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Abstract. We present a new asymptotic formula for the maximum static voltage in a

simplified model for on-chip power distribution networks of array bonded integrated circuits.

In this model the voltage is the solution of a Poisson equation in an infinite planar domain

whose boundary is an array of circular pads of radius ε, and we deal with the singular limit

ε → 0 case. In comparison with approximations that appear in the electronic engineering

literature, our formula is more complete since we have obtained terms up to order ε15. A

procedure will be presented to compute all the successive terms, which can be interpreted

as using multipole solutions of equations involving spatial derivatives of δ-functions. To

deduce the formula we use the method of matched asymptotic expansions. Our results are

completely analytical and we make an extensive use of special functions and of the Gauss

constant G.
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1. Introduction and main result

A system-on-a-chip (SOC) is an integrated circuit in which all the electronic components

are included on a single chip. The design of such a device is in general complex and costly,

and one has to ensure that each element obtains the right amount of power to operate

efficiently. To increase the speed of operation and general performance, large voltage drops

between different parts of the circuit must be avoided. In particular, it is in the design of the

interconnection between the semiconductor devices and the external circuitry where special
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care is needed. In this direction, the so-called flip-chips, with an array bonding power

distribution network, represented a substantial improvement, and are actually becoming

more and more used by chip designers ([15], [14]).

In Electronic Engineering one has the need for good formulas to compute the maximum

voltage drop, easy to handle and ready to be used in practical tasks of chip design, even

if the formulas come from simplified models. One of the simplest such models is the one

that appears in the paper by Shakeri and Meindl [15], where the voltage at each point of

the integrated circuit surface is modeled in terms of a solution of a Poisson equation with

Dirichlet boundary values, in a domain that consists of the whole plane from which an

array of circular discs of radius ε has been removed, the so-called pads in the Electronic

Engineering literature. This array of pads is supposed to be periodic in the two directions,

with the centers of the discs separated from their neighbors by a period length L.

Using a combination of analytical and numerical heuristic methods, a formula was found

in [15] for the maximum voltage within the SOC (minus the maximum voltage drop). That

formula, in the case where L = J0 = Rs = 1, being Rs the sheet resistance and J0 the

consumption of current per unit area, reads

1

2π
log ε+ (0.1511 . . . ) (1.1)

when ε is small. This expression, is now widely used in the context of chip design. However,

the procedure in [15] has a major drawback, and it is the fact that the method is not based

on a systematic use of matched asymptotic expansions and thus cannot be easily extended

to obtain further terms in the ε-expansion. In principle, although it is not clear from the

derivation of the formula in [15], the error in this formula is order ε, which, at a first glance,

would seem reasonable for a physical application. However, as we shall explain in Section 2,

the sizes of the pads are not that small in comparison with the size of the whole chip, which

justifies the need to calculate a higher order approximation for the voltage drop.

The goal of our work has been to deduce again this formula, but now with mathematical

detail in order to give some insight into the procedure behind the heuristic and limited
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method in [15]. The result that we present (see (4.4) below) reads

1

2π
log ε+

1

2π
log(πG)− 1

4
ε2 +

π7G8

300
ε8 + · · · , (1.2)

where G = Γ2(1/4)/(2π)3/2 (being Γ Euler’s Gamma function) is the so-called Gauss con-

stant, which seems to be omnipresent in this problem, or, in figures,

1

2π
log ε+ (0.1534 . . . )− 0.25 ε2 + (2.3706 . . . ) ε8 + · · · . (1.3)

We also claim that the remaining nonzero terms will only contain powers of ε8, and we will

give a procedure to compute these successive coefficients.

To derive (1.2) we have used the techniques of the asymptotic analysis, especially in the

sense of understanding the successive terms of our solution as the result of an iterative

matching procedure between an inner solution, which captures the small scale effects due to

the Dirichlet boundary conditions, and an outer solution that accounts for the behavior of

the voltage far enough from the boundaries (see [4] or [9]). The other main ingredient has

been the use of special functions and of transcendental constants. Some related works with

similar problems that have also been analysed with asymptotic analysis techniques can be

found in [12], [13], [16] and [17] and in the references therein.

The origin of our work is on a problem presented by researchers in Electronic Engineering

in a Study Group (GEMT2009, Barcelona, see [2]), where they asked to have a mathematical

look at the deduction of the formula (1.1) above, taken from [15], to see if further terms in

the expansion could be obtained. At that point some preliminary answer was already given,

and we built the present group of authors to study the problem more deeply.

The rest of the paper is organized as follows. In section 2 we describe the physical device,

the origin and characteristics of the sytem-on-chip power distribution technology, and its

relevance. The mathematical model is also justified along with the hypotheses used in its

simplification. In section 3 we state precisely the mathematical problem to be considered,

and find the general forms of the inner and outer solutions. As it shall be seen, we will start

with a first candidate for the outer solution, namely the Green’s function modified with the

addition of a constant. The properties of the Green’s function are stated in the form of a

lemma at the end of section 3. In section 4 an iterative scheme based on an asymptotic
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matching procedure between the inner and outer solutions is presented. The next term in

the expansion is computed and it is shown how to compute higher order terms. In section

5, we compare our results obtained with matching asymptotics techniques with numerically

computed values of the maximum voltage drop. Section 6 is devoted to the proof of the

Lemma mentioned above. Finally, the conclusions are presented in section 7.

2. The model

The Power Distribution Network (PDN) of modern Integrated Circuits (ICs) is essentially

composed of a grid of parallel wires in the upper conducting layer that carry the power and

ground voltages from the power/ground supplies to the whole circuit [3]. In order for the

IC to operate correctly, one has to ensure that the voltage drop at any point of the grid

remains below a certain quantity, that is to say, the difference in the voltage between the

wires carrying the power and ground should stay close enough to the power supply voltage.

Thus, to reduce the voltage drop at this grid, the parallel wires should be as conductive

as possible, i.e. thick and wide. The power and ground grids may be connected to the

integrated circuit package in two different ways: with a so-called peripheral bonding or by

means of an array bonding. The first type of connection consists of a set of supply pads

which are distributed along the sides of the chip, and so the power is supplied only through

the boundaries of the chip. In the second type of packaging, the so-called flip-chip PDN, the

supply pads are distributed as an array over the surface of the wires of the upper conducting

layer. In figure 2 there is a sketch of these two types of IC package bonding.

The PDN behaves as a conductive mesh with resistive, inductive and capacitive properties.

As a consequence, the electric current spikes produced during the switching activity are

transformed into voltage bounces in the supply terminals of logic cells. This bounce, which

produces a reduction in the supply voltage (known as Power Supply Noise, PSN) decreases

the gate drive strength, thus lowering the circuit speed performance [14]. A good PDN design

must reduce the PSN below a specified value. The PSN can roughly be divided into two

parts: static and dynamic. The static PSN, also called IR-drop, is due to the voltage drop

produced in the PDN resistances by the average supply current, whereas the dynamic PSN is
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Figure 1. Structure of a peripheral and array bonding packages.

due to the electric current transients exciting the distributed inductances and capacitances

of the PDN. A precise control of the IR-drop is very important for the design of a PDN

for several reasons: (i) electromigration in the PDN wires strongly depends on the average

current [5]; (ii) the preliminary design of a PDN should be made according to the IR-drop

specification refining the design in a later step if necessary, which is possible thanks to the

fact that the average current consumption of each block in the circuit is usually estimated

in advance; (iii) decoupling capacitors distributed along the IC smooth the electric current

spikes in the PDN and thus the most important part of the current flowing in it is the average

current [14].

The design of a good and reliable PDN is a very complex task in which designers cannot

anticipate all the details. There exist widely used commercial CAD (computed-aided design)

tools which are helpful but that are primarily devoted to the post-layout verification of the

PDN after its complete design. This means that a failure in the design involves a costly

reworking of the PDN which promotes over-dimensioning, resulting in the sacrifice of precious

routing resources. These reasons necessitate of approximate pre-layout tools for the early

stages of PDN design.

A typical Power/Ground grid (P/GG) is indeed a mesh of perpendicular wires strongly

connected in the crossing points, horizontal wires are made with the upper metal layer
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available (free from any other routing signals) and the vertical ones are made with the second

upper metal layer. A large number of vertical interconnections (vias) strongly connect the

wires at the crossing points, so the whole mesh carries the power voltage level. A similar

mesh carries the ground voltage. The power grid can thus be modeled as a continuous metal

plate rather than a discrete grid of metal strips provided the grid is sufficiently dense, which

will be our first model assumption. Therefore, in this setting the IR-drop at any point is

described in terms of a Poisson equation with a source term for the current consumption,

[15],

1

Rsx

∂2V

∂x2
+

1

Rsy

∂2V

∂y2
= J, (2.1)

where V is the voltage in Volt (V) at a point (x, y) in the IC, Rsx and Rsy are the effective

sheet resistances of the PDN in x and y respectively, which have units of Ohm (Ω), and J ,

in Ampere per squared meter (A/m2), is the current density function at each point.

As for the boundary conditions to be imposed, they depend on the type of bonding pack-

age under consideration. In the case of a peripheral bonding the power/ground pads are

connected at the four sides of the P/GG, usually using peripheral power and ground metal

rings that carry the constant voltage levels. In this case one would impose constant Dirichlet

boundary conditions at the four sides of the chip. In the case of an array bonding, that will

be the one analyzed in this paper, the power pads are arranged in a regular mesh across

the surface of the IC. This means that the actual domain will be a rectangle with a set

of regularly aligned holes inside representing the pads in whose boundaries we will impose

constant Dirichlet boundary conditions. As for the boundary of the whole chip, since we do

not accept electric current to flow across it, we shall be imposing homogeneous Neumann

boundary conditions. We note that, since the level of the power voltage is arbitrary, one can

simply set it to be zero. Henceforth, we will fix V = 0 at the boundaries of the pads which

will result in the voltage being negative throughout the chip.

The pads carrying the power level are usually manufactured in rectangular shapes and

they are some orders of magnitude smaller than the size of the whole domain. However, in

what follows we will deal with the simpler case of circular pads which will provide explicit

expressions for the maximum voltage drop that may be used as an approximation to the real
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squared-pad problem. In fact, we will discuss in the last part of this paper that the problem

of square pads can be tackled in a similar same way as the circular one considered here by

just performing suitable conformal transformations to map the circles into squares.

In general, ICs have a rectangular shape and their sheet resistances are not isotropic,

that is to say, they differ in the x and y directions. However, one can always assume that

the domain is an square of side one by conveniently re-scaling the x and y variables and

considering new effective sheet resistances in both directions. For the sake of simplicity and

without loss of generality we will consider in what follows that the sheet resistances are

equal in both directions. The extension to an anisotropic model is straight-forward but the

expressions involved turn out to be substantially more complex due to the fact that the

anisotropic problem has less symmetries.

3. The mathematical problem

To formulate precisely the problem, let us consider a domain Ωε consisting of the plane

(x, y) where we have removed the net of discs of radius ε centered at the points of integer

coordinates. These discs represent the pads of the chip in an idealized model. We have

Ωε = {(x, y)|(x− k)2 + (y − ℓ)2 > ε2, for all integers k, ℓ},

and we are interested in the solution Vε of the Poisson’s problem






∇2Vε = 1 in Ωε

Vε(x, y) = 0 on ∂Ωε.
(3.1)

Because of symmetry, this solution will be periodic of period 1 in its two variables. We

are interested in calculating the value of Vε at the points of maximum voltage, that is at the

point x = 1/2, y = 1/2, or at its periodic translates.

Shakeri and Meindl obtained in [15] a good numerical approximate formula that reads

Vε(1/2, 1/2) ≃
1

2π
log(ε)− 1

2π
log(0.387), (3.2)

where the number 0.387 was obtained through a numerical process that involved a reasonable

but arbitrary choice. Also the reader can observe that the formula (3.2) differs by a change
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Outer problem Inner problem

∇2
Vε = 1

Vε = 0

Vε = 0

Vε = 0

Vε = 0

∇2
V

o = 1 − S

(V o)ν = 0

(V o)ν = 0

(V o)ν = 0

(V o)ν = 0 ∇2
V

i = 0

(V i)ν = 0

(V i)ν = 0

V
i = 0

Figure 2. Domain under consideration, outer and inner variables domain.

of sign from the main formula (31) in [15]. This is simply due to the fact that we compute

the voltage, V , while in their paper the formula gives the voltage drop.

In the present paper we shall present a systematic procedure to obtain the complete

asymptotic expansion

Vε(1/2, 1/2) = c00 log(ε) + c0 + c1ε+ c2ε
2 + · · ·

using asymptotic analysis techniques. As a result we can show that the only nonzero co-

efficients are c00, c0, c2, c8, c16, . . . and the rest of coefficients whose indices are multiples of

8. As it was obtained in [15], c00 = 1/(2π), but with our analysis we will also be able to

compute explicitly c0 and c2 obtaining

c0 =
1

2π
log (πG) ; c2 = −1

4
, (3.3)

where G is the Gauss number. The other coefficients will also be analyzed, though only c8

will be explicitly obtained. Our computation yields c8 = g22/(4800π) = (π7G8)/300 being

g2 = 4π4G4 the invariant of the Weierstrass’s elliptic function ℘(z) = ℘(z; 1/2, i/2) [1], and

the remaining coefficients could also be computed in terms of this invariant.

We start by solving the boundary value problem that is represented in the first picture

of Fig. 2. We have a domain Ωε that consists of the square (0, 1)2 where we have removed

the four discs of radius ε centered at the vertices. Our unknown function Vε has to satisfy
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∇2Vε = 1 in Ωε, homogeneous Dirichlet boundary conditions at the curved boundaries and

homogeneous Neumann boundary conditions at the straight parts of the boundary.

To solve the problem, we use asymptotic analysis (see [4], [9]) and we break our problem

into two simpler ones: the inner and the outer problem. As usual, these two solutions will

turn out to contain several unknown constants, which will be determined by a matching

procedure.

The outer solution V o has to solve the problem (3.1) but in the limit domain Ωε when

ε → 0. Such a domain is depicted in the second picture of Fig. 2. In (0, 1)2 it must

satisfy ∇2V o = 1, homogeneous Neumann boundary conditions at the straight parts of the

boundary, and a singular behavior at the corners will be required. This solution will depend

on a number of arbitrary constants to be determined upon matching with the inner solution.

On the other hand, to obtain the inner solution we make the change of variables εx1 =

x, εy1 = y after which the radius of the disk becomes one. In this new situation the other

three disks lie at a distance of order 1/ε, meaning that taking formally the limit as ε → 0

the domain becomes the infinite first quadrant without the disk of unitary radius centered

at the origin (see the third picture in Fig. 2).

3.1. Inner region. The inner problem, in terms of the inner variables x1 = x/ε, y1 = y/ε,

reads






∇2V i = ε2 in {x1, y1 > 0, x2
1 + y21 > 1}

V i = 0 on x2
1 + y21 = 1

V i
ν = 0 on x1 = 0 or y1 = 0.

(3.4)

A first solution to this inner problem is readily found to be

V i
1 (x1, y1) = α00 log |z1| −

ε2

4
+

ε2

4
|z1|2 (3.5)

where z1 = x1+ iy1 and α00 is unknown, but this expression does not exhaust all the possible

solutions. With the method of separation of variables we see that we can add to (3.5) any

linear combination of functions of the form Re(zn1 − z−n
1 ). To satisfy the boundary condition

at x1 = 0 we have to require n ≥ 1 to be an even number, although, as we shall see later on,

n will in fact be restricted to be a multiple of 4.
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Recall that the potentials of the form Re(z−n
1 ) are called multipoles in the classical elec-

tromagnetics literature (see [10], e.g.).

With these ideas in mind we then pose the following solution for the inner equation,

V i(x1, y1) = α00 log |z1| −
ε2

4
+

ε2

4
|z1|2 +

∑

n≥1

αnε
n
Re(zn1 − z−n

1 ), (3.6)

where the coefficients αn will be determined by matching with the outer solution.

3.1.1. Outer limit of the inner. Upon inspecting expression (3.6) one realises that the leading

order behaviour as z1 → ∞ is governed by a logarithmic term followed by an order one

magnitude. We must then find solutions of the outer problem yielding this kind of behaviour

as z → 0.

3.2. Outer region. The problem to be solved in the outer region is then






∇2V o = 1− S in (0, 1)2

(V o)ν = 0 on ∂{(0, 1)2},
(3.7)

where S denotes a set of singularities at the vertices of the domain. The outer solution is only

valid away from such singular points, but one must bear in mind that the type of solutions

that will match with the inner must be singular at the corners of the domain. Furthermore,

such singular terms are needed in order to obtain a non-trivial solution. We anticipate that

one of the difficulties in this problem is to define the right type of singularity that gives place

to a solution that matches with the inner.

To solve (3.7), following [13], [17], we pose the following expansion in powers of ε,

V o ∼ V o
0 log ε+ V o

1 + εV o
2 + . . . ,

and we also express the singular term as a sum, in powers of ε, of a set of singularities like,

S ∼ S1 + εS2 + . . . .

At this point we must clarify that this last expression is just an abuse of notation to emphasize

the fact that each term V o
k will need to have a very specific singular behaviour at the corners

of the square in order to match with the inner.
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One trivially finds that V o
0 = C0, being C0 an unknown constant, V o

1 satisfies






∇2V o
1 = 1− S1 in (0, 1)2

(V o
1 )ν = 0 on ∂{(0, 1)2},

(3.8)

and the rest of terms, V o
k for k = 2, 3, . . . will be found as solutions to







∇2V o
k = −Sk in (0, 1)2

(V o
k )ν = 0 on ∂{(0, 1)2}.

(3.9)

We then start by solving (3.8) and we take, for the singular part,

S1 = (δ(0,0) + δ(0,1) + δ(1,1) + δ(1,0)).

This choice of S1 is not arbitrary, on the contrary, it provides a singular behaviour at the

corners but it does also satisfy the zero mean-value condition that the right hand side in

(3.8) must satisfy,
∫

(0,1)2
S1 = 1.

Therefore, V o
1 represents the doubly-periodic Green’s function of ∇2 in the plane. We solve

problem (3.8) with the method of double cosine series:

1−δ(0,0)−δ(0,1)−δ(1,1)−δ(1,0) = −
∞∑

ℓ=1

2(cos(2πℓx)+cos(2πℓy))−
∞∑

n,m=1

4 cos(2πnx) cos(2πmy)

and then V o
1 = C1 + v1 + v2, where C1 is again an unknown constant to be determined by

matching with the inner,

v1(x, y) =

∞∑

ℓ=1

1

2π2ℓ2
(cos(2ℓπx) + cos(2ℓπy)) , (3.10)

and

v2(x, y) =
∞∑

n,m=1

1

π2(n2 +m2)
cos(2nπx) cos(2mπy). (3.11)

The next two terms, V o
2 and V o

3 , as it will become clear in Section 4 when we match, are

going to be just zero and an unknown constant respectively, V o
2 = 0, V o

3 = C3. The following

terms, V o
k with k ranging from four to eight, will be found to be zero, as it shall be justified

later on.
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3.2.1. Inner limit of the outer. We now inspect the leading order outer solution V o
1 (x, y)

and analyse it locally, near x = y = 0. The general form of a function u(x, y) that satisfies

∇2u = 1 in a neighborhood of (0, 0) but that is allowed to be singular at (0, 0) is

u(x, y) =
1

4
|z|2 + β00 log |z|+Re

(

β0 +
∑

n>0

βnz
n +

∑

n<0

βnz
n

)

(3.12)

where z = x+ iy. This just comes from a Laurent series and the terms of the singular part

(the last sum) correspond to the multipoles. The coefficients βn are, in principle, complex

numbers.

If we impose now the local symmetries of the problem, the solution u has to be also

invariant under the changes x ↔ −x, y ↔ −y and x ↔ y (the invariance with respect to

the first change can in fact be deduced from the invariance with respect to the other two).

Applied to a monomial Re(βnz
n) the symmetry z ↔ −z implies that n has to be an even

number. The symmetry z ↔ z implies that the coefficients βn must be real. Finally, the

symmetry x ↔ y, or, equivalently, z ↔ e−iπ/4eiπ/4z implies that n has to be a multiple of 4.

So we have that

u(x, y) = β00 log |z|+ β0 +
1

4
|z|2 +

∑

n>0

β4nRe(z4n) +
∑

n<0

β4nRe(z4n), (3.13)

where all the coefficients γ4n are fixed and real and C1 is an arbitrary constant.

We now need a power series approximation in ε for v1(x, y)+v2(x, y) near x = y = 0, which

we will show to be of the shape predicted in (3.13) Also, in order to compute the maximum

voltage, we will need to evaluate v1(1/2, 1/2) + v2(1/2, 1/2). These are longer calculations,

and the results are summarized in the following statement, whose proof we postpone until

section 6 below.

Lemma.

(v1 + v2)(1/2, 1/2) = − log 2

4π
(3.14)

and also

(v1 + v2)(x, y) = γ00 log |z|+ γ0 + γ2|z|2 +
∞∑

n=1

γ4n Re(z4n),
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with

γ00 =
−1

2π
, γ0 =

1

2π
log

( √
2

2πG

)

,

where G is the Gauss constant, γ2 =
1

4
, and the coefficients γ4n are related with the invariant

g2 (which we will show to be g2 = 4π4G4) of the Weierstrass’s elliptic function ℘(z) ≡
℘(z; 1/2, i/2) through the formulae

γ4n =
1

8nπ
G4n, (3.15)

being G4n =
∑

+m6=0
1

(m+in)4n
the Einsestein series that satisfy G4 = g2/60 and G4n =

3
(16n2−1)(2n−3)

∑n−1
m=1(4m− 1)(4(n−m)− 1)G4mG4(n−m) .

Therefore, the inner limit of the leading order outer reads,

V o
1 (x1, y1) ∼ C1 −

1

2π
log |z| + 1

2π
log(

√
2

2πG
) +

1

4
|z|2 +

∞∑

n=1

γ4n Re(z4n). (3.16)

4. The iterative matching process and the final formula

4.1. Leading orders matching. Once the statement of this lemma is accepted, one can

easily match the two-term inner expansion of the outer to the three-term outer expansion of

the inner (in the notation of Van Dyke [18] we impose (2ti)(3to)=(3to)(2ti)). Writting Vo

and Vi both in terms of the inner coordinates z1 = z/ε, gives

V0 ∼ C0 log ε− 1

2π
log(ε|z1|) + C1 +

1

2π
log(

√
2

2πG
) +

1

4
ε2|z1|2 + C3ε

2 +O(ε3),

Vi ∼ α00 log |z1| −
ε2

4
+

ε2

4
|z1|2 + εα1Re(z1 − 1/z1) + ε2α2Re(z21 − 1/z21) +O(ε3),

from where it is readily found that C0 = 1/(2π), α00 = −1/(2π), α1 = α2 = 0, C1 =

−1/(2π) log(
√
2/(2πG)) and C3 = −1/4.

4.2. Computation and matching of higher order terms. At this point we have a first

approximation to the outer solution that matches with V i only up to some terms. More

precisely, the error has a dominant term of order of ε4 (in the inner coordinates), given by

ε4γ4Rez41 = γ4Rez4,
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since it would cause α4 = γ4 and hence would cause a term of the form γ4ε
8
Rez−4

1 that

would not match with the outer. It hence seems that one must choose V o
k = 0 for k = 4..8

and consider the term V o
9 as a candidate to produce a term that balances with γ4ε

8
Rez−4

1 .

We note that we already have the whole inner expansion, which helps to determine the

type of singular terms that we will need to consider in the outer problem. Thence, it is

obvious that expression γ4Rez4 would match with (3.6) if we added the correction term

−γ4ε
8
Rez−4 and we took α4 = γ4. However, the simple choice of taking V o

9 = −γ4Rez−4

would not be good enough, since it cancels the right error term and it is symmetric under

x ↔ −x, y ↔ −y and x ↔ y but it is not symmetric under x ↔ (1 − x) and y ↔ (1 − y).

In other words, we have to modify or extend the multipole γ4ε
8
Rez−4 solution to satisfy the

boundary conditions that have been considered in (3.7).

By using distribution theory, it is not difficult to see that the multipole function u = Rez−4,

which, for (x, y) 6= (0, 0) coincides with (1/6)D2
xD

2
y log r, satisfies, in the whole R

2,

∇2u = −2π

3
Re(D4

z)δ(0,0) = − π

24
(D4

x − 6D2
xD

2
y +D4

y)δ(0,0),

where the derivatives Dx, Dy and Dz are understood in the sense of distributions. Thus, the

idea is to compute V o
9 as a solution of







∇2V o
9 = S9 in (0, 1)2

(V o
9 )ν = 0 on ∂{(0, 1)2},

(4.1)

with

S9 = γ4
π

24
(D4

x − 6D2
xD

2
y +D4

y)(δ(0,0) + δ(0,1) + δ(1,1) + δ(1,0)).

Such solution, V o
9 , will behave like −γ4Rez−4 locally close to x = y = 0, but will also

satisfy all the symmetry requirements.

In fact, inspired by the definition of theWeierstrass’ elliptic function of ℘(z) = ℘(z; 1/2, i/2),

we have chosen

V o
9 (x, y) = −γ4Re

[
1

z4

]

per

(4.2)
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being
[
1

z4

]

per

≡ 1

z4
+

∑

(m,n)6=(0,0)

[
1

(z − (m+ in))4
− 1

(m+ in)4

]

=
∑

(m,n)

1

(z − (m+ in))4
− π4G4

15
,

(4.3)

which is a solution to problem (4.1).

However, we are only interested in calculating the value of V o
9 (1/2, 1/2) which is related

with the invariant g2 through the formula V o
9 (1/2, 1/2) = γ4g2/10 = g22/(4800π). Indeed,

from the definitions of ℘(z) and [1/z4]per, one obtains the relation ℘′′(z) = 6 [1/z4]per+g2/10

which means that

V o
9 (x, y) = −γ4

6
Re (℘′′(z)− g2/10) .

Now we use formula (8.1.6) in [1] (℘′(z))2 = 4℘3(z)−g2℘(z), and taking twice the derivative

of this expression and evaluating at z = 1/2 + i/2 one obtains ℘′′(1/2 + i/2) = −g2/2, since

℘(1/2 + i/2) = ℘′(1/2 + i/2) = 0, which proves our statement.

Let us now obtain the final formula by merging the results we have obtained so far. The

value we are looking for is the voltage at the point (1/2, 1/2), so we have to compute the

following:

V o(1/2, 1/2) ∼ V o
0 (1/2, 1/2) log ε+ V o

1 (1/2, 1/2) + V o
3 (1/2, 1/2)ε

2 + V o
9 (1/2, 1/2)ε

8 + · · ·

∼ 1

2π
log ε+

1

2π
log(πG)− 1

4
ε2 +

π7G8

300
ε8 + · · · , (4.4)

that is our final formula (compare with (3.2)).

The next term in the expansion. Following the same asymptotic scheme one can show

that the next non-zero term in the outer expansion would be V o
17 with which one would

match up to order ε16, while V o
25 would give correction terms up to ε24, and so on. Indeed,

taking into account the relation between ℘(z) and
[

1
z4

]

per
one can write

V o(x, y) ∼− 1

2π
log |z/ε|+ 1

4
(|z|2 − ε2) + γ4(Rez4 − ε8Rez−4)

− 35γ4G8ε
8
Rez4 +

∞∑

n=2

(

γ4n − ε8γ4
(2n+ 1)(4n+ 1)(4n+ 3)

3
G4n+4

)

Rez4n,
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which shows that the terms causing now misbalance are

−35γ4G8ε
12
Rez41 + γ8ε

8
Rez81 .

So then, to match this expression with (3.6) one must choose

V o
17(x, y) = 35γ4G8Re

[
1

z4

]

per

− γ8Re

[
1

z8

]

per

,

being
[
1

z8

]

per

≡ 1

z8
+

∑

(m,n)6=(0,0)

[
1

(z − (m+ in))8
− 1

(m+ in)8

]

=
∑

(m,n)

1

(z − (m+ in))8
− π8G8

525
,

which effectively gives a correction of order ε16.

5. Comparison with numerical simulations

To compare our solution (4.4) for the maximum value of the voltage drop with numerical

simulations we have solved equation (3.1) taking into account the symmetries of the problem

by solving on Ωǫ one eight of the square with one eight of the circular pad. We have then

used the Finite Elements Method with a Galerkin scheme, with a parallel sparse direct linear

solver to solve the linear system of equations for the values of the solutions at the nodes of

the mesh. In particular we have used the Finite Elements Method solver software COMSOL

Multiphysics and we have meshed the domain with bilinear elements.

The results, which have been plotted in figure 3, show the accuracy of our formula (4.4)

even for quite large values of the radius. In particular, the figure at the right hand side

shows that formula (4.4) provides substantially more accurate values when the radius of the

pad becomes larger than 0.3.

Finally, it has been also numerically checked that the next term in the expansion is indeed

of order ǫ16. This is seen by plotting the difference between formula (4.4) and the numerical

value of the voltage drop against the radius ǫ in a logarithmic scale. If such difference

is indeed of order ǫ16 it should be fitted into a straight line of slope 16. Figure 4 shows

precisely that the difference has indeed a linear fit which is found to be given by the equation

15.98 log ε+ 5.823 with a confidence bound of 95%.
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Figure 3. Value of the maximum voltage drop using formula (4.4) with and

without the term of order O(ǫ8) and comparison with the value computed

numerically. At the right hand side the maximum has been plotted for values

of ε ∈ (0.3, 0.4) to show the differences between the asymptotic formulae with

and without the order ε8 term.
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Figure 4. Error between formula (4.4) and the numerical value in a logarith-

mic scale in both axes. The error is indeed parallel to ε16.
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6. Proof of the lemma and concluding remarks

We first note that v1(1/2, 1/2) = −1/12, because
∑∞

n=1
(−1)n+1

n2 = π2/12. Also, the value

of

v2(1/2, 1/2) =

∞∑

n,m=1

(−1)n+m

π2(n2 +m2)

is 1/12 − (log 2)/(4π). This is one of the so-called Madelung constants (see [7]). So, we

obtain (3.14).

The function v1 in (3.10) is easy to identify, since the cosine series
∑∞

ℓ=1 cos(2πℓt)/(2π
2ℓ2)

corresponds to the function 1
2
(t− 1

2
)2 − 1

24
for 0 < t < 1, extended as an even and 2-periodic

function outside [0, 1]. So, for 0 < x, y < 1 we have

v1(x, y) =
1

6
− 1

2
(Rez + Imz) +

1

2
|z|2.

Let us now study v2(x, y) in (3.10). We define

Fm(x, y) :=

∞∑

n=1

cos(2πnx) cos(2πmy)

π2(n2 +m2)
,

and using [8] (formula 1445) we have the following exact value

Fm(x, y) =
1

πm

e−2mπ

1− e−2mπ
Re cosh(2πmz) +

1

2mπ
Ree−2πmz − cos(2πmy)

2π2m2
. (6.1)

This expression is the sum of three terms. Let us sum them up (with respect to m) by

summing up first the third term, then the second and finally the first. The third is very easy

since, as above, we have

∞∑

m=1

−cos(2πmy)

2π2m2
= − 1

12
+

1

2
Imz − 1

2
Im

2z

for 0 < y < 1.

Next we sum up the second:

Re

(
∞∑

m=1

1

2mπ
e−2πmz

)

= − 1

2π
Re log(1− e−2πz)

= − 1

2π

[

log |2πz| −Re(πz) +
∞∑

n=1

B2n

(2n)!2n
Re(2πz)2n

]

,



ON AN ASYMPTOTIC FORMULA FOR THE MAXIMUM VOLTAGE DROP. . . 19

where B2n are the Bernoulli numbers. And the first one is given by

1

π

∞∑

n=0

1

(2n)!
QnRe(2πz)2n,

where Qn =
∑∞

m=1m
2n−1 e−2mπ

1−e−2mπ
are Lambert series.

From this we see that we have to calculate the two Lambert series

Q0 =
∞∑

m=1

1

m

e−2mπ

1− e−2mπ
, Q1 =

∞∑

m=1

m
e−2mπ

1− e−2mπ
.

The computations below show that

Q0 = − π

12
+

1

2
log
(√

2/G
)

and Q1 =
1

24
− 1

8π
.

Collecting up all that we already know about v1 and v2 we get

(v1 + v2)(x, y) = − 1

2π
log |z|+

(
1

12
+

Q0

π
− log(2π)

2π

)

︸ ︷︷ ︸

=
1

2π
log







√
2

2πG







+

(
1

2
+ 2πQ1 −

π

12

)

︸ ︷︷ ︸

=
1

4

x2

+

(
1

2
− 2πQ1 +

π

12
− 1

2

)

︸ ︷︷ ︸

=
1

4

y2 +
∑∞

n=1 γ2n+2Rez2n+2.

(6.2)

The value of Q0 comes from the following calculation:

Q0 =
∞∑

m=1

1

m

e−2mπ

1− e−2mπ
=

∞∑

m=1

∞∑

k=0

1

m
e−2mπe−2mkπ =

∞∑

k=0

∞∑

m=1

1

m
e−2mπ(k+1)

= −
∞∑

k=0

log(1− e−2π(k+1)) = − log

(
∞∏

k=1

(1− e−2πk)

)

= − log

(
4
√
πeπ/12√
2Γ(3/4)

)

.

This infinite product appears in the section of Products Involving Theta Functions, and

specific values of the Inverse Elliptic Nome, both in [6]. Finally, using the definition of

Gauss’ constant and the relation Γ(3/4) =
√
2π/Γ(1/4) one gets the stated value of Q0.

The simplest way to obtain Q1 is to observe that v1 + v2 must be symmetric in the (x, y)

variables, and then from formula (6.2) one has

1

2
+ 2πQ1 −

π

12
=

1

2
− 2πQ1 +

π

12
− 1

2
,
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and thus

Q1 =
1

24
− 1

8π
.

The symmetry of v1 + v2 also shows that the coefficients γ4n+2 with n = 1, 2, ... vanish.

To obtain the expression of the coefficients γ4n one has to consider the Weierstrass’s elliptic

function [1]

℘(z) ≡ ℘(z; 1/2, i/2) =
1

z2
+

∑

(m,n)6=(0,0)

[
1

(z − (m+ in))2
− 1

(m+ in)2

]

=
∑

(m,n)

1

(z − (m+ in))2
=

1

z2
+

∞∑

k=1

(4k − 1)G4kz
4k−2,

that may be expressed as follows (page 460 in [19]):

℘(z) = π

(

1− 2π

3

)

− π2

sinh2(πz)
+ 8π2

∞∑

m=1

m
e−2mπ

1− e−2mπ
cosh(2πmz).

On the other hand, collecting terms one gets

v1(x, y)+v2(x, y) =
1

12
−1

2
Rez+

1

2
Re

2z− 1

2π
Re log(1−e−2πz)+

1

π

∞∑

m=1

1

m

e−2mπ

1− e−2mπ
Re cosh(2πmz),

and consequently D2
xV

o
1 (x, y) =

1
2π
Re(℘(z)) + 1/2, which yields the following identification

between the coefficients γ4n and G4n:

γ4n =
1

8πn
G4n, (6.3)

and it is well-known that the coefficients G4n may be obtained from the invariant g2 = 4π4G4

through the formula [1]: G4 = g2/60 and the recurrence G4n = 3
(16n2−1)(2n−3)

∑n−1
m=1(4m −

1)(4(n−m)− 1)G4mG4(n−m).

Finally, g2 has been computed using the formula

g2 =
4π4

3

[
θ82(0, e

−π) + θ83(0, e
−π)− θ42(0, e

−π)θ43(0, e
−π)
]
,

where θ2 and θ3 are two Jacobi’s Theta Functions, whose values are (see [6] for details)

θ2(0, e
−π) = (π/2)1/4 Γ−1 (3/4) =

√
G and θ3(0, e

−π) = π1/4Γ−1 (3/4) =
√√

2G. This is

what it is stated in the lemma. �
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Two remarks are in order: Firstly, from the relation D2
xV

o
1 (x, y) =

1
2π
Re(℘(z)) + 1/2, we

find the well-known formulae that allow us to compute explicitly the sum of Lambert series

Qn (see for example the chapter about modular forms in [11]).

Indeed, the Green’s function V o
1 (x, y) has the following expansion

V o
1 (x, y) = C(ǫ)− 1

2π
log |z|+ 1

2π
log

(
1√
2πG

)

+
1

4
|z|2 + 1

π

∞∑

n=2

1

(2n)!
QnRe(2πz)2n

− 1

2π

∞∑

n=2

B2n

(2n)!2n
Re(2πz)2n.

Therefore, the number Q2n may be computed in terms of the invariant g2 through the

formula

Q2n =
B4n

8n

(

1− G4n

2ζ(4n)

)

,

where ζ is the Riemann zeta function. As for the number Q2n+1, it can also be computed in

terms of the other invariant g3, which in our case is zero, using the formula

Q2n+1 =
B4n+2

8n+ 4
.

For example, we have computed some of these values:

Q1 =
1

24
− 1

8π
, Q2 =

1

80

[

G4 − 1

3

]

, Q3 =
1

504
, Q4 =

1

160

[

3G8 − 1

3

]

, Q5 =
1

264
.

Secondly, if one considers a domain with the pads arranged in rectangles, ΩL
ε = {(x, y)|(x−

k)2 + (y − Lℓ)2 > ε2, for all integers k, ℓ}, one can obtain the expression of the maximum

voltage in terms of both invariants of the Weierstrass’s elliptic function ℘(z; 1/2, iL/2), i.e.,

in terms of [1]

g2 ≡ 60
∑

(m,n)6=(0,0)

1

(m+ inL)4
=

4π4

3

[
θ82(0, e

−Lπ) + θ83(0, e
−Lπ)− θ42(0, e

−Lπ)θ43(0, e
−Lπ)

]
,

and

g3 ≡ 140
∑

(m,n)6=(0,0)

1

(m+ inL)6

= π6

[
8

27

(
θ122 (0, e−Lπ) + θ123 (0, e−Lπ)

)
− 4

9

(
θ42(0, e

−Lπ) + θ43(0, e
−Lπ)

)
θ42(0, e

−Lπ)θ43(0, e
−Lπ)

]

.
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For L = 1,
√
2, 1/

√
2, 2, 1/2,

√
3, 1/

√
3, 3, 1/3, the values of θ2 and θ3 are also well-known (see

[6]), so one would obtain analytic results for the corresponding maximum voltage.

7. Conclusion

The method of matched asymptotic expansions has been used to rigorously obtain the

maximum voltage drop in an array bonding power distribution network of a system-on-chip

which has constant current consumption and sheet resistance. In [15], the authors obtained

an approximate formula for this voltage which we have improved in two ways: first we have

found that their order one term was not exactly correct, and second we have derived a

systematic way to compute any number of terms in the expansion. It is obvious that for any

practical purposes there is no need to obtain the voltage drop up to order ε8, even if ε is not

that small. However, the novelty of our result in this respect is that we have shown that the

error that is made when retaining up to order ε2 is as small as ε8. Another important point

of our asymptotic scheme is the fact that we found a way to relate the singularities in the

outer with well-known, in the electronic engineering literature, multipole solutions.

In the paper [15] a formula similar to (1.1) is also presented for the case of square pads.

We plan to study also this case in a future publication, but we can already anticipate two

details. First, that in the equivalent to our formula (1.2) there will also appear powers of ε4

and not only powers of ε8. Second, that the Gauss constant G will appear again but for a

new reason, that is due to the fact that, as it is well-known, the circle of the same electrical

capacity as the square of diagonal d is precisely the circle of diameter Gd, or, in other words,

the conformal map that sends the exterior of the square to the exterior of the disc has a

derivative at infinity that is equal to 1 only if the dimensions are in this precise proportion.

In general, the outer expansion is exactly the same when one deals with pads of a different

shape, while the inner “sees” the actual shape of the path. However, by applying conformal

mapping techniques one can write the inner expansion in terms of the corresponding one for

circular pads.
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Appendix 1: Expansion up to O(ε2) for general periodic arrays

As suggested by one of the anonymous referee, in this appendix we show an alternative

way to derive the first three terms in the expansion for the maximum voltage drop that may

be used to extend our results to other types of periodic arrays with circular pads, at least

up to order O(ǫ2).

We start by considering the equivalent problem to (3.1),







∇2V = 1 in Ωε

V (x, y) = 0 on ∂Ωε,

V (x+ 1, y) = V (x, y), Vx(x+ 1, y) = Vx(x, y),

V (x, y + 1) = V (x, y), Vy(x, y + 1) = Vy(x, y),

(7.1)

where Ωε is now a square of unitary side with a circular hole at the center, x = (x0, y0) =

(1/2, 1/2) that represents a pad of radius ε.

Following [13], [17] and references therein, in the outer region far away from the hole, the

solution should have an expansion of the form,

V o ∼ V o
0 log ε+ V o

1 + o(1),

where V o
0 is just a constant to be found by matching with the inner. For the inner region,

which corresponds to considering Laplace equation at the exterior of a disk of radius ε with

homogeneous Dirichlet boundary condition, we use the inner coordinates x1 = (x − x0)/ε,
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so that, to leading order, the inner solution reads,

V i = A log |x1|+ o(1),

where A is an arbitrary constant. Upon writing this last expression in terms of the outer

coordinates and comparing with the outer expansion,

V i = −A log ε+ A log |x− x0|+ o(1) ∼ V o
0 log ε+ V o

1 + o(1) = V o,

it becomes clear that A = −V o
0 and also, V o

1 is the solution of






∇2V o
1 = 1− 2πV o

0 δ(x0,y0) in [0, 1]2,

V (x+ 1, y) = V (x, y), Vx(x+ 1, y) = Vx(x, y),

V (x, y + 1) = V (x, y), Vy(x, y + 1) = Vy(x, y).

(7.2)

The divergence theorem readily gives that V o
0 = 1/(2π) in order for this equation to have a

solution. Furthermore, V o
1 = G(x;x0)+χ, being G(x;x0) the periodic Green’s function that

satisfies (7.2), and χ is a constant. This Green’s function, which is singular as x → x0, has

the local expansion,

G(x;x0) ∼ − 1

2π
log |x− x0|+R +

|x− x0|
4

, as x → x0,

where R is just a constant that is the regular part of the Green’s function. Therefore, V o
1 ∼

−1/(2π) log |x−x0|+R+χ+(|x−x0|)/4, so the matching condition V o
1 +1/(2π) log |x−x0| =

o(1) yields χ = −R.

Continuing to the next order in ε, we find that the inner equation for V i
1 reads,







∇2V i
1 = 1 in |x1| > 1,

V i
1 = 0 in |x1| = 1,

V i
1 ∼ |x1|2

4
as x1 → ∞,

(7.3)

where V i
1 is actually the correction term in the inner expansion that is of order ε2. It is

clear that V i
1 = (|x1|2 − 1)/4, so in terms of the outer variables the inner solution reads

V i ∼ −1/(2π) log(|x−x0|/ε)+ |x−x0|2/4− ε2/4. This last expression produces an order ε2

constant that is easily matched with the outer solution by simply adding a constant term in
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the order ε2 outer solution. This finally yields the three-term expansion in the outer region

and in particular the value of the maximum, that is given by,

Vmax ∼ 1

2π
log ε+G(0;x0)− R− ε2

4
+ . . . . (7.4)

Finally one should compute R and evaluate the Green’s function at the origin, which in the

particular case where Ω = [0, 1]2 yield, as it is shown in the lemma in Section 3, the first

three terms in our formula (4.4).

We note that expression (7.4) is valid not only for pads arranged in squared lattices, but

would also hold for any other periodic configuration of pads, like hexagonal lattices, which

have been considered, for instance, in [17].
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eds. Centre de Recerca Matemàtica, Bellaterra, Barcelona, Spain (2009).

[3] L. A. Arledge Jr. and W. T. Lynch, “Scaling and Performance Implications for Power Supply and Other

Signal Routing Constraints Imposed by I/O Pad Limitations”, Proceedings of the IEEE Symposium on

IC/Package Design Intergration, (1998), pp. 45-50.

[4] Bender, C.M. and S.A. Orszag, Advanced mathematical methods for scientists and engineers: Asymptotic

Methods and Perturbation Theory. Springer (1999).

[5] J.J. Clement, “ElectromigrationModeling for Integrated Circuit Interconnect Reliability Analysis”, IEEE

Transactions on Device and Materials Reliability, vol. 1, no. 1, pp. 33-42 (2001).

[6] A. Dieckmann, Collection of Infinite Products and Series, Physikalisches Institut der Universitat Bonn (

http://pi.physik.uni-bonn.de/ dieckman/InfProd/InfProd.html ).

[7] R. Finch, Mathematical Constants, Cambridge University Press, Cambridge (2003).

[8] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press (1965).

[9] E.J. Hinch, Perturbation Methods, Cambridge University Press, (1991).

[10] J. D. Jackson, Classical Electrodynamics, 2nd edition, Wiley, New York (1975).

[11] N. Koblitz Introduction to Elliptic Curves and Modular forms. Springer-Verlag, New York (1984).

[12] T. Kolokolnikov, M.S. Titcombe, M.J. Ward, “Optimizing the fundamental Neumann Eigenvalue for

the Laplacian in a Domain with Small Traps”. European J. Appl. Math. vol 16, no. 2, 161â200 (2005).
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