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Abstract

Linear spaces consisting of σ-finite probability measures and infinite measures (improper priors
and likelihood functions) are defined. The commutative group operation, called perturbation, is
the updating given by Bayes theorem; the inverse operation is the Radon-Nikodym derivative.
Bayes spaces of measures are sets of classes of proportional measures. In this framework, basic
notions of mathematical statistics get a simple algebraic interpretation. For example, exponential
families appear as affine subspaces with their sufficient statistics as a basis. Bayesian statistics, in
particular some well-known properties of conjugated priors and likelihood functions, are revisited
and slightly extended.
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1. Introduction

More than two decades ago, J. Aitchison (1986) noted that perturbation in theD-part
simplex, the sample space of compositional data with a finitenumber of parts,“is fa-
miliar in other areas of statistics . . . as the operation of Bayes’s formula to change a
prior probability assessment into a posterior probabilityassessment through the per-
turbing influence of the likelihood function”(Aitchison, 1986, p. 45). Recently, the lin-
ear space structure of the simplex has been recognised, withperturbation as the Abelian
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group operation, and its Euclidean structure has been completed (Billheimeret al., 2001;
Pawlowsky-Glahn and Egozcue, 2001, 2002; Egozcueet al., 2003) The extension of
the underlying ideas to compositions of infinitely many parts is due to Egozcueet al.
(2006). It leads to the study of probability densities with support on a finite interval,
concluding with a Hilbert space structure based on the natural generalisation of the
operations between compositions to operations between densities. The space contains
both densities corresponding to finite measures, equivalent to probability measures, and
densities corresponding to infinite measures, such as likelihood functions or improper
(prior) densities. The extension to infinite support measures was suggested as an open
problem and is now presented here.

Many different algebraic structures can be defined on sets ofpositive measures,
and particulary on probability measures. For instance, certain classes of measures form
a semi-group with respect to the ordinary sum or to the convolution (Bauer, 1992);
Markov processes give rise to a semi-group of transition kernels (Markov-semigroups)
(Bauer, 1992);Lp(λ) can be seen as a space of densities of signed measures; random
variables with variance constitute a Hilbert space (Witting, 1985; Small and Leish,
1994; Berlinet and Thomas-Agnan, 2004), which is relevant in statistical modelling;
metric spaces are obtained defining distances such as Hellinger-Matusita (Hellinger,
1909; Matusita, 1955) or those based on Fisher-information. Finally, kernel reproducing
Hilbert spaces (Whaba, 1990; Berlinet and Thomas-Agnan, 2004) are used for mod-
elling stochastic processes, random measures and nonparametric functions, as well as
linear observations of them, the inner product, reproducing kernel, and distance, being
related to the variance of the process, and the elements of the space being realisations of
stochastic processes (Whaba, 1990).

However, none of the above mentioned structures postulatesBayes updating as a
group operation. Bayes theorem has two important characteristics that make it attractive
as an operation between measures: (i) it has been consideredas a paradigm of informa-
tion acquisition, and (ii) it is a natural operation betweendensities (e.g. in probability,
Bayesian updating; in system analysis, filtering in the frequency domain).

The primary goal of the present contribution is to provide a linear space structure
for sets of classes of densities associated with positive measures of any support. The
support of a density is treated as a measure itself, leading to a general and inclusive
framework. In particular, linear spaces whose elements areclasses ofσ-additive positive
measures – including probability measures, prior densities and likelihood functions – are
introduced. Such spaces are suitable to review many issues of probabilistic modelling
and statistics. We call them Bayes spaces because the Abelian group operation, or
perturbation for short, corresponds to the operation implied in Bayes theorem. Section 2
defines Bayes linear spaces and Section 3 discusses their affine properties. Exponential
families of distributions are identified as affine spaces in Section 4. In Section 5 a review
of probabilistic models involved in Bayesian statistics ispresented.
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2. Bayes linear spaces

Standard tools of measure theory (Ash, 1972; Bauer, 1992, 2002; Shao, 1999) will be
useful in the following development. Letλ be aσ-finite, positive measure on an arbitrary
measurable space(Ω,B), whereΩ is a non-empty set andB is aσ-field on Ω. The
symbolsλ andB have been chosen deliberately to associate them with the Lebesgue-
measure and the Borelianσ-field, as they are a typical example forλ andB. Measures
with the same null-sets are called equivalent (Bauer, 1992). This is a very inclusive
equivalence relation identifying e.g. the Lebesgue-measure – measuring the volume of
a space portion – with any measure with positive density on the same measurable space.
The class of measures equivalent to a reference measure,λ, is used to constitute the
elements of the Bayes space:

Definition 1 (Equivalent measures)Letλ andµ beσ-finite measures on(Ω,B). They
are equivalent if, for all R∈ B, λ(R) = 0 if and only if µ(R) = 0. The class ofσ-finite
measures on(Ω,B) equivalent to a given reference measureλ is denoted byM (λ) and
its elements are calledλ-equivalent measures.

The Radon-Nikodym derivative theorem and the chain rule fordensities are stated in
the context of equivalent measures. The Radon-Nikodym-derivative is used to identify
measures with functions:

Theorem 1 (Radon-Nikodym derivative) Letλ be aσ-finite measure on(Ω,B), and
µ a σ-finite λ-equivalent measure. Then, there exists aλ-almost-everywhere,λ−a.e.,
unique positive function f: Ω →R+ = (0,∞) such that, for any R∈B,

∫

Rdµ=
∫

R f dλ.
The function f is then called density, or Radon-Nikodym-derivative, ofµ with respect to
λ, and is denoted by

dµ
dλ

(x) = f (x) .

Every measure inM (λ) can be represented by a unique density definedλ−a.e.. The
chain rule is closely related to addition and difference in the Bayes linear space:

Theorem 2 (Chain rule for densities) Letµ, ν beλ-equivalent measures. Then

dµ
dν

=
dµ
dλ

dλ
dν

.

The aim of the following definitions is to build a linear spaceof classes ofσ-finite
measures represented either by probability measures or by infinite measures. The first
step consists in identifying measures which differ only in ascale factor, leading to
equivalence classes of proportional measures. As a consequence, finite measures can be
represented by probability measures integrating to one. This idea has been previously
used for densities on an interval in (Egozcueet al., 2006) and goes back to a similar
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idea which identifies equivalence classes of positive vectors with compositions (Barceló-
Vidal et al., 2001).

Definition 2 (B-equivalence)Letµ andν be measures inM (λ). They are B-equivalent,
µ =B ν , if and only if there exists a constant c> 0 such that, for any R∈ B, µ(R) =
c ·ν(R), using the convention c· (+∞) = +∞. The set of(=B) equivalent classes is de-
noted as a quotient space B(λ) = M (λ)/(=B).

Theorem 3 (=B) is an equivalence relation onM (λ).

The elements ofB(λ) = M (λ)/(=B) are(=B)-equivalence classes of measures in
M (λ). From now on, no notational difference will be made between ameasure and the
equivalence class it represents. When a reference measureλ is fixed, a(=B)-class of
measures will be represented by a density (or Radon-Nikodymderivative with respect
toλ) definedλ−a.e. and up to a positive constant. The equivalence symbol(=B) will be
used forµ,ν ∈M (λ) and for their respective densities,fµ and fν . Thus, ifµ=B ν , then
fν =B fµ, which means that there existsc such thatfν(x) = c fµ(x) λ−a.e. Summarising,
(=B) identifies a measure equivalence class with a density, and the measures are all seen
as the same element ofB(λ). To build a linear space onB(λ), the second step consists
in introducing addition and multiplication by real scalars.

Definition 3 (Perturbation and powering) Let µ and ν be measures in B(λ). For
every R∈ B, the perturbation ofµ byν is the measure in B(λ) such that

(µ⊕ν)(R) =
∫

R

dµ
dλ

dν
dλ

dλ . (1)

For a scalarα ∈ R, the powering ofµ is the measure in B(λ) such that

(α⊙µ)(R) =
∫

R

(
dµ
dλ

)α

dλ (2)

Theorem 4 Perturbation and powering ofσ-finiteλ-equivalent measures areσ-finite.

Proof: see appendix.

Perturbation and powering ofσ-finite λ-equivalent measures are based on pertur-
bation and powering in the simplex, introduced originally by J. Aitchison (Aitchison,
1986) and shown later to structure the simplex as a linear space (Mart́ın-Ferńandezet
al., 1999; Billheimeret al., 2001; Pawlowsky-Glahn and Egozcue, 2001; Aitchisonet
al., 2002). The space is denotedB(λ) (B for Bayes) recalling that perturbation, which
plays the role of group operation, is essentially the operation in Bayes theorem.

The inverse operation of perturbation inB(λ), i.e. substraction inB(λ), is defined
as ⊖µ =B (−1)⊙ µ. The use of densities representing the corresponding measures
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generates alternative definitions of perturbation and powering. Let fµ and fν be densities
in B(λ) andα ∈ R; then, perturbation, difference and powering are

( fν ⊕ fµ)(x) =B fν(x) fµ(x) , (3)

( fν ⊖ fµ)(x) =B
fν(x)
fµ(x)

, (4)

(α⊙ fν)(x) =B fν(x)
α . (5)

Combining measures and densities we get equivalent expressions:

( fν ⊕µ) =B

∫

A
fν(x)dµ(x) , (6)

(ν⊖µ)(x) =B
dν
dµ

. (7)

A remarkable fact is that the difference (4), (7) is actuallya Radon-Nikodym
derivative due to the chain rule (Theorem 2).

When using densities representing measures, operations depend on the reference
measureλ adopted. Therefore, whenever not clear from the context, a subscript will be
used:⊕λ, ⊖λ, ⊙λ, =B(λ).

Theorem 5 With operations⊕ and⊙, B(λ) is a real vector space.

Proof: see appendix.

Whatever the reference measureλ, the neutral element ofB(λ) with respect to
perturbation is a constant density, or equivalently, the density with constant value 1.
The perturbation-opposite of a densityfµ is B-equivalent to 1/ fµ.

Definition 4 (Bayes space)The linear space(B(λ),⊕,⊙) is called Bayes space with
reference measureλ.

When the measurable space is(Ω,B) = (R,B(R)) with B(R) the Borelσ-field
on R, the most commonly used reference measure is the Lebesgue measureλR. For
constrained measurable spaces such as the positive real line, Ω = R+, or the 3-part
simplex,Ω = S 3, with the corresponding restricted Borelians, the Lebesgue measure
restricted to them,λ+, respectivelyλS 3, may be readily used. These contexts are usual
in probability theory and do not need further examples. Similarly, the measurable spaces
of the integers or the non-negative integers,(Z,Z+), are normally used with the counting
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measure as a reference. However, different but useful reference measures can be taken
in R+ and inS 3. As they are seldom used, they are given as examples.

Example 1 Consider(Ω,B) = (R+,B(R+)), beingR+ the strictly positive real num-
bers. A natural reference is the relative measure, defined for any interval[a,b]⊂ R+, as
µ+([a,b]) = lnb− lna, whose density with respect toλ+ is

dµ+
dλ+

=
d ln(x)

dx
=

1
x
.

The reference measureµ+ corresponds to a constant density in the spaceB(µ+).
Moreover, inB(µ+), the density

f (x) =
1√

2πσ2
exp

(

−(lnx−ξ)2

2σ2

)

, (8)

represents a log-normal probability law with median exp(ξ) and logarithmic variance
σ2. It has been called the normal inR+ (Eaton, 1983; Mateu-Figueraset al., 2002)
and is accordingly denoted byN+(ξ,σ

2). The positive real line,R+, can be structured
as an Euclidean space taking into account that ln :R+ → R is a one-to-one mapping
(Pawlowsky-Glahn and Egozcue, 2001). Then,µ+ is induced by the Lebesgue measure
in R. Thus, the reference measureµ+ corresponds to a relative scale inR+.

Example 2 The unit 3-part simplex,S 3 ⊂ R3, has elements which are vectors with
3 strictly positive components adding to 1. The simplexS 3 has been shown to be a
2-dimensional Euclidean space using perturbation and powering (as operations of its
elements) and the Aitchison metrics (Pawlowsky-Glahn and Egozcue, 2001; Billheimer
et al., 2001). Consequently, an orthonormal basis can be defined such that elements in
the simplex can be represented by the corresponding coordinates. Once an orthonormal
basis has been selected, the mapping assigning coordinatesto each element of the
simplex has been called isometric log-ratio transformation (ilr) (Egozcueet al., 2003).
A particular case of ilr can be used to define a new reference measure inS 3 in the
following way. TakeΩ = S 3 and consider the one-to-one mapping ilr :S 3 → R2

defined by

ilr(~x) =

(
1√
2

ln
x1

x2
,

1√
6

ln
x1x2

x2
3

)

,

where~x= (x1,x2,x3) ∈S 3. Define theσ-field B(S 3) = ilr−1(B(R2)) and a reference
measureαS 3(ilr−1(R)) = λ

R2(R), for R∈B(R2). The measureαS 3 is called Aitchison
measure (Egozcueet al., 2003; Mateu-Figueraset al., 2003; Pawlowsky-Glahn, 2003).
In this context, the additive logistic normal probability distribution (aln) (Aitchison,
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1986) is represented by the density

f (~x) =
1

2π|Σ| exp

(

−1
2
(ilr(~x)−µµµ)tΣ−1(ilr(~x)−µµµ)

)

, (9)

where vectors of three components inS 3 are denoted using(~ ) and vectors inR2

are boldfaced.Σ is a (2,2)-covariance matrix,|Σ| denotes its determinant, andµµµ ∈ R2

plays the role of a mean because ilr−1(µµµ) is actually the centre of the distribution. This
probability measure corresponds to Aitchison’s aln-probability law or logistic-normal
distribution. However, the density (9) has been called normal in S 3 (Mateu-Figueraset
al., 2003) because of the absence of the Jacobian of the ilr transformation, which is the
density of the reference measureαS 3 with respect toλ

R3.

3. Affine transformation and subsets of B(λλλ)

Changing the reference measure ofB(λ) to a B-equivalent one does not change the
space. The transformation fromB(λ) to B(µ), beingµ ∈M (λ), is an affine transforma-
tion and may be interpreted as a change of origin.

Theorem 6 Letµ be a measure inM (λ). Then,µ =B λ if and only if B(µ) and B(λ)
are equal as linear spaces.

Proof: see appendix.

When changing the reference measure, or the origin, of the spaceB(λ), the identifi-
cation of density and measure is broken. Next theorem on change of origin is formulated
in terms of measures, thus avoiding notation with densities.

Theorem 7 (Change of origin) For all µ ∈ M (λ) the spaces B(µ) and B(λ) have the
same elements and are equivalent as affine spaces. Consequently, changing the reference
measure is a simple shift operation.

Proof: see appendix.

In analytic geometry the elements of a linear space can be seen from two different
points of view: points in the space and vectors or arrows. Thefirst corresponds to affine
geometry, the second to the vector space. In the present context, the elements ofB(λ)
can be represented by measures, e.g.µ, ν . This representation by measures corresponds
to points. Alternatively, the differenceµ⊖ ν =B dµ/dν , which is actually a density,
correspond to avector, i.e. the difference between points is avector. However, as in
analytical geometry, there is no mathematical difference betweenpointsandvectorsof
any kind. The only practical difference arises when shifting the origin fromλ toλ′. The
vector representationdµ/dλ∈B(λ) of thepointµ is then shifted by subtracting the new
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origin represented as avector: (dµ/dλ′) = (dµ/dλ)(dλ/dλ′) =B (dµ/dλ)⊖(dλ′/dλ).
Therefore, the use of the density notationfµ = dµ/dλ makes sense only when the
reference measureλ is clearly specified, because the density changes under change of
origin.

The spaceB(λ) contains(=B)-classes of finite measures and other classes of infinite
measures (σ-finite). A finite measureµ, can be represented by a probability measure
µ/µ(Ω), being µ =B µ/µ(Ω). Infinite measures cannot be normalised in this way
because the measure of the whole spaceΩ is then infinite. The latter(=B)-classes
contain measures like improper priors or improper likelihood functions appearing
regularly in Bayesian statistics. In this context,(=B)-equivalence achieves its full
meaning as the likelihood principle that identifies proportional proper or improper
densities (Birnbaum, 1962; Leonard and Hsu, 1999; Robert, 2001). This means that
the spaceB(λ) is decomposed into two well defined subsets: the set of classes of
finite measures,BP(λ) containing proper probability measures; andBI (λ) containing
classes of infinite measures. By definitionBP(λ) and BI (λ) constitute a partition of
B(λ). The different role that proper and improper densities playin statistics motivates
the following properties concerningBP(λ) andBI (λ). Some properties are related to
other two important subsets ofB(λ), namely the set of measures whose density is upper
boundedλ−a.e., Bu(λ), and the set of measures whose densities are double bounded,
i.e. such that iff a density inB(λ), then there exist a positive constant,b, such that
0< 1/b< f < b<+∞ (λ−a.e.); this subset is denoted byBb(λ).

Theorem 8
1. BP(λ), BI (λ) is a partition of B(λ).
2. BP(λ) is convex.
3. Bb(λ) is a subspace of B(λ).
4. Bu(λ) is a convex cone.
5. BP(λ)⊕Bu(λ) = BP(λ).
6. BI (λ)⊖Bu(λ) = BI (λ).
7. µ ∈ B(λ) if and only if BP(µ) = BP(λ) as sets of measures.
8. µ ∈ Bb(λ) if and only if Bb(µ) = Bb(λ) as sets of measures.
9. µ ∈ BP(µ) if and only if Bb(µ)⊂ BP(µ).

10. µ ∈ BI (µ) if and only if Bb(µ)⊂ BI (µ).

Proof: see appendix.

4. Exponential families as affine spaces

Many commonly used distribution families, including multinomial, normal, beta, gamma
and Poisson, are exponential families. A common general definition can be given as fol-
lows (Witting, 1985):
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Definition 5 (Exponential family) For λ a measure on a measurable space(Ω,B),
consider a strictly positive measurable function g: (Ω,B)→ (R+,B(R)|R+); a vector
of measurable functions~T = (T1,T2, . . . ,Tk) with Ti : (Ω,B)→ (R,B(R)), i = 1, . . . ,k;
and a function~θθθ = (θ1,θ2, . . . ,θk), whereθi : A → R and A is a parameter space. A
k-parametric exponential family of distributions, P~ααα , ~ααα ∈ A, on(Ω,B) is given by

dP~ααα
dλ

(x) = f~ααα(x) =C(~ααα) ·g(x) ·exp

[
k

∑
j=1

θ j(~ααα)Tj(x)

]

,

with a normalisation constant

C(~ααα) =

(
∫

exp

[
k

∑
j=1

θ j(~ααα)Tj(x)

]

g(x) dλ(x)

)−1

. (10)

The exponential family is denotedExp(λ,g,~T,~θθθ ). If k is minimal, the family is called
strictly k-parametric.

The functionκ(~ααα) = − lnC(~ααα) is called the cumulant function of the family. Clas-
sically, the parameter spaceA is restricted to values of~ααα for which C(~ααα) exists. Fre-
quently,λ is called reference measure, and is typically the Lebesgue measure onR
when the support of the random variable isR, or a counting measure when the support
is discrete;~T(x) defines a set of statistics; and~θθθ (~ααα) is a mapping of the used parameters
~ααα ∈ A into the so-called natural parameters,θi(~ααα), of the family. The normal family of
distributions is a typical case:g(x) is constant;~T(x) = (x,x2); ~ααα= (m,σ2), wherem is
the mean andσ2 is the variance; and~θθθ(~ααα) = (θ1(~ααα),θ2(~ααα)) = (m/σ2,−1/(2σ2)).

As mentioned, classical exponential families are defined only for those~ααα for which
κ(~ααα) or C(~ααα) in (10) exists. However, the idea of Bayes spaces permits to drop this
condition and infinite measures can be considered natural members of exponential
families. A definition of such extended exponential families is the following.

Definition 6 (Extended exponential family) Using the notation in definition 5, an ex-
tended exponential family, denotedExpB(λ, g,~T,~θθθ ), contains the densities

dP~ααα
dλ

(x) =B f~ααα(x) =B g(x) ·exp

[
k

∑
j=1

θ j(~ααα)Tj(x)

]

.

If k is minimal, the family is called strictly k-parametric.

Densities in the extended family may or may not correspond toprobability measures.
Particularly, the elements with finite integral form the exponential family in the ordinary
sense. Next theorems account for the properties of the extended exponential families.
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Theorem 9 An extended exponential familyExpB(λ,g,~T,
~θθθ ) is a finite dimensional

affine subspace of the Bayes space B(λ).

Proof: see appendix.

Theorem 10 Any k-dimensional affine subspace S of B(λ) is a strictly k-parametric
extended exponential family.

Proof: see appendix.

When an extended exponential family is viewed as an affine space,g can be identified
as the origin of the affine space. Also, the change of origin ofB(λ) fromλ toµ=B λ⊕g,
whereg is taken as a density of aσ-finite measure, transforms the exponential family
into a subspace ofB(µ) because the constant density or neutral element for⊕ is
now an element of the family. Another important aspect is that the natural parameters
θ j(~ααα) are the coordinates ofµ~ααα expressed in the basis elementsVj(x). The restriction
of the parameter space of exponential families, due to the integrability condition for
the existence of the normalisation constant, is not any moreneeded in this context.
Non integrable elements correspond to densities of infinitemeasures inBI (λ). When
exponential families must be used as families of probability distributions, improper
distributions can be just ignored and restrictions to the parameters apply.

Example 3 ForΩ = R+, and using the notation of Example 1, the log-normal exponen-
tial family is

fξ,v(x) =
dPξ,v
dλ+

(x) =
1√
2πv

· 1
x
·exp

(

−(lnx−ξ)2

2v

)

,

wherev is the logarithmic variance andC(ξ,v) = exp(− 1
2vξ

2)/
√

(2πv), g(x) = 1/x,
~θθθ = (ξ/v,−1/(2v)) and~T = (lnx,(lnx)2). However, for real values ofξ and positive
values ofv, θ2 = −1/(2v) < 0; this means that the family only spans half of the affine
space, an affine cone, inB(λ+). The whole affine space is spanned accepting values
v < 0; for these values,fξ,v(x) is no longer a probability density but it belongs to
BI (λ+) ⊂ B(λ+). Additionally, changing the origin fromλ+ to µ+ =B 1/x the family
adopts the form

dPξ,v
dµ+

=B(µ+) exp

(

−(lnx−ξ)2

2v

)

,

which is again the normal inR+ (8) given in Example 1. The family can be expressed
as a subspace ofB(µ+),

dPξ,v
dµ+

=B(µ+)

(
ξ

v
⊙ex

)

⊕
(

1
v
⊙ dP0,1

dµ+

)

,
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whereas the family span is an affine subspace ofB(λ+),

dPξ,v
dλ+

=B(λ+)
1
x
⊕
(
ξ

v
⊙ex

)

⊕
(

1
v
⊙ dP0,1

dλ+

)

.

5. Bayes theorem is summing information

The following context is inspired by Bayesian statistics, however it is also relevant in
likelihood function based statistics. For the observations consider a measurable space
(X ,B(X )), with B(X ) aσ-field onX , and a reference measure on it denoted byλ.
Let ~x = (x1,x2, . . . ,xn) ∈ X n be the vector of observations modelled by independent
random variablesXi with values inX and probability law given by the measure
Pθ ∈ BP(λ), distribution for short, depending on a set of parametersθ = (θ1,θ2, . . . ,θk)

with values in a measurable space(Θ,B(Θ)) of parameters. Denote byPprior a prior
distribution on(Θ,B(Θ)), by Ppost the posterior, by

Lxi (θ ) =
dPθ
dλ

(xi) ,

the individual likelihood functions, and byL~x(θ ) = ∏i Lxi (θ ) the joint likelihood
function. According to the likelihood principle (Leonard and Hsu, 1999), a likelihood
Lxi and its scaled versionαLxi should give the same result in the analysis. Thus=B

for functions ofθ is a natural equivalence relation for likelihood functions. Consider a
reference measureτ ∈ M (Pprior) on (Θ,B(Θ)). Now, two different Bayes spaces are
relevant in this situation:

• The Bayes spaceB(λ) containing the family{Pθ : θ ∈ Θ} of distributions for the
observations, beingPθ ∈ M (λ) on (X ,B(X )).

• The Bayes spaceB(τ) containing the distributions of the parametersPprior , Ppost,
for the reference measureτ on (Θ,B(Θ)).

Theorem 11 If the distributions of the family{Pθ : θ ∈ Θ} are in B(λ), then Lxi ∈B(τ),
Pθ−a.e.

Proof: see appendix.

In this context, the Bayes formula can be written

dPpost

dτ
(θ ) =

dPprior
dτ (θ )∏n

i=1Lxi (θ )
∫

Θ
dPprior (θ )

dτ(θ ) ∏n
i=1Lxi (θ )dτ(θ )

.
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The denominator is a constant not depending onθ , accordingly,

dPpost

dτ
(θ ) =B

dPprior

dτ
(θ )

n

∏
i=1

Lxi (θ ) ,

which, using Bayes space operations, simplifies to the following theorem:

Theorem 12 (Bayes theorem in terms of Bayes spaces)If Pθ ∈ B(λ) and the prior
Pprior ∈ B(τ) then,

⊗n
i=1Pθ (xi)-a.e.,

Ppost=B Pprior ⊕
n⊕

i=1

Lxi (11)

Bayes theorem has several well-known and interesting direct implications. Here,
Theorem 12 is an elegant form of Bayes formula: it is a sum in a vector space
and, consequently, Bayesian updating is associative, commutative, invertible and has
a neutral element (the non-informative experiment here represented by the measureτ).
Also, the addition of the prior is invertible, as the prior can be subtracted and another
prior can be added. Thus, adding information in terms of Bayes statistics is nothing
but summing vectors in a space of information, here represented byB(τ). This means
that the three densitiesPprior , L~x andPpost represent information: before the experiment,
provided by the experiment, and updated from the experimentrespectively. Furthermore,
Bayes formula as expressed in Theorem 12, admits both properor improper priors and
improper intermediate posteriors. Also the likelihood function of a repeated independent
observation takes the form of a sum:

Corollary 1 In the conditions of Theorem 12,

L~x =B

n⊕

i=1

Lxi

6. Bayes theorem and exponential families

In order to simplify the notation, the natural parameters ofan exponential family will
be used instead of the dependence on general parameters~θθθ (~ααα); then, arguments of
functions of the parameters will be expressed simply as~θθθ . The components of the
boldfaced vectors of parameters, statistics and observations, are denoted with the same
text letters subscripted to indicate component.
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Theorem 13 Let xi , i = 1, . . . ,n, be repeated independent observations from a strictly k
parametric exponential familyExpB(λ)(λ,g,

~θθθ ,~T),

P~θθθ (x) =C(~θθθ) ·g(x) ·exp

(
k

∑
j=1

θ jTj(x)

)

,

then, the joint likelihood L~x(~θθθ ), as a function of~θθθ , is a k+ 1-parametric family

ExpB(τ)(τ,g
∗,~T∗,~θθθ

∗
), with g∗(~θ ) = 1, ~θθθ

∗
= (lnC(~θθθ),~θθθ), and~T∗(~x) = (n,∑n

i=1
~T(xi)).

The family is strictly k1-parametric with k≤ k1 ≤ k+1.

Proof: see appendix.

A remarkable fact is that the initial statistic~T plays the role of the vector of natural
parameters,~T∗, in the resulting exponential family. Also, note that the first element
in ~θθθ

∗
is the negative cumulant functionκ(~θθθ) = − lnC(~θθθ). Theorem 13 allows the

identification of conjugated families of priors and densities of observations.

Theorem 14 In the conditions of Theorem 13, a prior density Pprior(~θθθ ) in

ExpB(τ)(τ,g
∗,~T∗,~θθθ

∗
) generates a posterior density through the Bayes theorem

Ppost=B(τ) L~x⊕Pprior ,

which is also inExpB(τ)(τ,g
∗,~T∗,~θθθ

∗
), i.e.ExpB(τ)(τ,g

∗,~T∗,~θθθ
∗
) and

ExpB(λ)(λ,g,
~θθθ ,~T) are conjugated families.

Proof: see appendix.

It is well known that, for exponential families of densitiesof observations, an
exponential family of conjugated priors exists such that italso contains the posteriors
(Leonard and Hsu, 1999). Next theorem goes a little bit further, stating that, regardless
of the prior, the possible posterior densities are in an extended exponential family.

Theorem 15 If the likelihood function of a multiple observation L~x satisfies the condi-
tions of Theorem 13, for any prior Pprior ∈ B(τ), the posterior, Ppost=B(τ) L~x⊕Pprior , is

in ExpB(τ)(τ,Pprior(~θθθ ),~T∗,~θθθ
∗
).

Proof: see appendix.

Next theorem is also a new result for exponential families ofposteriors stating the
converse of Theorem 15.

Theorem 16 Assume that the posterior density is obtained from the Bayesformula
Ppost(~θθθ ) =B(τ) L~x(~θθθ)⊕τPprior(~θθθ ), where Pprior(~θθθ) is the prior and the likelihood func-

tion is L~x(~θθθ ) = ∏n
i=1Lxi (

~θθθ ). If Ppost(~θθθ |~x) ∈ ExpB(τ)(τ,h,
~θθθ ,~S), then Lx(~θθθ ), as a func-
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tion of x, is inExpB(λ)(λ,1,~T,~θθθ ), for some statistic~T(x). If ExpB(τ)(τ,h,
~θθθ ,~S) is k-

dimensional, thenExpB(λ)(λ,1,~T,~θθθ ) is k1-dimensional with k1 ≤ k.

Proof: see appendix.

Corollary 2 A family ofλ-equivalent distributions is in an exponential family if and
only if, for any prior, the family of its posteriors (perturbation of prior and a member of
the family) is an extended exponential family.

Example 4 ConsiderZ+, the non-negative integers, as space of observations, and the
counting measureν as a reference measure on it, i.e.ν({x}) = 1 for any single point
{x} in Z+ . Define the two-parametric exponential family

Exp(ν ,g(x),(θ1,θ2),(T1(x),T2(x))) ,

with g(x) = (x!)−1, θ1 = lnφ, T1 = x, T2 = δ(x), with δ(x) = 1 if x= 0 andδ(x) = 0
otherwise. A density of this exponential family has the expression

f (x|φ,θ2) =C(φ,θ2) ·
1
x!

·exp(xlnφ+δ(x)θ2) , φ > 0, (12)

being the normalising constant

C(φ,θ2) =
1

exp(θ2)+exp(φ)−1
.

The density (12) is the Bayes-perturbation inB(ν) of a Poisson density of parameter
φ by a step-density exp(θ2δ(x)), the latter inBI (ν). However, the whole family is in
BP(ν) according to Theorem 8, number 5. Note that, forθ2 = 0, the family reduces
to the standard Poisson exponential family. The exponential family (12) may be called
zero-inflated Poissonfamily (Lambert, 1992) because it can be written

f (x|φ,θ2) = (1− p) ·δ(x)+ p · φ
xe−φ

x!
, θ2 = ln

[
(1− p)eφ+ p

]
,

as a mixture of a Dirac and a Poisson distributions, althoughfrom the latter expression
it is difficult to deduce its exponential character. This zero-inflated Poisson family can
also be expressed as an affine subspace ofB(ν)

f (x|φ,θ2) =B(ν)
1
x!

⊕ (lnφ⊙ex)⊕
(

θ2⊙eδ(x)
)

,

or, alternatively, takingµ= ν⊖ (1/x!) as reference measure, the family is a subspace of
B(µ)
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f (x|φ,θ2) =B(µ) (lnφ⊙ex)⊕
(

θ2⊙eδ(x)
)

.

In both cases, withθ2 = 0, the extended Poisson family is obtained.
A natural question is which is the conjugated family of priordensities. Theorem 13

implies that this family is 3-parametric and the densities are

Pprior(θ1,θ2) =B exp
(
t0 lnC(eθ1,θ2)+ t1θ1+ t2θ2

)
,

where the parameterst0, t1 and t2 have the following meaning:t0 corresponds to the
sample size;t1 stands for the total sum of the observations,∑xi , andt2 is the number
of null observations,∑δ(xi). This family of priors contains both proper and improper
priors because theti are arbitrary real numbers. The family of prior densities, as
functions of the natural parameters of the family (12), i.e.(θ1,θ2), is in B(λ

R2). Finally,
note that (12) may be expressed using the measure whose density is (x!)−1 as a reference.
In this case, the expression (12) remains the same but removing the factorial.

7. Conclusion

Classes of proportionalσ-finite measures, including probability measures, have been
structured as Bayes linear spaces. These classes can be represented by densities, includ-
ing probability densities, likelihood functions and improper priors. The group operation,
perturbation, is Bayes updating, thus defining a meaningfuland interpretable structure.
The affine subspaces are identified with extended exponential families, which include
standard probability densities (or measures) and, additionally, infinite measures. Stan-
dard theorems of Bayesian statistics are revisited and slightly extended using this new
algebraic-geometric point of view. The idea that Bayes theorem is the paradigm of in-
formation acquisition is now interpreted as an addition in the formal sense, being this
possible because (proper and improper) probability densities and likelihood functions
share the same Bayes space.

The presented framework permits a new interpretation of thestandard probability
theory, justifies the use of improper probability densitiesand opens up the study of some
subspaces which may have richer structures with a metric or even a Hilbert space struc-
ture. The examples presented refer to quite usual probabilistic models, like normal and
log-normal distributions; other distributions, althoughwell-known and useful in prac-
tice (logistic normal, zero-inflated Poisson) need a more detailed mathematical develop-
ment. The presented methodology, when applied to these examples, illustrates the new
perspective introduced, namely how to deal with probability models in the framework
of Bayes spaces. In particular, the idea that exponential families constitute an advanced
mathematical tool in mathematical statistics, is here reduced to a very simple model, i.e.
in the new framework they are linear affine subspaces.
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Mart́ın-Ferńandez, J. A., Bren, M., Barceló-Vidal, C. and Pawlowsky-Glahn, V. (1999). A measure of dif-
ference for compositional data based on measures of divergence. In S. J. Lippard, A. Næss, and
R. Sinding-Larsen (Eds.),Proceedings of IAMG’99 - The 5th annual conference of the Int. Ass. for
Math. Geol., Volume I and II, pp. 211-216. Tapir, Trondheim (N), 784 pp.
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Appendix A. Proofs of theorems

Theorem 4

Proof. Perturbation: Sinceλ is σ-finite, there exists a familyAi , i = 1, . . . ,n, of sets
increasing toΩ such thatλ(Ai) < +∞. Sinceµ andν are inM (λ), they haveλ−a.e.
finite λ-equivalent densitiesfµ and fν . Choose a version of these densities being
everywhere finite and define families of setsBi := {ω ∈ Ω : fµ(ω)< i}, Ci := {ω ∈ Ω :
fν(ω) < i} increasing toΩ. Furthermore, consider the family of setsDi = Ai ∩Bi ∩Ci;
it is also increasing toΩ and

(µ⊕ν)(Di) =B

∫

Di

fµ fνdλ≤ i2λ(Ai)<+∞ .

Thus,µ⊕ν isσ-finite.
Powering: Analogously, consider again the increasing family Ai , as well as the

familiesBi := {ω ∈ Ω : i−1 < fµ(ω)< i} andCi = Ai ∩Bi. Then,

(α⊙µ)(Ai ∩Bi) =
∫

f αµ dλ≤ i|α|λ(Ai)<+∞ .

Thus,α⊙µ isσ-finite. �
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Theorem 5

Proof.According to the definition of Radon-Nikodym derivatives, expressions of⊕ and
⊙ using measures (1), (2), and using the respective densities, (6), (5), are equivalent.
The operations are well defined on the equivalence classes since, for real constantsk1,
k2 andα,

(k1 f1⊕k2 f2)(x) = k1k2( f1(x) f2(x)) =B ( f1⊕ f2)(x) ,

(α⊙k1 f )(x) = kα1 f (x)α =B (α⊙ f )(x) .

Linear space axioms follow from straightforward calculations:

• The neutral element is given byλ=B dλ/dλ=B 1.

• The opposite (negative) element is given by(⊖ fµ) =B (1/ fµ) =B dλ/dµ . �

Theorem 6

Proof. For measures, the equivalence relation (=B) does not depend on the reference
measureλ; therefore, the quotient setM (λ)/(=B) is equal to bothB(µ) andB(λ). In
fact, any measureν ∈M (λ) is represented inB(λ) andB(µ) by B-equivalent densities;
i.e.µ= kλ, impliesdλ/dµ= k, λ−a.e., and then

dν
dµ

=
dν
dλ

dλ
dµ

= k
dν
dλ

(λ−a.e.) ,

whereλ−a.e. is equivalent toµ−a.e. due toµ∈M (λ). Therefore, operations⊕ and⊙,
expressedusingdensities, give proportional results whenexpressed inB(µ) or B(λ). �

Theorem 7

Proof. Sinceµ ∈ M (λ), M (µ) = M (λ). Furthermore,(=B)-equivalence classes are
the same inM (µ) and inM (λ), and affine equivalence holds since there exists an
affine mappingg : B(µ)→B(λ), given byg(ν) :=B(λ) ν⊖λµ, which is linear. Using the
fact that⊖λµ= dλ/dµ, and that anyν ∈ B(µ) has the representation(dν/dµ)(dµ/dλ)
in B(λ), linearity is given by:

g((α⊙µ ν1)⊕µ ν2) =B g

((
dν1

dµ

)α dν2

dµ

)

=B

(

dν1

dµ
dµ
dλ

dλ
dµ

︸ ︷︷ ︸

g(ν1)

)α
dν2

dµ
dµ
dλ

dλ
dµ

︸ ︷︷ ︸

g(ν2)

=B (α⊙λ g(ν1))⊕λ g(ν2) ,

where the subscripts of⊕ and⊙ indicate the reference measure of the space where the
operation is carried out. �
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Theorem 8

Proof.

1. µ =B ν is equivalent toµ(Ω) = kν(Ω); therefore,µ, ν are either finite or infinite
and thenBP andBI are well defined and they constitute the whole space.

2. For any densitiesf , g, in BP(λ) and for any value 0≤ α ≤ 1, the statement is
equivalent to

(α⊙ f )⊕ ((1−α)⊙g) =
∫

f αg1−αdλ≤
∫

f dλ+
∫

gdλ<+∞ .

3. Boundedness is preserved by arbitrary powering and perturbation with bounded
values.

4. The same holds for upper boundedness as long as the exponents are positive.

5. It follows from the inequalityf g< b f (λ−a.e.).

6. It follows from the inequalityf/g< f/b (λ−a.e.).

7. (⇒): ν(Ω) does not depend onλ.
(⇐): λ andµ areλ-equivalent and thenµ ∈ B(λ).

8. If µ ∈ Bb(λ), thenb−1
1 ≤ dµ/dλ< b1, and ifν ∈ Bb(µ), thenb−1

2 ≤ dν/dµ< b2;
combining both expressions,(b1b2)

−1 ≤ dν/dλ = (dν/dµ)(dµ/dλ)≤ b1b2 and
thenν ∈ B(λ).

9. (⇒): If ν ∈ Bb(µ) with density f , 0< b−1 ≤ f ≤ b and
∫

f dµ≤ bµ(Ω)<+∞.
(⇐): ν ∈ Bb(µ)⊂ B(µ) implies+∞ >

∫
f dµ≥ b−1µ(Ω), thenµ(Ω)<+∞.

10. Similar to the previous statement. �

Theorem 9

Proof. Let µ~ααα ∈ ExpB(λ,g,~T,
~θθθ ) be a measure. By definitionµ~ααα is λ-equivalent and

µ~ααα ∈ B(λ). Then, it can be expressed as

µ~ααα =B g⊕
k⊕

j=1

(θ j(~ααα)⊙Vj(x)) ,

with Vj =B exp(Tj). Therefore, the exponential family corresponds to the affine subspace
of B(λ)

g⊕span{Vj , j = 1, . . . ,k} ,

where the natural parametersθ j(~ααα) are the coordinates ofµ~ααα with respect to the basis
elementsVj . �
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Theorem 10

Proof.Let g∈ Sbe a density andVj , j = 1,2, . . . ,k, be a basis of the subspaceS⊖g. Any
elementµ ∈ S is expressed asµ =B g⊕⊕k

j=1(α j ⊙Vj), thus spanning exactlyS. Then,

µ ∈ ExpB(λ,g, ln~V, ~Id), with ln~V = (lnV1, . . . , lnVk) and~Id the identity mapping. The
parametrisation is strict, since the coordinates with respect to a basis are unique. �

Theorem 11

Proof. The statement is proven if,Lxi is a τ-equivalent density of aσ-finite andτ-
equivalent measurePθ (xi)-a.e. Forθ ∈ Θ, Lxi > 0 sincePθ ∈ B(λ). Thus, it isτ-
equivalent. It is inB(τ) if it corresponds to aσ-finite measure. To prove thatLxi is a
density of aσ-finite measure, consider any finite measureτ′ ∈ BP(τ). If P(xi ,θ ) is the
joint probability distribution ofXi andθ constructed fromτ′ as marginal distribution,
then

Lxi (θ ) =
dP(xi ,θ )

dτ′(θ )dλ(xi)
,

becausePθ is the conditional distribution andτ′ plays the role of a marginal distribution
for θ . Fubini theorem implies

∫
Lxi dτ < +∞ (λ-a.e.), or, equivalently,Pθ -a.e. Then,

Lxi ∈ B(τ′) and represents a finite measureµxi (Pθ -a.e.). According to Theorem 7 on
shift of origin, fromB(τ) to B(τ′), we getLxi =B(τ) µxi ⊖τ τ′ and thusLxi ∈ BP(τ). �

Theorem 13

Proof.The likelihood function can be written

L~x(~θθθ ) =Cn(~θθθ) ·
n

∏
i=1

g(xi) ·exp

(
n

∑
i=1

k

∑
j=1

θ jTj(xi)

)

=B(τ) Cn(~θθθ) ·exp

(
k

∑
j=1

θ j

[
n

∑
i=1

Tj(xi)

])

. (13)

If C(~θθθ) is in the span of exp(~θθθ ), L~x(~θθθ ) corresponds to ak-dimensional subspace ofB(τ)

with g∗(~θθθ )=B(τ) 1,~θθθ
∗
=~θθθ and~T∗=~T. Otherwise, takingg∗(~θθθ )= 1,~θθθ

∗
=(lnC(~θθθ),~θθθ ),

and~T∗(~x) = (n,∑n
i=1

~T(xi)), Eq.L~x(~θθθ ) corresponds to a(k+1)-dimensional subspace
of B(τ). In both cases, Theorem 9 implies the statement. �
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Theorem 14

Proof. The family ExpB(τ)(τ,g
∗,~T∗,~θθθ

∗
) is a subspace ofB(τ) becauseg∗ =B 1. Since

subspaces are invariant under perturbation of elements of the subspace, the posterior
Ppost(~θθθ ) is in the subspace. �

Theorem 15

Proof. The likelihoodL~x(~θθθ ), as a function of~θθθ , is in the extended exponential family

ExpB(τ)(τ,g
∗,~T∗,~θθθ

∗
) that has been identified as a subspace ofB(τ). Application of

Bayes theorem is a perturbation, i.e. a shifting, and the result is the affine space
ExpB(τ)(τ,Pprior(~θθθ ),~T∗,~θθθ

∗
), where the origin coincides withPprior becauseg∗ =B(τ) 1.

�

Theorem 16

Proof.The posterior density in the extended exponential family isexpressed as

Ppost(~θθθ ) =B(τ) h⊕exp

(
k

∑
j=1

Sj(~x)θ j

)

.

Combining this expression with the Bayes formula, the likelihood function is

L~x(~θθθ ) =B(τ) (h⊖Pprior(~θθθ ))⊕exp

(
k

∑
j=1

Sj(~x)θ j

)

.

In B(λ) it can be rewritten as

L~x(~θθθ ) =B(λ) exp

(
n

∑
i=1

k

∑
j=1

Tj(xi)θ j

)

,

whereSj(~x) = ∑n
i=1Tj(xi). The existence of the statisticsTj comes from the multiplica-

tive form of the likelihood function and the fact that the expression should be valid for
any arbitraryn. Therefore,

Lx(~θθθ ) =B(λ) 1 ·exp

(
k

∑
j=1

Tj(x)θ j

)

,

where the perturbation ofk terms may collapse ink1 ≤ k terms for equalTj ’s. �




