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Solutions of the general cubic complex Ginzburg-Landau equation comprising multiple spiral
waves are considered, and laws of motion for the centres are derived. The direction of the motion
changes from along the line of centres to perpendicular to the line of centres as the separation
increases, with the strength of the interaction algebraic at small separations and exponentially small
at large separations. The corresponding asymptotic wavenumber and frequency are also determined,
which evolve slowly as the spirals move.

The complex Ginzburg-Landau equation is one of the
most-studied nonlinear models in physics. It describes
on a qualitative level, and in many important cases on a
quantitative level, a great number of phenomena, from
nonlinear waves to second-order phase transitions, in-
cluding superconductivity, superfluidity, Bose-Einstein
condensation, liquid crystals, and string theory [1].

The equation arises as the amplitude equation in the
vicinity of a Hopf bifurcation in spatially extended sys-
tems, and is therefore generic for active media displaying
wave patterns. The simplest examples of such media are
chemical oscillations such as the Belousov-Zhabotinsky
reaction. More complex examples include thermal con-
vection of binary fluids [2] and transverse patterns of high
intensity light [3]. The general cubic complex Ginzburg-
Landau equation is given by

∂Ψ
∂t

= Ψ− (1 + ia) |Ψ|2Ψ + (1 + ib)∇2Ψ, (1)

where a and b are real parameters and the complex field
Ψ represents the amplitude and phase of the modulations
of the oscillatory pattern.

Of particular interest are “defect” solutions in which
Ψ has a single zero, around which the phase of Ψ varies
by a non-zero integer multiple of 2π. When a = b these
solutions are known as vortices, and the constant phase
lines are rays emanating from the zero. When a 6= b the
defect solutions are known as spirals, with the constant
phase lines behaving as rotating Archimedean spirals.

It is often convenient to factor out the rotation of the
spiral, by writing Ψ = e−iωt((1 + ωb)/(1 + ab))1/2ψ, t =
(1 + ωb)−1t′, x = ((1 + b2)/(1 + bω))1/2x′, to give, on
dropping the primes,

(1−i b)∂ψ
∂t

= ∇2ψ+(1−|ψ|2)ψ+iqψ(1−k2−|ψ|2), (2)

where

q =
a− b

1 + ba
, q(1− k2) =

ω − b

1 + bω
.

If k is chosen correctly rotating single spiral waves are
now stationary solutions of (2); k is known as the asymp-
totic wavenumber, since at infinity arg(ψ) ∼ nφ± kr.

If q = 0 then k = 0, and a great amount is known
about the solutions to (2). In particular, Neu [4] anal-
ysed a system of N vortices in the limit in which their
separation is much greater than the core radius using the
theory of matched asymptotic expansions. By approx-
imating the solution using near-field or “inner” expan-
sions in the vicinity of each vortex core and matching
these to a far-field or “outer” expansion away from vor-
tex cores, Neu derived a law of motion for each vortex
in terms of the positions of the others, thus reducing (2)
to the solution of 2N ordinary differential equations (for
the x- and y-coordinates of each vortex). The interaction
between defects in this case is long-range, essentially de-
caying like r−1 for large r. Neu’s analysis has become
the template for the analysis of the motion of a system
of defects in many equations [5–7].

When q > 0 the situation is much more complicated,
even for a single defect. Hagan [8] studied single spiral
wave solutions for 0 < q ¿ 1 and demonstrated that
the far-field exhibits a transition at distances exponen-
tially large in q (at what we shall call the outer core
radius) where the level phase lines switch from radial to
azimuthal; k(q) is correspondingly exponentially small in
q. This outer core radius plays a key role in the motion
of spirals; when the separation lies between the inner and
outer core radii the interaction is algebraic, but when the
separation is large compared to the outer core radius the
interaction of spirals decays exponentially.

The fact that the outer equation for the phase of ψ
is nonlinear when q > 0, so that the contributions from
multiple defects may not simply be added, along with
the exponential scaling of the outer variable, explains
the difficulty in applying Neu’s techniques to the general
case of non-zero q. Thus, despite much work and some
partial results [9, 10], the interaction of spirals is still not
well understood. Here we solve this interaction problem
and derive a law of motion for a system of spirals.

We start by considering the distinguished limit in
which the spirals are separated by distances of the same
order as the outer core radius as q → 0. Since this outer
core radius varies exponentially with winding number [8],
we assume that all winding numbers are ±1. We also set
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b = 0 for simplicity.
Assuming that the spirals are separated by distances

of order ε−1, with ε ¿ 1, we rescale time and space by
setting X = εx, T = qε2t, to give

ε2q
∂ψ

∂T
= ε2∇2ψ + (1 + iq)(1− |ψ|2)ψ − iε2α2

q
ψ, (3)

where α = kq/ε; the outer core radius is the value of
ε which makes α of order one. Writing ψ = feiχ and
expanding in powers of ε leads to

q
∂χ0

∂T
= ∇2χ0 + q|∇χ0|2 − α2

q
. (4)

It is tempting to linearise (4) via the Cole-Hopf transfor-
mation χ0 = (1/q) log h, to give

qhT = ∇2h− α2h. (5)

Then, since the equation is linear, we can sum up the
contributions from each spiral to give

h ∼
N∑

j=1

βj(T )eqnjφjKiqn(αRj), (6)

where K is the modified Bessel function, Rj and φj are
the polar variables centred on the j th spiral and the
weights βj depend on the slow time variable T . This
function has the right type of singularities to match with
the spiral core when we expand it locally. Unfortunately,
as observed in [11] and [9], such a solution corresponds
to a multivalued ψ. Nevertheless, this transformation
can be used to advantage without causing ψ to become
multivalued, providing care is taken. The key is the ob-
servation that for a single spiral the dependence of χ on
φ occurs at O(1), not O(1/q) [8], so that at leading order
the Cole-Hopf transformation can be used without diffi-
culty. Then, at first order, the single-valueness of ψ can
be maintained by introducing exactly the right multival-
ueness in h.

Expanding χ0 in powers of q as χ0 ∼ χ00/q+χ01 + · · ·
gives, to leading order,

0 = ∇2χ00 + |∇χ00|2 − α2. (7)

Linearising (7) through the Cole-Hopf transformation
χ00 = log h0 leads to

h0 =
N∑

j=1

βj(T )K0(αRj). (8)

Crucially, because the leading-order solution does not de-
pend on φ, there is no problem with multivalueness of ψ.
The weights βj will be determined by matching with an
inner expansion in the vicinity of each spiral.

We rescale near the ` th spiral by setting X = X` + εx
to give

εq

(
εψT − dX`

dT
· ∇ψ

)
= ∇2ψ+(1+iq)(1−|ψ|2)ψ−i ε

2α2

q
ψ

Expanding ψ ∼ ψ0 + εψ1 + · · · , gives

0 = ∇2ψ0 + (1 + iq)ψ0(1− |ψ0|2), (9)

−q dX`

dT
· ∇ψ0 = ∇2ψ1 + (1 + iq)(ψ1(1− |ψ0|2)

− ψ0(ψ0ψ
∗
1 + ψ∗0ψ1)). (10)

The solution of (9) is that of a single stationary spiral,
ψ0 = f0(r)ein`φ+iϕ0(r), where

f ′′0 +
1
r
f ′0 − f0

(
1
r2

+ (ϕ′0)
2

)
+ (1− f2

0 )f0 = 0, (11)

f0

(
ϕ′′0 +

ϕ′0
r

)
+ 2f ′0ϕ

′
0 + q(1− f2

0 )f0 = 0, (12)

Expanding in powers of q we find that as r →∞ [8],

f0 ∼ 1− 1
r2

N∑

j=0

aj{q(log(r) + c1)}2j + · · · , (13)

ϕ′0 ∼ −1
r

N∑

j=0

bj{q(log(r) + c1)}2j+1 + · · · , (14)

where aj > 0 and bj > 0 are constants independent of q
and n`, and c1 ≈ −0.098.

The normal procedure is now to match (14) with (8)
to determine βj . However, we will see that for α to be
of order one, q must be logarithmic in ε. In this case
all orders of q must be included when matching leading-
order terms in ε: when q is of order 1/ log(1/ε) and r of
order 1/ε, all the terms in (14) are the same order.

To circumvent this problem we resum the series (14) by
writing down the equations satisfied by the outer limit of
the inner expansion. Rewriting (9) in terms of the outer
variable R = εr gives

0 = ε2(∇2f0 − f0|∇χ0|2) + (1− f2
0 )f0, (15)

0 = ε2∇ · (f2
0∇χ0) + q(1− f2

0 )f2
0 , (16)

where ψ0 = f0e
iχ0 . Expanding as χ0 ∼ χ̂00(q) +

ε2χ̂01(q) + · · · , f0 ∼ f̂00(q) + ε2f̂01(q) + · · · , gives

0 = ∇2χ̂00 + q|∇χ̂00|2. (17)

Equation (17) can be linearised with the usual change
of variable χ̂00 = (1/q) log ĥ0 to give Laplace’s equation,
with solution ĥ0 = eqn`φH0(R) where

H0 = A`(q, T )ε−iqn`Riqn` +B`(q, T )εiqn`R−iqn` , (18)

where the constants A` and B` may depend on q and T ,
and may be different at each spiral; the factors ε±iqn`
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have been included to facilitate comparison with the so-
lution in the inner variable. Expanding A` ∼ A`0/q +
A`1 + · · · , B` ∼ B`0/q +B`1 + · · · , writing χ̂00 in terms
of r, expanding in powers of q, and comparing with (14)
gives

A`0 −B`0 = 0,
(A`1 −B`1)
A`0 +B`0

i = −n`cn`
. (19)

The remaining equations determining A` and B` will
be fixed when matching with the outer region. Equa-
tion (18) gives the outer limit of the leading-order inner
expansion, including all the resummed terms in q. To
match this to the inner limit of the leading-order outer
solution we rewrite (8) in terms of the inner variable by
setting X = X` + εx and expand in powers of ε to give

h0 ∼ −β` log
αεr

2
−β`γ+G(X`)+εx·∇G(X`)+· · · , (20)

where

G(X) =
N∑

j=1,j 6=`

βj(T )K0(α|X−Xj |). (21)

Expanding (18) for small q and comparing with (20) we
find that matching is only possible if

q log(1/ε) =
π

2
+ νq, (22)

where ν is O(1). This is the relationship between q and ε
required for α to be of order one, and is equivalent to as-
suming that the typical spiral separation 1/ε = O(eπ/2q).

Assuming (22) holds,

ĥ0 ∼ −(A`0 +B`0) logR− (A`0 +B`0)ν
+ i n`(A`1 −B`1) + · · · . (23)

Comparing with (20) gives

A`0 +B`0 = β`,

i n`(A`1 −B`1) = β`(ν − logα+ log 2− γ) +G(X`).

Eliminating A` and B` using (19) and (21) gives

−(c1 + ν)β` = −β`(log
α

2
+ γ) +

N∑

j 6=`

βjK0(α|X` −Xj |).

(24)
Since (24) holds for each spiral this is a system of N ho-
mogeneous linear equations for the unknown weights βj .
A non-zero solution exists only if the determinant is zero:
this is the condition which determines the parameter α
(and therefore the frequency ω). Note that βj and α (and
therefore k) depend on the position of the spiral centres,
and will therefore evolve on the slow timescale T . For a
single pair of spirals β1 = β2 and (24) gives

k =
2
q
e−π/2q−γ+c1+K0(α|X1−X2|),

in agreement with [9].
The law of motion arises as a solvability condition

on equation (10). To determine the matching condition
imposed by the outer solution, we need to sum the q-
expansion of the outer limit of the first-order inner solu-
tion. Writing (10) in terms of the outer variable and ex-
panding in powers of ε as χ1 ∼ χ̂10/ε+· · · , f1 ∼ f̂10+· · · ,
we find χ̂10 = ĥ1e

−qbχ00/q, where

ĥ1 = − qA`ε
−iqn`(V1` − iV2`)

4
Riqn`+1 e(qn`+i)φ

− qB`ε
iqn`(V1` + iV2`)

4
R−iqn`+1 e(qn`−i)φ

+ γ1R
1−iqn` e(qn`+i)φ + γ2R

1+iqn` e(qn`−i)φ, (25)

where we have written dX`/dT = (V`1, V`2). Note that
eibχ10 is single-valued as required. Expanding for small q

ĥ1 ∼
(
γ1 − A`0e

in`π/2(V1` − iV2`)
4

)
Reiφ

+
(
γ2 − B0`e

−in`π/2(V1` + iV2`)
4

)
Re−iφ.

In order to match with (20) we require this to be equal
to X · ∇G(X`) so that

γ1 =
A`0e

in`π/2(V1`0 − iV2`0)
4

+
GX(X`)− iGY (X`)

2
,

γ2 =
B0`e

−in`π/2(V1`0 + iV2`0)
4

+
GX(X`) + iGY (X`)

2
.

Now, writing (25) in terms of the inner variable r and
expanding in powers of q we find that, as r →∞,

χ10 ∼ −r
2

(V1 cosφ+ V2 sinφ) +
n`r

β`
∇G(X`) · eφ. (26)

We now turn to the solvability condition for (10). Using
the Fredholm alternative we find that a solution will exist
only if

−
∫

D

<
{
q
dX`

dT
· ∇ψ0v

∗
}
dS =

∫

∂D

<
{

(1− iq)
(
v∗
∂ψ1

∂n
− ∂v∗

∂n
ψ1

)}
ds,

where v is any solution of the adjoint problem, and D ar-
bitrary. The non-trivial solutions of the adjoint equation
are directional derivatives ∇ψ0 ·d of ψ0, with q replaced
by −q, where d is any vector in R2. Choosing D to be a
ball of large radius, at leading order in q the solvability
condition becomes

lim
r→∞

(
∂χ10

∂r
+
χ10

r

)
= 0. (27)

Using (26) this gives the law of motion as

dX`

dT
= −2n`

β`
∇G⊥(X`), (28)
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where ⊥ represents rotation by π/2. For a pair of spirals
(28) describes motion perpendicular to the line of cen-
tres, and generalises the translational velocity for a sin-
gle pair of opposite spirals derived in [9] to an arbitrary
system. We see that the velocity is algebraic at small dis-
tances but decays exponentially at large distances; thus
the outer core radius marks the effective limit on the in-
teraction of spirals.

However, as q → 0 this law of motion does not agree
with that derived by Neu [4] for the case q = 0, for which
the interaction is along the line of centres. To interpolate
between these two laws, we need to consider the case in
which the separation is smaller than the canonical sep-
aration, so that α ¿ 1. In this case a similar analysis
leads to the law of motion

dX`

dT
= 2 cot(qn` log ε)∇Ḡ⊥(X`) (29)

where

Ḡ(X) =
N∑

j 6=`

nj (φj + tan(qnj log ε) log |X−Xj |) . (30)

The direction of motion varies from along the line of cen-
tres to perpendicular to the line of centres as q| log ε|
varies from 0 to π/2. The laws (28) and (29) can be
combined to form the composite expansion

dX`

dT
∼ −2n`α

β`
×

N∑

j 6=`

βjK
′
0(α|X` −Xj |)

(
nj cot(q| log ε|) erj + eφj

)
. (31)

In Figures 1 and 2 we show the velocities of rotation
and separation of a pair of n` = 1 spirals when they are
separated by a distance of 60. The numerical simulations
were done with second-order accurate finite differences in
a square domain of length 800. We see that the composite
expansion captures the qualitative behaviour very well,
and provides a reasonable quantitative prediction.

In conclusion, we have calculated the law of motion
for spirals in the complex Ginzburg-Landau equation (1)
for small q. We find that for small separations the in-
teraction is along the line of centres, in agreement with
the corresponding analysis for vortices when q = 0 [4];
like spirals repel, opposites attract. As the separation in-
creases the direction of the interaction gradually changes,
until it is perpendicular to the line of centres at large
distances. The direction of rotation of one spiral about
another depends only on its own winding number: pos-
itive spirals rotate in an anti-clockwise direction about
any other spiral, negative spirals in a clockwise direction.
Thus like positive spirals rotate in an anti-clockwise di-
rection while separating, like negative spirals rotate in a
clockwise direction while separating, and unlike spirals

0.1 0.2 0.3 0.4 0.5 0.6
q

0.005

0.010

0.015

Rotation velocity

FIG. 1: Rotation velocity of a pair of spirals 60 units apart
as a function of q, using (28) [solid], (29) [dashed] and the
composite (31) [dotted]. The points correspond to a numerical
simulation of (2).
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FIG. 2: Separation velocity of a pair of spirals 60 units apart
using (29) [dashed] and the composite (31) [dotted].

translate while approaching. Since the motion is perpen-
dicular to the line of centres at large distances, the ques-
tion of bound states emerges. To answer this question
the first-order correction to the radial velocity is needed;
our calculations indicate the radial velocity remains of
one sign, so that bound states are not possible for small
q, in agreement with [10], who found bound states were
possible only for q > 0.845.

M. Aguareles was supported in part by the MEC of
Spain, grant MT2005-07660-C02-01.

[1] I. S. Aranson and L. Kramer, Rev. Mod. Phys. 74, 99–143 (2002).

[2] R. W. Walden, P. Kolodner, A. Passner, and C. M. Surko, Phys.

Rev. Lett. 55, 496–499 (1985).

[3] J. V. Moloney and A. C. Newell, Phys. D 44, 1–37 (1990).

[4] J. C. Neu, Phys. D 43, 385–406 (1990).

[5] L. Peres and J. Rubinstein, Phys. D 64, 299–309 (1993).

[6] S. J. Chapman and G. Richardson, SIAM J. Appl. Math. 55,

1275–1296 (1995).

[7] S. J. Chapman and G. Richardson, Phys. D 108, 397–407 (1997).

[8] P. S. Hagan, SIAM J. Math. Anal. 13, 717–738 (1982).

[9] L. M. Pismen and A. A. Nepomnyashchy, Phys. D 54, 183–193

(1992).

[10] I. S. Aranson, L. Kramer, and A. Weber, Phys. Rev. E 47, 3231–

3241 (1993).

[11] L. M. Pismen, Phys. D 184, 141–152 (2003).


