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Resum

Aquesta tesi tracta el problema de la caracterització automàtica d’imatges

òptiques submarines. L’adquisició automatitzada d’imatges submarines

permet l’obtenció i emmagatzematge de grans quantitats de dades per

les quals la classificació manual pot requerir mesos de feina. Una classi-

ficació automatitzada i supervisada d’aquestes dades suposa un estalvi

significatiu de temps i recursos, aix́ı com permet l’extracció d’informació

valuosa per a realitzar estudis marins i geològics. Pocs són els treballs

en la bibliografia orientats a la resolució d’aquest problema. A més,

aquests pocs treballs no són capaços d’obtenir resultats consistents quan

s’apliquen sobre una mostra variada d’imatges òptiques subaquàtiques.

En aquest treball es presenta un nou sistema de classificació d’imatges

òptiques subaquàtiques, que pot ser aplicat tant a imatges individuals

com a mosaics d’imatges. El mètode proposat es pot configurar d’acord

amb les caracteŕıstiques individuals de les dades, com ara la mida del

conjunt de dades, el nombre de classes, la resolució de les mostres, la

disponibilitat d’informació de color i els diferents tipus de classes. El

document presenta la combinació de caracteŕıstiques i classificadors que

aconsegueixen els millors resultats sobre imatges subaquàtiques, aix́ı com

les directrius per a la seva selecció. A més es presenta una nova solució

per a l’eliminació de càustiques a les imatges subaquàtiques de poca

profunditat, que s’introdueix com una etapa de preprocessat prèvia al

sistema de classificació proposat.

També s’han examinat els mètodes principals de l’estat de l’art per a

la classificació imatges submarines i els mé rellevants han estat com-

parats amb el mètode proposat, utilitzant un mateix conjunt d’imatges

bentòniques. El métode proposat aconsegueix la major precisió de clas-

sificació de manera general respecte als altres mètodes de l’estat de l’art,

mantenint un temps d’execució moderat.



El sistema proposat també s’ha aplicat sobre mosaics d’imatges de grans

dimensions del Mar Roig i el Mar del Nord amb l’objectiu de crear mapes

temàtics completament classificats del fons maŕı.



Resumen

Esta tesis trata el problema de la caracterización automática de imágenes

óptica submarinas. La adquisición automatizada de imágenes submari-

nas permite la obtención y almacenamiento de grandes cantidades de

datos cuya clasificación manual puede requerir meses de trabajo. Una

clasificación automatizada y supervisada de dichos datos supone un ahorro

significativo de tiempo y recursos, aśı como permite la extracción de in-

formación valiosa para realizar estudios marinos y geológicos. Pocos son

los trabajos en la bibliograf́ıa orientados a la resolución de dicho prob-

lema. Además, esos pocos trabajos no son capaces de obtener resultados

consistentes cuando se aplican sobre una muestra variada de imágenes

ópticas subacuáticas.

En este trabajo se presenta un novedoso sistema de clasificación de

imágenes ópticas subacuáticas, que puede ser aplicado tanto a imágenes

individuales como a mosaicos de imágenes. El método propuesto puede

ser configurado de acuerdo con las caractersticas individuales de los

datos, tales como el tamaño del conjunto de datos, el número de clases,

la resolución de las muestras, la disponibilidad de información de color

y los diferentes tipos de clases. El documento presenta la combinación

de caractersticas y clasificadores que logran los mejores resultados so-

bre imágenes subacuáticas, aśı como las directrices para su selección.

Además se presenta una novedosa solución para la eliminación de cáusticas

en las imágenes subacuáticas de poca profundidad, que se introduce como

una etapa de preprocesado previa al sistema de clasificación propuesto.

También se han examinado los métodos principales del estado del arte

para la clasificación imágenes submarinas y los más relevantes han sido

comparados con el método propuesto, utilizando un mismo conjunto de

imágenes bentónicas. El método propuesto logra la mayor precisión de

clasificación de forma general respecto a los otros métodos del estado del



arte, manteniendo un tiempo de ejecución moderado.

El sistema propuesto también se ha aplicado sobre mosaicos de imágenes

de grandes dimensiones del Mar Rojo y el Mar del Norte con el objetivo

de crear mapas temáticos completamente clasificados del fondo marino.



Abstract

This thesis addresses the problem of automated underwater optical image

characterization. Remote underwater optical sensing allows the collec-

tion and storage of vast amounts of data for which manual classification

may take months. Supervised automated classification of such datasets

can save time and resources and can also enable extraction of valuable

information related to marine and geological research.

There are few works in the literature that have addressed this problem,

and these few fail to perform consistently well on varied underwater

optical image datasets.

This work proposes a novel image classification framework for under-

water optical images applicable to both single images and composite

mosaic datasets. The proposed method can be configured to the charac-

teristics of individual datasets such as the size of the dataset, number of

classes, resolution of the samples, color information availability and class

types. The combination of features and classifiers that attain the best

results for underwater images is also presented in this thesis together

with the guidelines for selection. Additionally we propose a novel ap-

proach for online sunflicker removal, which turns out to be an important

pre-processing sub-step in the proposed framework for classification of

shallow water imaging.

In this study, a review of the main underwater image classification meth-

ods is presented and the most relevant ones are compared with our pro-

posed method on a common benthic datasets. The proposed method

achieves the highest overall classification accuracy when compared with

the state of the art methods and requires moderate execution time.

Our developed framework is also applied to large-scale image mosaics of

the Red Sea and the North Sea to create completely classified thematic



maps of the seabed.



Chapter 1

Introduction

An exciting underwater world is waiting to be explored using the technological

advances achieved in recent years. Several research groups all over the world are

currently working in the field of underwater imaging and mapping. In this thesis, we

develop a tool for automatic analysis of underwater optical imagery where the final

product is a thematic map encoding the seabed characterization. Related policy

makers, scientists, and researchers may use these classified maps as a tool for a

better understanding of the subject.

1.1 Background

Remote sensing technologies such as acoustic mapping, multi-beam sonar and optical

imaging among many others, are being increasingly applied for seabed observation.

In this work, we focus on optical imagery, one of the remote sensing technologies that

is commonly used for seafloor exploration, archeology, marine geology and marine

biology and biodiversity [104], among other fields.

Underwater imaging technologies have improved considerably with the recent

advancements in digital consumer cameras. Moreover, with the help of Remotely

Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs), thou-

sands of images are now easily collectable. These possibilities increase the need

of an automated analysis system of the underwater images to be used by human

analysts. Using only manual analysis, acquiring the potential benefit of such large
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1. INTRODUCTION

datasets is nearly impossible.

Only few projects in the past have addressed this problem. However, their main

drawbacks are the inconsistent accuracy on different challenging datasets and the

use of a fixed framework for all types of datasets. In consequence, they can hardly

be considered a reliable tool for automated analysis of underwater images. More-

over, the methods were never compared on common datasets to derive constructive

conclusions.

Recently, many methods for real world object classification have been developed

that work very well on structured objects and textures, given a sufficient number

of training sets. These methods are yet to be tested in an underwater environment

where optical imaging comes with unique challenges. Effects such as blurring, scat-

tering, sunflicker and color attenuation, among many others, need to be addressed

before the desired classification accuracy can be achieved.

1.2 Objectives

Supervised automated annotation tools for underwater optical images have become

necessary for analysing large amounts of acquired datasets. The main goal in this

work is to explore the possibility of developing such classification methods for un-

derwater optical images that finally result in a thematic map of the seabed in the

surveyed area. Achieving reliable classification accuracy in underwater images is a

difficult problem. The main difficulties are the underwater artifacts in optical im-

ages, the lack of training data, significant intra-class and inter-site variability and

complex spatial borders between classes, among others.

In this work, we aim to evaluate the available state of the art computer vision

techniques for classifying underwater objects with sufficient accuracy. We also aim

to generate methods to remove unwanted artifacts from underwater optical images

with specific attention to sunflicker effects. As mentioned above, usefulness of the

existing methods for underwater image classification has not been demonstrated on

common datasets. Without a comparison using common datasets, it is impossible

to assess the relative effectiveness and efficiency of these methods. One aim of this

thesis is to compare the existing most prominent methods together with our proposed

2



one, on common datasets in order to have a relevant comparative assessment. We

would like to provide a complete review of the state-of-the-art underwater object

classification using optical imagery and find the approaches that provide possibilities

for use in future investigation.

We would also like to develop a classification framework that works consistently

well on various underwater optical datasets and is hardware efficient and application

oriented. For different marine and geological applications, such a classification tool

should be very useful for experts in the field. Finally, we would like to ensure that

the proposed method requires the least amount of user input as possible.

1.3 Motivation

Underwater image mapping can have a wide variety of useful applications in the field

of coastal management, ecological analysis and geological exploration. For example,

underwater ecosystems provide a reliable indication of the impact of global temper-

ature changes. With the rapid growth of urbanization and the change in human

life styles, there have been huge increases in shipping, port and industrial activities,

water pollution, exploration for oil and gas and recreational uses such as boating

and fishing. In order to evaluate the impact of these activities, regular monitoring

of such events is very important. Proper policies adapted in order to analyze and

curtail these impacts can greatly benefit global environmental sustainability.

We focus on remote sensing using digital underwater imagery as it contains sev-

eral useful features for more accurate seabed characterization. First, digital images

have an outstanding archival potential. They can be easily stored, shared, and ana-

lyzed for different purposes, by different people, or using multiple methods. Second,

imagery can be collected from a variety of platforms, such as AUVs, ROVs, towed

arrays or drop cameras, thereby allowing data to be collected in places or over tem-

poral and spatial scales that a traditional dive survey simply could not accomplish

[1].

Underwater image classification is a relatively new field of research with unique

challenges but with great future potential. It is very exciting to work in this area of

research, as it is closely related with global well being, with a greater possibility of
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contributing and acquiring visually comprehensible results. Many research projects

addressing this important issue are currently being carried out. In the near future,

automated underwater image classification will be very essential for an accurate

analysis of the varied survey data.

In general, building an automated system that can reduce human labor is a

challenging task. To keep up with the pace of exponentially increased use of digital

cameras and videos, the need for automated analysis of such data is evident. Many

works have focused on the real-world environment, whereas a big gap remains in

the underwater imagery field. We have dedicated our work in this thesis to address

such issues and find a feasible solution that can be considered as state of the art in

this field.

1.4 Challenges

Underwater image classification is still a relatively new area of research compared

with the existing large body of work from computer vision research on man-made

life objects. Underwater imagery comes together with several unique challenges that

need to be specifically addressed.

A few of the most challenging obstacles to classification accuracy of underwater

images include:

• significant intra-class and inter-site variability in the morphology of seabed

organisms [2] or structures of interest,

• complex spatial borders between classes,

• subjective annotation of training data by different analysts,

• variations in viewpoint, distance, and image quality,

• limits to spatial and spectral resolution when trying to classify to a free taxo-

nomic scale,

• partial occlusion of objects due to the three-dimensional structure of the

seabed,

• gradual changes in the structures of the classes,

4



• lighting artifacts due to wave focusing [37; 89; 94] and

• variable optical properties of the water column.

All these individual challenges or limitations are subject to detailed research by

the computer vision community. In this thesis, we make use of available state-of-

the-art methods to mitigate some of them to a satisfactory level. However, not all

of them have adequate solutions available in the literature. For lighting artifacts,

we proposed a novel method for online sunflicker removal as discussed in Chapter 3.

Together with such challenges, on the one hand, there are many classes under-

water that share samples in the same class but with significant differences between

each other in terms of shape, color, texture, size, rotation, illumination, view angle,

camera distance and light conditions. On the other hand, there are overlapping

classes that look almost the same from specific angles and distances. When objects

are classified manually given a single point, they get labeled using information from

the perspective, neighbors and surroundings if needed. In a small patch, this sur-

rounding information is often not available. Therefore, positioning and scaling of

the patch size is an open question. When creating training sets, manual annotation

can also be subject to variations from person to person. Even the same person may

classify the same examples differently in different runs [16]. In addition, there can

be many previously unknown classes present in underwater images which might not

have enough training examples to allow adequate class learning. The datasets used

in this work are described in details in Appendix A, which illustrates the challenges

mentioned above.

1.5 Contributions

The main contribution of the work in this thesis can be summarized as follows

• We have developed a novel framework for under underwater optical image clas-

sification that can perform consistently well on different challenging seabed

datasets. The proposed method is able to classify both on individual images

or directly on composite mosaics. When compared with several challenging

datasets, our proposed method produced consistently better classification ac-

curacy than other available state of the art methods. As a final product, the
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proposed system generates thematic maps of the sea bed. In our work, we de-

fine thematic mapping as the color coded segmentation of a map into several

different classes that keep a spatial coherence in order to obtain a diagram-

matic representation of an area on the seafloor.

• We present a detailed review of the state-of-the-art methods for underwater

object classification with optical imagery and a comparative analysis of the

state-of-the-art methods on common datasets. Previously, all of these works

were only compared with their individual datasets mentioned in the respective

papers.

• Our proposed method is configurable with the characteristics of the dataset.

With this adaptable configuration, it is possible to tune the system to get

sufficiently good accuracy for any new dataset in the first go. In this thesis,

we analyze the characteristics of the datasets with available methods in several

steps of the proposed framework and came up with a guideline to make this

appropriate selection.

• In the preprocessing step of the classification framework, we needed to remove

sunflicker artifacts from the image whenever strong refracted sunlight was

present. In this work, we propose a novel online sunflicker removal method

using dynamic texture prediction and temporal or 3D based median image.

This new approach produces better results than the state-of-the-art methods,

even on image sets with very strong spatio-temporal sunflicker patterns.

• We also investigate the use of 3D structure information to obtain features that

improve the classification.

Main contributions of this work have been published in one journal [96] and two

conferences [94; 95].

1.6 Outline of the thesis

This thesis contains sequentially a literature review, a novel sunflicker removal

method, the proposed classification framework, and finally the results and conclu-

sions chapters. A description of the datasets used for testing are given in Appendix

A.
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Chapter 2 describes the related state-of-the-art works on underwater object clas-

sification using optical imagery. In the later part, it also describes the related theory

of the classification accuracy assessment methods used.

Chapter 3 presents the novel idea of online sunflicker method using dynamic

texture prediction and a temporal or 3D based median image. Chapter 3 is self

explanatory regarding literature review, the proposed approach for online sunflicker

removal, results, and comparison. This sunflicker removal method is used as an op-

tional sub-step in the image preprocessing step of the proposed classification frame-

work.

In Chapter 4, we present the details of our proposed method together with a

brief theory of the methods used in different parts. This chapter also explains the

implementation details of thematic mapping of the mosaic datasets.

Chapter 5 presents detailed results and a comparative analysis of the proposed

method and evaluation algorithms.

The concluding, Chapter 6, summarizes the most important findings and provides

guidelines intended for other practitioners to better cope with their own datasets.

This chapter also discusses the method’s limitations and points out future research

directions to address them.

The datasets used in the experiments are explained in Appendix A. Ten different

datasets have been used in this thesis including five benthic datasets, three mosaic

image datasets, and three texture datasets.
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Chapter 2

Literature review

In this chapter, a comprehensive summary is presented on the state of the art

in computer vision techniques available to do supervised automated annotation of

benthic habitats. There are only a few works in the literature that address the

issue of underwater object classification with optical imagery. Although some other

works have addressed the same problem using acoustic or sonar images, these body

of work is not very relevant to our problem of dealing with optical images, given the

fundamental difference between optical and acoustic data.

Additionally, we also present in this chapter the standard methods accepted by

the community for accessing the classification accuracy of thematic mapping. We de-

scribe the theory of the methods used in our method for evaluating the performance

of the proposed classification method.

2.1 General framework of object classification

A general supervised approach for object classification in the computer vision com-

munity contains standard steps such as image collection, preprocessing, invariant

feature extraction (texture, color, shape), feature modification (kernel mapping,

dimension reduction, normalization), classifier training and finally testing for ac-

curacy. There are many different computer vision techniques available for each of

these steps in the framework. In this thesis, we studied the methods that work

best for each step, specially for underwater optical imagery. However, some addi-
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tional steps can also be adapted to this framework, such as segmentation and post

processing. These additional steps are explained in Chapter 4 along with our pro-

posed framework. Figure 2.1 illustrates a general framework for supervised object

classification.

Pre- 
processing 

• Removing artifacts, 
noise, illumination 
variance 

• Color enhancements 

Feature 
extraction 

• Color 
• Texture 
• Shape 

Features 
modification 

• Dimension reduction 
• Kernel mapping 
• Normalization 

Learning • Prior setting 
• Classifier selection 

Classification 

• Thematic 
mapping 

• Post 
processing 

Figure 2.1: General framework for supervised object classification

2.2 Related works on automated benthic habitat

classification

Since the last decade, several works have been published that addressed the issue

of automated classification of underwater objects using optical imagery. However,

none of them could provide consistent performance on various benthic datasets and

generally are not accepted as robust.

One of the fundamental references in automated seabed classification using opti-

cal imagery is the work by Pican et al. [78]. In this work, the grey level co-occurrence

matrix (GLCM) [43] or the Kohonen maps [45] are used as texture feature descrip-

tors. Kohonen maps are also used as the classifier in the later part of their imple-

mentation. This method presents good accuracy on the 30 classes in their dataset.
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However, it is not very robust in terms of scale and rotation variation, illumination

and blurring effects of water.

Marcos et al. [65; 99] use a feed-forward back-propagation neural network to

classify underwater images. They use local binary patterns (LBP) [73] as texture

descriptors and normalized chromaticity coordinates (NCC) or mean hue saturation

value (HSV) as color descriptor. The limitation of this method is the use of mean

HSV or NCC color features which in many cases are not discriminative enough.

Also, the neural network needs a large amount of training data to achieve a good

learning of the class boundaries, and always need retraining as new samples are

added to the training set.

LBP [73] is also used for the identification of crown of thorns starfish (COTS)

by Clement et al. [9]. This method focuses on just one class, treating the substrate

and all other benthic organisms as background class. This method can work only

for very distinctly variant classes.

The work by Johnson-Roberson et al. [47; 48] employs both acoustic and optical

imagery for benthic classification. Acoustic features and visual features are classified

separately using a support vector machine (SVM) [12] with assigned weights, which

are determined empirically. This work uses a combination of different sensor data,

where we depend only on optical imagery [93].

Gleason et al. [35] use color and texture features in a two-step algorithm to

classify three broad cover types. The main drawback of this system is that it needs

a specialized camera capable of acquiring narrow spectral band images, which is

specialized and costly hardware. This method is not considered as one of the baseline

approaches in our comparison since they do not classify underwater objects based

exclusively on standard optical images.

Mehta et al. [69] utilize an SVM classifier having pixels as features. Their method

were used for coral reef texture classification of only two classes. The method fails on

more realistic conditions of noisy images, and under varying illumination conditions.

Also, this method does not extract any core features of the class, but rather totally

depends on SVM’s inherent discriminative power for classification. Without a very

large number of training examples generating a good definition of multiple class

identity, it would be very difficult to get consistent results with this method.
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In the work of Pizarro et al. [80], ’bag-of-visual-words’ [15] features are used.

These features are the most commonly used by the computer vision community

for object classification. This method attains a good level of accuracy and can

be considered as one of the main references in the state of the art methods. For

this reason, it is used for comparison against our proposed method in Chapter

5. In their approach [80], an image is represented as a collection of visual words

obtained using SIFT (scale invariant feature transform) descriptors [62]. In this

method, an entire image is classified as one class or another. Therefore, within-

image heterogeneity cannot be classified or quantified. Also, this method requires

relatively high resolution images to generate enough interest points that describe

the content of the image.

The work by Marcos et al. [66] uses LBP [73] and NCC histograms as feature

descriptors and a linear discriminant analysis (LDA) [70] as the classifier. The

method was tested on only two classes of benthic habitats. Moreover, the LDA

classifier is not able to perform consistently well for varied types of seabed image

datasets [96]. However, this method is considered as one of the related state of the

art methods to be compared against our proposed method.

The work of Stokes and Deane [100] uses normalized color space and discrete

cosine transforms (DCT) to classify benthic images. The final classification is done

using their proposed probability density weighted mean distance (PDWMD) classi-

fier [100] from the tail of the distribution. This method is time efficient with good

accuracy but requires accurate color correction, which may be difficult to achieve on

underwater images without controlled lighting. Also, the method uses fixed 64 ×
64 pixel window sizes, which sometimes might not be enough to capture sufficient

visual aspects making some classes distinguishable. This work is also considered as

one of the state of the art methods that was selected to comparatively analyze the

performance of our proposed method.

The work of Padmavathi et al. [76] uses kernel principal component analysis

(KPCA) [46] to project a SIFT [62] feature vector in a more distinguishable do-

main. The classification is performed with probabilistic neural network (PNN).

Their method achieved high accuracy in their used dataset. However, this method

lacks proper comparison with other methods on varied datasets.

The work by Diaz et al. [19] uses the local homogeneity coefficient (LHC) [29]
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to segment, and pixel by pixel distance of texture features such as energy, entropy

and homogeneity to classify. This method can only deal with classes that are highly

discriminative by nature, and therefore, is of limited application under water.

Beijbom et al. [2] published for the first time, a standard dataset for testing state

of the art methods in underwater optical image classification. They also proposed a

novel framework for seabed classification which consists of feature vector generation

using a maximum response (MR) filter bank [108], and a SVM [12] classifier with

a radial basis function kernel. In this method, multiple patch sizes were used,

providing a significant improvement relative to classification accuracy. However,

the use of multiple patch sizes can be redundant and time consuming. Also, the

SVM classifier requires manual tuning to find the parameters that generate the best

possible results.

The work by Bewley et al. [4] use PCA compression from raw RGB images as local

image features and support vector machines as the classifier. This method predicted

only the presence or absence of Ecklonia Radiata (kelp) on the sea floor. Their

method is hardware efficient and works well for kelp. However, their performance is

yet to be tested on more varied classes in challenging datasets.

Another approach to underwater object classification can be unsupervised learn-

ing, specially for the rare classes where acquiring adequate training samples is very

difficult. Bender et al. [3] in their recent work, used a novel approach of probabilis-

tic targets least square classifier (PTLSC) to cluster the similar types of areas on

the seabed. This method shows promising results and is likely to evolve in future

research.

A comparative summary of the existing algorithms for supervised automated

underwater object classification using only optical imagery is given in Table 2.1,

with entries in bold corresponding to the published methods used for comparison in

Chapter 5 of this thesis.

For the cases where the survey images contain enough overlap to allow the extrac-

tion of depth information, then 2.5D or even 3D based features can be important as

additional features for classification. The work by Friedman et al. [31] presented a

new method for calculating the rugosity, slope and aspect features of the Delaunay

triangulated surface mesh of the seabed terrain by projecting areas onto the plane

of best fit using principal component analysis (PCA). They used these features to
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Table 2.1: A brief summary of methods classifying benthic images. The methods in bold are used
in Chapter 5 for performance comparison and are referred to by the underlined authors names.
The last column, N, contains the number of classes used for testing each method, as reported in
their respective papers.

Authors Features Classifiers N

Bewley [4] Texture: Principal component
analysis (PCA) from raw RGB
image

Support vector machines (SVM) 2

Beijbom [2] Texture: Maximum re-
sponse (MR) filter bank

Support vector machines
(SVM)

9

Padmavathi [76] Texture: Bag of words using
scale-invariant feature transform
(SIFT)

Probabilistic neural network
(PNN)

3

Stokes & Deane
[100]

Color: (RGB histogram) Probability density weighted
mean distance (PDWMD)

18

Texture: discrete cosine
transform (DCT)

Pizarro [80] Color: normalized chro-
maticity coordinate (NCC)
histogram

Voting of the best matches 8

Texture: bag of words using
scale invariant feature trans-
form (SIFT)

Saliency: Gabor filter re-
sponse

Mehta [69] Color: Pixel intensity Support vector machines (SVM) 2

Gleason [35] Multi-spectral data Distance measurement 3

Texture: grey level co-
occurrence matrix (GLCM)

Johnson-Roberson
[47; 48]

Texture: Gabor filter response Support vector machines (SVM) 4

Acoustic: Gabor filter response

Marcos [65] Color: normalized chro-
maticity coordinate (NCC)
histogram

3 layer feed forward back
projection neural network

3

Texture: local binary pat-
tern (LBP)

Clement [9] Texture: local binary pattern
(LBP)

Log likelihood measure 2

Soriano [99] Color: normalized chromaticity
coordinate (NCC) histogram

Log likelihood measure 5

Texture: local binary pattern
(LBP)

Pican [78] Texture: grey level co-
occurrence matrix (GLCM)

Kohonen map 30
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define the characteristics of the seabed terrain for scientific communities. In our

work, we use these 3D statistics [31] as features for classification.

There are several works that use 3D features for classification for general com-

puter vision applications [52; 77]. In the work of Knopp et al. [52], Hough transform

and 3D Surf were used to generate 3D features. Their method can work well for

objects with rigid and structured 3D shape. Paul et al. [77] demonstrated that

mean curvature and gaussian curvature are the fundamental second-order surface

characteristics that possess desirable invariance properties and represent extrinsic

and intrinsic surface geometry respectively. Sandbach et al. [87] use 3D features

for facial expression detection based on predefined shape model of faces. Marton et

al. [67] proposed the combined use of 2D and 3D features mainly for online robot

motion applications. In these mentioned applications, objects that have predefined

shape model such as human body, table, etc. are used for classification. In our work

we are interested in classifying natural benthic objects that may or may not have

very distinctive shape model.

Geographic information systems (GIS) tools like St John BIOMapper use statis-

tics such as curvature, plan curvature, profile curvature, mean depth, variance of

depth, surface rugosity, slope, slope of the slope to characterize the complexity of the

seafloor. Some of these features can be considered as potential 3D or 2.5D features

for underwater object description.

Much additional work has been done on texture classification for other applica-

tions besides benthic imagery. Two papers in particular are worth mentioning here,

as they reported the highest classification accuracy on standard texture datasets.

Hayman et al. [44] use filter bank outputs with a SVM classifier that has a ker-

nel based on the chi-square distance. This method works very effectively on low-

resolution texture datasets. Zhang et al. [110] use an approach that represents im-

ages as distributions (signatures or histograms) of features extracted from a sparse

set of key points locations. In their work a SVM classifier is trained with kernels

based on the earth mover’s distance (EMD) and the chi-square distance. We com-

pare the performance of our method on texture datasets with these two methods as

well.

The four main methods selected as the benchmark in our comparison are dis-

cussed in more detail in the following sections.
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2.3 Image based classification

In the image based classification approach, each individual image is classified as

belonging to any particular class depending on the visual cues present in the image.

The work by Pizarro et al. [80] follows this approach. In this approach it is aimed

more towards finding the presence of objects in an image rather than finding the

location of the objects. For thematic mapping, this method can be used if a small

patch around any center pixel is taken and then is classified as any object class.

2.3.1 Pizarro

Pizarro’s method et al. [80] is an image-based classification method where state of

the art ’bag-of-visual-words’ [15] object recognition system is used. In this method,

an image is converted into a collection of visual words or visual features which can

be considered as a discriminative descriptor of that image. A set of training images

annotated by experts is used to build a vocabulary of visual words so that the

query image can be described by the frequency of occurrence of all these words in

the vocabulary. In this system, a class is assigned to the query image, based on

the class of the closest training sample. The implemented method by is Pizarro is

described in the following.

• Initially, the images of both the testing set and the training set are modified by

comprehensive image normalization applied independently to each color channel.

The normalized color patch is then presented in HSV color space. From only the hue

channel, a 24 bin color histogram descriptor is extracted. This histogram contains

the color information of the image. Additionally, using SIFT [62], another feature

vector is created. Combining these two statistically independent features, a strong

descriptor of the image is created.

• Using the final combined feature vector (that have been also normalized), images are

presented in a feature dimension that is more discriminative than the raw images.

Afterwards, the euclidean distance classification algorithm is used to classify the

test images. In their work, 453 images were classified into 8 classes by an expert for

training and vocabulary generation.

The method by Pizarro [80] does not perform well for pixel by pixel classified
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mapping and can be very inefficient and less accurate if used for making a high res-

olution pixel by pixel thematic mapping. This method follows the standard image

classification approach (defining objects in the image), used by the computer vi-

sion community, acquiring moderate performance. However, for underwater images,

there are many objects which can only be differentiated using texture information.

Texture cues contain discriminative identity of most of the seabed objects. In this

method the texture features are defined with the bag of features approach by SIFT

[62] descriptors. On flat surfaces, it would be very difficult to acquire enough SIFT

points on a featureless image such as sand. Also, the histogram of the Hue channel

contains an attenuated color response which is limited in its capability to discrimi-

nate between similarly colored object.

2.4 Patch based classification

In patch based classification, a sliding window is used to take patches around the

center pixels and classify them based on available visual features. The works by

Marcos [65], Stokes & Deane [100] and Beijbom [2] follow this approach.

2.4.1 Marcos

In this method, Local Binary patterns (LBP) are used as texture descriptors and

Normalized Chromaticity Coordinates (NCC) or Hue Saturation Value (HSV) as the

color descriptor. LBP is used for its robustness to brightness changes and Gaussian

blurring and also performs consistently better at recognizing tilted three dimensional

textures than other texture descriptors. Using the LBP [73] descriptors and NCC

color information, a 14 component feature vector is created.

For the final classification, a supervised three-layered feed-forward, back pro-

jection neural network using Matlab neural network toolbox is used where weight

updates are done by gradient descent. The Neural Network is trained using the

mean square error 0.01 as the learning convergence criterion having 12 hidden units

and using momentum term of 0.9.

The method was implemented for only three classes and was compared with the

rule based decision tree classification method. The neural network needs a lot of
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free parameters and can be mathematically complex. It requires more training data

to learn a pattern compared with other classification methods. Also, the method

has only been tested on three classes with 300 images (640 × 480 pixels size). This

method claims a success rate of 86.5%, which is quite promising.

2.4.2 Stokes & Deane

Stokes & Deane [100] use an approach similar to Marcos et al. [65] with different

features and classifiers. In their work, normalized color histograms are used as

the color descriptor and a discrete cosine transform as the texture descriptor. The

classification is performed using a novel approach titled ’probability density weighted

mean distance (PDWMD)’ from the tail of the distribution [100]. The method is

implemented through the following steps.

• The image acquisition is performed having color markers around the frame. Color

markers around the frame provide color and intensity consistency between transect

images. Color intensity in the frame markers are used to automatically normalize

the illumination of all the images as a pre-processing step.

• An annotated image library is created by the experts for training. This library

contains 3000 training patches (65 × 65 pixels in size) belonging to 18 different

substrate/organism types. The library of images is converted into feature vectors

(DCT and normalized color histograms) for a more compact representation than the

raw images.

• For classified mapping, a sliding window of 65 × 65 pixels (overlapped) is used.

For each test patch, the descriptive matrix (or, in other words, feature vectors) is

calculated using two dimensional discrete cosines transforms of the image luminance

and color histogram (32 bins for each individual color) in RGB color space.

• The novel classification algorithm titled PDWMD considers each class in turn. The

distance from the test patch to all the patches in one class in the training set is

computed and the mean of minimum three distance is stored. In iteration, this is

done for all the classes in the training set. The class with the smallest mean distance

is assigned as the label of the test patch.

• Finally, a 3 × 3 median filter is used as a post-processing step to remove scattered

misclassifications.
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This method can be considered as one of the most relevant state of the art

references for large-scale thematic mapping of the ocean floor. The advantage of

this method is that it is very simple to implement and also time efficient with good

accuracy. The limitation of the method is it characterizes texture using only the

DCT of Luminance of the image patch, whereas other available texture features,

such as GLCM and LBP among others, can be more robust and accurate. The

weighting of the color features and texture features has been selected empirically.

This method works well if the testing and the training images are taken in almost

the same conditions in terms of water depth, distance between the object and the

camera, and water quality.

2.4.3 Beijbom

In the most recent work of Beijbom et al. [2], they proposed a novel framework

for classification which comprises an MR filter bank [85] using Texton mapping and

a LIBSVM classifier with a radial basis function kernel. In this method, multiple

patch sizes are used providing a significant improvement in terms of performance.

Preprocessing was done using color channel stretching in the Lab color space [2]. In

order to obtain the Texton map for the specific dataset, a subset of the images is

exclusively used to evaluate the filter responses from each of the classes. K-means

clustering is applied to all these filter responses to create the texture dictionary.

This method also follows the patch by patch classification approach. The texture

filter bank contains very reliable descriptors of the texture contents of the objects

to be classified. They reported a good classification accuracy with their published

datasets. However, their method deals with scale variation by using multiple patch

sizes, which can be redundant. Also, they used a standard SVM classifier that needs

tuning of the parameters to get the best result out of any specific dataset.

2.5 Accuracy assessment methods

There are several methods popularly used by researchers for the quantitative assess-

ment of thematic mapping (also referred to as spatial simulation model [13; 28]).

In general, the confusion matrix (referred to as error matrix [61] or contingency
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matrix [13]) contains all the information to calculate quantities for quality assess-

ment. Among these quantities, overall accuracy [101], kappa [10], tau [71] and the

average mutual information (AMI) [26] can be considered as the most common and

accepted ones. Moreover, precision and recall curves, receiver operating characteris-

tics (ROC), average precision and the area under the ROC curve are popularly used

in the computer vision literature for the assessment of the classification quality. All

of the above indicators present a specific point of view on the quality measure related

to thematic mapping.

In the following section, the theoretical background of the confusion matrix [61],

overall accuracy (OA) [101], kappa (K) [10], tau (T) [71], average mutual information

(AMI) [26] are discussed in brief.

Confusion matrix

The confusion matrix is a special matrix containing, as rows, the particular

classes by one classification scheme and, as columns, the results of other classifi-

cation scheme. One of the classification results can be considered as a reference

(or ground truth, in many cases) and is normally placed in the columns. This ma-

trix is most popularly used for its effective representation capability of classification

accuracy in global as well as an individual class sense.

Let us assume that n samples were distributed through k2 cells in which each sam-

ple is associated to one of the k classes within the simulation classification (usually

rows), and independently, to one of the k classes within the reference data (usually

columns). Thus, nij is the number of samples classified in class i (i = 1, 2, ... , K)

in classification and class j (j = 1, 2, ... , k) within the set of reference data (Table

2.2). Here ni+ is the number of samples classified within class i of the simulation

classification, and n+j is the number of samples within class j in the reference data.

ni+ =
k∑
j=1

nij n+j =
k∑
i=1

nij (2.1)

Pij is described as the proportion of the samples within cell i, j corresponding to

nij, i.e. Pij = nij/n. Pi+ and p+j are defined by

20



2. Literature review

Table 2.2: A numerical definition of a confusion matrix

Input

class 1 class 2 class 3 ... class k

Output

class 1 n11 n12 n13 ... n1k

class 2 n21 n22 n23 ... n2k

class 3 n31 n32 n33 ... n3k

... ... ... ... ... ...

class k nk1 nk2 nk3 ... nkk

pi+ =
k∑
j=1

pij p+j =
k∑
i=1

pij (2.2)

Overall accuracy (OA)

Overall accuracy (OA) is the sum of the major diagonal in the confusion matrix

(i.e. the correctly classified units) divided by the number of units in the whole

matrix. n is the total number of samples.

OA =

k∑
i=1

nii

n

(2.3)

Kappa

The kappa (K) statistics for quality assessment is a commonly used indicator

in remote sensing fields to compare thematic map accuracies. The kappa value is

the measurement of how the classification result relates to the reference data. This

measurement discards the chance agreement from the overall accuracy [10]. Po is

the proportion of cases in agreement (correctly classified) and Pc is the proportion of

agreement that is expected by chance. The following equations are used to calculate

the kappa coefficient.
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po =
K∑
i=1

pii pc =
K∑
i=1

p+ipi+ (2.4)

K = po−pc
1−pc

(2.5)

To analyze the agreement for an individual class inside the matrix, the conditional

Kappa coefficient (Kc) can be used.

Kc = nnii−ni+n+i

nni+−ni+n+i
(2.6)

To assign different weights to different types of errors, the weighted kappa, Kw

can be used. This allows more penalization of some specific errors that are deemed

most important. wij is the weight associated to cell ij in the matrix. The proportion

pij of the ij cell is affected by the weight, wij. The weights should be limited to 0

≤ wij ≤ 1 interval for i 6= j.

P ∗o =
k∑
i=1

k∑
j=1

wijpij P ∗c =
k∑
i=1

k∑
j=1

wijpi+p+j (2.7)

Kw = p∗o−p∗c
1−p∗c

(2.8)

Tau (T)

The Tau coefficient (T ) measures the classification accuracy in relation to the

random adjustment of pixels to classes [71]. This is similar to the kappa coefficient

(K) but uses the prior probability of individual classes. This information is not

present in the confusion matrix.
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pi = xi
n

pr =
k∑
i=1

pi+pi (2.9)

T = po−pr
1−pr

(2.10)

Average mutual information (AMI)

Using the information theory, we can measure the information gain after clas-

sification by comparing it with the reference data. With the overlap of map A

(reference data) and map B one can draw up a contingency table c1 × c2 with c1

rows pertaining to map A and c2 rows pertaining to map B. Each element of the

matrix (nij) corresponds to the number of pixels which belong to class j on map A

and to class i on map B. The total number of elements of the matrix is represented

by n. The probability of an element belonging to class j on map A and class i on

map B, p(aj, bi), is obtained by dividing the element of the contingency table, nij

by the total number of elements (n) in the table.

The amount of information that map A contains on map B is reflected in the

reduction of uncertainty relative to map A when map B is known. This can be

expressed as conditional probability, p(aj/bi), which is the probability of a pixel

belonging to class j on map A when the pixel is of class i on map B. From probability

theory,

p(aj/bi) =
p(aj ,bi)

p(bi)
(2.11)

AMI =
k∑
i=1

k∑
j=1

p(bi, aj) log
[

p(bi,aj)

p(bi)p(aj)

]
(2.12)

The measurement based on the information theory of the sharing of information,
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AMI, is applied to the comparison of thematic maps. AMI measures consistency

instead of correction [13; 28]. Intuitively, AMI measures the information that maps

A and B share. For example, if map A and map B are independent, then map A

does not give any information about map B and vice versa, therefore AMI is zero.

However, if map A and map B are similar, then all the information conveyed by

map A is shared with map B. In this case, the AMI is the same as the uncertainty

of map A or map B alone.

2.6 Summary

In this chapter, the most relevant related work on underwater image classification

has been presented. The works of Pizarro [80], Marcos [65], Stokes & Deane [100]

and Beijbom [2] are the main ones used for comparing the performance of our

proposed method. However, the existing methods have only been tested on unique

image datasets in the papers in which they were published. Without comparison on

standard datasets, it is impossible to assess the relative effectiveness and efficiency

of these methods.
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Chapter 3

Online Sunflicker Removal Using

Dynamic Texture Prediction

The sunflicker effect can be modeled as a dynamic texture due to its properties.

The Open Loop Linear Dynamic System (OLLDS) (dynamic texture modeling al-

gorithm) by Doretto et al. [20] is used in this method to learn the sunflicker pattern

in a dataset. OLLDS is a novel way of defining dynamic texture as a second-order

stationary process with an arbitrary and precise covariance sequence. Once the

dynamic texture model is learned using the first few images of a sequence, an ap-

proximation of the next dynamic texture image of that sequence can be predicted.

Using this approach, prediction of the sunflicker effect (as a dynamic texture) allows

for coarsely removing it from the next image in the sequence and, thereby regis-

tering the current image against the next image with better accuracy. We found

comparatively better performance of this approach with respect to the closest related

method in the literature by Gracias et al. [37]. Also, removing sunflicker from the

raw images helps the classification method to achieve better accuracy; due mainly

to the higher information content on the object class in sunflicker free images.

3.1 Background

Among the many other unique challenges of underwater optical systems, sunflicker

is one of the most prominent effects in shallow water on sunny days. The sunflicker
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effect comes from refracted sunlight casting fast moving patterns on the seafloor.

Figure 3.1 illustrates the way in which sunflicker corrupts an image’s appearance,

altering human perception of the scene and affecting the natural performance of

image processing algorithms. Figure 3.2 shows an example of fast changes in the

appearance of underwater objects in consecutive images acquired at a short time

interval. In this chapter, our proposed novel method for online sunflicker effect

removal is presented. This method can be considered an optional sub-step in the

image preprocessing step of the proposed classification framework. This step can

help extract more reliable information about the object’s characteristics, which can

aid the classification performance with a higher accuracy gain. Figure 3.3 illustrates

a comparative example of a mosaic creation before and after sunflicker removal.

Figure 3.1: Refracted sunlight creating illumination patterns on the sea floor, varying in space &
time following the dynamics of surface waves.

(a) Sequence 1 (b) Sequence 2

Figure 3.2: Example of rapid changes in the appearance of underwater objects in consecutive
images acquired in a short time interval.
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(a) Before sunflicker removal (b) After sunflicker removal

Figure 3.3: Effects of sunflicker removal in a mosaic creation.

3.2 Related work

Combining the work of Weiss [109] on removing shadows in land scenes and the work

of Matsushita et al. [68] on shadow elimination in surveillance video, Schechner and

Karpel [89] proposed an approach for removing sunflicker in underwater images. This

approach uses the observation that the spatial intensity gradients of the caustics tend

to be sparse. They calculate a gradient field (robust to illumination changes) from a

temporal median over the gradients of a small number of images. By integrating this

median gradient field, the sunflicker is finally removed. However, camera motion is

not considered in this method.

Using the information exchange theory, two transparent overlapped videos can

be separated as shown in the work by Sarel and Irani [88] and in the work by

Ukrainitz and Irani [105]. This approach works under the assumption that one

of these transparent videos contains a repetitive dynamic sequence. The method

can handle repetitive dynamic sequence variance to a certain degree which is not

precisely quantified. In this approach, a large number of frames from the same

camera position are required to grab a complete cycle of the repetitive dynamic

sequence, making it almost impossible for moving cameras.

Another interesting approach to deal with the same challenge is to use polariza-

tion information [90]. In this approach, the assumption is that the refracted sunlight

has unique polarization characteristics. With the help of these variant polarization

characteristics it becomes possible to separate the sunflicker layer from the original
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image. However, to acquire polarization information, special cameras with polarized

filters or imaging sensors are required, which increases the cost and complexity of

the image acquisition system. Such special systems are not commonly deployed.

Candes et al. [21] recovers the low rank matrix from the image sequence which

represents the illumination field. However, this method only works when there is no

camera motion.

The work by Gracias et al. [37] addresses the removal of sunflicker considering

camera motion. The method works based on the assumption that video sequences

allow several observations of the same area of the seafloor over time. Under such

conditions, computing the differences in images between a given reference frame

and the temporal median of a registered set of neighboring images is possible. This

difference image has two components with separable spectral content. One is related

to the illumination field (which has lower spatial frequencies) and the other to the

registration inaccuracies (mainly having higher frequencies). By filtering out the

high frequency component of the difference image, the illumination field can be

approximately recovered. The main limitation of this approach is that the median

image for each frame is obtained from both past and future frames in a non-causal

way, i.e. future frames are required to process the current image. Moreover, the

computation of the temporal median requires the original images to be correctly

registered before removing the sunflicker, which may be impossible in cases where

strong sunflicker is present.

3.3 Framework

Our proposed method is an extension of the work by Gracias et al. [37] adding 3D

information in creating the median image and converting the method into an online

(causal) system [94]. We use dynamic texture modeling and synthesizing [20] to

approximate the sunflicker pattern of the current frame from a few previous frames.

The presented approach attains a higher registration performance even under heavy

illumination fluctuation. Also, this method is strictly causal (i.e. does not rely on

future observations), fulfilling the important condition of online operation required

for visual-based robot navigation.
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3.3.1 Dynamic texture modeling and synthesizing

The OLLDS model can be used for extrapolating synthetic sequences of any duration

at negligible computational cost. The underlying assumption in this approach is that

the individual images are the realizations of the output of a dynamic system driven

by an independent and identically distributed (IID) process. A stochastic process

is stationary (of order k) if the joint statistics (up to order k) are time-invariant.

For instance a process Im(t) is second-order stationary if its mean Im = E[I(t)]

is constant and its covariance E[(I(t1) - Im)(I(t2) - Im)] only depends upon t2 -

t1. Under the hypothesis of second-order stationarity, a closed-form sub-optimal

solution of the learning problem obtained as follows:

1. A linear dynamic texture is modeled as an auto-regressive moving average

process (ARMA) with unknown input distribution, in the form,

x(t+ 1) = Ax(t) + z(t) (3.1)

y(t) = Ox(t) + w(t) (3.2)

where y(t) is the observation vector, in this case the image sequence; x(t) corre-

sponds to the hidden state vector; A is the system matrix; O is the output matrix

and z(t), w(t) are Gaussian white noises.

2. Taking the SVD of y(t), x(t) and O can be found from the following equations.

Here τ is the number of images used to learn the dynamic model of the system.

yτ1 = UΣV T (3.3)

O(τ) = U (3.4)

x(τ) = ΣV T (3.5)

where yτ1 is the observation vector from image instance 1 to τ of the image

sequence used to create the model; O(τ) is the output matrix at instance τ ; x(τ)

corresponds to the hidden state vector at instance τ .
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3. Matrix A can be determined uniquely by

A(τ) = ΣV TD1V (V TD2V )−1Σ−1 (3.6)

where

D1 =

[
0 0

Iτ−1 0

]
D2 =

[
Iτ−1 0

0 0

]

3.3.2 Motion compensated filtering

Let us consider a set of registered images. We refer to a given image by the discrete

parameter t which indexes the images temporally. The radiance L of a given pixel

with coordinates (x, y) can be modeled as

Lt(x, y) = Et(x, y) ·Rt(x, y) (3.7)

where Et is the irradiance of the sunlight over the 3D scene at the location

defined by pixel (x, y) at time t, after absorption in the water, and R(x, y) is the

bidirectional reflectance distribution function. For underwater natural scenes, where

diffuse reflectance models are applicable, R is assumed to be independent of both

light and view directions.

Converting the expression for Lt to a logarithmic scale allows the use of linear

filtering over the illumination and reflectance.

lt(x, y) = et(x, y) + rt(x, y) (3.8)

For approximately constant water depth and realistic finite cases, the median

converges significantly faster to an average value of lt than the sample mean. We

name this median image as temporal median through rest of the thesis. Let us

consider the median of the radiance over an interval [t0, t1].

Imed(x, y) = med[t0,t1]It(x, y) ≈ e+ rmed(x, y) (3.9)

Here rmed(x, y) stands for an approximation of the median of reflectance. The

difference dt(x, y) of a given image lt(x, y) with the median radiance lmed(x, y) is
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used to recover the approximate background image.

dlt(x, y) = lt(x, y)− Imed(x, y) (3.10)

This difference dlt(x,y) has two main components. The first component relates

to the instant fluctuation of the illumination field and has lower spatial frequencies.

The second component relates to inaccuracies in the image registration and has

higher spatial frequencies. After applying a low pass filter to the difference image,

the low frequency components that resemble the illumination field are only kept in

the output. This approximated illumination field is later used to correct the main

input image, recovering a flicker free version of the image.

3.3.3 Median image using 3D registration

Although the motion compensating filtering approach for sunflicker removal is ro-

bust to a relatively high level of registration inaccuracies, it starts failing when

the spacial frequencies of the sunflicker patterns are no longer separable from the

blurriness induced by poor registration (when computing the median). Moreover,

the registration quality can be seriously degraded for terrains with high 3D con-

tent, especially if a planar motion model is used for the image registration [37].

For this reason we have developed and implemented a 3D estimation and registra-

tion procedure using a computationally light-weight method. In our work, the 3D

structure is sparsely estimated, inspired be the method of Rother and Carlsson [85].

However, our approach for 3D structure estimation differs from this method as it

does not require the explicit presence of a plane. Our method starts with an initial

registration of images using 2D homographies from where the camera rotations are

estimated. With the camera rotations knowledge, the problem of finding the loca-

tions of the camera centers and the locations of the 3D points becomes linear. This

is solved with the singular value decomposition (SVD) to obtain a least square (LS)

solution. For interest point detection and outlier rejection, Scale Invariant Feature

Transform (SIFT) [62] and RANdom SAmple Consensus (RANSAC) [27] are used,

respectively. The linear 3D object model created from several neighboring images is

projected onto the reference images. From these projected images and the reference
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image, a median image is calculated and considered the 3D-based median image.

Figure 3.4 shows examples of six projected neighboring images on the reference im-

age. Figure 3.5 shows an example of a 3D-based median image created with the

help of images from Figure 3.4.

Figure 3.4: Projected texture mapping on the reference images from different neighboring images.
We can observe in each image that only the common areas on the seabed seen from both camera
positions (neighboring image and reference image) are only projected on the reference image plane.

(a) Original Image (b) 3D-based median image

Figure 3.5: Example of created 3D-based median image. We can observe that the 3D-based median
image contains motion blur due to camera movement.
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3.4 Proposed algorithm

In the online sunflicker removal method proposed in this work, the approximate

illumination field of the current frame is found in the dynamic texture prediction

step. The homography is mainly calculated between the temporary recovered cur-

rent image (using the approximate illumination of the current frame) and the last

recovered image. Finally, the new image can be recovered by using a median image.

The median image is created using the 3D based method described above. If it fails,

the temporal median is used instead. The steps are illustrated in Figure 3.6.

The proposed approach considers the following assumptions to be valid:

• Illumination field is a dynamic texture

• Camera movement in the video sequence is smooth

• Bottom of the sea is approximately flat

The main algorithm contains several steps which are presented next, using the

following nomenclature:

• I0,k - Original input image obtained at time instant k

• IR,k - Recovered image obtained from I0,k after sunflicker removal at time instant k

• ID,k - low pass filtered version of the difference image at time k (used as estimate

of the illumination field)

• IM,k - Median image obtained from N frames after being warped onto the reference

image frame I0,k

• N - the number of images present in the learning sequence

• Hk,k−1 - Homography relating the image frames at times k and k − 1

The algorithm comprises the following steps:

1. Apply the motion compensated filtering method [37] to register and recover

the first few images from the sun flickering effects. In our system, we use the first

25 frames for this step.
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Warp previous 
illumination 
field to the 

current frame 

Predict  current 
illumination 

field 

Coarsely 
recover  current 

image 

Find 
homography 

Remove 
sunflicker 

pattern from 
images 

   

Figure 3.6: Step-by-step flow diagram of the proposed online method for sunflicker removal. From
top to bottom, (1) warping previous illumination field to the current frame, (2) predicting the cur-
rent illumination field, (3) coarsely recovering the current image, (4) finding homography between
the current and the previous frame and (5) removing the sunflicker pattern from the image using
the calculated homography

.
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2. Get the new image in the sequence I0,k assuming that the previous images

I0,k−1, . . . , I0,k−N have been recovered after sunflicker removal (IR,k−1, . . . , IR,k−N).

Advance to time instance k (i.e. all previous data structures that had index k now

have index k − 1).

3. Predict the flicker pattern by:

• Warping all the filtered version of the difference images, ID,k−1, . . . , ID,k−N with

respect to the current frame I0,k (to be recovered). Assume that Hk,k−1 ≈ Hk−1,k−2.

All other previous homographies were obtained from actual image matches and thus

previously known.

• Learning the sunflicker pattern from the registered filtered difference images. In

the learning phase, all the difference images in the previous frames ID (ID,k−1, . . . ,

ID,k−N ) are converted into a column matrix. Using the array of all the registered

difference image, a large matrix Wt−1 is created having P rows and N columns.

P is the number of pixels per frame and N is the total number of frames in the

learning sequence.

. . . . 

N Frames 

Size P = 
Number 
pixels in 
each frame 

Figure 3.7: Illustration of Wt−1 matrix construction using the difference images of the Grounding
dataset.

.

• Predicting the ID,k using the learned model. For learning, an open loop linear

dynamic model [20] is used. In this step the last frame ID,k−1 of the learned sequence

is considered as the first frame for synthesizing the approximate next frame (here

termed as prediction).

4. Create the approximate sunflicker recovered image using the predicted low

pass filtered version of the difference image ID,k. This recovered image is denoted

by ÎR,k and this predicted illumination field is denoted as ÎD,k.
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ÎR,k(x, y) = l0,k(x, y)− ÎD,k(x, y) (3.11)

5. Perform image registration between ÎR,k and IR,k−1. From this, obtain the

current homography Hk,k−1.

6. Calculate IM,k. A median image is created by the 3D based method described

earlier. If it fails, the temporal median is used instead.

7. Using IM,k, find the high frequency filtered difference image for the current

frame, ID,k. At the end, obtain the final recovered image IR,k using the following

equation.

IR,k(x, y) = l0,k(x, y)− ID,k(x, y) (3.12)

8. Go to step 2 and do the same for the next frames.

Figure 3.8 shows an example of how, in each step, the image is coarsely recovered,

registered, and finally, the sunflicker is removed. The top left shows the original

input image, l0,k and the bottom left shows the real illumination field, (ID,k). In

the bottom center, the predicted illumination field, ÎD,k is shown. The upper center

represents the intermediate condition of the recovered image, ÎR,k. The top right is

the final recovered image, IR,k and the bottom right is the final median image, IM,k.

These steps are applied over each color channel independently. Strong caustics

lead to overexposure and intensity clipping in one or more of the color channels,

resulting in chromaticity changes in the original images. These clippings typically

affect different regions of the images over time, given the non-stationary nature of

the caustics. The median is not affected by these transient clippings, whereas the

average is. The low pass filtering is performed using a fourth order Butterworth

filter [55], with a manually adjusted cutoff frequency.
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Figure 3.8: Step by step results of online sunflicker removal for the Grounding sequence. The top
left corresponds to the original input image, l0,k and bottom left is the original illumination field

in the input image, ID,k. In the top middle, the temporary recovered image, ÎR,k is shown and

the bottom middle corresponds to the predicted illumination field, ÎD,k. In the top right, the final
recovered image, IR,k is illustrated and in the bottom right we show the final median image, IM,k

.

Due to camera motion, the stack of warped difference images described in step 3,

may not cover the entire area of the current frame. If one considers the whole area

of the current frame, this creates a condition of missing data in the W matrix for

PCA. To circumvent this condition, the part of the area present and valid in each

warped frame at current frame location is considered.

3.5 Sunflicker datasets

This section describes the video sequence datasets used to evaluate the proposed

method. All the video sequence in the datasets have 150 frames at a 12 frames

per second speed. In the results, performances over the last 125 frames are shown.

Only the first 25 frames are used for initialization as described in step one of the

proposed method. Figure 3.9 shows examples of single frames from the four natural

video sequence datasets used in this work.

Grounding sequence

37



3. ONLINE SUNFLICKER REMOVAL USING DYNAMIC
TEXTURE PREDICTION

(a) Grounding sequence (b) Rocky sequence

(c) Andros sequence (d) Uneven sequence

Figure 3.9: Examples of single frames from the Grounding, Rocky, Andros and uneven sequences
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In 2002, the 49-foot vessel Evening Star ran aground on a hard bottom full

of stones and soft corals in the Biscayne National Park, in Florida (2523.332 N,

8009.874 W, 3 m depth). The Grounding sequence (Figure 3.9(a)) video captured

the scar created during this incident using a Sony TRV900 DV camcorder placed in

an underwater housing. A digital depth gauge was used by the camera operator to

keep a consistent depth during the surveys. This sequence was affected by sunflicker

in most of the frames. We used 150 frames of 720 by 530 pixels.

Rocky sequence

The Rocky sequence (Figure 3.9(b)) which is more challenging than the Grounding

sequence, was captured in shallow waters with a very rocky bottom. This sequence

was also severely affected by sunflicker in all of the frames. The frame size in this

sequence is 720 by 530 pixels.

Andros sequence

This is the most challenging sequence of the five datasets, acquired in very shallow

waters of less than 2 meters under intense sunlight. In this video, the illumination

patterns have simultaneously very high spatial and temporal frequencies. An exam-

ple is given in Figure 3.9(c). Each frame in this sequence is 720 by 530 pixels in

size.

Uneven sequence

This particular video sequence has good depth variation suitable for 3D recon-

struction. It contains frames of 1024 by 768 pixels in size. An example is given in

Figure 3.9(d).

Synthetic sequence

Aiming for a quantitative performance evaluation of the proposed online sun-

flicker removal method, we created a synthetic sunflicker affected video sequence.

The sunflicker pattern captured in a swimming pool video is projected onto the sun-

flicker removed grounding video sequence to create this Synthetic sequence. Both
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sequences, combined here, present approximately the same distance between the

camera and the scene. An example of sunflicker pattern extracted from the pool

video is given in Figure 3.10. The size of the frames in this sequence is 1360 by 726

pixels.

Figure 3.10: Sunflicker pattern extracted from a swimming pool video.

3.6 Methodology

The performance evaluation and comparison of the proposed approach with the

closest method in the literature [37] was done on the test datasets presented above,

which have distinct refracted sunlight conditions (Grounding, Rocky, Andros, Un-

even and Synthetic sequences). The main evaluating criteria is the number of inliers

found per time-consecutive image pair in each registration step. This criterion was

found to be a good indicator of the image de-flickering performance. The better the

sunflicker removal achieved, the larger the number of inliers per time-consecutive

image pair, assuming that all the other influencing factors are constant.

We used a maximum grid intensity variation measurement to access the perfor-

mance of the median image creation. If the 3D-based median image creation method

fails due to lack of correspondences, the system switches to the temporal median

image approach. For maximum grid intensity variation calculation, the reference

image and the created median image are divided into a grid of 6 by 6 cells and the

average pixel intensity difference is calculated for each cell in the grid. The maxi-

mum absolute average difference is finally used for the median image quality (the

image quality is inversely proportional with the distance).
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3.7 Results

The proposed method outperforms the previous method in almost all the frames on

the Grounding sequence as shown in Figure 3.11. Quantitatively, the matching

performance is improved by 46% based on the inliers detected in every pair of

frames. Figure 3.11 provides a comparative analysis of the proposed online method

and the offline method of [37] in terms of the number of inliers detected during

the registration step. Some examples of the recovered frames for different video

sequences are given in Fig. 3.12.

Figure 3.11: Comparison between the proposed and the offline method [37] for the Grounding
sequence

A comprehensive comparison of the matching performance between the online and

offline sunflicker removal methods using both homography and 3D-based median

images with the Grounding sequence is shown in Figure 3.13. In this particular

sequence, the use of 3D-based median image showed an unsatisfactory performance

for both the online and the offline sunflicker removal methods (green and blue line).

In the case of temporal median image, both the online and offline method achieved

better accuracy and stability.

Figure 3.14 shows the comparative analysis of the Rocky, Andora and Synthetic

sequences. For the Rocky sequence, the proposed online method performs signifi-

cantly better than the offline method in terms of number of inliers per registration

(Figure 3.14(a)). The overall gain in the matching performance for the proposed

method is about 67% compared to Gracias et al. [37]. For the Andros sequence, (see
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(a) Original Image (b) Recovered Image

(c) Original Image (d) Recovered Image

(e) Original Image (f) Recovered Image

Figure 3.12: Illustration of the online sunflicker removal performance
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Figure 3.13: Performance comparison with the Grounding video sequence

Figure 3.14(b)), the proposed method performs 15% better. We also compare the

online and the offline sunflicker removal methods on the Synthetic video sequence

to numerically quantify the quality of the de-flickering. As in Figure 3.15, the on-

line method has less error and recreates more the flicker free ground truth more

accurately.

Figure 3.16 is an example of the offline sunflicker removal performance on the

Uneven video sequence using both 3D-based median and homography median im-

ages. The 3D-based median image fails to perform consistently in the case of rapid

depth variations. This example shows that the 3D-model created with insufficient

detail might not be reliable enough to take the real presumed advantage of the 3D

information.

The method is implemented in Matlab, and the code has not been optimized for

speed. It takes on average 6.87 seconds per frame on average, when executed on an

Intel core 2 Duo 2 GHz processor. For initialization (step 1), it takes 134.6 seconds

on average. However, being an online approach, the method has the potential to be

implemented for real-time operation. Figure 3.1 shows the breakdown of the average

execution time required for each step in the proposed method.

43



3. ONLINE SUNFLICKER REMOVAL USING DYNAMIC
TEXTURE PREDICTION

(a) Rocky sequence

(b) Andora sequence

Figure 3.14: Comparison between the proposed and the offline method for the Rocky and Andora
sequences

Figure 3.15: Performance comparison in the Synthetic sequences between the online and offline
approaches using homography median in both cases.
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Figure 3.16: Performance comparison graph on the Uneven sequence

Table 3.1: Breakdown of the average running time required for each step in the proposed online
sunflicker removal method.

Step Required time (in seconds) Step Required time (in seconds)

1 134.64 6 2.10

2 0.01 7 1.29

3 2.78 8 0.23

4 0.34 9 0.01

5 0.11
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3.8 Summary

Refracted sunlight generates dynamic patterns, which degrade the image quality

and the information content of the acquired data. The development of an online

method to partially or completely eliminate this effect is a prerequisite to ensure

optimal performance of underwater imaging algorithms.

This work addresses the specific problem of sunflicker in shallow underwater im-

ages, by presenting a method suited for de-flickering on the fly. In the current online

method, only the previous few frames with the current frame, are used to create the

median image. In this case, the homography is calculated by registering the sun-

flicker removed version of the current image (using prediction from the dynamic

texture model learned from the last few frames) with the last flicker free image.

This results in higher image registration accuracy than in the offline method [37]

where the registration is carried out over the original images affected by the illu-

mination caustic patterns. The better registration results in better median image

estimation and, ultimately, in better sunflicker correction.

An extension to the current work is to relate the illumination frequency with the

number of frames required to perform the sunflicker removal. It can be a way to know

beforehand the minimum frame rate of the camera required to remove the sunflicker

effect properly. Also, for instrumented imaging platforms, the camera motion can

be estimated using a motion sensor, such as a rate gyro or an accelerometer. This

estimate can be used during the initialization phase of the method, or whenever

image registration is not possible.
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Chapter 4

Proposed configurable

classification framework

This chapter describes the proposed classification framework for underwater object

mapping using optical imagery. In the later part of this chapter, the implementation

of our proposed method together with the set of used parameters are described. The

parameters are tuned after experimenting with four benthic datasets. These tuned

parameters can be directly used on any future underwater image dataset.

The proposed classification framework consists of six main steps, each having

several sub-steps to perform the training and classification of underwater images.

The proposed method performs a supervised classification under the assumption

that enough labeled training data is available (at least 15 examples for the training

of each class). A unique feature of our approach is that it is based on a configurable

implementation scheme. Under this scheme, different options are available for each

of the main processing steps. The configurable scheme allows for the tuning of the

processing pipeline to match the characteristics of different datasets and leads to

performance gain.

4.1 Introduction

The proposed classification framework contains six main steps where, for each step,

several options, or sub-steps, are available. The steps and sub-steps of the proposed
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method are illustrated in Figure 4.1 and discussed below. The selection of each

step and sub-step depends on the characteristics of the datasets to be classified. In

Figure 4.1, the sub-steps colored in light blue are mandatory for all datasets. The

light green sub-steps are optional. Grey colored sub-steps are mutually exclusive,

meaning that only a single one in that particular step must be selected.

In this thesis, we have analyzed the performance of these sub-steps with respect

to the characteristics of the datasets in order to choose the appropriate ones. The in-

sights derived from the results can help configure the best lineup for future datasets.

These insights derived are discussed further in Chapter 5.

Classification 
Thematic mapping Post processing 

Learning 
Prior settings SVM 

(Multiclass) KNN Probability density weighted mean 
distance (PDWMD) 

Feature modification 
Chi-square 

Kernel 
Hellinger 

kernel  Normalization Dimension reduction: PCA & 
Fisher LDA kernel 

Feature extraction 
Texture: Gabor filter 

response 
Texture: 
GLCM 

Texture: 
CLBP 

Color: opponent angle and 
hue histograms 

Segmentation 
Turbopixels 

Pre-processing 
Color correction CLAHS Color stretching Sunflicker removal 

Figure 4.1: Proposed framework for supervised object classification using underwater optical im-
agery.
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4.2 Overview of related methods

In this section, the theoretical background related to the sub-steps used in our pro-

posed framework is discussed. In each of these steps and sub-steps, tools developed

by the computer vision community are customized for underwater optical images.

4.2.1 Pre-processing

Images captured under non-uniform light conditions may loose information content

due to color attenuation, scattering effects and low contrast. Schettini and Corchs

[91] presented a summary of existing work on underwater image enhancement with

the aim of retaining part of that lost content. Among the various image degradation

aspects, the loss of contrast has a particularly strong negative impact in the classi-

fication. To enhance the contrast of the image and to consistently maintain image

quality, we have adopted four different methodologies as pre-processing sub-steps as

discussed below.

Color correction using known color references

Color correction using color difference optimization is possible for image datasets

that have color markers in the image [2]. This sub-step is optional because it re-

quires the presence of known color patterns in the image dataset, such as the two

examples specified in Figure 4.2. In this example, there are nine color references

available. However, we performed the color difference optimization with three color

references. To work with color correction, a minimum of one color reference is

required (preferably white).

Images from most cameras have a non-linear response to radiance. However,

the color correction is more suited to being done in the linear domain [84]. This

sub-step involves the conversion of the camera response to a linear domain, followed

by a color correction and a conversion back to the original non-linear domain. The

sub-step is described in the following.

The nonlinear to linear red-green-blue (RGB) transformation is performed based

on the following equation. Here, R represents the nonlinear red, and r represents
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the linear red. The gamma value (γ), in general, varies from 2.2 to 2.4, depending

on the camera’s compression [84]. For JPEG image files, the gamma (γ) is normally

2.4. We used this value for the gamma in all the experiments in this thesis. The

values of intensity clippings are 1.055 and 0.055. The same equation is applicable

with different notations for the green and blue channels.

r = (((R/Rmax) + 0.055) /1.055)γ (4.1)

The main goal in this sub-step is to find the color correction factor that converts

the distorted color values to the original color values. Since the real color intensity

of the markers is known, a linear multiplier for each channel of each image can be

found, which converts the observed marker color to be as close as possible to the

original color.

The coefficient for the red color channel modification is computed with the fol-

lowing equation:

Cr = αr1r̃1r1+αr2r̃2r2+αr3r̃3r3
αr1r21+αr2r22+αr3r23

(4.2)

Here, r̃1 is the ideal red component value of the first marker, r1 is the red com-

ponent of the first marker in the image, αr1 is the corresponding weight of the

individual color channels and Cr is the red correction factor. In our case, we used

the same weights for all three channels. However, the color red attenuates faster in

the underwater environment.

The red correction factor Cr is multiplied with the linear version of the red color

channel (r) to obtain an approximately corrected version rf . rf is the corrected

version of r in the linear domain.

rf = Cr×r (4.3)
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The linear to nonlinear red-green-blue (RGB) transformation is obtained based

on the following equation.

Rf = 0.5 + 255× (1.055× rf 1/γ)− 0.055 (4.4)

Figure 4.2 illustrates the results of applying color correction in 4.2(b) and 4.2(d).

(a) Raw image (b) Color corrected image

(c) Raw image (d) Color corrected image

Figure 4.2: Illustration of the presence of color markers in raw images in the Moorea Coral Reef
(MCR) dataset and color corrected images. There are three sets of color markers in these images.
We used only one set from the top middle (comprising a three-color reference) to calculate the
correction factors.
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Contrast limited adaptive histogram equalization (CLAHS)

The contrast limited adaptive histogram equalization (CLAHS) method was pro-

posed by Zuiderveld et al. [112]. This method works better for low contrast non-

uniformly illuminated underwater images in comparison to any other image enhance-

ment method. This technique divides the image into equally sized non-overlapping

regions. Then the histogram for each region is equalized using a monotonically

non-decreasing grey level transform determined for that region. The transformation

of the pixel values of each subregion is done so that the output histogram of any

subregion approximately matches a specified histogram. In our implementation, a

Rayleigh distribution with an alpha equal to 0.4 was used similarly to the implemen-

tation in [112]). A bilinear interpolation is performed across neighboring subregions

to eliminate artificially induced boundaries.

The number of regions in which the image is subdivided is an important input

parameter for this method. Figure 4.3 shows the effect of different numbers of sub-

regions on an underwater lava image [33]. In Figure 4.3(d), it can be observed that

a higher number of subregions provides an output with more uniform illumination.

However, some of the important details are no longer distinguishable. This suggests

that we may lose the grey level information of the texture by using an increasingly

high number of subregions. The most suitable output can be seen in Figure 4.3(c),

where the contrast has been sufficiently enhanced. Therefore, in our implementation

we used 4× 4 subregions. If the image is of a larger size, the number of subregions

can be increased.

Color stretching

The contrast of the image can also be improved with color stretching. In order

to perform color stretching for each individual channel, we determine the 1.5% and

98.5% intensity percentile, subtract the lowest one from all intensities in that channel

and divide the result by the highest intensity. Figure 4.4 illustrates an example of

color stretching on an image taken from the MLC 2008 dataset (Appendix A).
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(a) Input image (b) 2× 2 subregions

(c) 4× 4 subregions (d) 16× 16 subregions

Figure 4.3: Output of CLAHS for different numbers of subregions: (a) Input image, (b) 2× 2, (c)
4× 4, (d) 16× 16.

(a) Raw image (b) Color channel stretched image

Figure 4.4: Example of the color stretching.
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Sunflicker removal

The method for sunflicker removal has already been presented in detail in Chapter

3. The images that have been strongly affected by sunflicker, can be improved in

quality to help retrieve relevant information using a sunflicker removal method both

offline [37] or online [94].

4.2.2 Segmentation

In the proposed method, we use a fast superpixel segmentation algorithm called

’TurboPixels’ by Levinshtein et al. [57]. Superpixels are the result of a dense over-

segmentation of an image into a lattice-like structure of compact regions that follow

the local image boundaries. Superpixels reduce image resolution from a pixel level

to a superpixel level through homogeneous pixel grouping while avoiding under-

segmentation.

In the ’TurboPixels’ method [57], initial seeds are randomly created and sparsely

populated. The number of seeds is the same as the number of superpixels defined

in the input parameter. Initial seeds are dilated using the geometric-flow-based al-

gorithm (adapting to local image structure) [7; 51]. This method combines a curve

evolution model for dilation with a skeletonization process on the background re-

gion to prevent the expanding seeds from merging. The algorithm applies region

growing from the initial seeds, maintaining the following criteria for superpixels;

uniform size and coverage, connectivity, compactness, smoothness, edge-preserving

flow and no overlap. This method performs moderately well in terms of compact-

ness, under-segmentation and boundary recall in comparison to other superpixel

segmentation methods in the state of the art [92]. However, it is highly efficient

in terms of speed. Figure 4.5 shows an example of superpixel segmentation using

the TurboPixels method on a small part of the mosaic created from the North Sea

survey.

One important parameter in the segmentation step of our method is the number of

superpixels. The number of superpixels can be selected based on the amount of over-

segmentation of the image desired, keeping in mind that if the number of superpixels

increases, the resolution of the mapping and the classification accuracy increases;

but the required time for computation increases as well. A comparative analysis of
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Figure 4.5: An example of superpixels segmentation using the TurboPixels method.

the classification accuracy and computational time based on a varying number of

superpixels was performed to get more insight into this parameter. Experimentation

was performed with a number of superpixels ranging from 281 to 8,000 created on the

North Sea mosaic dataset (Appendix A). It was found that after a certain number

of superpixels (approximately 3,000 in this case) the classification accuracy becomes

stable but the time required increases linearly with the increase of the number of

superpixels (as illustrated in Figure 4.6). In this case, each superpixel covers an

area approximately 1/9 the area of any patch in the training set. Therefore, for any

new dataset, we can find the appropriate number of superpixels as below.

• Initially taking the superpixel area size as 1/9 of the training patch size.

• Thereafter dividing the main image size by this superpixel area size to find

the number of required superpixels.

4.2.3 Feature extraction

The texture of an object can carry important and reliable visual cues for applications

such as object recognition, medical imaging, satellite imaging and remote sensing,

among others. Due to the dominant presence of texture in underwater images of
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Figure 4.6: Effects on classification accuracy by varying the number of superpixels. Figure 4.6
illustrates one experimental result in terms of time and accuracy by varying the number of super-
pixels on North sea mosaic dataset described in Appendix A. In this experiment, the number of
superpixels were varied, and for each different values the overall accuracy and time requirement
for the superpixel creation were measured.

interest, texture information can be used to reliably solve the underwater object

classification problem. To use texture features, it is necessary to define and represent

the texture characteristics of each class as indiscriminately as possible. Also, the

computational complexity for calculating these features is another important issue

to consider. This chapter presents a succinct review of the state of the art methods

of 2D-texture feature extraction methods considered in the proposed framework.

Gehler et al. [34] showed that a combination of several texture and color fea-

tures leads to better image classification results than any single type of feature. In

addition to texture features, for some classes, color features may contain discrimi-

native information to help the classification task. Nonetheless, due to presence of

color attenuation and illumination effects in underwater images, color information

is not always reliable. The consistency of color must be ensured before using it as

a feature. In the second part of this subsection, the hue and opponent angle color

histograms are discussed as potential color features.

3D features can be useful of detection of objects (either man-made or natural)

with particular shape or specific type of size or surface. In this work, we also pro-

posed several 3D features and provided experimented results with Ordnance dataset.

In the last part of this section, these 3D features are presented in details. As 3D
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features can only be used for special types of datasets, they are not included in the

main proposed framework.

Gabor filter response

Gabor filters are a group of 2D wavelets that take the form of a 2-D Gaussian mod-

ulated complex sinusoidal grating in the spatial domain [81]. Several applications

on texture analysis using Gabor filter are shown in [5; 39; 42]. The general form

of a Gabor filter is given in equation 4.5, where (x, y) are the coordinates of the

filter, σ is the scale factor and (u0, v0) are the modulation frequencies along x and

y directions respectively, which determine the center frequency F =
√
u2

0 + v2
0 and

orientation θ = arctan( v0
u0

).

h(x, y) = 1
2πσ

e−
1
2
x2+y2

σ2 e−2πj(u0x+v0y) (4.5)

To obtain a representation of texture features, a set of Gabor filters with different

scales and orientations is convolved with the image patch. Each Gabor filter gen-

erates a unique image response. The mean and variance of this image response are

used as features for that particular Gabor filter. Figures 4.7 and 4.8 show examples

of variation in Gabor wavelets in terms of scale and orientation. The number of

scales and orientations of the Gabor filter have to be given as input parameters, as

well as the center frequency of the wavelets to be created. In our implementation, by

defining four scales and six orientations, we obtained 24 images of the filter response.

Using the mean and standard deviation for each of these 24 images, a feature vector

of 48 values is created.

(a) Scale 1 (b) Scale 2 (c) Scale 3 (d) Scale 4

Figure 4.7: Examples of Gabor filter wavelet with scale variation.

57



4. PROPOSED METHOD

(a) Ori. 1 (b) Ori. 2 (c) Ori. 3 (d) Ori. 4 (e) Ori. 5 (f) Ori. 6

Figure 4.8: Examples of Gabor filter wavelet with orientation variation.

Grey Level Co-occurrence Matrix (GLCM)

Patterns on the regularity of occurrence of distinct grey levels in a texture image

calculated using some statistics can be used as distinct texture features. A useful

structure to present these patterns is the so called co-occurrence matrix [43], from

which different statistics can be used to generate representative texture descriptors.

The co-occurrence matrix (CM) can be defined over an image as the distribution

of co-occurring values at a given offset (d, θ). The normalized co-occurrence matrix

is represented as C. I is the input image of size n × m pixels.

CM(i, j) =
n∑
p=1

m∑
q=1

{
1 if I(p,q)=i and I(p+∆p,q+∆q)=j

0 otherwise

}
(4.6)

C(i, j) = CM(i,j)∑
i,j

CM(i,j) (4.7)

The number of occurrences of pixels within distance d and direction θ are tunable

input parameters. The offset from center pixel can be presented as [∆p ∆q]. We

used (0 3), (3 3), (3 0), (3 3) offset values. These offset values represent 0, 45, 90 and

135 angular neighborhood degrees with a distance of three pixels from the center

pixel. In our implementation, we calculated statistics individually for each offset

and then took their average as final results.

The following list (Table 4.1) contains the indicators used to compute the co-

occurrence matrix based features.. N is the number of distinct gray levels in a

quantized image (16 in our case), µ, S and H are the mean, standard deviation and
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entropy of C respectively.

Table 4.1: The list of indicators used for computing the co-occurrence matrix based features.

µx =
∑
i,j

i ·C(i, j)

µy =
∑
i,j

j ·C(i, j)

Sx = −
∑
i,j

(i− µx)
2 ·C(i, j)

Sy = −
∑
i,j

(j − µy)
2 ·C(i, j)

Cx(i) =
∑
j

C(i, j)

Cy(j) =
∑
i

C(i, j)

Cx+y(k) =
k∑
i=1

C(i, k − i+ 1)

Cx−y(k) =
N−K+1∑
i=1

C(i, i+ k − 1) + C(i+ k − 1, i)

Hxy =
∑
i,j

C(i.j) · logC(i.j)

Hxy1 = −
∑
i,j

C(i, j) · log(Cx(i) ·Cy(j))

Hxy2 = −
∑
i,j

Cx(i) ·Cy(j) · log(Cx(i) ·Cy(j))

Hx = −
∑
i

Cx(i) · log Cx(i)

Hy = −
∑
j

Cy(j) · log Cy(j)

The list of statistics used for GLCM feature calculations are given in Table 4.2.

We have selected 22 features to be used in our method, following the work of Haralick

et al. [43], Soh & Tsatsoulis [98] and Clausi [8]. We used these features as they are

statistically independent and able to present the core texture characteristics of an

object.

Completed Local Binary Patterns

The completed Local Binary Pattern (CLBP), proposed by Guo et al. [40], is a

strong rotation invariant feature for texture classification. CLBP is an extension

of the work by Ojala et al. [73] where they proposed the concept of a local binary

pattern as an effective discriminative representation of texture characteristics. The

flowchart of the CLBP feature generation method is illustrated in Figure 4.9 and

described in the following.
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Table 4.2: The list of statistics used as GLCM features.

Maximum Probability [98] max{C(i, j)∀(i, j)}
Uniformity [43; 98]

∑
i,j

C(i, j)
2

Entropy [98]
∑
i,j

C(i, j) · log C(i, j)

Dissimilarity [98]
∑
i,j

C(i, j) · |i− j|

Contrast [43; 98]
∑
i,j

C(i, j) · |i− j|2

Inverse Difference [98]
∑
i,j

C(i,j)
1+|i−j|

Inverse Difference moment [98]
∑
i,j

C(i,j)

1+|i−j|2

Correlation 1 [43; 98]
∑
i,j

(i−µx)·(j−µy)·C(i,j)
Sx·Sy

Inverse Difference Normalized [8]
∑
i,j

C(i,j)
1+|i−j|/N

Inverse Difference Moment Normalized [8]
∑
i,j

C(i,j)

1+(i−j)2/N2

Sum of Squares: Variance [43]
∑
i,j

(i− µ)
2 ·C(i, j)

Sum Average [43]
2N−1∑
i=1

(i+ 1) ·Cx+y(i)

Sum Entropy [43] Se = −
2N−1∑
i=1

Cx+y(i) · log Cx+y(i)

Sum Variance [43]
2N−1∑
i=1

(i+ 1− Se)2 ·Cx+y(i)

Difference Variance [43]
2N−1∑
i=1

i2 ·Cx−y(i+ 1)

Difference Entropy [43] −
2N−1∑
i=1

Cx−y(i+ 1) · log Cx−y(i)

Information measure of correlation 1 [43]
Hxy−Hxy1

max(Hx,Hy)

Information measure of correlation 2 [43] (1− e−2·(Hxy2−Hxy))
0.5

Auto-correlation [98] AC =
∑
i,j

i · j ·C(i, j)

Correlation 2 [43; 98]
(AC−µx·µy)

Sx·Sy

Cluster Shade [98]
∑
i,j

(i+ j − µx − µy)
3 ·C(i, j)

Cluster Prominence [98]
∑
i,j

(i+ j − µx − µy)
4 ·C(i, j)
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CLBP 
Histogram 

Original 
image 

Central grey 
level 

Local 
difference 

CLBP 
Central 

CLBP 
magnitude 

CLBP 
Sign 

CLBP map 

Figure 4.9: Flowchart of Completed Local Binary Pattern (CLBP) feature generation.

• A local binary pattern is created by comparing the center pixel of the sliding

window with the neighboring pixels. The number of neighbors, which depends

on the size of the sliding window, can vary depending on the distance set from

the center pixel. As illustrated in Figure 4.10, gc is the center pixel. It is

possible to generate evenly spaced points gp from the center pixel, gc at P

radius where p = 0, 1, ..., P − 1. The difference between of gp and gc can be

presented as a vector [dp, ..., dp−1] called the difference vector. The individual

difference is calculated using dp = gp − gc.

Figure 4.10: Example of a Completed Local Binary Pattern (CLBP) creation with a center pixel;
its P circularly & evenly spaced neighbors with radius R.

• The difference between gp and gc (represented as dp) can be further broken

down into two components; sign and magnitude using equation 4.8. The sign

reflects if the value of the neighboring pixel is higher (positive sign) or lower

(negative sign) than the center pixel. The neighbors with zero difference from

the center pixel are considered as a positive sign. The magnitude stores the

absolute intensity difference of the neighboring pixel from the center pixel.

Figure 4.11 illustrates an example of a sample block broken down into sign and
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magnitude. The signs can be directly used as binary bits. The magnitudes are

compared with a threshold value (the mean value of magnitudes) to convert

it to binary bits. The center pixel intensity value is the third component

that is also converted to a binary bit by comparing with a threshold (average

intensity).

dp = sp ∗mp where, sp = sign (dp) ; mp = |dp| (4.8)

9  12  34 

10  25 28 

99 64 56 

(a) 3 × 3 sample
block

-16  -13  9 

-15  3 

74 39 31 

(b) The local differ-
ences

-1 -1  1 

-1 1 

1 1 1 

(c) Sign decompo-
sition

16  13  9 

15  3 

74 39 31 

(d) Magnitude de-
composition

Figure 4.11: Example of Completed Local Binary Pattern (CLBP) generation.

• Using these three operators (sign, magnitude and center pixel intensity), all

possible patterns are generated as bins for the CLBP histogram. All the sim-

ilar patterns that are similar apart from those shifted by rotation are counted

into a single bin in the histogram to include rotation invariance. Also, all

the less probable patterns [74] are counted as a single bin. In this way, the

feature vector stays compact and more discriminative. Ojala et al. [74] sug-

gested that the majority of local binary patterns (LBP), which is the sign

portion of the CLBP, in a texture have a limited (i.e. maximum two) num-

ber of transitions between zero and one (termed ’Uniform’; e.g. 00001111 is

uniform but 01010101 is non-uniform) and correspond to micro-features such

as edges, spots and corners. ’Non-uniform’ patterns usually correspond to a

small proportion of patterns and cannot be estimated individually, therefore,

all non-uniform patterns are counted as a single histogram bin.

• For implementation, all the pixels in the image patch are analyzed for CLBP

patterns. The found patterns are counted in the corresponding bins in the

CLBP histogram. The final counts of the histogram bins are normalized to
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create the CLBP feature vector of the input image. In our implementation,

we use the rotation invariant uniform format resulting in a histogram of 108

bins when concatenated for three window sizes of 8 (20 bins), 16 (36 bins) and

24 (52 bins) pixels.

There are some additional works available in the literature as possible extensions

to CLBP features. For example, Liao et al. [58] suggested the use of ”Dominant

Local Binary Patterns” (DLBP). According to them, uniform patterns are suitable

for textures that contain mostly straight or low curvature edges. Textures tend to

have a significant number of non-uniform patterns if they are highly irregular and

have complicated shapes, high curvature edges, crossing boundaries or corners. Such

complicated and irregular patterns are better learned by the DLBP patterns. These

DLBP patterns are found using a statistical approach on several standard texture

datasets.

Hue and opponent angle histograms

Color features used for classification are intended to contain the following core prop-

erties.

1. Robustness to photometric variations such as shadow, shading, specularities

and changes of light sources.

2. Robustness with respect to geometrical changes such as viewpoint, zoom, and

object orientation variations.

The work by Finlayson et al. [25] and Weijer and Schmid [107] tried to achieve

these properties in their proposed color features. In our work, we used the opponent

angle and hue histograms proposed by Weijer and Schmid [107]. Their method

performed better than the Finlayson et al. method [25] based on comprehensive

color image normalization in terms of classification accuracy. The hue (H) and

opponent angle (ψ0) are color channels derived from red (R), green (G) and blue (B)

color channels using the following equations. Here ’dim’ denote special coordinates

(x, y); and Rdim, Gdim, Bdim denotes the first order derivatives of (R,G,B) with

respect to dim.
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H =
√

6∗(R−G)√
2∗(R+G−2B)

ψ0 =
√

6∗(Rdim−Gdim)√
2∗(Rdim+Gdim−2Bdim)

(4.9)

These two newly derived channels (hue and opponent angle) are more robust to

photometric variations than the raw (R,G,B) channels [24; 106]. We have modified

the formula used in their work by removing the arctan in both the equations. These

modified version works faster providing relatively the same results. In our imple-

mentation, two separate histograms are created as color descriptors using these two

channels. The number of bins in the histograms is an input parameter. We are

using 36 bins per color histogram following the implementation in the Weijer and

Schmid method [107]. We use color features only in case the colors of the object in

the images appear reliably as a discriminative class identity.

3D features

For both natural and man-made objects, 3D or 2.5D cues can provide important

discriminative information for classification. 3D or 2.5D features can work together

with 2D features as additional descriptors to identify objects.

When there is enough overlaps among the images used to create the mosaic, a

3D reconstruction of the seabed can be created. From the constructed 3D model,

an elevation map (depth map) of the mosaic can be generated. From the elevation

map several 3D features can be calculated, as described in the following section. An

elevation map extracted from a 3D model contains all the information needed to

calculate the 2.5D features.

Our approach to create 3D textured models of the seabed using structure from

motion (SfM) method from a moving platform is an extension of existing 2D (Gracias

et al. [38]; Lirman et al. [60]) and 3D mosaicing algorithms (Nicosevici et al. [72]).

The estimation of 3D structure starts by identifying common points across pairs of

images using a variant of the SIFT [62]. Next, a robust sampling technique is used to

identify and eliminate false point matches among images, resulting in multiple image

observations of the same set of 3D points [30]. Finally, sparse bundle adjustment

(Triggs et al. [103]) is used to obtain a set of 3D points that best comply with the

image observations. Figure 4.12 illustrates examples of 3D reconstruction phases of
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a portion of the Ordnance dataset.

(a) Textured surface (b) Triangular mesh

Figure 4.12: 3D reconstruction of a portion of the Ordnance dataset displayed as a textured surface
(a) and as a triangular mesh (b). The scale varies in this oblique view with the lower (closer) edge
of the image corresponding to 2 m on the seabed.

An important problem that affects the creation of 3D models is the large amount

of data and computational processing involved. To address this issue, we used a

combination of parallel processing toolboxes available for the Matlab programming

language as well as libraries that allow the use of general purpose graphics processing

units (GPGPU) to accelerate some of the highly parallelizable tasks, such as the

feature extraction and dense point matching (Sinha et al. [97]).

The 2.5D features are calculated from an elevation map of the surface which is

created from the 3D model of the surface. In order to create an elevation map a fixed

reference plane is needed, where we can project the unconstrained geometry of the

reconstructed 3D surface orthogonally. The center of the plane is found using the

centroid of the vertices with a least square fitting. The normal of this reference plane

is computed using PCA regression. Starting with the covariance matrix constructed

from the vertices of the surface triangle mesh, we estimate the normal by computing

its 3rd smallest eigenvector.

For each vertex in the surface, we can now define a height value with respect to

this initial plane. Using all these height values, we fix our reference plane to pass

through the one having smallest height, i.e., we move the of the previously computed

plane to coincide with that of the lowest vertex in the set. In this plane, we want

to sample an image using a regular grid of the desired size and resolution. For each

65



4. PROPOSED METHOD

of these discrete positions to sample, we generate a ray passing through the sample

point, and perpendicular to the plane.

Due to the large number of queries, we speed up the ray-surface intersection test

using an Axis-Aligned Bounding Boxes (AABB) tree structure [79]. The AABB

tree component can provide a static data structure which makes it easier to perform

efficient intersection and distance queries on sets of finite 3D geometric objects. Now,

having an intersection point for each grid sample, the height is computed giving a

value to the sample using the distance from the reference plane. Note that the ray

intersection queries are computed from top-to-bottom, while the computation of the

height value is bottom-to-top. Figure 4.13 illustrates the steps of creating elevation

map.

(a) Input 3D mesh (b) PCA (c) Reference + image sam-
pling

(d) Ray-intersection queries (e) Height computation (f) Final result

Figure 4.13: Step by step illustration of the process of creating elevation map.

Figure 4.14 illustrates an example of a mosaic image with corresponding elevation

map image created from Ordnance dataset (Appendix A). The following features

were extracted from the elevation map of the patch, and used to generate the 3D

feature vector.

1. Coefficients of polynomial surface fitting [49]

The elevation map of a patch can be approximated by a 2.5D polynomial

surface modeled by a polynomial equation [4.10] of second degree [49]. The

coefficients of the polynomials are extracted through least square fitting and
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(a) Ordnance mosaic

(b) Elevation map of Ordnance mosaic

Figure 4.14: Example of mosaic image with corresponding elevation map created from Ordnance
dataset.
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used as features. Each polynomial in each patch provides nine 2.5D features.

Figure 4.15 shows the example of an estimated polynomial surface of a patch

from Ordnance dataset.

f = p1 + p2x+ p3y + p4x
2 + p5xy + p6y

2 + p7x
2y + p8xy

2 + p9y
3 (4.10)

Figure 4.15: Example of polynomial surface fitting of a patch from Ordnance dataset using sparse
points.

2. Standard deviation, skewness and kurtosis of elevation [54]

From the elevation map we calculate the standard deviation, skewness and

kurtosis using the altitude values of each pixel in the patch. Thereby, three

more 2.5D features are extracted. For calculating skewness and kurtosis, the

following two equations are used. Here Zi represents the height if a 3D point,

Zm and S are the mean and the standard deviation of the 3D points, N is the

number of data points.

S =
∑N
i=1 (Zi−Zm)2

N
(4.11)

Skewness =
∑N
i=1 (Zi−Zm)3

(N−1)S3 (4.12)
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Kurtosis =
∑N
i=1 (Zi−Zm)4

(N−1)S4 (4.13)

3. Angle of the principal patch plane [30]

We fit a 3D plane as the principal plane of the patch. The principal plane is

calculated from a least squares solution. The angle of this 3D plane with the

ground plane is considered as another 2.5D feature.

4. Mean and standard deviation of the distance of the 3D points to the principal

plane [30]

Two more 2.5D features are given by the mean and standard deviation of the

distance of the points on the elevation map to the principal plane computed in

point 3. These distances are measured from the points on the elevation map

to the corresponding projected points on the principal plane of the surface.

5. Rugosity [30]

Rugosity is commonly used in marine science to characterize seafloor habitats.

Rugosity can be defined as a small scale variation of amplitude in the height of

a surface, and is considered as an important 2.5D feature [64]. Rugosity, r of a

patch is calculated by dividing the area (As) of the contoured surface bounded

by the patch, by the area (Ap) of the orthogonal projection of the surface

onto the principal patch plane. Figure 4.16 illustrates an example of surface

area and area on the principal plane of the patch. The area of the surface

(As) was created by the Friedmans method [30]. In this method, the surface

is considered as a set of triangles created by sampling points. By calculating

the area of each triangles and summing up all, the total area of the surface is

calculated. For the principal plane, it can be considered as 3D rectangle where

four vertices are the four points at each corner of the patch. Using these four

3D points, the area of the principal plane of the patch is calculated. This

principal plane decouples the slope effect, which otherwise might result in a

higher rugosity value on a slope containing a relatively smooth surface.
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Figure 4.16: Example of surface area (As) and area on the principal plane (Ap) of the patch.

Rugosity = As
Ap

(4.14)

6. Symmetry [54]

Symmetry is an effective method to identify the structure of objects specially

man-made and some specific natural habitats. Man-made objects usually rep-

resents higher recognizable symmetry, or partial symmetries. Generating a

symmetry image of a patch and then taking the mean and variance of that

image can produce two additional 2.5D features from the optical mosaic or the

elevation map. The symmetry image was created using the method by Kovesi

[54]. In this method, a Log Gabor filter [18] is used to measure the phase

symmetry at each pixel of the image patch.

Figure 4.17 illustrates the effect of applying the phase symmetry on elevation

map. In this figure it can be seen that the phase symmetry is differentiable

among bombshell and background when applied on the elevation map image

created from the Ordnance dataset. This figure illustrates that phase symme-

try from the elevation map image can be considered as a relevant 2.5D feature

since it encodes important shape information.

Finally, combining all these 2.5D features, we can extract a feature vector of 19

components. These features can be used individually or concatenated with the 2D
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(a) Input image containing
bombshell

(b) Corresponding elevation
map

(c) Phase symmetry image

(d) Input image containing
background

(e) Corresponding elevation
map

(f) Phase symmetry image

Figure 4.17: Examples of phase symmetry images from corresponding elevation maps containing
bombshells and background respectively.
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features for the classification purpose.

4.2.4 Feature modification

The calculated features using different methods capture the core properties of the

object class and are more discriminative than the raw image patch. However, these

features can be normalized and are able to be projected on more compact sub-

space. In the following subsection, the kernel mapping, dimension reduction and

normalization methods used in our method are described.

Kernel mapping

Kernel mapping is used to project the feature vectors onto a linearly separable fea-

ture space. For the histogram features (in our case, the CLBP, opponent angle and

hue histograms), the rarest bins tend to contain more discriminative information,

since the most frequent bins correspond to the background pixels. The chi-square

and Hellinger kernels (also known as the Bhattacharyya coefficient [50]) emphasize

the low frequency bins, as illustrated in Figure 4.18, thus promoting the discrimi-

native power. We use chi-square and Hellinger kernel mappings [98] to modify the

features as shown in equations 4.15 and 4.16 respectively. Here, h and h
′

are nor-

malized histograms, where h
′

is obtained from h using first order differentiation. k

is the kernel function, γ is a regularization coefficient, and i and j are the indices of

the histogram bins.

• Chi-square kernel function [98]

k(h, h
′
) = exp

(
− 1
γ

∑
j

(
hj−h

′
j

)2
hj+h

′
j

)
(4.15)

• Hellinger kernel function [98]

k(h, h
′
) =

∑
i

√
h(i)× h′(i) (4.16)
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Figure 4.18: Example of variations in histogram bin counts after applying Chi-square kernel map-
ping. The fourth plot is the result of applying Chi-square kernel mapping on the histogram, which
corresponds to the first plot. If we look at the last image and compare it with the first, we can see,
the difference between the lower bin counts and the higher bin counts are reduced. This is more
clearly visible in the right part of these images.

Normalization

Normalization is used to rescale all the features so that they are comparable. Before

concatenating different independent features, a normalization of these features is

carried out. The feature vector matrix is of size N × D where N is the number

of samples and D is the number of features. The feature matrix is extracted from

the training samples and the normalization is applied over it. In this matrix, each

column can be normalized individually using equation 4.17. Here fnk is the element

of F in line n and column k. fkmin and fkmax are the minimum and maximum values

respectively in column k of the feature vector matrix. fnormnk is the normalized

value of fnk.

fnormnk =
((

fnk−fkmin
fkmax−fkmin

)
− 0.5

)2
(4.17)

Dimension reduction

Redundant or statistically correlated features may adversely affect the decision

boundaries generated by any classifier. Feature dimension optimization can improve

the orthogonality as well as the compactness of the feature space representation.

Principal Component Analysis [111] is a popular way of removing data redundancy,

however, it is not always the best solution in terms of increasing discriminity among

features. Linear discriminant analysis (LDA) [111] on the other hand, has proven

to provide a higher discriminative power than PCA for feature reduction.
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LDA aims to maximize the ratio of scatter distributions between the class groups

and individual classes. Compared to PCA, LDA also attains better generalization

and less likeliness to over-fitting. However, it requires the computation of the in-

verse of the inner class scatter matrix, which may cause computation instabilities.

Computation instabilities may happen if the matrix is close to being singular due

to a low number of samples. One efficient way for feature reduction would be to

project data onto the PCA space to remove the singularity and then project the

PCA space into the LDA space, providing higher discrimination. Additionally, the

number of dimensions selected for the PCA subspace affects the system’s classifi-

cation performance, therefore, a suitable number of dimensions should be sought

experimentally. For the experimental work in this thesis, an exhaustive search of

all possible dimensions (less than the initial feature dimension) was performed to

find the optimum dimension size for the individual datasets where the classification

accuracy is maximum. This exhaustive search was done in the training step over

validation data. Thus, the found dimension size can be used directly on the testing

data. This exhaustive search is very time expensive.

Datasets, where classes have high inter-class variability and low intra-class vari-

ability, are considered as highly correlated. For highly correlated datasets such as

EILAT, RSMAS, EILAT 2, BMAT, CURET, KTH-TIPS and UIUC (Appendix A),

it was found that reducing the dimension of the feature space using PCA with Fisher

kernel mapping (LDA) [70] increases the accuracy. This sub-step is optional, as it is

mainly used for reducing the computational requirements in the final classification

stage.

4.2.5 Learning

In this section, we describe the three different learning options (mutually exclusive)

used in our methods. Whenever available, a prior probability of the test classes is

used as additional information. When this prior is not available, it can be estimated

from the training data. In Appendix A, the datasets used in this work are described

in details.

The probability (prior) of any image patch falling into any possible class can be

approximated in two ways:
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• Class frequency: an estimate of the class probability calculated from the class

frequency within the training data. Class frequency can bias the classification

result, therefore it may only be used when the probability of occurrence of

some classes are much higher than the others;

• Equal probability: assuming that an image patch has an equal probability of

falling into any classes.

Estimates of the prior probability can help the classification of datasets especially

in cases where it is difficult to get very accurate class boundaries. For underwater

images, the use of estimated class frequencies tends to produce better results than

assuming an equal probability, because in a natural scenario the classes are seldom

evenly populated [86]. For the experimental part, any of the K nearest neighbors

(KNN), the Probability density weighted mean distance (PDWMD) and the support

vector machines (SVM) classifier are used depending on the characteristics of the

dataset (explained in detail in Chapter 5).

K nearest neighbor

K Nearest Neighbor (KNN) [14] is a well known classifier frequently used in various

applications by the computer vision community. This method is easy to implement

and is based on computing the Euclidean distances of the test sample to all the

training samples. The main reasons behind the popularity of the K NN algorithm

are that it produces results with accuracy close to the state-of-the-art methods, it

has strong consistency (even if the amount of test data is very large), and that it

guarantees to yield an error rate not worse than twice the Bayes error rate (the

minimum achievable error rate given the distribution of the data) [75]. However,

for large datasets (for example, datasets with more than 12,000 samples), the effec-

tiveness with respect to classification accuracy of this method is negligible, owing

to the higher storage requirements, lower efficiency in classification response and

lower noise tolerance. Although the K NN algorithm was originally proposed several

decades ago, improvements are still being published, such as the work of Toussaint

et al. [102]. Several recent works have proposed ways to improve the computational

cost of the K NN algorithm [75]. In our implementation, we have used the standard

formulation.
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Probability density weighted mean distance

The probability density weighted mean distance (PDWMD) algorithm was proposed

by Stokes and Deane [100] for classification. In this method, every patches are

evaluated by computing the Euclidean distances between the considered patch and

all the training patches for one class. In this way, each of the classes is considered

in turn. The mean of the three smallest distances for one class is taken to be the

final distance for that class. The final label is determined by choosing the class with

the smallest mean distance. This method attained a good level of consistency in

terms of classification accuracy for most of the underwater image datasets as shown

in Chapter 5.

Support vector machines

Support vector machines (SVM) by Cortes and Vapnik [12] is one of the most com-

monly used classifiers. This method can achieve state of the art accuracy with a

relatively low execution time. The main advantages of SVM are that it ensures good

generalization, and the learning involves optimization of a convex problem [12]. The

performance of the method greatly depends on the choice of input parameters such

as the cost function, the kernel function, the binary or multiclass (one to one or

one to all) classification scheme and the normalization (L1 or L2 norm) type. For

individual datasets, appropriate parameters can be derived experimentally. In our

work, we use linear SVM with multiclass one to all schemes.

4.2.6 Classification

Once the learning is performed, any new data maybe be classified. When classi-

fying patch by patch on a large image, additional information of spatial coherence

or neighborhood consistency can and should be used for post processing the classi-

fication result. This step can help remove the scattered misclassifications on large

images, and thereby improve the classification accuracy.
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Thematic mapping

Thematic mapping is the final step in the proposed framework to create a segmented

and classified map of an image that is visually interpretable. The thematic mapping

sub-step of our approach addresses the classification of large area optical maps of

the seabed. These large area representations (commonly known as image mosaics)

are obtained by registering and blending large sets of individual images acquired at

close range [23; 36; 59; 60]. For thematic mapping, these large images are segmented

sequentially into superpixels and each superpixel is classified individually. For clas-

sification, patches around the center of each superpixel in the large input image (or

mosaic) is taken and classified using the learning methods described earlier. There-

after, all the classified superpixels are rechecked using neighborhood consistency as

discussed in the following sub-section.

Post processing

While creating the thematic map, each superpixel or patch is classified with a con-

fidence level depending on the distance from the class boundary. Class label is

assigned if the confidence exceeds a user defined confidence threshold. The con-

fidence threshold is chosen to a value so that 90% of the confidence values stay

above it. In cases where the confidence is less than the confidence threshold, the

corresponding superpixels or patches are assigned to the background label.

This sub-step also involves the use of a morphological filter to check for consis-

tency with the surrounding neighbors of each superpixel. In principal, one object

should occupy several superpixels, assuming it is much bigger than any individual

superpixel. Therefore, the underlying assumption of morphological filtering is that

each classified superpixel should have at least two superpixels in the eight-superpixel-

neighborhood (eight closest superpixels from the center superpixel) classified as the

same class. Otherwise, the classified superpixel is re-assigned to the most promi-

nent class label in the eight-superpixel-neighborhood. A potential drawback of this

approach is that the final classification results may tend towards dominant, contigu-

ous classes, thus reducing the representation of rare classes. An alternate way of

approaching this neighborhood consistency can be using the proposed method by

Fulkerson et al. [32]. They used conditional random field to refine the classification
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result to increase the classification accuracy. Spatial regularization and classification

confidence are used in this method to generate a more accurate thematic mapping

of the mosaic. This particular method can generate a similar accuracy gain as the

one with morphological filtering implemented in our method.

4.3 Implementation

The implementation of the proposed framework follows the flowchart illustrated in

Figure 4.19. A unique feature of our approach is that it is based on a configurable

implementation scheme. Under this scheme, different options are available for each

of the main processing steps. The configurable scheme allows tuning the processing

pipeline according to the characteristics of different datasets.

As illustrated in Figure 4.19, the raw survey images are initially preprocessed as

appropriate. Using these preprocessed images, training images are created. Features

are extracted and modified from the training images. Using these modified features,

the learning of the classifier is performed following the methods described in the

earlier sections of this chapter.

There are several parameters in each option of the proposed classification frame-

work that need to be tuned beforehand. To select these parameters, comprehensive

testing was done on underwater optical image datasets such as EILAT, RSMAS,

MLC 2008 and EILAT 2 (Appendix A). The recommendations to make this selec-

tion of an appropriate configuration for the proposed framework is given in Chapter

5. Once the parameters of all the sub-steps were tuned, they were reused for other

underwater optical image datasets.

4.4 Summary

This chapter presented the proposed framework for underwater image classification

with implementation details. Most of the methods used in the different steps of the

framework are inspired from the state of the art techniques in the computer vision

field and adopted to the underwater optical domain.
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Figure 4.19: Flowchart of the implementation of the proposed method.
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To work with any raw survey image, an initial preprocessing is performed to

improve image comparability. It also improves the visibility of the image features

by counteracting some of the effects of the medium, such as light scattering, color

shifts, blurring and many more. The image enhancement step contains one sub-

step that is always used (CLAHS) and three optional sub-steps (color correction,

color stretching and sunflicker removal) to be used as appropriate for the dataset.

The preprocessing is applied to both the training image set (created manually by

experts), and the mosaic to be classified.

The gabor filter response [81], the grey level co-occurrence matrix (GLCM) [8;

43; 98], and the completed local binary pattern (CLBP) [40] are used as texture

descriptors, and the opponent angle, hue color histograms (optional) [107], are used

as color descriptors. Kernel mapping and normalization are used as a compulsory

sub-step, where dimension reduction is used as an optional sub-step. In the learning

step, any one of the algorithms, the support vector machine (SVM) [12], the k nearest

neighbor (KNN) [14] or the probability density weighted mean distance (PDWMD)

[100] is chosen. Finally, the knowledge base learned is used to generate segmented

and classified thematic maps of mosaic images of the seabed.
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Chapter 5

Results and Analysis

This chapter presents the evaluation criteria, experimental results and analysis of our

method. The experimental setup described in the following section is the quantita-

tive assessment of the proposed method with respect to other related works. Insights

on the selection of appropriate configurations are extracted and presented, after an-

alyzing the method’s performance on adopted experimentation. Additionally, this

chapter illustrates the creation of thematic maps created using the framework pro-

posed.

5.1 Methodology for evaluation

This section presents the configuration of several experiments which were carried

out to assess the primary aspects of the method.

5.1.1 Classification performance evaluation

Two widely used indicators (the error matrix and the precision-recall curve) are used

to evaluate the classification quality of each compared method in this thesis.

The error matrix quantifies the accuracy of each classified category as a per-

centage based on the total number of validation points in each category [11]. The
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overall accuracy (OA) of the classified dataset is defined as the sum of the number

of correctly classified examples divided by the total number of tested examples.

The precision-recall curve is computed by varying the decision threshold (from

high to low) and plotting the values of precision against recall for each threshold

value [82]. Precision is defined as the fraction of retrieved instances that are relevant,

while recall is the fraction of relevant instances that are retrieved. The average

precision (AP) summarizes the precision-recall curve by measuring the area under

the curve. High recall indicates that an algorithm is capable of returning most of the

relevant results. High precision indicates that an algorithm returns more relevant

results than irrelevant.

For the accuracy evaluation of the thematic mapping , kappa statistics along with

overall accuracy are used to assess the performance of our proposed method. These

measurement methods were discussed earlier in Chapter 2.

5.1.2 Configuration selection

Our insights on how to decide which configurations to use (based on the properties

of any new dataset) are supported by the results presented in section 5.2. The

parameters for all the methodologies are tuned using the four underwater optical

image datasets (EILAT, RSMAS, MLC 2008 and EILAT 2) as described in Appendix

A. These tuned parameters can be used directly for a new underwater image dataset.

Various combinations of sub-steps with appropriate parameters can achieve the

highest classification performance out of a particular image dataset. Therefore, the

right selection from the various options available in each step is critical. A series of

experiments were conducted varying the choice of options within each step, while

keeping the options for the other steps constant. In all the experiments, for each

possible configuration, we used 10 cross-fold random validation, meaning that 90%

of the image patches were used for training and 10% were used for testing over 10

iterations. With cross-fold random validation, we reduced the possibility of having

results biased by over-fitting [53].

When our method is compared with other methods, those methods were also

tuned to the prescribed parameters in their respective publications ensuring possible

best performance of each.
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5.1.3 Dataset characteristics

The characteristics of the test datasets are presented in Table 5.1. More details are

given in Appendix A. Datasets with less than 4,000 training samples are considered

as being small. Datasets with more than 9,000 training samples are considered large.

Datasets with more than 4,000 samples but less than 9,000 are considered medium

sized.

Table 5.1: A brief summary of the characteristics of the underwater image datasets used for
classification and thematic mapping.

Name Number
of
classes

Number
of sam-
ples

Samples
used for
training

Sample
resolution

Color Type Size

EILAT 8 1,123 561 64 × 64 Yes Benthic Small

RSMAS 14 766 383 256 × 256 Yes Benthic Small

EILAT 2 5 303 151 128 × 128 Yes Benthic Small

MLC 2008 9 18,872 9,436 312 × 312 Yes Benthic Large

BMAT 3 37,759 7,550 192 × 192 No Benthic Medium

UIUCtex 25 1,000 500 640 × 480 No Texture Small

CURET 61 5,612 2,806 200 × 200 No Texture Small

KTH-
TIPS

9 810 405 200 × 200 No Texture Small

Red Sea
mosaic

6 73,600 1,426 64 × 64 Yes Mosaic Small

North Sea
mosaic

3 1,063,000 7,550 192 × 192 Yes Mosaic Medium

Grounding
mosaic

2 13,762 4,083 180 × 180 Yes Mosaic Medium

5.1.4 Thematic mapping accuracy measurement

Our proposed method and four most relevant algorithms (as these algorithms used

only optical images for classification like ours and showed reasonable performance

over multiple object classes) are applied to two underwater mosaic images to create

thematic maps of contiguous sections of the seabed, covering an area much larger

than a single image. The two mosaics (the Red Sea and North Sea mosaics) are

presented at the end of this chapter in section 5.3. The North Sea mosaic image
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is mainly used to evaluate the applicability of thematic mapping directly to the

generated mosaic rather then applying it to individual images.

Ground truths of the Red Sea and North Sea mosaics were created manually

to examine the effects of morphological filtering. We use these ground truths for

a quantitative assessment of the proposed method and the other four algorithms.

The resultant thematic maps are compared with corresponding ground truths based

on the overall accuracy (OA), average precision (AP), kappa (K) and the average

mutual information (AMI) indicators.

5.2 Experimentation with different configurations

This section analyzes the performance of different configurations on four benthic

datasets.

5.2.1 Pre-processing sub-steps

Pre-processing sub-steps, such as color correction and sunflicker removal, are imple-

mented whenever possible (i.e. whenever there are color references in the images

with the presence of large refracted sunlight pattern). We experimented with possi-

ble combinations of sub-steps in this step, keeping the rest of the steps as follows:

• Feature extraction: color histograms, CLBP, Gabor and GLCM,

• Feature modification: normalization & PCA,

• Classification: KNN, class frequency as prior settings.

Among the image pre-processing sub-steps, CLAHS alone produced the best re-

sults for the EILAT, RSMAS and EILAT 2 datasets as given in Table 5.2. The

combined effect of CLAHS, color correction and color stretching produced the best

result for the MLC 2008 dataset. It shows that CLAHS performs consistently well

on benthic datasets, therefore can be considered as a mandatory pre-processing

sub-step. Other sub-steps in this step, such as color correction, color stretching and

sunflicker removal, can be used whenever possible.
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Table 5.2: Percentage of overall accuracy with different image enhancement options as evaluated
with the EILAT, RSMAS, EILAT 2 and MLC 2008 datasets. The configurations for the other steps
are fixed as follows. Feature extraction: completed local binary pattern (CLBP), grey level co-
occurrence matrix (GLCM), Gabor filter response, opponent angle and the hue channel histogram;
Feature modification: normalization, principal component analysis (PCA); prior: class frequency;
classifier: k-nearest neighbor (KNN). NA stand for not applicable.

Image pre-processing configurations EILAT RSMAS EILAT 2 MLC 2008

No pre-processing 90.7 70.1 80.1 64.0

Color correction NA NA NA 63.8

CLAHS 92.9 85.8 87.4 69.3

Color stretching 67.1 58.8 62.9 70.5

CLAHS + Color correction NA NA NA 70.9

CLAHS + Color stretching 91.4 82.4 81.7 72.7

CLAHS + Color correction + Color
stretching

NA NA NA 73.2

5.2.2 Feature extraction sub-steps

Feature extraction sub-steps are analyzed by varying among possible combinations of

hue and opponent angle color histograms, CLBP, Gabor filter response and GLCM.

The sub-steps of the other steps are kept constant, and are set as follows: CLAHS

for pre-processing, normalization & PCA in the feature modification step, class

frequency as prior class probability and KNN as classifier.

• Pre-processing: CLAHS,

• Feature modification: normalization & PCA,

• Classification: KNN, class frequency as prior settings.

Regarding the feature extraction options, the combined feature vector of the color

histograms (hue and opponent angle), CLBP, Gabor filter response and GLCM

worked most effectively on the EILAT, RSMAS and MLC 2008 datasets (Table

5.3). In general, if color images are available, color histograms can be used together

with texture descriptors. However, for the EILAT 2 dataset, the color features

are not discriminative enough to aid the classification performance in the combined

feature vector. The combination of CLBP, Gabor filter response and GLCM (texture

descriptors) works better than any single feature for all four datasets.
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Table 5.3: Percentage of overall accuracy with different feature extraction methods as evaluated
with the EILAT, RSMAS, EILAT 2 and MLC 2008 datasets. CLBP, GLCM, Gabor filter response
and color histogram (hue + opponent angle) are evaluated in these experiments. In this experiment,
fixed configurations on the rest of the steps are as follows. Image pre-processing: CLAHS; feature
modification: normalization, PCA; prior: Class frequency; classifier: k-nearest neighbor (KNN).

Feature extraction configurations EILAT RSMAS EILAT 2 MLC 2008

CLBP 91.3 74.7 84.8 55.1

Gabor 85.7 61.2 65.3 39.4

GLCM 70.9 62.9 58.2 46.8

Color histogram (hue + opponent angle) 64.2 81.7 53.0 41.3

CLBP + Gabor 90.5 75.0 87.7 54.9

CLBP + GLCM 92.2 75.8 86.4 57.1

Gabor + GLCM 87.6 72.1 77.5 46.3

CLBP + GLCM + Gabor filter response 93.4 83.5 91.2 62.4

CLBP + GLCM + Gabor filter response
+ color histogram (hue + opponent angle)

94.7 89.6 87.3 65.7

5.2.3 Feature modification and learning

Two separate experiments were performed to determine the best combination of

feature modification options. In the first experiment, the possible combinations

of the chi-square kernel, Hellinger kernel and L1 normalization were tested while

keeping the options in the other steps constant as follows:

• Pre-processing: CLAHS,

• Feature extraction: color histograms, CLBP, Gabor and GLCM,

• Feature modification: PCA,

• Classification: KNN, class frequency as prior settings.

In the second experiment, the combinations of dimension reduction and classifier

methods were explored. The use of PCA and the Fisher kernel were varied with each

of the three classifiers while keeping the options for the other steps set as follows:

• Pre-processing: CLAHS,

• Feature extraction: color histograms, CLBP, Gabor and GLCM,

• Feature modification: normalization.
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With respect to the available feature modification sub-steps, the best results are

obtained by using both the chi-square and Hellinger kernels along with normaliza-

tion, as illustrated in Table 5.4. For the EILAT and RSMAS datasets, the best

classifier and dimension reduction options are the KNN classifier with dimension re-

duction by PCA and Fisher kernel mapping (Table 5.5). For the EILAT 2 dataset,

the SVM classifier without dimension reduction produces the highest overall ac-

curacy. For the MLC 2008 dataset, maximum overall accuracy is achieved with

PDWMD classifier and no dimension reduction.

Table 5.4: Percentage of overall accuracy with different normalization and kernel mapping methods,
as evaluated with the EILAT, RSMAS, EILAT 2 and MLC 2008 datasets. In this experiment,
fixed configurations for the rest of the steps are as follows. Image pre-processing: CLAHS; feature
extraction: CLBP, GLCM, Gabor and color histograms; PCA; prior: class frequency; classifier:
k-nearest neighbor (KNN).

Feature modification configurations EILAT RSMAS EILAT 2 MLC 2008

No feature modification 87.5 84.8 87.3 61.9

L1 normalization 91.9 87.6 87.4 64.0

Chi-square kernel mapping 85.7 87.6 88.1 63.3

Hellinger kernel mapping 85.8 87.9 88.5 62.2

Kernel mapping (chi-square, Hellinger) 89.2 88.1 89.3 65.7

L1 normalization + kernel mapping (chi-
square, Hellinger)

93.4 89.7 91.1 66.5

5.2.4 Selected configurations and recommendations for fu-

ture datasets

Using the experimental results above (Tables 5.2, 5.3, 5.4 & 5.5) we selected the

configurations shown in Table 5.6. The experimental results above and tables 5.1

and 5.6 provide the following insights concerning future image classifications:

1. If the dataset contains low contrast or blurred images, CLAHS works very

well for contrast enhancement. Therefore, CLAHS can be used for any future

challenging dataset. If color markers are available in raw images, color correc-

tion can be performed to enhance the color constancy. Color stretching and

sunflicker removal sub-steps are to be used on datasets whenever applicable.

2. Segmentation is only applicable for large scale or mosaic images whenever

thematic mapping is performed.

87



5. RESULTS AND ANALYSIS

Table 5.5: Percentage of overall accuracy with different dimension reduction and classification
methods (SVM with radial basis kernels having one to all schemes, KNN or PDWMD) as evaluated
with the EILAT, RSMAS, EILAT 2 and MLC 2008 datasets. In the table, PCA, Fisher kernel
(F), a combination of principal component analysis and Fisher kernel (P+F) and no dimension
reduction (ND) are applied. In this experiment, fixed configurations on the rest of the steps
are as follows. Image pre-processing: CLAHS; feature extraction: CLBP, GLCM, Gabor, color
histograms; feature modification: normalization; prior: class frequency.

EILAT

ND PCA F P+F

SVM 94.3 91.9 86.7 90.2

KNN 91.7 93.4 85.4 94.9

PDWMD 91.2 90.5 84.9 87.1

RSMAS

ND PCA F P+F

SVM 92.1 89.0 81.8 88.2

KNN 91.4 92.8 87.4 93.5

PDWMD 87.9 86.5 85.5 84.3

EILAT 2

ND PCA F P+F

SVM 93.1 91,5 88.9 90.7

KNN 88.0 92.2 85.1 92.7

PDWMD 89.2 89.4 80.7 85.1

MLC 2008

ND PCA F P+F

SVM 75.2 71.7 61.2 70.1

KNN 69.5 73.9 64.5 74.9

PDWMD 79.8 73.3 66.6 71.3
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Table 5.6: Selected configuration of our proposed method for all the datasets used in experimenta-
tion. EILAT, RSMAS, EILAT 2, MLC 2008, BMAT, CURET, KTH, UIUC, the Red Sea mosaic,
the North Sea mosaic and the Grounding mosaic are represented with E, R, E2, M, B, C, K,
U, RM, NM and GM respectively. F and P represents class frequency and equal probability
respectively.

Step Sub-step E R E2 M B C K U RM NM GM

Pre-processing

Color correction N N N Y N N N N N N N

CLAHS Y Y Y Y Y Y Y Y Y Y Y

Color stretching N N N Y N N N N N N N

Sunflicker removal N N N N N N N N N N Y

Segmentation Turbopixels N N N N N N N N Y Y Y

Feature Extraction

Gabor response Y Y Y Y Y Y Y Y Y Y Y

GLCM Y Y Y Y Y Y Y Y Y Y Y

CLBP Y Y Y Y Y Y Y Y Y Y Y

Color histogram Y Y Y Y N N N N Y N Y

Feature modification

Chi-square kernel Y Y Y Y Y Y Y Y Y Y Y

Hellinger kernel Y Y Y Y Y Y Y Y Y Y Y

Normalization Y Y Y Y Y Y Y Y Y Y Y

PCA and LDA Y Y Y N N Y Y Y Y N N

Learning

Prior settings F F F F P P P P F F P

SVM N N N Y N N N N N N N

KNN Y Y Y N N Y Y Y Y N N

PDWMD N N N N Y N N N N Y Y

Classification
Thematic mapping N N N N N N N N Y Y Y

Post processing N N N N N N N N Y Y Y

89



5. RESULTS AND ANALYSIS

3. The joint use of GLCM, Gabor filter response and CLBP works consistently

well as a texture descriptor. Opponent angle and hue color channel histograms

can be added to the texture descriptor (assigning equal weights to both color

and texture descriptors) if the test images have distinctive and reliable color

information.

4. In all cases of image patch classification, sparsely populated bins within his-

tograms possess higher distinctive information than high frequency bins [98].

This statement is based on the assumption that high frequency bins often

represent the background of an object and contain less distinctive informa-

tion. The chi-square and Hellinger kernels can be used to modify bin counts

and boost the population of low frequency bins. Normalization of the feature

vector is necessary in all cases before applying the classifier for training and

testing. Combined use of PCA and Fisher kernel mapping work very effec-

tively to reduce the feature dimension if the dataset size is small (training

samples of less than 4,000). However, for medium (training samples of more

than 4,000 but less than 9,000) and large datasets (training samples of more

than 9,000) almost all the dimensions become discriminative, and only a few

dimensions are reduced with PCA. Therefore, for medium and large datasets,

this dimension reduction sub-step can be avoided.

5. Class frequency works well as a prior in all cases. However, for texture datasets,

equal probability can be used as a prior as each class has the same number of

samples in its training set. For BMAT and the Grounding mosaic datasets,

equal probability might be used as well so that the classes that posses less

class frequency in their training sets are given the same opportunity as other

classes. For small datasets, the KNN classifier provides the best performance.

However, the effectiveness of this method diminishes as the datasets get larger,

as discussed in Section 4.2.5. For medium sized underwater image datasets,

PDWMD works best, both in terms of time and accuracy. For large datasets,

SVM can be considered as the appropriate classifier and should be used.

6. Morphological filtering can increase the accuracy of thematic mappings. These

post processing sub-steps are used for large images or mosaics where neigh-

borhood information of each patch is available.
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5.3 Evaluation of the proposed method

The proposed image classification method is initially evaluated using the MLC 2008

dataset by constructing a precision-recall curve and an error matrix.

(a) Acropora (b) CCA (c) Macroalgae

(d) Montipora (e) Pavona (f) Pocillopora

(g) Porites (h) Sand (i) Turf algae

Figure 5.1: Precision-recall curves for individual classes of the MLC 2008 dataset using our method.
Average precision over all the classes for this dataset was 74.8%. The highest precision was observed
for Pocillopora, and the lowest value was for the macroalgae class. Our method resulted in 85.5%
overall accuracy. In the MLC 2008 dataset, the highest number of examples was from the CCA
class, which also had frequent overlaps with other classes.

Table 5.7 shows the error matrix of our method. The highest number of examples
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in this dataset is from the crustose coralline algae (CCA) class, which also has

frequent common texture features as with other classes. The error matrix reflects

this fact, as other classes are highly confused with CCA. Figure 5.1 and Table 5.7

illustrate the precision-recall curves and the error matrix of our proposed method

when applied to the MLC 2008 dataset. Our proposed method results in 85.3%

overall accuracy and 75.3% average precision. The highest precision value is observed

for Pocillopora, and the lowest for the macroalgae class as shown in Figure 5.1.

Table 5.7: The error matrix of our proposed classification method tested on the MLC 2008 dataset.
The classes in both row and columns corresponds to A = Acropora, CCA = Crustose Coralline
Algae, MA = Macroalgae, MO = Montipora, PA = Pavona, PP = Pocillopora, P = Porites, S =
Sand and T = Turf. Within the main 9 × 9 cell portion of the table, the given number corresponds
to the raw count of the number of validation image patches that fell into a particular target/output
combination.

Target Class

Output Class

A C MA MO PA PP P S T

A 146 1 1 0 0 2 2 0 1

C 9 2408 139 51 29 17 38 116 55

MA 4 59 372 0 2 10 5 11 4

MO 0 19 3 336 2 6 2 9 5

PA 0 31 13 4 202 0 0 4 2

PP 14 0 6 3 0 691 11 2 8

P 9 32 7 5 3 11 727 11 40

S 0 67 3 6 4 1 10 650 60

T 6 18 16 11 6 6 24 45 817

Proposed method: overall accuracy 85.3%

5.4 Comparison with other methods

Tables 5.8, 5.9, 5.10 & 5.11 show error matrices for all four compared classification

methods on the MLC 2008 dataset. The proposed framework achieves the highest

overall accuracy (OA) and highest average precision for six datasets out of a total of

seven (Tables 5.12 and 5.13). For the EILAT dataset, all methods work reasonably

well, though our method achieves the highest overall accuracy (96.9%). The second

highest OA is achieved with the Marcos classification (87.9%) [65]. The results of the

RSMAS dataset are similar to those of the EILAT dataset, except the second most

accurate method is the Beijbom classification, with an overall accuracy of 85.4%. For

92



5. Results and Analysis

the MLC 2008 dataset, our method results in 85.5% overall classification accuracy

(Table 5.7).

Table 5.8: The error matrix of the Marcos method [65] tested on the MLC 2008 dataset.

Target Class

Output Class

A C MA MO PA PP P S T

A 68 28 23 12 0 32 17 1 7

C 1 2226 94 30 24 30 35 84 111

MA 4 251 228 2 8 29 16 0 22

MO 0 100 7 169 0 21 21 14 84

PA 0 33 0 0 197 0 8 4 6

PP 9 69 36 17 0 554 51 0 8

P 0 112 28 12 0 60 531 29 67

S 0 198 3 10 2 5 25 600 105

T 2 156 32 34 0 8 38 94 628

Marcos method: overall accuracy 68.7%

Table 5.9: The error matrix of the Stokes & Deane method [100] tested on the MLC 2008 dataset.

Target Class

Output Class

A C MA MO PA PP P S T

A 112 17 12 1 0 21 12 0 13

C 3 2366 62 22 25 19 28 67 43

MA 2 166 318 2 3 28 5 3 33

MO 4 115 7 247 2 1 10 10 20

PA 0 38 8 3 117 0 7 6 9

PP 16 62 21 0 1 625 8 1 10

P 9 100 8 8 2 4 629 8 71

S 0 178 4 5 2 3 18 686 52

T 2 94 12 9 1 4 53 46 771

Stokes & Deane method: overall accuracy 78.3%

The proposed method achieves almost similar classification accuracy when tested

with traditional and texture-only image datasets (Table 5.12). Most of the other

methods however, performed significantly worse against texture-only datasets. The

failure of the Marcos [65], Stokes & Deane [100], Pizarro [80] and Beijbom [2] meth-

ods on standard texture datasets indicates that these methods rely heavily on only

color information that may limit the robustness of classification algorithms. Color

may be inconsistent, distorted, attenuated or absent in some underwater optical
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Table 5.10: The error matrix of the Pizarro method [80] tested on the MLC 2008 dataset.

Target Class

Output Class

A C MA MO PA PP P S T

A 74 37 9 5 6 22 17 2 16

C 38 1888 106 55 31 94 84 178 161

MA 26 140 301 3 10 26 13 16 25

MO 4 81 6 175 13 22 43 35 37

PA 7 37 6 20 147 3 17 4 7

PP 102 136 34 14 10 363 29 13 43

P 13 119 22 35 27 27 457 41 98

S 6 248 17 28 9 23 52 479 86

T 10 185 28 21 7 38 87 92 524

Pizarro method: overall accuracy 58.2%

Table 5.11: The error matrix of the Beijbom method [2] tested on the MLC 2008 dataset.

Target Class

Output Class

A C MA MO PA PP P S T

A 148 24 9 2 2 27 16 0 8

C 6 2790 68 35 25 28 66 129 148

MA 2 194 421 15 10 21 10 1 28

MO 1 128 15 309 4 4 20 15 25

PA 1 50 4 1 216 9 21 2 7

PP 5 52 17 5 6 815 16 1 13

P 8 150 17 13 10 20 740 31 69

S 0 255 1 4 2 4 36 823 61

T 3 320 25 13 1 24 69 61 724

Beijbom method: overall accuracy 73.7%

Table 5.12: Comparison based on overall accuracy (OA) (%) for each method/dataset. The highest
overall accuracy obtained for each dataset is shown in bold. NA stands for ’Not Applied’.

Marcos Stokes & Deane Pizarro Beijbom Caputo Zhang Our

EILAT 87.9 75.2 67.3 69.1 NA NA 96.9

RSMAS 69.3 82.5 73.9 85.4 NA NA 96.5

MLC 2008 68.7 78.3 58.2 73.7 NA NA 85.5

CURET 20.8 49.7 38.1 86.5 98.6 98.5 99.2

KTH 25.5 88.9 48.3 36.3 95.8 96.7 98.3

UIUC 14.6 56.9 19.9 32.2 98.2 99.0 97.3

BMAT 87.8 90.1 73.1 92.2 NA NA 99.7
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Table 5.13: Comparison based Average precision (AP) (%) for each method/dataset. The highest
average precision for each dataset is shown in bold. NA stands for ’Not Applied’.

Marcos Stokes & Deane Pizarro Beijbom Caputo Zhang Our

EILAT 85.1 73.5 58.1 64.2 NA NA 97.2

RSMAS 59.2 81.2 67.1 79.9 NA NA 96.2

MLC 2008 49.5 61.3 46.4 64.9 NA NA 74.8

CURET 14.7 30.1 29.1 81.5 98.2 98.1 98.4

KTH 23.5 84.8 39.7 34.6 95.7 96.4 97.7

UIUC 14.7 43.5 18.2 30.4 97.2 98.5 96.9

BMAT 84.6 89.0 71.7 89.5 NA NA 99.7

datasets.

The two state of the art texture classification algorithms, Caputo [44] and Zhang

[110], perform relatively well on the texture datasets. For the UIUC dataset,

our method attains 97.3% overall accuracy where Zhang’s method [110] performed

slightly better with 99.0% overall accuracy. The UIUC dataset has higher resolu-

tion than the other datasets (with a patch size of 640 × 480 pixels) and contains

images with a lot of background; therefore, dense descriptors, such as those used in

our method, might be influenced by the background, which contains less discrim-

inative information about the object class. Our method is oriented towards small

patch sized image datasets, which are more suitable for the intended use of creating

thematic maps from mosaics.

For CURET and KTH datasets, which have a smaller patch size of 200 × 200

pixels, our proposed method achieves higher overall accuracies than the texture-only

method (Zhang [110]). We compared our proposed method with their method in the

same experimental conditions and reached 99.2% accuracy for the CURET dataset

and 98.3% for the KTH datasets, where the reported state of the art Caputo’s

method [44] obtained 98.6% accuracy for the CURET dataset and Zhang [110]

obtained 96.7% for the KTH dataset.

An important aspect when evaluating a classification approach intended to be

used in large datasets, is computational efficiency. The classification methods by

Marcos and Stokes & Deane are the two most computationally efficient (Figure

5.2). Our method requires less time compared to the Pizarro [80] and Beijbom [2]

method. As for the Pizarro method, the total computation time contains the time
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required to generate a 500 visual word vocabulary (approximately 650 seconds),

which can be performed offline reducing the required overall computation time. All

these methods are implemented in Matlab 2010a and tested on Intel core I5-2430M

CPU with 2.4 GHz speed and 6 GB RAM.

Figure 5.2: The time required to classify the RSMAS dataset using four test methods.

The performance consistency is tested as a function of the percentage of training

samples used. As the percentage of the training samples for the MLC 2008 datasets

changes from 10% to 60%, accuracy increases gradually for all the methods. This

result reflects the fact that a larger number of training samples can produce stronger

classifiers (Figure 5.3).

5.5 Classifying mosaic image

In this section, we describe the performance analysis of our proposed method during

the creation of a thematic map from mosaic images. We compare the performance

against the ground truth annotated manually by experts.

The morphological filtering described in Chapter 4 is used to improve the spatial

consistency of the classification using information on the classified neighbors for

a given patch, as shown in Figure 5.4. In Figure 5.5, on the left is the input

mosaic image and on the right is the segmented and color coded thematic map.

Morphological filtering increased the classification accuracy from 82.8% to 83.7%.
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Figure 5.3: The overall accuracy of each method as a function of the number of images in the
training data. This test was done on the MLC 2008 dataset.

It was observed that misclassifications generally tend to be on the borders of the

objects as shown in 5.7. This figure shows the location of misclassifications by

different methods in red. The classification results of each method when dealing

with the Red Sea mosaic image are shown in Figure 5.6.

Applying the classification method to segment the full mosaic of the Red Sea

survey images takes approximately seven hours on an Intel core i5-2430M CPU with

2.4 GHz speed and 6 GB RAM. The image patches are 64 × 64 pixels with a sliding

window with a 16 pixel shift per iteration, resulting in 73,600 patches in total to be

classified in the full mosaic.

5.5.1 Thematic mapping directly on mosaic image

We can ascertain that mapping directly onto the mosaic image results in better

accuracy compared with creating a mosaic from classified individual images. This

is demonstrated by the experimental results provided in Table 5.14. In terms of

overall accuracy (OA), average precision (AP) and kappa (K), the classification per-

formed directly on the mosaic yielded at least a 4% increase in accuracy compared

to classification of individual images prior to creation of the mosaic. However, cre-
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(a) Before morphological filtering (b) After morphological filtering

Figure 5.4: Effects of morphological filtering on classification results. (Left) The violet indicates
misclassifications, which are removed after morphological filtering (right).

ating the mosaic with classified individual images generates higher average mutual

information (AMI). AMI mainly measures the similarity between the ground truth

and the classified images. AMI is also dependent on the probability of each class

being classified. Therefore, misclassifications of various classes reduces the informa-

tion gain by various amounts, which is not the case for other accuracy measurement

methods, for example overall accuracy (OA). Moreover, the difference between AMI

values received in both these schemes are very small.

Figure 5.8 illustrates the thematic mappings of the North Sea created using (1)

classification directly on the mosaic, (2) classifying individual images and (3) cre-

ating the mosaic; and the ground truth. Sand, bacterial mat and shell chaff are

labeled in grey, brown and blue, respectively. The ground truth is manually created

by experts annotating each of the superpixels individually.

Table 5.14: Comparison based on overall accuracy (OA), average precision (AP), kappa (K) and av-
erage mutual information (AMI) between a) Classifying the mosaic image directly and b) Creating
a mosaic from the classified images.

Mosaic with classified images Mapping on mosaic image

OA 72.3% 76.0%

AP 70.8% 75.1%

K 59.7% 63.0%

AMI 0.68 0.61
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Figure 5.5: Thematic mapping of Red Sea mosaic using our proposed method. The segmented
images are color coded with the same classification scheme as Figure 5.6.
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(a) Marcos: accuracy 75.9% (b) Stokes & Deane: accuracy 67.0%

(c) Pizarro: accuracy 68.8% (d) Beijbom: accuracy 67.4%

(e) Proposed: accuracy 83.7% (f) Ground truth

Figure 5.6: The accuracy of the tested classification methods applied to the Red Sea mosaic. The
segmented images are color coded as: favid in violet, brain coral in green, branching corals I, II
and III in orange, urchin in pink, dead coral and pavement are in grey.

100



5. Results and Analysis

(a) Marcos: accuracy 75.9% (b) Stokes & Deane: accuracy 67.0%

(c) Pizarro: accuracy 68.8% (d) Beijbom: accuracy 67.4%

(e) Proposed: accuracy 83.7% (f) Ground truth

Figure 5.7: Location of misclassifications in thematic mapping by different methods shown in red
in the Red Sea mosaic. The segmented images are color coded as: favid in violet, brain coral in
green, branching coral I, II and III in orange, urchin in pink, dead coral and pavement are in grey.
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(a) Ground truth (b) Creating the mosaic with
classified images

(c) Mapping on the mosaic
image

Figure 5.8: Comparison of thematic mapping results for the North Sea mosaic. Sand, bacterial
mat and shell chaff are labeled in grey, brown and blue respectively. The mosaic covers an area of
232.86 square meters having a width of 7.38 meters and height of 31.57 meters.
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The main benefits of applying thematic mapping directly on the mosaic image

are:

• The blending of the registered images [23; 59; 60; 83] tends to reduce artifacts

and noise from the mosaic image.

• Some of the objects may only be partially visible in the raw images. However

in the mosaic they are fully imaged. Having the objects fully represented helps

the classification accuracy, namely when using morphological filtering.

• Classifying directly on the mosaic can save a significant amount of resources

in terms of time and memory requirements. In this approach, one object is

classified only once, thus avoiding multiple classifications of the same areas

across multiple overlapping images.

• Experimental evidence supports the conclusion that better accuracy is achieved

when thematic mapping is done directly on the mosaic image.

• Training data is easier to obtain from the experts in the form of an annotated

mosaic, than in the form of annotated individual images. Experts get a broader

perspective (during annotation) of a patch class in the mosaic facilitating

interpretation and analysis.

5.5.2 Analysis on sunflicker removed mosaic

The application of the sunflicker removal sub-step in the pre-processing step is il-

lustrated in Figures 5.9 and 5.10. The Grounding mosaic dataset contains mosaics

with both sunflicker present and sunflicker removed with our proposed method. The

thematic map created on the mosaic containing sunflicker presents many misclassifi-

cations. However, the thematic map created on the mosaic where the sunflicker has

been removed is significantly more accurate and consistent in terms of classification

performance with difficult zones. These results illustrate the fact that sunflicker

removal can improve the classification performance by a significant amount on a

dataset where refracted sunlight is present.

103



5. RESULTS AND ANALYSIS

(a) Grounding mosaic without sunflicker removal

(b) Thematic map created

Figure 5.9: Thematic mapping created on the Grounding mosaic without sunflicker removal.
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(a) Grounding mosaic with sunflicker removal

(b) Thematic map created

Figure 5.10: Thematic mapping created on Grounding mosaic with sunflicker removal.
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5.5.3 Impact of 3D features

The classification framework was implemented to perform thematic mapping on the

Ordnance mosaic and tested on a part of Ordnance dataset used as the validation

set (50% of the dataset). The overall classification accuracy and kappa statistics

after random 10 crossfold validation are being used for comparing the performance

of different methods. The implemented framework have the following components.

• Pre-processing: CLAHS,

• Segmentation: TurboPixels,

• Feature extraction: Gabor filter response, GLCM, CLBP, Hue and Opponent

histograms, 2.5D features,

• Feature modification: Chi-square and Hellinger kernel, PCA, L1 normaliza-

tion,

• Learning: Probability density weighted mean distance (PDWMD) with equal

prior probability,

• Classification: Thematic mapping and morphological filtering as post process-

ing.

The Ordnance dataset contains examples of bomb shells which are man-made

structured objects appropriate for testing the performance of including 3D features

for classification and thematic mapping. Using 2.5D features individually on the

Ordnance dataset, the classification performance of the validation set and thematic

mapping stays moderate. However, using 2D and 2.5D features together provides

better results than 2D or 2.5D individually. Figure 5.11 illustrates the thematic

mappings created for Ordnance dataset using 2D, 2.5D and 2D + 2.5D features.

The classification accuracy in this Ordnance dataset is very high in general as

there are only two classes and most of the samples belong to the background class.

Therefore, we can get a better insight about the classification performance using the

kappa statistics on the thematic map and average precision on the validation set.

Figure 5.12 illustrates the precision-recall curve of background class and bomb shell

class separately on the validation set when the combination of 2D and 2.5D features

is used.
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(a) Ground truth (b) Thematic mapping with 2D fea-
tures (Kappa 66.51%)

(c) Thematic mapping with 2.5D fea-
tures (Kappa 55.78%)

(d) Thematic mapping with 2D + 2.5D
features (Kappa 70.91%)

Figure 5.11: Thematic mapping with Ordnance dataset using 2D, 2.5D and 2.5D + 3D features.
Here the yellow color represents the segmented bombshells.
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(a) Background (b) Bomb shell

Figure 5.12: Precision-recall curves for both background and bombshells on the validation set of
the Ordnance dataset when the combination of 2D and 2.5D features is used.

Table 5.15 presents the summary of experimental results for Ordnance dataset

using 2D, 2.5D and 2D + 2.5D features for classification and thematic mapping.

On the thematic mapping, we obtained kappa value of 70.91% using 2D + 2.5D

features, whereas using 2D or 2.5D features, we attained only 66.51% and 55.78%

kappa respectively as shown in Table 5.15. A similar pattern of results can be

observed on the validation set, where the average precision is the highest scoring

one with a value of 79.82% using 2D + 2.5D features. This amount of precision

is more than 1% higher than the sole use of 2D features. Figure 5.13 illustrates a

complete example of classified thematic mapping on the Ordnance mosaic.

Table 5.15: Summery and comparison of classification results using 2.5D features with Ordnance
dataset.

2D 2.5D 2D + 2.5D

Thematic mapping

Accuracy (%) 96.06 94.59 96.51

Kappa (%) 66.51 55.78 70.91

AMI 0.146 0.107 0.165

Validation set
Accuracy (%) 96.63 94.36 96.85

Average precision (%) 78.51 65.24 79.82

5.5.4 Quantifying change detection

One of the applications of automated thematic mapping can be to detect changes

among benthic habitat distribution on the seabed along time. For the Grounding
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Figure 5.13: Thematic mapping performed on the Ordnance mosaic with the use of both 2D and
2.5D features. Here the yellow color represents the segmented bomb shells.
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mosaic, we have mapped the same area of the ship grounding at the years 2005, 2006,

2011 and 2012. The mosaics from 2011 and 2012 have higher resolution than from

the ones of 2005 and 2006. In this experiment, all these four mosaics are segmented

and classified to create corresponding thematic mappings. The performance of the

thematic mapping method is evaluated with the corresponding ground truths and on

the validation sets from the training sets. The created thematic mappings can give

indications of how the coral colonies have recovered over the years and how their

distribution changed inside the grounding scar areas on the seabed. The summary

of the results obtained is shown in the Table 5.16.

Table 5.16: Classification and thematic mapping result for Grounding mosaic created over the
years of 2005, 2006, 2011 and 2012.

2005 2006 2011 2012

Thematic mapping

Accuracy (%) 85.28 91.12 92.62 92.95

Kappa (%) 62.49 69.30 67.86 74.93

AMI 0.349 0.290 0.257 0.337

Validation set
Accuracy (%) 91.13 89.45 96.54 93.89

Average precision (%) 88.79 86.35 90.81 90.42

The thematic mapping on the Grounding mosaics shows consistent performance

in terms of overall accuracy, kappa and AMI. For the 2005, 2006, 2011 and 2012

mosaic images, the kappa values achieved are respectively 62.49%, 69.30%, 67.86%

and 74.93%. Also on the validation sets for corresponding training sets, the average

precision values achieved 88.79%, 86.35%, 90.81% and 90.42%. These results as

shown in Table 5.16 demonstrate the fact that the automatic classification and

segmentation can achieve a reliable mapping of the seafloor depicting the two classes.

This automated mapping can be used by the experts to refine into more detailed

label. Figures 5.14, 5.15, 5.16 and 5.17 illustrate the thematic mapping results on

the Grounding mosaics of the years 2005, 2006, 2011 and 2012 respectively.

5.6 Closing remarks

This chapter presented the evaluation criteria, experimental results and analysis

of the method proposed. The results show that the method, in most cases, can

achieve higher classification accuracy than other methods in the state of the art.
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The configuration adaptation according to the characteristics of the datasets leads

to better accuracy. Each dataset presents different challenges which can be better

faced with proper tuning of the framework.

This chapter also illustrates that thematic mapping on a blended mosaic can

provide better results than classifying individual images prior to creating the mosaic.

When creating a mosaic from multiple overlapping images that have been classified

individually, we will often have conflicting classification results for the same area of

the mosaic. Currently the choice of the representative label for the mosaic is based

on proximity to the image center, i.e., we choose the label of the image whose center

is closest to a particular area in the mosaic. A simple extension of this approach,

which will be done as future work, is to choose the label based on a voting scheme

where the most represented label would be chosen as the final class on the mosaic.

111



5. RESULTS AND ANALYSIS

(a) Mosaic image

(b) Thematic mapping

Figure 5.14: Thematic mapping using Grounding mosaic of the year 2005.
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(a) Mosaic image

(b) Thematic mapping

Figure 5.15: Thematic mapping using Grounding mosaic of the year 2006.
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(a) Mosaic image

(b) Thematic mapping

Figure 5.16: Thematic mapping using Grounding mosaic of the year 2011.
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(a) Mosaic image (b) Thematic mapping

Figure 5.17: Thematic mapping using Grounding mosaic of the year 2012.
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Chapter 6

Conclusions

This chapter summarizes the results of our research in this thesis. The following

sections provide an overview of the work carried out herein and discuss the achieve-

ments and contributions. The concluding section looks at some of the limitations of

the method developed and also examines directions for future research.

6.1 Summary

The availability of large datasets of underwater images that have been enabled by

recent advancements in digital acquisition systems and innovative platforms such

as ROVs or AUVs provides new opportunities for remote sensing of seabed images

as well as new challenges. The opportunity lies in the types of measurements that

can be made from direct remote sensing of benthic organisms. The challenges are in

efficiently extracting biological or ecological information from the raw images. Some

form of the automated analysis will be required to make full use of these rich data

sources.

Our proposed method presents a novel image classification scheme for underwater

images that achieves the highest overall classification accuracy among any of the

tested methods. In this thesis, ten challenging datasets were used for comparing

the set of methods that are representative of the state of the art in automated

classification of seabed images. On the latest standard benthic dataset ’Moorea

labeled corals (MLC)’ [2], our method achieved 85.5% overall accuracy, whereas all
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the other compared methods attained less than 80%, including Beijbom’s method

[2].

The proposed method can be configured to the characteristics (e.g., size, number

of classes and resolution of the samples, color information availability, class types

and so forth) of individual datasets. We provided guidelines for choosing the ap-

propriate configuration for future classification of underwater images. The results

suggest that a selective combination of various pre-processing steps, feature extrac-

tion and modification, prior probability of each class and choice of classifiers can

provide better results than using a single method for all datasets. The results can

be extended over large continuous areas by using mosaics of underwater images. On

the Red Sea mosaic, our proposed method resulted in 83.7% overall accuracy, which

is at least 8% higher than the other related methods tested under similar conditions.

The experimental part of our work allowed us to identify classification problems

that are specific to underwater images. On one hand, there are many classes in un-

derwater imagery that have samples with very clear differences in shape, color, tex-

ture, size, rotation, illumination, view angle, camera distance and light conditions.

On the other hand, there are overlapping classes that look almost the same from

specific angles and distances such as Crustose Coraline Algae (CCA) and Macroal-

gae (MA) in MLC 2008 dataset. Finding an optimal patch size and patch shift are

still open questions. Moreover, additional challenges, such as motion blurring, color

attenuation, refracted sunlight patterns, water temperature variation, sky color vari-

ation and scattering effects on input images have to be addressed to maintain image

quality and reliability of the information content. These issues highlight areas where

future research may continue to improve the accuracy and efficiency of automated

classification methods.

Applying an automated classification technique to mosaic composites produces a

rapid (in terms of expert annotation time) technique of characterizing reef commu-

nities that can be used to track changes over time. Quantifying benthic community

composition over the scale of hundreds of square meters by automated analysis of

underwater image mosaics is a novel capability in ocean science and provides a new

spatial scale from which sea bed dynamics can be observed and studied. Applying a

trained classifier to a large-area mosaic image can reduce computational time since

it bypasses the redundancy of classifying highly overlapping images. Furthermore,
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the techniques presented here are not uniquely limited to ocean floor classification

and may prove useful in other application scenarios with similarly high variability

of content and image acquisition conditions.

The framework, experimental results and analysis presented in this thesis consti-

tute a definite achievement regarding the goal of automated classification of under-

water objects using optical imagery.

6.2 Main contributions

The work in this thesis allowed for a number of contributions. The main contribu-

tions are the following:

• Proposal of an image based underwater object classification framework which

is configurable according to the characteristics of the dataset achieving state

of the art results.

• Selection of appropriate approaches among those available in the Computer vi-

sion field for different steps and sub-steps of the proposed classification frame-

work for underwater images.

• Development of an online sunflicker removal system using dynamic texture pre-

diction and a motion compensated filtering approach. This method works with

the help dynamic texture model learning and prediction based on a temporal

or a 3D based median. This sunflicker removal method is one of the optional

sub-steps in the pre-processing step of the proposed classification framework.

• Development of a framework for the creation of thematic maps from image

composites (mosaics) which illustrates the advantages over classification on

individual images.

• Investigating the possible use of 3D features together with 2D features for

classification, specially in the case where the objects of interest (either man-

made or natural) have particular shape or specific type of size or surface.
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6.3 Limitations

The proposed method for classification contains the following limitations which will

be addressed as future work.

• The proposed method is a supervised scheme, which means a certain amount

of expert time is needed to manually annotate sufficient training examples for

each class in the dataset. Although a large body of research has been devoted

to unsupervised classification schemes, it is not clear if this approach would

be of practical use for benthic ecologists and geologists, since these scientists

tend to be quite specific on the particular classes that interest them.

• Our method needs a large number of examples from the background class

(which belongs to none of the important classes in the dataset) to create a

more accurate thematic map of the mosaic image. One of the main reasons

behind this is that the background tends to have a very high variability in

natural scenes. Therefore, a large background set is required to encompass that

variability. However, this point can be considered as something unavoidable

than a limitation.

• There can be size variations among the examples of any particular class. Using

a fixed patch size can’t always grasp the important texture features of that

class due to large size variation. As a result, a fixed patch size may reduce

the classification accuracy. Multi-resolution schemes should be explored in the

future to cope with this limitation.

• When dealing with a new dataset, there is the need to tune a set of parameters

to obtain a proper configuration that will perform the best. We need to adjust

the proper configuration and parameters to get the best result. This means

some information about the new dataset is required beforehand.

6.4 Future work

As future work, the following extensions to the proposed method will be addressed.

• Both the optical and 3D relief images created using optical structure from mo-
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tion (SfM) techniques can be used together to acquire additional discriminative

information about each class. Some underwater objects such as man-made ob-

jects (for example, military munitions) contain unique 3D shapes which are

distinctive from natural objects on seabed. For such object class, SfM can

produce additional discriminative shape features to help the classification pro-

cess.

• A hierarchical class segmentation (from simple to complex) can provide more

robustness to the method and can be explored in future work. In hierarchical

class segmentation, initially objects are classified into broad category. Then

sequentially, these broad categories are reclassified into more complex classes.

• Multi-modal classification methods that incorporate acoustic data, bathimetry,

3D terrain and magnetic data can definitely provide more information to the

classifier to make more accurate decisions. With the recent advancements

of underwater survey technologies, geo-referenced sensor data from different

types of sensing modalities is available. Possible fusion of such data for better

classification of the seabed can be a potential extension of our work.

• Detailed analysis of all the features used and their relation to the class types

in the dataset can also be an area for research. The goal would be to avoid the

need to perform dimension reduction, by using appropriate dataset-specific

features.

• Incorporating large-scale variation in scale among the samples of the same

classes could be performed by creating separate training sets of the same spe-

cific class with different sizes or using a fixed-size patch and representing im-

ages as multi-scale pyramids. In our method, all the features used are partially

or completely scale and rotation invariant. These features are therefore able to

mitigate the effects of limited scale variation of individual classes. For larger

scale variation, it is important to have enough training examples of individual

classes at different scales. In the future, multi-resolution mapping might be

useful for benthic habitats covering large-scale variations of individual classes.

• An alternative to voting as future work could be to implement several classifiers

for the same area (in this case we could even have more than one classifier in

every image) and then use a random forest or boosting approaches to make

the different classifiers predict a single class.
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Appendix A

Datasets

The comparative performance of our proposed method with respect to the other lead-

ing methods has been tested on three standard texture datasets, five benthic datasets

and three seabed mosaic datasets as described in this appendix. The datasets repre-

sent a variety of challenging environments. A brief summary of the image datasets

used in this work is presented in Table A.1. Detailed descriptions of individual

datasets together with visual examples are given in a later part of this appendix.

The first four benthic datasets are used to guide selection of the various options

available in our proposed framework. These four datasets are comprised of under-

water images under varying light effects, color attenuation, scatting effects as well

as many others. Testing the proposed methods on these datasets provides hints

to select the appropriate options from these available ones for underwater imagery.

Finally, datasets comprising three mosaics are used to illustrate the potential for

generating thematic maps of large contiguous areas of the seabed using this auto-

mated classification framework.

A.1 Benthic datasets

Benthic datasets are created from seabed images acquired from different surveys. A

detailed description with example images is given below.
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Table A.1: A brief summary of the underwater image datasets used in this work for classification
and thematic mapping. N represents number of patches in each dataset.

Names Classes N Resolution Color Type

EILAT Sand, urchin, branches type I, brain
coral, favid coral, branches type II,
dead coral and branches type III

1,123 64 × 64 Yes Benthic

RSMAS Acropora cervicornis, Acropora
palmata, Colpophyllia natans,
Diadema antillarum, Diploria
strigosa, Gorgonians, Millepora
alcicornis, Montastraea cavernosa,
Meandrina meandrites, Montipora
spp., Palythoas palythoa, Sponge
fungus, Siderastrea siderea and
tunicates

766 256 × 256 Yes Benthic

EILAT 2 Sand, urchin, branching coral,
brain coral and favid coral

303 128 × 128 Yes Benthic

MLC
2008

Crustose coralline algae (CCA),
turf algae, macroalgae, sand, Acro-
pora, Pavona, Montipora, Pocillo-
pora, Porites

18,872 312 × 312 Yes Benthic

BMAT Bacterial mat, shell chaff, sand 37,759 192 × 192 No Benthic

UIUCtex Bark I, bark II, bark III, wood I,
wood II, wood III, water, granite,
marble, stone I, stone II, gravel,
wall, brick I, brick II, glass I, glass
II, carpet I, carpet II, fabric I, pa-
per, fur, fabric II, fabric III and fab-
ric IV

1,000 640 × 480 No Texture

CURET 61 texture materials imaged over
varying pose and illumination, but
at constant viewing distance.

5,612 200 × 200 No Texture

KTH-
TIPS

sandpaper, crumpled aluminum
foil, Styrofoam, sponge, corduroy,
linen, cotton, brown bread orange
peel, cracker biscuit

810 200 × 200 No Texture

Red Sea
mosaic

Sand, urchin, branching coral,
brain coral, favid coral, background
objects

73,600 64 × 64 Yes Mosaic

North Sea
mosaic

Bacterial mat, Shell chaff, sand 1,063,000 192 × 192 Yes Mosaic

Grounding
mosaic

Natural reef, damaged reef 13,762 180 × 180 Yes Mosaic
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A. Datasets

A.1.1 EILAT

The EILAT dataset contains 1,123 image patches of 64 × 64 pixels (Figure A.1),

taken from images of a reef survey near Eilat in the Red Sea [63]. A group of coral

ecology experts have visually classified the images into eight classes (sand, urchin,

branch type I, brain coral, favid coral, branch type II, dead coral and branch type

III ). Two of the classes have a larger number of examples compared with others.

The image patches were extracted from the original full-size images, which were all

taken with the same camera.

Figure A.1: Example images patches from the EILAT dataset showing 4 examples (in columns)
of each of the eight classes (in rows, from top to bottom: sand, urchin, branch type I, brain coral,
favid coral, branch type II, dead coral and branch type III).

A.1.2 RSMAS

The RSMAS dataset was obtained from reef survey images collected by divers from

the Rosenstiel School of Marine and Atmospheric Sciences of the University of Mi-

ami. This dataset has examples of different classes of underwater coral reefs taken

with different cameras at different times and places. This dataset consists of 766
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image patches, each 256 × 256 pixels in size, of 14 different classes (see Figure

A.2). The image patches cover a larger area on the ground than those in the EILAT

dataset, which means they are more likely to contain mixed classes.

Figure A.2: A subset of the RSMAS dataset showing 3 examples, in columns, of each of the 14
classes (in rows from top to bottom: Acropora cervicornis (ACER), Acropora palmata (APAL),
Colpophyllia natans (CNAT), Diadema antillarum (DANT), Diploria strigosa (DSTR), Gorgoni-
ans (GORG), Millepora alcicornis (MALC), Montastraea cavernosa (MCAV), Meandrina mean-
drites (MMEA), Montipora spp. (MONT), Palythoas palythoa (PALY), Sponge fungus (SPO),
Siderastrea siderea (SSID) and tunicates (TUNI).
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A.1.3 MLC 2008

The MLC 2008 dataset [2] is a subset of images collected for the Moorea-Labeled

Corals (MLC) from the Moorea Coral Reef Long Term Ecological Research site

(MCR-LTER) packaged for computer vision research and is the only natural habitat

dataset that was not created specifically for the work of this thesis. The Moorea-

labeled corals (MLC) dataset was published by Beijbom et al. [2] in 2012. It contains

2,055 images from three habitats: fringing reef, outer 10 m and outer 17 m, acquired

in 2008, 2009 and 2010. It also contains random points that have been annotated.

The nine most abundant labels include four non-coral classes: (1) Crustose Coralline

algae (CCA), (2) turf algae (Turf), (3) macroalgae (Macro) and (4) sand; and five

coral genera: (5) Acropora (Acrop), (6) Pavona (Pavon), (7) Montipora (Monti),

(8) Pocillopora (Pocill) and (9) Porites (Porit). For our work, we use a subsection

of this MLC dataset which is mainly made up of the images collected in 2008. From

the MLC 2008 dataset, we randomly selected 18,872 image patches of 312 × 312

pixels centered on the annotated points. All nine classes were represented in the

random image patches (Figure A.3).

Figure A.3: A subset of the MLC 2008 dataset showing two examples for each class. First row:
Acropora, Porites, Montipora. Second row: Pocillopora, Pavona, Macroalgae. Third row: sand,
turf algae, Crustose Coralline algae (CCA).
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A.1.4 EILAT 2

The EILAT 2 dataset contains 303 image patches. A group of experts has visually

classified the images into five classes: sand, urchin, branching coral, brain coral and

favid coral (Figure A.4). The patches are of medium resolution, 128 × 128 pixels,

taken from points on the object to keep the visual aspects of the object and, in some

cases, a portion of the background. Here, all the images have been taken with the

same camera.

Figure A.4: A subset of the EILAT 2 dataset showing 4 examples in columns of each of the five
classes (in rows, from top to bottom: favid coral, brain coral, branching coral, sand and urchin).

A.1.5 BMAT

The BMAT dataset was created from images of a large area survey using a Hugin

AUV [41] in the North Sea. The survey was done under the EU/FP7 ECO2 project,

where they covered the area overlying the subsurface CO2 storage site of the Utsira

formation around the Sleipner platforms [95]. One of the main goals of these expe-

ditions was to test techniques for high-resolution optical imaging to create photo-

mosaics and map bacterial mats on the seafloor associated with fluid outflow. Iden-

tification of bacterial mats and their spatial distributions may guide studies to deter-

mine if associated fluid outflows are linked to CO2 escapes or to natural processes.

The main classes present in these images are bacterial mats, shell chaff and sand.

The BMAT dataset comprises almost 37,759 images. Patches of 192 by 192 pixels

are extracted from the cropped survey images to be manually annotated by experts.
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Figure A.5 shows examples of a single patch from each class. Experts manually

classified 24,449 patches (9,625 patches of sand, 14,427 patches of shell chaff and

447 patches of bacterial mat) representing 2.3% of the total number of the image

patches captured during the tenth dive.

(a) Shell chaff: 14,427 (b) Bacterial mat: 447 (c) Sand: 9625

Figure A.5: Examples of training patches of each individual class (shell chaff, bacterial mat, sand)
of the BMAT dataset. Each patch is 192 by 192 pixels covering an area of approximately 0.6
square meters. Number of patches is mentioned in each figure of that particular class.

A.2 Texture datasets

These are standard texture datasets created by different groups in the computer

vision community for testing classification algorithms. In our work, we used three

of the most popular as described below.

A.2.1 UIUCtex

The University of Illinois at Urbana-Champaign texture (UIUCtex ) dataset [56]

contains 40 images in each of 25 texture classes: bark I, bark II, bark III, wood I, wood

II, wood III, water, granite, marble, stone I, stone II, gravel, wall, brick I, brick II,

glass I, glass II, carpet I, carpet II, fabric I, paper, fur, fabric II, fabric III and fabric

IV (represented in Figure A.6). These textures were viewed under significant scale

and viewpoint variation. The dataset includes non-rigid deformations, illumination

changes and viewpoint-dependent appearance variations. All the image patches in

this dataset are of 640 × 480 pixels.
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Figure A.6: A subset of the UIUCtex dataset showing 4 examples from 5 of the 25 classes (from
the left group of 4 to the right: bark I, bark II, bark III, wood I and wood II).

A.2.2 CURET

The Columbia-Utrecht Reflectance and Texture (CURET ) dataset [17] contains 61

texture classes, each with 92 images of 200 × 200 pixels. The materials were imaged

with varying positions and illumination, but at a constant viewing distance. The

changes of viewpoint and illumination direction significantly affect the texture’s

appearance (Figure A.7).

Figure A.7: A subset of the CURET texture dataset showing 4 examples from each of the three
classes (from the left group of four to the right: felt, plaster and Styrofoam). Note the large
intra-class variability caused by viewpoint and illumination changes.

A.2.3 KTH-TIPS

The Kungliga Tekniska Hogskolan Textures under varying Illumination, pose and

Scale (KTH-TIPS ) dataset [6] (illustrated in Figure A.8) contains images of 10

types of natural materials and provide variations in scale, in pose and illumination.

The images were captured at nine scales spanning two octaves (relative scale changes

from 0.5 to 2), viewed under three different illumination directions and three different
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poses, thus giving a total of nine images per scale and 81 images per material of

200 × 200 pixels. In total, there are 810 images comprising 10 different classes

(sandpaper, crumpled aluminum foil, Styrofoam, sponge, corduroy, linen, cotton,

brown bread, orange peel and cracker biscuit).

Figure A.8: A subset of the KTH-TIPS dataset showing six examples from 2 of the 10 classes:
sponge (left) and cotton (right). The six examples include two different illuminations and three
different scales.

A.3 Mosaic datasets

In this section, we describe the three mosaic image datasets that were created to

evaluate the thematic mapping performance of our proposed method.

A.3.1 The Red Sea mosaic

The Red Sea mosaic (Figure A.9) was created using the methods described in [23; 59;

60; 83] from diver survey images.The Red Sea mosaic comprises 283 high-resolution

digital still color images rendered at 1 mm per pixel of shallow water coral reefs in

the Red Sea, near Eilat [63]. The mosaic covers an area of 19.2 square meters (3256

× 5937 pixels with color information). To extract patches, a sliding window method

was used. The sliding window was moved with 16 pixel shifts, both horizontally

and vertically. In total, 73,600 image patches were created from the mosaic image.

Neighboring patches are 64 × 64 pixels and have an overlap of 75% maximum.
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Figure A.9: The Red Sea mosaic image covering an area of 19.2 square meters (3,256 × 5,937
pixels).
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A.3.2 The North Sea mosaic

The North Sea mosaic was created from images of a survey over the area overly-

ing the subsurface CO2 storage site of the Utsira formation around the Sleipner

platforms [41]. A Hugin AUV was used to collect a total of 37,759 grey images cor-

responding to a single dive survey. Initially, the raw survey images were cropped to

1,024 by 256 pixels to the borders of the image which were blurry and noisy due to

the uneven artificial illumination used in the AUV. The North Sea mosaic (Figure

A.10) was created from a subset of 340 images using the same methods as the Red

Sea mosaic. The mosaic covers an area of 232.86 square meters with a width of 7.38

meters and a height of 31.5738 meters.

A.3.3 The Grounding mosaic

On December 5, 2002, the 49-foot vessel Evening Star ran aground on a hard bottom

community dominated by stony and soft corals in the waters of Biscayne National

Park, Florida (2523.332 N, 8009.874 W, 3 m of depth). On May 23, 2005, video

data of the damaged and surrounding areas was collected using a Sony TRV900

DV camcorder placed in an underwater housing [59]. The Grounding mosaic was

created from 2,149 video frames with the presence of sunflicker and from those same

images a second mosaic was created having sunflicker removed. The minimum final

ground resolution is 5 mm/pixel. The area of the mosaic is 291 square meters. the

injury is documented to be 45 m in length and ranged from 3 to 5 m in width.

The Grounding mosaic (Figure A.10) was created using the same methods as with

the Red Sea mosaic. The sunflicker was removed from the video frames using a

sunflicker removal method with an offline [37] approach.

Also other Grounding mosaics are created from the images from 2005, 2006, 2011

and 2012 surveys respectively. These mosaics are used to quantify change detection

among coral reef distribution on the seabed along the years specially where the ship

wrecking happened.
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Figure A.10: The North Sea mosaic image covering an area of 232.86 square meters with a width
of 7.38 meters and a height of 31.5738 meters (1,821 × 6,652 pixels).
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(a) Mosaic creation with sunflicker effects present

(b) Mosaic creation with sunflicker effects removed

Figure A.11: The Grounding mosaic image covering an area of 291 square meters illustrating an
injury of width ranging from 3 to 5 meters and a length of 45 meters (4,200 × 11,796 pixels). Here
first mosaic is created having the sunflicker present and the 2nd mosaic is created after removing
sunflicker effect.
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A.4 Ordnance dataset

The Ordnance dataset is mainly used to test the performance of the 3D features.

This dataset has mainly two main classes, bomb shell and background. The Bomb

shells tend to have a distinctive 3D shape that can be detected with better accuracy

using 3D cues. This dataset was collected by the National Oceanic and Atmospheric

Administration (NOAA) at a site called ’Ordnance Reef’ off of Waianae, Hawaii

by divers using a hand-held HDV video camera. The camera was a Sony HDR-

XR520V which did not have progressive scan, so images were cut in half to deal

with the interlacing. The resolution of the Ordnance mosaic (Figure A.12) is 7,949

× 8,444 pixels. Figure A.12 illustrates the mosaic of the Ordnance dataset. Figure

A.13 illustrates the zoomed in version of the three markers on the figure A.12 of

Ordnance mosaic. This dataset is very challenging as the corals grow over the bomb

shells, thus matching both types of objects having similar textures on their surfaces..

A.5 Summary

This chapter describes the datasets used for evaluating and comparing methods.

The characteristics of the datasets (e.g., the size of the dataset, number of classes,

resolution of the samples, color information availability, etc.) is very important

information for our proposed method as this method is configurable according to it.

The three standard texture datasets are used to evaluate our method with available

state-of-the-art texture classification algorithm in the computer vision field.
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Figure A.12: The Ordnance mosaic image having the resolution of 7,949 × 8,444 pixels.
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(a) Marker 1 (b) Marker 2 (c) Marker 3

Figure A.13: Examples of small parts of the Ordnance mosaic. These 3 patches corresponds to
zoomed in version of the three markers on the Figure A.12
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