 〉A =
〈 Ŝ 2 〉AB = 0. By including electron correlation (via a multireference wave
function or using the unrestricted broken symmetry (BS) approach) 〈 Ŝ 2 〉A
increases monotonically up to a maximum value of 3/4, the 〈 Ŝ 2 〉 value of
an isolated electron. In fact, one can easily see that for this model system
〈 Ŝ 2 〉A = 3

4(1 − BO), that is, the extent of local spin is proportional to the
deviation from the perfect covalent bond picture. The diatomic contribution
〈 Ŝ 2〉AB < 0 reflects the coupling of the two spins, but its limiting value depends
upon the nature of the wave function. A proper multireference wave function
renders the entanglement of the spins, giving 〈 Ŝ 2 〉AB = −3/4 in the limit of
two perfectly localized spins, whereas for a BS wave function one can see that
〈 Ŝ 2〉AB = −1/4.
For the system in triplet state the local spin analysis gives non-zero 〈 Ŝ 2 〉A
and 〈 Ŝ 2〉AB contributions, as expected for a system with an overall non-zero
spin. In the limit of two perfectly localized parallel spins on centers A and
B, 〈 Ŝ 2 〉A = 3/4 and 〈 Ŝ 2 〉AB = 1/4. When the two spins are not perfectly
localized, the value of 〈 Ŝ 2〉A increases, indicating a given probability of finding
the two parallel electrons on each atomic center.
In order to put into perspective the results of the local spin analysis of real
molecules at their ground state geometries, it is worth analyzing how the com-
ponents of the local spin behave in dissociation. To simplify the analysis we
have written eq. (9.13) and (9.14) in the compact form

〈 Ŝ 2〉A = 3
4uA + ΛAA + Λ′

AA (9.27)
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and

〈 Ŝ 2〉AB = ΛAB + Λ′

AB, (9.28)

where the contributions can be most generally written in terms of the effective
atomic densities as

uA = 3
4

∫
uA(~r1)d~r1 (9.29)

ΛAA = 1
2

∫∫ [
ΓAA(~r1, ~r2)− 1

2ρ
s
A(~r1;~r2)ρsA(~r2;~r1)

]
d~r1d~r2

Λ′

AA = −1
2

∫ ∫ [
ΓAA(~r1, ~r2;~r2, ~r1)− 1

2ρ
s
A(~r1;~r1)ρsA(~r2;~r2)

]
d~r1d~r2.

ΛAB = 1
2

∫∫ [
ΓAB(~r1, ~r2)− 1

2ρ
s
A(~r1;~r2)ρsB(~r2;~r1)

]
d~r1d~r2

Λ′

AB = −1
2

∫ ∫ [
ΓAB(~r1, ~r2;~r2, ~r1)− 1

2ρ
s
A(~r1;~r1)ρsB(~r2;~r2)

]
d~r1d~r2.

For a singlet diatomic molecule dissociating into two doublet moieties a proper
wave function would yield uA = 1. Therefore, the contribution of uA fully
accounts for the local spin of the atoms in dissociation. This is not the general
trend for diatomic molecules at dissociation. In fact, the expected contribution
from ΛAA + Λ′

AA in dissociation is in general ua(ua−1)/4, vanishing for systems
dissociating into singlet or doublet atoms. As in the case of the two ideal
systems above, it is the 〈 Ŝ 2〉AB term that accounts for the coupling between
any existing localized spins.
We have performed the local spin analysis of a series of diatomic molecules
in their ground state equilibrium distances, including the challenging and
polemic93–95 C2 molecule. In order to gain deeper insight into the nature
of the local atomic spin and the diatomic spin components, these values have
been further decomposed according to the spatial symmetry of the MOs. In
the case of the one electron quantities like the number of effectively unpaired
electrons such decomposition leads to additive σ and π contributions. For gen-
uine two-electron quantities like the cumulants – and hence both 〈 Ŝ 2 〉A and
〈 Ŝ 2〉AB terms– one has σ-σ,π-π and also σ-π contributions.
In C2, the number of effectively unpaired electrons at each C atom is 1.10.
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It arises from two similar σ (0.66) and π (0.43) contributions. We have seen
that a large value of the number of unpaired electrons is a necessary but not
sufficient condition to picture the system as a diradical (e.g. the case of Be2).
However, the 〈 Ŝ 2 〉A value is also very large in this case (0.81), the highest
among all singlet states considered, and even slightly larger than the expected
number for a perfectly localized spin (0.75). It is also the only case where the
σ-π cross-term contributes to increase the local spin. The effect of the cross-
terms is most notorious in the diatomic spin component, where all σ-σ (-0.35),
π-π (-0.20) and σ-π (-0.26) terms contribute significantly to the overall -0.81
value. We have also considered other CASSCF wave functions where only σ

or π orbitals enter in a (4,4) active space. The 〈 Ŝ 2 〉AB values obtained, (-
0.38 for an all σ and -0.11 for the all π active spaces) are not too far from
the 〈 Ŝ 2〉σ−σAB and 〈 Ŝ 2〉π−πAB contributions mentioned above, certainly not large
enough to clearly label the system neither as a σ nor π diradical. However, the
two shares put together and enhanced by a σ-π interplay result in a genuine
diradicaloid system. The fact that this can be only observed upon inclusion of
electron correlation (i.e., when the antibonding π orbitals also come into play)
may suggest a sort of superexchange mechanism, where the π orbitals mediate
the exchange interaction between two localized σ hybrid orbitals sitting on each
C atom. The values of the local spin analysis for the heteroatomic system CN+

are strikingly similar to those of their isoelectronic molecule C2. For CB− and
BN the local spins slightly decrease with respect to the dicarbon values. The
heavier homologue of C2, that is, the Si2 molecule, presents a local spin values
closer to O2 than to either C2 or BN.

On the other hand, the study also reveals that the presence of local spin flags
deviation from the classical bonding prototypes. The next step is to study the
applicability of the 〈 Ŝ 2〉 decomposition analysis to characterize radical centers
in organic molecules. For this purpose the local spin analysis is tested against
several indexes for diradical character for the simple dissociating curve of H2.

The spin analysis and the number of effectively unpaired electrons capture
and quantify diradical character in a similar manner for the model. Even
though these two descriptors are the only ones that can be easily generalized
to polyradicals, the number of effectively unpaired electrons exhibits some
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undesirable features. First, it has an upper bound of 2N , where N is the
total number of electrons. Thus the number of effectively unpaired electrons
may be larger than the actual number of electrons in the system. The second
drawback, noted by Staverov and Davidson some years ago, is related to the
puzzling result found in the dissociation of O2 in its 3Σ−g ground state into
two triplet 3P oxygen atoms. A value of 5 effective unpaired electrons was
found at the dissociation limit instead of the expected value of 4, i.e. 2 on
each triplet O atom. We have further explored this paradigmatic system by
considering for a number of different electronic states the dissociation of O2

into two O atoms. We have seen that the local spin values always yield the
expected values for the dissociating oxygen atoms, i.e., 〈 Ŝ 2 〉O = 2 for 3P

and 〈 Ŝ 2〉O = 0 for 1D atomic oxygen states, respectively. The diatomic spin
components also differentiate when the two oxygen triplets are coupled as a
singlet, like in the 1∆g state for which 〈 Ŝ 2〉O,O = −2, or as a triplet, like in the
3Σ−g state, for which 〈 Ŝ 2〉O,O = −1 is obtained. Thus, the local spin analysis
appears to be a more suitable tool than the number of effectively unpaired
electrons when it comes to the formal breaking of more than one bond. This is
in essence because the 〈 Ŝ 2〉A terms include contributions from the cumulant
of the second order-density matrix, whereas the number of effectively unpaired
electrons is obtained only from the first-order density matrix. Accordingly, the
quantification of polyradical character will be better accomplished by making
use of the descriptors obtained from the local spin analysis.

We have introduced a general measure of k-radical character making use of
the 〈 Ŝ 2〉A values obtained for an actual molecular system as

∆(k) =

√∑
A(〈 Ŝ 2〉A − 〈 Ŝ 2〉idA )2

n
, (9.30)

where 〈 Ŝ 2〉idA represents the atomic ideal values and n is the total number of
atoms/fragments considered in the local spin analysis. The smaller the ∆(k)

value the closer the system is to a reference picture of k perfectly localized spin
centers. Note that in order to be ∆(k) an index of most general applicability
it only utilizes the atomic contributions of the local spin analysis. Indeed, we
have already seen that the ideal value for the diatomic terms depends upon
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Table 9.4: k-radical character index, ∆(k), for ortho-, meta-, and para-benzine.

Singlet Triplet
Molecule ∆(0) ∆(2) ∆(2)

o-benzyne 0.18 0.28 0.14
m-benzyne 0.28 0.19 0.13
p-benzyne 0.49 0.12 0.12

the particular electronic state (singlet, triplet, ... ) and also the type of wave
function. This indicator can be computed for any system in any state, and its
value depends upon the particular choice of the 〈 Ŝ 2〉idA terms.
For diradical or diradicaloid species in singlet-state one can calculate both ∆(0)

and ∆(2) values. The former measures the average deviation from a nonradi-
cal closed-shell picture, and the latter indicates the deviation from a perfect
diradical. The trends of the ∆(0) and ∆(2) values along the series of singlet
ortho-, meta- and para-benzyne are very illustrative (see table (9.4)). For o-
benzyne ∆(0) = 0.18 and ∆(2) = 0.28, indicating a smaller deviation of this
species with respect to a closed-shell picture. For m-benzyne the situation
is just the opposite, and the system is better identified as a diradical. For
p-benzyne the ∆(2) value is very small (0.12) and much smaller than the ∆(0)

one (0.49), which is consistent with a diradical picture. Thus, both ∆(0) and
∆(2) values are able to reproduce the assumed trend ortho < meta < para of
the diradical character of benzyne isomers.96,97 For triplet states only the ∆(2)

values are meaningful. The values are quite small and do not differ too much
from one isomer to another. The trend along the series is the same as for the
singlet states i.e., triplet para-benzyne is more diradical than ortho-benzyne.
Several other diradicaloid systems have also been studied. We have found that
diphospadiboretane and its diaza-analogue are best described as closed-shell
and delocalized-spin species in their singlet and triplet states, respectively. The
local spin analysis performed on [2,2,2]propellane also confirm its nonradical
nature, even in the absence of the central C-C bond.
We have illustrated the capability of the local spin analysis to characterize
triradicals analyzing the simplest model of a triradical i.e., three H atoms de-
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Figure 9.6: Pictorial representation of the local spin analysis for perfectly
localized spins in quartet states.

scribed with a minimal basis placed at the vertices of a triangle. For such
a system one can have a quartet state with S = 3/2 and two doublet states
with S = 1/2. The perfectly localized spins situation is achieved for large H-H
distances. A pictorial representation of the results of the local spin analysis
obtained at the dissociation limit for the quartet state is given in fig. (9.6).
The 〈 Ŝ 2 〉A and 〈 Ŝ 2 〉AB values and the atomic < Ŝz > values (half of the
atom-condensed spin-density) are also shown. The local spin, 〈 Ŝ 2〉A, on each
hydrogen atom is 3/4, consistent with that of a single electron. The diatomic
spin contributions 〈 Ŝ 2〉AB are equal to +1/4 for any A 6=B, indicating the pa-
rallel arrangement of the local spins. The spin density on each H atom equals
to 1, and so is the number of effectively unpaired electrons. When the spins
are not perfectly localized, the values of 〈 Ŝ 2 〉A increase, indicating partial
high-spin contributions on the centers (triplet and quartet, in this case) due
to the non-negligible probability of finding more than one electron on a given
atom. Consequently, the 〈 Ŝ 2〉AB terms decrease.

In the case of the doublet states one can encounter two limiting situations for
perfectly localized spins, represented in fig. (9.7). The upper panel describes a
situation in which two of the perfectly localized spins are coupled as a singlet
(centers B and C), whereas the third spin does not show any coupling with
them, i.e., 〈 Ŝ 2〉AB = 〈 Ŝ 2〉AC = 0. The spin density is zero for the centers B
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Figure 9.7: Pictorial representation of the local spin analysis for perfectly
localized spins in doublet states.
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and C and 1 for the center A. This represents a case in which the triradical is
best pictured as a diradical plus an isolated radical center.
Another situation is depicted in the lower panel of fig. (9.7). In this case, the
three perfectly localized spins interact with each other. The spins on centers
B and C exhibit parallel arrangement, as indicated by the 〈 Ŝ 2 〉BC = +1/4
value, and are antiparallel with the local spin on center A. The diatomic spin
contributions 〈 Ŝ 2 〉AB = 〈 Ŝ 2 〉AC are equal to -1/2. The negative sign is an
indication that the spins on the centers are antiparallel but the actual value
differs from the -3/4 that one obtains for a pair of isolated spins coupled as
a singlet. The atomic spin densities are non-zero, but can not be trivially
associated with three perfectly localized spins: the spin density on center A
amounts to -1/3 whereas that of centers B and C is 2/3, for an overall value
of 1. This illustrates once again the limitation of use of the spin density for
the description of local spins. The simple pictorial representation of fig. (9.7)
can only be derived from the local spin analysis.
Thus, the magnitude and sign of the diatomic spin terms differentiate between
doublet and quartet states. Moreover, they also reveal that two patterns of
spins distribution may occur in the lowest spin state. One type is best char-
acterized as a system in which one can distinguish a singlet diradical and
an additional isolated radical center. In the other one the three spin centers
exhibit interactions with each other.
The spin properties of a number of all σ, all π and σ–π triradicals namely
trimetylenebenzene (TMB),98–103 tridehydrobenzene isomers (TDB),103–106 and
dehydro-m-xylylene (DMX)103,107,108 have been characterized in detail in their
lowest-lying doublet and quartet electronic states. Among all triradical sys-
tems in their lowest-lying doublet states, the 2B1 state of TMB, 1,2,4-TDB,
and 1,3,5-TDB have been characterized a singlet diradical + an isolated rad-
ical center. The others doublet state triradicals have been characterized as
triradicals with three spin centers interacting with each other.
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9.4 Effective atomic orbitals: developments and
applications

The most appropriate entities to characterize the state of the atom within the
molecule are the effective atomic orbitals. In this approach one can retrieve the
electronic configuration of atoms in molecules from wave function analysis. We
have implemented for the first time the eff-AOs in the framework of Bader’s
topological atoms. The main visual feature of the hybrids is that they are
completely confined within the atomic domain, i.e., in this case they are strictly
cut at the boundary limit of Bader’s topological atom. A 2s-type eff-AO of
the hydrogen atom in methane is depicted in fig. (9.8), for illustration.

Figure 9.8: 2s-type eff-AO for H atom in methane and its occupation number.

Numerical results on the HCNO molecule and the series CH3SOxCH3, x=0,1,2
confirm that the number of eff-AOs with a significant occupation number on
each atom is limited and usually coincide with the number of orbitals in a
minimal basis set. However, hypervalent atoms, such as nitrogen and sulfur
in the cases studied, may exhibit slightly occupied eff-AOs beyond the valence
shell.
On the other hand, we have shown that the original MOs of a calculation can
be written as a linear combination of the eff-AOs with non-zero eigenvalues of
different atoms as
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Table 9.5: Accuracy of the SVD procedure for an Ala molecule with two basis
sets (number of basis functions in parentheses). Ne indicates the number of
effective atomic orbitals with occupation number above the threshold. δ̄ and
δmax are the average and maximum error in the atomic population values after
the SVD procedure.

6-31++G(d,p) cc-pVTZ
(156) (278)

occ. number > 0.001
Ne 114 119
δ̄ 8.9 ·10−4 8.8 ·10−4

δmax 1.9 ·10−3 1.6 ·10−3

occ. number > 0.01
Ne 69 71
δ̄ 7.6 ·10−3 7.3·10−3

δmax 1.7·10−2 1.6·10−2

occ. number > 0.1
Ne 37 37
δ̄ 3.2·10−2 3.1·10−2

δmax 9.8·10−2 8.9·10−2

ϕi(~r) =
Nat∑
A

nA∑
µ=1

UA∗
iµ

√
λAµχ

A
µ (~r) . (9.31)

The atomic populations and the classical Wiberg BO calculated by the Hilbert-
space analysis in the basis of the eff-AOs are equal to those computed by the
QTAIM analysis of the total density. Moreover, taking advantage of the pro-
perties of the hybrids, the MOs can be expanded, to a good approximation,
as linear combination of a reduced number (only those with significant occu-
pation numbers) of eff-AOs. The new LCAO coefficients on the eff-AO basis
were obtained by a singular value decomposition (SVD) of a rectangular matrix
containing the overlap elements of the MOs with the reduced set of eff-AOs.
Remarkably, highly accurate population analysis can be produced by the ap-
proximate MOs expanded in the reduced set of eff-AOs (see table (9.5)).
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From the analysis of the effective atomic orbitals one can derive atomic elec-
tron configurations for the atom in the molecule, by proper comparison of the
occupation numbers of the eff-AOs. These electron configuration can be fur-
ther used to infer effective oxidation states (EOS). A spin-resolved version of
the eff-AO method is used instead, in order to conserve the number of alpha
and beta electrons separately. The procedure is as simple as follows:

(i) Collect the alpha eff-AOs that are significantly populated for all centers.

(ii) Sort them according to decreasing occupation number.

(iii) Round the occupation numbers to 1 starting from the highest occupied
eff-AO until the number of alpha electrons is reached, and do analogously for
the beta part.

Thus, each (integer) alpha and beta electron is assigned to the atom where
the given eff-AO belongs to, whereas the occupation of the remaining eff-AOs
is rounded off to zero. By this process an (integer) electronic configuration is
obtained for each atom. The effective oxidation state (EOS) of each atom is
simply given by the difference between its atomic number and the number of
alpha and beta electrons that have been assigned to it. Note that with this
scheme the EOS of a given atom does not only depend upon the population
of its eff-AOs but also on that of the remaining atoms, and of course on the
total number of electrons of the system. Moreover, the occupation numbers
of the last occupied, λσLO, and first unoccupied, λσFU , eff-AOs (before rounding
to 1 and 0, respectively) indicate how well-suited the EOS are for the actual
electronic distribution of the system. Ideally, they should be close to 1 and
0, respectively, but such values are only expected for non-interacting atoms.
In practice the atoms share the electrons and this is reflected in their relative
occupation numbers. Since EOS are determined by integer electrons, when λσLO
and λσFU differ by more than half electron (i.e., rounding up to one electron)
the assignation of EOS is considered as undisputable. A “confidence” index
for the EOS arising from the analysis can be simply defined as

Cσ(%) = 100 min(1, λσLO − λσFU + 1/2). (9.32)
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The alpha and beta values can be simply averaged to get an overall C(%) value.

Practical applications of the method may involve reaction intermediates or
transition state structures of complexes exhibiting bulky ligands. When the
number of atoms of the system is large, accidental degeneracies of the occupa-
tion numbers of the eff-AOs are likely to occur, which difficult the assignation
of electrons. A better strategy is a hierarchical approach, by which molecular
fragments are defined before the eff-AO analysis. That is, instead of eff-AOs
we obtain effective fragment orbitals by using in eq. (1.70) fragment weight
functions of the form

wK(~r) =
∑
i∈K

wi(~r), (9.33)

where the sum runs over all atoms of molecular fragment K. In TM complexes
the fragments are identified with the metal atom, the ligands and the molecular
species that may be present, such as reactants or explicit solvent molecules, if
any. Then, the steps (i)-(iii) described above lead to a proper distribution of
the electrons of the system among the different fragments. If necessary, the
EOS of the individual atoms forming a fragment can be derived in a second
step by computing their eff-AOs and distributing the alpha and beta electrons
that have been assigned to the fragment.

The method can be applied in principle beyond transition metal complexes.
As could be anticipated, numerical results show that the worst scenario for the
method are species with highly apolar bonds such C-H and C-C. The C(%)
values for a set of hydrocarbons are slightly above 50% basically because the
population of the 1s-type eff-AO on H atoms is comparable to that of the
carbon’s valence hybrids. There is no clear cut distinction between proton and
hydride assignation. These compounds indicate the limit of applicability of the
method. Nevertheless, for hydrocarbons and such highly apolar compounds the
OS are genuinely formal and have probably little relevance in most chemical
applications. Of course an alternative that can be applied in these cases is
the fragment approach discussed above. Methyl groups or (CH)n moieties in
general may be chosen as fragments so that the apolar C-H bonds are not cut
in the eff-AO analysis.
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In order to check how dependent the EOS are on the particular atom in
molecule definition used we have performed a systematic study for 10 octa-
hedral FeII and FeIII complexes. We have used different atomic definitions,
namely Hilbert-space Mulliken’s, Bader’s QTAIM, and several fuzzy atom
schemes such as Hirshfeld, Hirshfeld-Iterative and the simplest Becke atoms.
The EOS obtained are independent of the particular atomic definition. The
only exception is FeCN3−

6 using Becke atoms, where the alpha population of a
d-type orbital on the atom competes with that of the valence’s hybrid on all N
atoms (see table (9.6)). As a result, the EOS assignation reported as a C(%)
value slightly below 50% in the alpha part. On the other hand, the values of
the confidence index do differ significantly from one method to another. Best
performing approaches (in terms of high C(%) values) are QTAIM, TFVC
and Hirshfeld-Iterative. It is worth to remark that in the case of the Hilbert-
space type approach (Mulliken) the occupation numbers of the eff-AOs are
not strictly restricted to the 0 ≤ λAi ≤ 2 range so that 3D-space analysis
appears to be more appropriate from a conceptual perspective.37 Moreover,
it is well known that these methods suffer from basis set dependencies. In
our case we have used a medium-sized basis set (6-31G*) with marked atomic
character. Mulliken-type results are comparable to Hirshfeld, but experience
tells us that the Mulliken-type results reported here can not be extrapolated
to a larger basis such as cc-pVTZ, and therefore are not recommended. Thus,
we can conclude that for EOS assignation atomic definitions that better take
into account bond polarization are the most appropriate. For its simplicity we
recommend the use of the TVFC scheme.
The fragment approach has been tested for a number of isolated hexacoordi-
nated [Fe(Pytacn)] complexes a that are involved in C-H catalytic hydroxyla-
tion cycles.109 Pytacn is a tetradentate ligand and the other two positions can
be occupied by oxygen-containing ligands such as aquo, hydroxo or oxo, for-
mally considered as H2O(0), OH(1−) and O(2−) species. The fragment approach
yields in all cases the chemically expected oxidation states for the central Fe
atom and the ligands. The main observation is that the C(%) values decrease
as the OS of the central metal atom increases. The formal picture of the

aPytacn stands for 1-(2-pyridylmethyl)-4,7-dimethyl-1,4,7-triazacyclononane.
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Table 9.6: EOS, last occupied and first unoccupied eff-AOs and C(%) values
for the Fe(CN)3−

6 complex.

Atomic definition Atom EOS λαLO/λαFU λβLO/λβFU Cα(%)/Cβ(%)
Fe 3 0.896 / 0.327 0.871 / 0.283

Mulliken C 2 0.765 / 0.396 0.73 8 / 0.280 72 / 79
N -3 0.617 / - 0.569 / -
Fe 3 0.905 / 0.432 0.886 / 0.393

Becke C 2 0.596 / 0.350 0.607 / 0.364 47 / 51
N -3 0.406 / - 0.407 / -
Fe 3 0.832 / 0.358 0.812 / 0.319

Hirshfeld C 2 0.584 / 0.288 0.596 / 0.299 56 / 60
N -3 0.418 / - 0.419 / -
Fe 3 0.823 / 0.349 0.802 / 0.310

Hirshfeld-Iterative C 2 0.577 / 0.272 0.590 / 0.283 58 / 62
N -3 0.425 / - 0.426 / -
Fe 3 0.900 / 0.384 0.881 / 0.343

QTAIM C 2 0.762 / 0.278 0.777 / 0.293 84 / 85
N -3 0.728 / 0.021 0.692 / 0.022
Fe 3 0.848 / 0.344 0.827 / 0.305

TFVC C 2 0.694 / 0.235 0.709 / 0.245 85 / 86
N -3 0.701 / 0.020 0.665 / 0.021

high-valent species is farther from the actual electron distribution than for the
low-valent ones. This is actually expected because the “charges” associated to
the OS are imaginary and the higher the oxidation state the more the actual
atomic populations deviate from the formal ones.

It is worth to analyze in deeper detail the high-spin [Fe(Pytacn)O(OH)]2+

species. The occupations of the last occupied and first unoccupied fragment
orbitals, as well as the fragment-condensed charges and spin densities are col-
lected on table (9.7). A threshold on the effective fragment occupations of 0.1
was used.
The EOS analysis yields a high-valent FeV species but the confidence indices
for the alpha (Cα(%)=0.55) and beta (Cβ(%)=0.50) contributions are rather
low, indicating a relevant FeIV character. Nevertheless, we find promising that
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the EOS analysis recognizes the high-valent high-spin d3 iron species as FeV,
taking into account the observed values of the charge and spin densities. The
ideal high-spin FeV=O(2−) picture is shown in fig. (9.4).

Table 9.7: EOS analysis and fragment-condensed charges and spin populations
for the high-spin [Fe(Pytacn)O(OH)]2+ species.

Method Fragment EOS λαLO/λαFU λβLO/λβFU Charge Spin density
UB3LYP Fe 5 0.94 / 0.50 0.99 / 0.46 1.50 2.10

OH -1 0.69 / < 0.1 0.77 / < 0.1 0.11 0.12
O -2 0.64 / < 0.1 0.46 / < 0.1 -0.89 0.85

Pytacn 0 0.55 / < 0.1 0.71 / < 0.1 1.28 -0.09

The expected spin density on the Fe atom should be close to 3 and that of
the oxo moiety close to zero, as anticipated for a closed-shell O2− species. The
values reported in the table (9.7) are quite far from the ideal picture. The spin
density on the Fe atom amounts to only 2.10 , and a significant value of 0.85
is found for the oxo moiety.

We tested the effect of using a different functional. In particular we explored
the effect of the amount of exact exchange in it. It is often stated that the
inclusion of exact exchange favors electron delocalization and spin-polarization.
We carried out the analysis for Becke’s half-and-half LYP and PBE functionals.
The former includes 50% of exact exchange and the latter none. (B3LYP
uses 20%.) As anticipated, when decreasing the amount of exact-exchange
with the PBE functional the spin density on the oxo moiety slightly decreases
(0.80), and when performing the EOS analysis one obtains a more clear cut
FeV character, with Cα(%)=0.57 and Cβ(%)=0.60. Yet, the spin density on
the Fe atom (1.99) is still much lower than in the ideal picture. Conversely,
when increasing the exact exchange with BHandHLYP the spin density on
the oxo moiety increases to 1.13 and the EOS analysis does not yield the FeV

anymore.
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Fe2+(V) O2-

Figure 9.9: Ideal atomic orbital occupations for a high-spin FeV=O(2−) electron
distribution.

9.5 The elusive [Cu3S2]3+ core: a case of study

The trinuclear symmetric complex [(tmedaCu)3S2]3+ 110 is depicted in fig. (9.10).
The central [Cu3S2]3+ core represents a model of the active site of metalloen-
zymes involved in biological processes. In recent years, its electronic structure
has been the subject of vigorous debate in the literature.110–114 The complex
exist as an open-shell triplet , and discussions concerned the question whether
there is a direct S-S bond in the [Cu3S2]3+ core alongside with the formal OS
of the Cu atoms. The conclusions of the earlier studies can be summarized as
follows. According to Alvarez,110 the [Cu3S2]3+ core contains uncoupled S2−

ions compatible with a mixed-valence [(CuII)2CuIII]7+ configuration. Mealli
and Hoffmann112 suggested that the preferred configuration of the [Cu3S2]3+

core is [(CuII)2CuI]5+ with a bonded S2−
2 central unit. Berry113 argued that

the complex is best characterized as a noninnocent S3−
2 ligand antiferromag-

netically coupled to three equivalent [CuII] centers.
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Figure 9.10: Schematic representation of the [(tmedaCu)3S2]3+ complex.

[(CuII)2CuIII]7+(S2−)2 ⇐⇒ [CuII
3 ]6+S3−

2 ⇐⇒ [(CuII)2CuI]5+S2−
2

Alvarez Berry Mealli,Hoffmann

In order to elucidate the nature of the S-S bonding we have reported a detailed
analysis of the domain average Fermi holes (DAFH). To study the spin-spin
interactions among the atoms in the [Cu3S2]3+ core we have applied the local
spin analysis. The final issue that we have addressed in this study is the formal
oxidation state of the atoms in the [Cu3S2]3+ core.

The DAFH analysis has provided a clear evidence of the presence of a weak
2c-3e S-S bond. The analysis of the local spin for this system shows rather
significant local spin values on both Cu and S atoms, but extremely weak
diatomic spin components among the atoms of the [Cu3S2]3+ core, consistent
with a delocalized spin picture. The local spin on Cu and S atoms is 0.23 and
0.25, respectively. No significant local spin is found on the N atoms of the
ligands, even thought a small integrated spin density was found. The largest
diatomic contribution is found between the Cu-Cu centers (0.023), whereas
the value between Cu and S is just 0.005. Both the magnitude and the sign of
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this interaction is not consistent with an antiferromagnetic coupling between
the Cu centers and the S2 unit. We have recently studied the same system at
the CASSCF level of theory including 8 electrons in 8 orbitals.114,115 At this
level of theory the local spins on the atoms of the core (〈 Ŝ 2 〉Cu = 0.63 and
〈 Ŝ 2 〉S = 0.33) are significantly larger specially for Cu. The diatomic terms
(〈 Ŝ 2 〉CuS = −0.14) reveal the presence of some antiferromagnetic coupling
between the Cu and the S atoms (unpublished results).
The eff-AO analysis of the Cu and S atoms yielded 39 alpha and 36 beta atomic
hybrid orbitals with occupation number larger than 0.98. These correspond
to the full inner 1s22s22p63s23p6 shell and nine completely filled d-type atomic
spin orbitals of each Cu atom and to the 1s22s22p63s2 atomic orbitals of the
S atoms. This electron distribution is consistent with the predominant CuII

configuration of each of the three metal ions. However, the existence of non-
negligible populated beta dx2−y2 orbitals on the Cu atoms suggests a minor
contamination of the predominant configuration by an admixture of contri-
butions of delocalized [CuIICuIICuI] configuration. The results of the EOS
analysis for this system confirm that the principal configuration is the delocal-
ized [CuIICuIICuII] with Cα(%)=0.61 and Cβ(%)=0.54 (unpublished results).
By the time we were completing our study, a combined experimental and
computational study by Sarangi et al.114 concluded that the bonding in the
[Cu3S2]3+ core is delocalized. They suggested a weak S-S bonding interaction
and also the existence of three equivalent copper centers close to but slightly
more oxidized than CuII. Sarangi et al. used both DFT and CASSCF methods
to describe the complex. However, the tentative assignation of oxidation states
was performed by comparing the shape and intensity of the K-edge XAS spec-
tra of the complex with that of “reference” complexes, not by any population
analysis. For the Cu K-edge XAS spectra, the results were compared with the
spectra of Cu(I), Cu(II) and Cu(III) complexes. For the S spectra dicopper(II)
disulfido (S2−

2 ) and supersulfido (S.−2 ) complexes were used as reference. Our
results agree with this picture except for the very last point (we find three
equivalent copper centers close to but slightly less oxidized than CuII).





Chapter 10

Conclusions

The main conclusions drawn from this thesis are collected in this chapter.
A new topological definition of fuzzy Voronoi cells is proposed, reproducing
to some extent the results of the QTAIM analysis. It has been shown that
the TFVC method represents a fast and simple atoms in molecules scheme
that can be routinely used to extract chemical information from large-scale ab
initio calculations. The method presented in this thesis can be regarded as a
general-purpose computationally more efficient alternative to Bader’s QTAIM.

We have derived a new general formulation based on the decomposition of
the expectation value of the spin squared operator into atomic and diatomic
contributions. It has been shown that there is a continuum of different for-
mulations for the decomposition of 〈 Ŝ 2 〉 that fulfill a number of physical
requirements.We have introduced an additional new criterion based upon the
behaviour of single-electron systems that has permitted to derive a unique
new general formulation applicable for both single-determinant and correlated
wave functions. The scheme has been realized in the three-dimensional phys-
ical space and implemented for Bader’s QTAIM and a number of fuzzy atom
definitions. Very small local-spin values are obtained for genuine diamagnetic
molecules treated at the correlated level, in conformity with the physical ex-
pectations.

Appropriate formulations have been derived for the so-called Hilbert-space

213



214 CHAPTER 10. CONCLUSIONS

analysis. We have shown that there is an ambiguity affecting Mulliken-type
decompositions in the selection of the indexes where the atoms are centered.
We definitely recommend to adopt the assignment of subscripts that is consis-
tent with Mulliken population analysis and the original Mayer-Wiberg bond
orders. The results obtained are in good agreement with physical expectation
and, in general, do not depend too much on the basis set. Nevertheless, for the
particular case of acetylene one can obtain spurious results when performing
the decomposition of quantities that explicitly depend upon the second-order
density matrix, even with small basis sets. Löwdin’s scheme is more robust
and reliable in all cases.

We have illustrated in detail how the local spin analysis can provide valuable
quantitative information about the presence of local spins and how these local
spins couple. The connection between the local spin analysis and the nature of
the chemical bond has been establish. The existence of significant local spins in
molecules in pure singlet states is a signal for deviation from the classical bond-
ing prototypes, with the C2 molecule as a notorious example. The local spin
analysis reveals that this molecule or any of its isoelectronic heterodiatomics is
best described as a diradicaloid. Whether C2 has a fourth bond or not may be
a matter of semantics. What emerges from the local spin analysis is that the
bonding here operates in a very different way compared to the prototypical one.

The local spin analysis can be used to unravel the electronic structure of di-
radical and triradical systems. The values of the atomic spin contributions for
actual molecular systems can be used to define a measure of their k-radical
character, ∆(k). The smaller the ∆(k) the closer the system is to an ideal system
of k perfectly localized spin centers. Simple models provide the necessary ref-
erence atomic and diatomic contributions to 〈 Ŝ 2〉 for perfectly localized spins.
∆(0) and ∆(2) are used to characterize diradicals and diradicaloids, whereas
∆(3) is used for triradicals.

The magnitude and sign of the diatomic spin terms provides a picture of the en-
tanglement between the local spin carriers. In the case of low-spin triradicals,
the local spin analysis distinguishes between two patterns of spin distribution,
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namely a singlet diradical uncoupled to an additional isolated radical center,
and another one where the three spin centers exhibit interactions with each
other. We have found that for a number of all σ, all π and σ–π organic trirad-
icals the former picture is associated to smaller triplet stabilization energies.
The larger the 〈 Ŝ 2〉A value of a spin center is in a triradical, the easier it is to
pull apart this particular radical center from the remaining two.

Another tool that aims at the characterization of the state of the atom within
the molecule is Mayer’s effective atomic orbitals. In this thesis the effective
atomic orbitals have been realized for the first time in the framework of Bader’s
QTAIM. The eff-AOs form an orthonormalized set of numerical atomic or-
bitals, with occupation numbers that sum up to the respective QTAIM atomic
populations. Only a limited number of eff-AOs exhibit significant occupation
numbers, those associated with the core and valence shells of the atom. In
the case of hypervalent atoms additional hybrids appear with small but non-
negligible occupation numbers.

We have also shown that the MOs can be exactly (or up to a good accuracy,
using a SVD procedure) expressed in terms of a much reduced set of orthogonal
atomic basis functions. The Mulliken population analysis carried out on the
basis of eff-AOs exactly reproduces the original QTAIM atomic populations of
the atoms, indicating that the flaws of the classical Mulliken populations are
rooted in the use of unsuitable atomic basis functions, not in its mathematical
framework.

The eff-AOs can be utilized to derive the most appropriate atomic electron
configurations for the atoms or molecular fragments in the molecule. A simple
and general method to compute oxidation states from the analysis of the wave
function has been introduced. The method provides effective oxidation states
for all atoms and an overall confidence index that quantifies how reliable the
formal assignation is. It can be applied in equal footing for any level of theory
and for any chemical system except for hydrocarbons and extremely apolar
species where the mere concept of oxidation state is less meaningful. For large
systems a hierarchical strategy in which the system is first partitioned into
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fragments/ligands appears more appropriate.

Finally, we have shed light into some of the pending issues concerning the
electronic structure of the [Cu3S2]3+ core. The DAFH analysis has provided a
clear evidence of weak direct S-S interaction that can best be characterized as
2c-3e bond. The local spin analysis rules out the suggested antiferromagnetic
coupling among the Cu atoms and S3−

2 unit, and rather confirms a delocalized-
spin picture. The scrutiny of the effective atomic orbitals and their occupations
points to an electron configuration of the Cu atoms close to a CuII formal
oxidation state, but with a small admixture of a less oxidized CuI character.



Bibliography

1 Head-Gordon, M. J. Phys. Chem. 1996, 100, 13213–13225.

2 Parr, R. G.; Ayers, P. W.; Nalewajski, R. F. J. Phys. Chem. A 2005, 109,
3957–3959.

3 Jansen, M.; Wedig, U. Angew. Chem. Int. Ed. Engl. 2008, 47, 10026–
10029.

4 McWeeny, R. Rev. Mod. Phys. 1960, 32, 335–369.

5 Becke, A. D.; Edgecombe, K. E. J. Chem. Phys. 1990, 92, 5397–5403.

6 Ruedenberg, K. Rev. Mod. Phys. 1962, 34, 326–376.

7 Matito, E.; Feixas, F. DMN program. 2009; University of Girona (Spain)
and University of Szczecin (Poland).

8 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Bu-
rant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Men-
nucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakat-
suji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.;
Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.;
Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dap-
prich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.;
Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challa-
combe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gon-
zalez, C.; Pople, J. A. Gaussian 03, Revision C.02. Gaussian, Inc., Pitts-
burgh, PA, 2003.

217



218 BIBLIOGRAPHY

9 Pauncz, R. Spin eigenfunctions; Springer, 1979.

10 Szabo, A.; Ostlund, N. S. Modern quantum chemistry: introduction to
advanced electronic structure theory; Courier Dover Publications, 2012.

11 Lewis, G. N. J. Am. Chem. Soc. 1916, 38, 762–786.

12 Giambiagi, M.; Giambiagi, M.; Jorge, F. Theor. Chim. Acta (Berlin)
1985, 68, 337–341.
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