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Memòria presentada per optar al t́ıtol de Doctor per la Universitat
de Girona





El Dr. Sergei F. Vyboishchikov, professor agregat del departament
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Summary

Superbases such as proton sponges have many important applications
in organic synthesis. The corresponding protonated species, with an
N···H···N fragment, are characterized by a short strong hydrogen bond.
In these systems vibrational motion of hydrogen is highly anharmonic,
and, in general, anharmonicity increases with increasing hydrogen
bond strength. In some cases the vibrational motion of hydrogen is
accompanied by tunnel effect. Thus, the proton dynamics in such sys-
tems is interesting to study. It can be described by three cases. In the
first case proton can move freely between two nitrogen atoms and the
strengthening of one N−H bond is accompanied by weakening of the
other. In the second case proton can be found between two nitrogen
atoms and in the third case the proton can be located closer to one
nitrogen atom.

Though quite different chemically, Si···H···Si fragment in bis(silyl)-
hydride organometallic complexes, which play an important role in
silylation reactions, resembles N···H···N one. In the former systems
the hydride can be delocalized between two silicon atoms or can be
localized in the vicinity of one of them.

It is important to understand the hydrogen dynamics in these sys-
tems. To examine various possible cases of the hydrogen dynamics,
and establish criteria between them quantum-chemical calculations
have been performed.
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There has been considerable interest to transition metals in high
oxidation states in organometallic chemistry. Thus, another ques-
tion addressed in this thesis is about presence of Si···H interactions
in bis(silyl)bis(hydride) complexes of cobalt(V) and iridium(V), which
can play role as intermediates in various silylation reactions. Although
for 3d transition metals such as cobalt it is not typical to form or-
ganometallic complexes in high oxidation states, a few complexes of
cobalt(V) were isolated.

The present thesis studies the dynamics of hydrogen in proton
sponges and bis(silyl)hydride complexes of rhodium by solving the
three-dimensional vibrational Schrödinger equation. Moreover, Si···H
interactions in cobalt(V) and iridium(V) bis(silyl)bis(hydride) com-
plexes have been investigated by Wiberg bond indices and NMR spin-
spin coupling constant calculations.

To solve the three-dimensional vibrational Schrödinger equation,
Jacobi coordinates for a three-particle system have been derived tak-
ing into account the symmetry of our system. Three dimensional lin-
ear least-squares method has been derived to fit the potential energy
surfaces.

Various dynamic patterns for vibrational motion of hydrogen have
been found both for N···H···N and Si···H···Si moieties. It has been
shown that the dynamic depends crucially on the hydrogen transfer
barrier. Moreover, the results indicate substantial tunneling in some
of the systems studied. It has been demonstrated that the proton can
be described as a particle in a box in proton sponge cations. Also
the influence of vibrational motion of hydride on the Si−H spin-spin
coupling constants has been indicated in the case of bis(silyl)hydride
complexes.

For the bis(silyl)bis(hydride) complexes of cobalt(V), various Si···H
interactions have been revealed, including interligand hypervalent in-
teractions, while classical structures have been obtained for the ma-
jority of analogous iridium(V) complexes.



Resumen

Las superbases tales como las esponjas de protón tienen muchas apli-
caciones importantes en śıntesis orgánica. Las correspondientes es-
pecies protonadas, presentan un fragmento N···H···N y se caracteri-
zan por un enlace por puente de hidrógeno fuerte y corto. En estos
sistemas el movimiento vibracional del hidrógeno es altamente an-
armónico, y, en general, la anarmonicidad aumenta con el aumento
de la fuerza de enlace por puente de hidrógeno. En algunos casos, el
movimiento vibracional del hidrógeno va acompañado de efecto túnel.
Por lo tanto, para estos sistemas es interesante el estudio del com-
portamiento dinámico del protón. Se observan tres patrones de com-
portamiento diferente. En el primer caso, el protón puede moverse
libremente entre los dos átomos de nitrógeno y el fortalecimiento de
un enlace N−H está acompañado por el debilitamiento del otro. En
el segundo caso, el protón se puede encontrar entre los dos átomos de
nitrógeno y en el tercer caso, el protón puede estar situado más cerca
de uno de los átomos de nitrógeno.

Aunque son bastante diferentes qúımicamente, el fragmento Si···H···Si
en complejos organometálicos de bis(silil)hidruro, importantes en reac-
ciones de sililación, se asemeja al fragmento N···H···N. En el primero
el hidruro puede estar deslocalizado entre los dos átomos de silicio o
puede estar localizado más cerca de uno de ellos.

En estos sistemas es importante entender la dinámica del hidrógeno.
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Para examinar varios casos posibles de la dinámica del hidrógeno
y establecer criterios entre ellos se han realizado cálculos qúımico-
cuánticos.

Dentro del campo de la qúımica organometálica ha habido un gran
interés en el estudio de metales de transición de alta oxidación. Por
lo tanto, otra cuestión tratada en esta tesis es la presencia de inter-
acciones Si···H en complejos de bis(silil)bis(hidruro) de cobalto(V) e
iridio(V) que pueden considerarse como intermedios en distintas reac-
ciones de sililación. Aunque para los metales de transición de tipo 3d
como cobalto no es t́ıpico formar complejos organometálicos en estados
de alta oxidación, se han aislado algunos complejos de cobalto(V).

La tesis presentada estudia la dinámica del hidrógeno en esponjas
de protón y en los complejos de bis(silil)hidruro de rodio mediante la
resolución de la ecuación de Schrödinger vibracional tridimensional.
Además, las interacciones Si···H en complejos de bis(silil)bis(hidruro)
de cobalto(V) e iridio(V) se han investigado mediante ı́ndices de enlace
de Wiberg y constantes de acoplamiento de spin-spin de RMN.

Para resolver la ecuación de Schrödinger vibracional en tres di-
mensiones, se han deducido coordenadas de Jacobi para un sistema
de tres part́ıculas teniendo en cuenta la simetŕıa de nuestro sistema.
Para aproximar las superficies de enerǵıa potencial se ha deducido un
método de mı́nimos cuadrados lineales en tres dimensiones.

Se han encontrado varios patrones dinámicos para el movimiento
vibracional del hidrógeno tanto en el caso del N···H···N como en el caso
del Si···H···Si. Se ha visto que la dinámica depende crucialmente de la
barrera de transferencia del hidrógeno. Además, los resultados indican
un efecto túnel sustancial en algunos sistemas. Se ha demostrado
que el protón en las esponjas de protón se puede describir como una
part́ıcula en una caja. También se ha indicado que, en el caso de los
complejos de bis(silil)hidruro, el movimiento vibracional del hidruro
influye en las constantes de acoplamiento de spin-spin de Si−H.

Para los complejos de bis(silil)bis(hidruro) de cobalto(V) se han



xxv

revelado interacciones Si−H diversas, incluyendo interacciones de tipo
interligando hipervalente, mientras que para los análogos de iridio(V)
se han obtenido estructuras clásicas para la mayoria de los complejos.
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Resum

Les superbases com ara les esponges de protó tenen moltes aplicacions
importants en śıntesi orgànica. Les corresponents espècies proton-
ades presenten un fragment N···H···N i es caracteritzen per tenir un
enllaç per pont d’hidrogen fort i curt. En aquests sistemes el movi-
ment vibracional de l’hidrogen és altament anharmònic, i, en gen-
eral, l’anharmonicitat augmenta amb l’augment de la força d’enllaç
per pont d’hidrogen. En alguns casos, el moviment vibracional de
l’hidrogen va acompanyat per efecte túnel. Per tant, per a aquests
sistemes és interessant l’estudi del comportament dinàmic del protó.
S’observen tres patrons de comportament diferents. En el primer cas,
el protó es pot moure lliurament entre els dos àtoms de nitrogen i
l’enfortiment d’un enllaç N−H està acompanyat per l’afebliment de
l’altre. En el segon cas, el protó es pot trobar entre els dos àtoms de
nitrogen i en el tercer cas, el protó està situat més a prop d’un dels
àtoms de nitrogen.

Encara que són bastant diferents qúımicament, el fragment Si···H···Si
en complexos organometàl·lics de bis(silil)hidrur, importants en reac-
cions d’sililació, s’assembla al fragment N···H···N. En el primer, l’hidrur
pot deslocalitzar-se entre els dos àtoms de silici o pot estar localitzat
més a prop d’un d’ells.

En aquests sistemes és important entendre la dinàmica de l’hidrogen.
Per a examinar diversos casos possibles de la dinàmica de l’hidrogen i

xxvii
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establir criteris entre ells s’han realitzat càlculs qúımic-quàntics.
Dins del camp de la qúımica organometàl·lica hi ha hagut un

gran interès en l’estudi de metalls de transició d’alt estat d’oxidació.
Per tant, una altra qüestió tractada en aquesta tesi és la presència
d’interaccions Si···H en complexos de bis(silil)bis(hidrur) de cobalt(V)
i iridi(V). Aquests complexos poden considerar-se com a intermedis en
diverses reaccions de sililació. Encara que per als metalls de transició
de tipus 3d com el cobalt no és t́ıpic formar complexos organometàl·lics
amb estats d’oxidació alt, s’han äıllat uns pocs complexos de cobalt(V).

Aquesta tesi presentada estudia la dinàmica de l’hidrogen en espon-
ges de protó i en els complexos de bis(silil)hidrur de rodi mitjançant
la resolució de l’equació de Schrödinger vibracional tridimensional. A
més a més, les interaccions Si···H en complexos de bis(silil)bis(hidrur)
de cobalt(V) i iridi(V) s’han investigat mitjançant els indexs d’enllaç
de Wiberg i constants d’acoblament de spin-spin de RMN.

Per resoldre l’equació de Schrödinger vibracional en tres dimen-
sions, s’han dedüıt coordenades de Jacobi per a un sistema de tres
part́ıcules tenint en compte la simetria del nostre sistema. Per a
aproximar les superf́ıcies d’energia potencial s’ha dedüıt un mètode
de mı́nims quadrats lineals en tres dimensions.

S’han trobat diversos patrons dinàmics pel moviment vibracional
de l’hidrogen tant en el cas del N···H···N com en el cas del Si···H···Si.
S’ha vist que la dinàmica depèn crucialment de la barrera de la trans-
ferència d’hidrogen. A més a més, els resultats indiquen un efecte
túnel substancial en alguns sistemes estudiats. S’ha demostrat que el
protó a les esponges de protó es pot descriure com a una part́ıcula en
una caixa. A més d’això s’ha indicat que, en el cas dels complexos
bis(silil)hidrur, el moviment vibracional de l’hidrur influeix en les con-
stants d’acoblament de spin-spin de Si−H.

Per als complexos de bis(silil)bis(hidrur) de cobalt(V) s’han revelat
diverses interaccions Si−H, incloent interaccions de tipus interlligand
hipervalent, mentre que per als anàlegs d’iridi(V) s’han obtingut es-
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Chapter 1

Introduction

The potential energy surface is a fundamental concept of chemistry.
It represents an effective potential in which the motion of nuclei takes
place. From chemical viewpoint the most important motion is the
vibrational one. In many cases, classical (Newtonian) description of
nuclear motion is sufficient, but sometimes quantum-mechanical ef-
fects are important. These effects are more pronounced on shallow
surfaces, where energy minima are separated from each other by low
barriers, leading to tunneling or delocalized phenomena. The hydrogen
atom is expected to be more inclined to exhibit non-classical behavior
due to its low atomic weight. Therefore, this work will be focused on
hydrogen transfer phenomena. A shallow potential with a low bar-
rier favors tunneling and delocalization, whereas a classical situation
corresponds to well-separated minima with a high barrier. We will
consider two classes of molecules where we expect to find various vibra-
tional patterns for hydrogen transfer. The first class includes proton
sponge cations, with an N···H···N moiety, while the second class con-
sists of bis(silyl)hydride organometallic complexes with an Si···H···Si
fragment. The hydrogen in proton sponge cations is simultaneously
bound to both nitrogen atoms through hydrogen bonds, whereas in

1
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the organometallic complexes the H atom can simultaneously inter-
act with both silicons. In order to distinguish between the localized
and delocalized hydrogen behavior, quantum-chemical calculations are
necessary.

The study of hydrogen dynamics in proton sponge cations and
organometallic complexes will not only help understand behavior of
these particular systems, but will also contribute to general knowl-
edge of hydrogen bonding and Si···H interactions in organometallic
complexes.

To provide a quantum-chemical description of the hydrogen mo-
tion in such type of systems, we numerically solve the vibrational
Schrödinger equation. Inasmuch as the hydrogen vibrational motion
in a molecule can be coupled with other modes, it will be beneficial to
take some of these modes into account.

1.1 Proton sponges
Classical view of acid-base properties was challenged by Alder and co-
workers, who discovered in 1968 a very simple organic compound that
had an enormous basicity compared to ordinary organic bases. This
simple molecule is 1,8-bis(dimethylamino)naphthalene,1,2 is a proto-
typical “proton sponge” (see Figure 1.1). A variety of proton sponges
have been created since.3–6 Presently, proton sponges have a lot of
interesting applications. They are of importance in organic synthe-
sis.7–14 Their chiral derivatives can be used in asymmetric synthe-
sis.15–17

A proton sponge usually has two basic nitrogen atoms attached
to a relatively rigid organic core. The distance between two nitrogen
atoms allows the incoming proton to be coordinated by both nitrogens
simultaneously. Thus, the high basicity of the proton sponges is caused
by the stabilization of their cationic form due to formation of a short
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NMe2NMe2

Figure 1.1: Prototypical proton sponge.

strong intramolecular NHN hydrogen bond, which can be either a
symmetric N···H···N or an asymmetric N−H···N

Many experimental studies have considered the bonding situation
in proton sponge cations. The NMR,3,18–21 IR spectroscopy,22–27 X-ray
diffraction3,21–29 and, in few cases, neutron diffraction30–32 are typical
methods for examination of such systems. Nevertheless, it is very
difficult to draw conclusions regarding the hydrogen dynamic behavior
from purely experimental data, and quantum chemical calculations
provide a valuable complement to the experiment. One should also
keep in mind that the X-ray diffraction is often unable to locate the
hydrogen position with sufficient accuracy. Thus, the characterization
of such hydrogen bonds based solely on X-ray data is difficult. Usually,
one relies on the N−N distance as the most characteristic of an NHN
bond

The typical N−N distance is less than 2.75 Å. The shortest N−N
distances can be observed in two cases. The first case is PS1 perchlo-
rate27 (see Figure 1.2 (a)) which has N−N distance 2.524 Å according
to X-ray analysis. The second case is PS2 hydrochloride33 (see Figure
1.2 (b)) with an N−N distance of 2.526 Å according to X-ray data.
The longest NHN bridge, where proton still interacts with both ni-
trogen atoms simultaneously, was found for PS3 hemiperchlorate32

(see Figure 1.2 (c)) where the N−N distance is 2.635 Å according to
a neutron diffraction study. In the case of larger distances one out of
two N···H interactions becomes significantly weaker or disappears.
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SiMe3

NMe2
H+

NMe2

SiMe3

(a)

N H+ N

(b)

N H+N

OO

(c)

Figure 1.2: Protonated sponges with the shortest (a), (b)
and the longest (c) N−N distances. (a) Protonated 2,7-
bis(trimethylsilyl)-1,8-bis(dimethylamino)naphthalene (PS1); (b)
protonated 1,6-diazabicyclo[4.4.4]tetradecane (PS2); (c) protonated
3-oxo-azabicyclo[2.2.2]octane (PS3).

IR spectra provide valuable information about strength of hydro-
gen bonds as well. According experimental data the evolution of the
IR spectra with shortening the N−N distance is as follows. In the case
of hydrogen bonds with NN distance about 2.93 Å, a fine ν(NH) band
about 2970 cm−1 can be observed.22 If the NN distance is in the range
of 2.80–2.85 Å, ν(NH) absorption band moves to the 2350–2450 cm−1

region.22 Further decrease of the NN distance from ∼ 2.7 Å to ∼ 2.6
Å, typical of weak or medium strong hydrogen bonds, leads to appear-
ance of a broad band of ν(NHN) at about 1700–2240 cm−1 22,34 and
of an intense low-frequency absorption in the region of 400–900 cm−1.
In some cases the region can be 1700–2700 cm−1 with a maximum at
about 2200 cm−1. Moreover, in some spectra an intense continuous ab-
sorption in the region 400–3000 cm−1 can be observed, indicating that
proton tunneling takes place in the intramolecular hydrogen bond.35–39

The lack of continuous absorption means there is no tunneling and the
proton is localized near one out of two nitrogens.40,41 Finally, for short
distances of about 2.55 Å, typical of a short strong hydrogen bonds,
absorption in the high-frequency region almost disappears and only
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the 400–700 cm−1 region remains.22,34,42 The ν(NHN) vibrations char-
acterized not only by low frequencies but also by unusual or positive
spectroscopic isotope effect ISR=ν(NHN)/ν(NDN)>

√
2 and corre-

sponds to the reversed anharmonicity, i.e. the energy difference be-
tween the nth and the (n + 1)st vibrational states increases with in-
creasing quantum number n. This is opposite to systems with ISR <√

2 which corresponds to the normal anharmonicity, i.e. energy levels
are contracted with increasing n.24–27,43

Another widely used tool for studying bonding situation in proto-
nated proton sponge cations is 1H, 13C, and 15N NMR spectroscopy.
According to the experimental data, for various substituted proton
sponges, the range of the J(15N−1H) coupling constants is from −50
Hz to −17 Hz.19,44 The negative sign of J is due to a negative gyro-
magnetic ratio of nitrogen atom. 15N NMR was used also to study
asymmetric derivatives of DMAN45–47 (see Figure 1.3 (b), (c) PS8,
(d) PS10). In few cases the J(15N−15N) coupling constants were ob-
tained from experiment. The largest value obtained so far is 16.7 Hz
in a related anionic system with an NHN– bridge18 (see Figure 1.3
(a)), although for the systems with NHN+ bridges, i.e. DMAN and
its substituted derivatives (see Figure 1.3 (b) PS4, PS5, (c), (d)),
this value is in the range 8.7–9.8 Hz19,44 with the largest value be-
ing 9.87 Hz.19 There is a study of the coupling between 15N atoms
of various 1,8-diaminonaphthalenes (see Figure 1.3 (e), (f)) and 1,6-
diazacyclodecane. For the 1,8-diaminonaphthalenes authors report
coupling constants in the range 1.5–8.8 Hz48 while the largest one is
of 10.56 Hz in the case of 1,6-diazacyclodecane.48

NMR chemical shifts can be used to estimate primary isotope effect
∆δ(H/D).43 One can correlate it with spectroscopic isotope effect or,
in other words, with the anharmonicity of the potential.43 The general
tendency is that while the NHN bridge shortens, ν(NHN) increases,
and if the NHN becomes short enough for the hydrogen motion barrier
to disappear ISR reaches unity and ∆δ(H/D) reaches zero.
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N N
H

N−NNO2

(a)

R1

NMe2
H+

NMe2

(b)

R2

NMe2
H+

NMe2

R2

(c)

R3

NMe2
H+

NMe2

(d)

NH2
H+

NH2

(e)

N
R5

R6

H+

NH
R4

(f)

Figure 1.3: Asymmetric derivatives of DMAN studied by NMR.
(a) (Chelate); (b) R1 = 2,4,6-trinitrophenyl (PS4); NO2 (PS5); Br
(PS6); (c) R2 = H (PS7); Cl (PS8); Br (PS9); (d) R3 = Cl (PS10);
Br (PS11); (e) (PS12); (f) R4, R5 = H, R6 = Me (PS13); R4, R5 =
Me, R6 = H (PS14); R4 = H, R5, R6 = Me (PS15); R4, R5, R6 =
Me (PS16).
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An ultrafast proton transfer (> 1010 s−1) in the NHN+ bridge
between two minima of the PES for the protonated DMAN species
was discovered by NMR relaxation study.49 The same behavior was
found in NHO bridges for some types of Schiff bases50 and in OHO
bridges for certain β-diketones.51

By measuring dipolar coupling constant between 15N and 1H or be-
tween both 15N atoms in the NHN+ or NHN– bridges one can calculate
N−H18,50,52 or N−N50,52 distance, respectively. The dipolar coupling
constant has inverse cubic dependence on distance between two inter-
acting spins. The information about the symmetry of hydrogen bond
can be obtained by isotopic perturbation of equilibrium53–55 analyz-
ing the δ(H) and δ(D)chemical shifts and the J(15N−15N), J(15N−1H)
coupling constants. This technique is very powerful if one needs
to distinguish a single static structure from pair of tautomers.56 It
works even if signals from individual tautomers coalesce due to equi-
librium. The method is based on measuring of isotope shift between
13C chemical shifts of molecules with protium and deuterium n∆obs =
δ(C(D))− δ(C(H)). This isotope shift includes an intrinsic part n∆0,
which is due to substitution of hydrogen for deuterium. If hydrogen
bond is asymmetric, and if NCH3 is replaced by NCD3, an additional
contribution to n∆obs appears. Such deuteration perturbs the tau-
tomeric equilibrium, and, as a result, the time-averaged chemical shift
is displaced. This effect manifests itself as a perturbation isotope shift
n∆e.20 The method was used to answer the question about symmetry
of NHN hydrogen bonds in solution. The results show that, in studied
protonated PS (see Figure 1.3 (a), (c) PS7, (f)), hydrogen bonds are
asymmetric and a pair of rapidly converting tautomers exists in each
case.19,20,57

It is not always sufficient to consider the molecular structure at the
energy minimum. Often, potential energy surfaces must be computed
to gain a deeper insight into hydrogen bonding. Consequently, the
choice of an adequate quantum-chemical method to evaluate the PES
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is crucial. Even small changes of the surface may cause substantial
differences in the hydrogen bond properties. This situation is typical
of low-barrier hydrogen bonds

The most important characteristic of a hydrogen bond PES is the
height of the barrier for proton motion. The barrier was shown to
depend on the level of the quantum-chemical calculation and to lie in
the range of 0 − 4.5 kcal·mol−1.58 As an example of this dependence
N,N,N,N-tetramethylputrescinium ion can serve.52 The potentials for
the proton stretching were calculated at various levels of theory and
the results varies from a double-well potential with a tiny barrier to a
double-well potential with a high barrier. In that work not only dif-
ferent barriers were obtained but also qualitatively different behavior
of the vibrational wavefunction, i.e. from single-maxima wavefunction
to that with two well separated maxima.

Sterically compressed and symmetric (according to X-ray results)
NHN+ intramolecular hydrogen bonds (see Figure 1.4) were also stud-
ied. One example is PS1-ClO4.27 In spite of its remarkably short
NHN+ bridge (NN distance is 2.52 Å at room temperature) there is a
double-well potential with a barrier of about 0.7 kcal·mol−1 at MP2/6-
31+G(d,p) level. Another two examples of sterically hindered systems
are PS17-Br25 and PS18-Br.26 The barrier heights were found to
be 0.7 kcal·mol−1 and 1.32 kcal·mol−1 respectively (both at MP2/6-
31G(d,p) level). According to the results obtained in these works, the
best accuracy for the geometry of proton sponges and for the shape of
the potential is provided by MP2.

1.1.1 Asymmetric proton sponges
NMR, IR, X-ray, and neutron diffraction (see Page 3) revealed that
the highest likelihood to find the proton in NHN+ bridge is when the
proton is in asymmetric position, i.e. closer to one of two nitrogens.59

Asymmetry depends on various factors, i.e. counterion27 (see Table
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R

NMe2
H+

NMe2

R

X−

Figure 1.4: Proton sponges with sterically compressed NHN+ in-
tramolecular hydrogen bond. R = SiMe3, X– = ClO–

4 (PS1-ClO4); R
= Br, X– = Br– (PS17-Br); R = OMe, X– = Br– (PS18-Br).

1.1), temperature.42,60 Solvent plays a role as well: some ions are
symmetric in crystals, but asymmetric in solution.20

It is only in crystals that symmetric hydrogen bonds were found.
Some ions are asymmetric at low temperature, but sometimes appear
symmetric in X-ray at room temperature due to averaging over dy-
namic disorder of hydrogen.20,57,61

In solution the local environment is disordered and two nitrogen
atoms have different solvation.20,57,61 Hence proton (or charge) local-
ization is favored near one or other nitrogen atom by solvent dipoles
which leads to degenerate tautomerism, but if temperature lowers the
solvent becomes more ordered which leads to more symmetric hydro-
gen bond.19

The most important characteristics of the NHN+ bridge are the
N−H, H···N, N−N distances and the N−H···N angle. There is a di-
rect relationship between the shape of the PES and the position of
hydrogen between two nitrogen atoms.
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Table 1.1: Asymmetric proton sponges. Intramolecular hydro-
gen bond geometry determined by X-ray (X) or neutron diffraction
(ND) studies. See more in.22,59 Distances are given in ångströms.
R1=CH2OH.

Cation Anion N−H H···N N−N Ref.

Br
NMe2

H+
NMe2

Br

Br– 0.85(5) 1.73(5) 2.547 X25

R1

NMe2
H+

NMe2

R1

Cl– 1.16 1.50 2.561 X27

R1

NMe2
H+

NMe2

R1

SiF2–
6 0.87 1.71 2.556 X27

NMe2
H+

NMe2

HOOCCl CClCOO− 1.106 1.608 2.644 ND30

NMe2
H+

NMe2

N
NH2

N−CN

CN 1.16(3) 1.50(3) 2.595 X62

NMe2
H+

NMe2

NO2

NO2

O−
H

O

1.09(4) 1.52(4) 2.574 X63

NMe2
H+

NMe2

O

NO2

O−

NH
O

1.25(2) 1.38(2) 2.586 X64

NMe2
H+

NMe2

Ni(O2NCHCC(O)Ph)−3 0.80 1.86 - X65
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Cation Anion N−H H···N N−N Ref.

NMe2
H+

NMe2

nido−7, 8−C2B9H−12 1.228 1.419 2.599 ND31

1.1.2 Symmetric proton sponges
Although the asymmetric hydrogen bonds are more common, the sym-
metric ones were also observed in several cases (see Table 1.2). De-
spite the solvent favors an asymmetric hydrogen bond, calculations, in
such systems as formic acid–formic acid anion and maleic acid anion,
demonstrated that in the case of a non-polar medium the symmet-
ric hydrogen bond with delocalized charge is more preferred than the
asymmetric one with localized charge.66–68 It was also shown experi-
mentally that a small counterion, such as CF3COO–, can perturb the
symmetry of hydrogen bond, but a large counterion with a delocalized
and shielded charge, e.g. B[(C6H3(CF3)2)4]–, makes it more symmet-
ric.19

Table 1.2: Symmetric proton sponges. Intramolecular hydrogen
bond geometry determined by X-ray (X) or neutron diffraction (ND)
studies. See more in.22,59 Distances are given in ångströms.

Cation Anion N−H H···N N−N Ref.

NMe2
H+

NMe2

N

N−N
N 1.312 1.312 2.573 X69

NMe2
H+

NMe2

N

N−CN

CN 1.321 1.321 2.579 X70
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Cation Anion N−H H···N N−N Ref.

NMe2
H+

NMe2

Br– 1.31(1) 1.31(1) 2.555 X71

Cl
NMe2

H+
NMe2

Cl

Br– 1.29(1) 1.29(1) 2.561 X24

OMe
NMe2

H+
NMe2

OMe

Br– 1.30(1) 1.30(1) 2.567 X26

SiMe3

NMe2
H+

NMe2

SiMe3

ClO–
4 1.275 1.275 2.524 X27

1.1.3 Description of hydrogen bonds
The hydrogen bond A−H···B is an attractive interaction between a
proton donor A−H and a proton acceptor B, where A and B can be
atoms of the same or different type. When B is oxygen or nitrogen
the hydrogen bond exists if the A···B distance is shorter than 2.5 Å
but longer than a covalent N−H or O−H bond length, which is close
to 1.0 Å. The hydrogen bond is characterized by a dissociation energy
larger than dipole-dipole or dispersion interaction energies. Due to
the interaction the A−H bond length slightly increases and the po-
tential energy surface softens, which results in a red shift of the A−H
bond stretching vibration. This is the most fascinating effect. Weak-
ening of the A−H bond is accompanied by a strengthening the H···B
interaction. As bond strength increases, the dynamics of the central
proton becomes more complicated compared to a covalently bonded
hydrogen described by a simple potential well. For instance for the
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O−H···O bond a double-well potential for the proton transfer changes
to single-well with decreasing the O−O distance72,73 (see Figure 1.5).

The most properties related to the hydrogen bonds vary according
to the bond strength. Thus, according to the energy of H···B, one can
distinguish three bonding situations, i.e. weak, moderately-strong,
and strong hydrogen bonds.

A weak hydrogen bond, in general, has a binding energy no more
than 4 kcal·mol−1. The A···B distance can vary between 3.1 Å and 4.3
Å. This weak bond may lead to a double-minimum potential energy
surface along the hydrogen transfer reaction coordinate with a high po-
tential barrier (see Figure 1.6b) and the proton transfer can be frozen
at low temperature. The proton motion is then localized near the min-
imum positions. However, this barrier is still lower compared to the
barrier for dissociation of the A−H covalent bond. In this case tunnel-
ing between two wells contributes substantially to hydrogen transfer.
The tunnel effect can be observed in fluorescence excitation,74,75 in-
frared,76 and microwave77,78 spectra. This effect manifests itself in the
spectra by tunneling splitting, i.e. by splitting of vibrational energy
levels originating from symmetric and antisymmetric combinations of
the wavefunctions of each single well. The energy split is defined as
a difference between two nearly degenerated states and normally it
increases for higher lying states. The maxima of the ground state
vibrational wavefunction are located around minima of the PES (see
Figure 1.6b). This situation can be treated as two weakly coupled
oscillators.

As hydrogen bond strength increases, the barrier on the PES de-
creases. This leads to an anharmonic potential energy surface along
the hydrogen transfer reaction coordinate. In general, anharmonicity
increases with increasing the hydrogen bond strength. Moreover, the
lower the barrier, the larger tunneling splitting is to be expected.

While the energy for moderate-strong hydrogen bond lies in the
interval 4–14 kcal·mol−1 and the A···B distance varies from 2.4 Å to
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E

x

dO-O=2.75

dO-O=2.70

dO-O=2.65

Figure 1.5: After Giese et al. [73]. Proton motion PES dependence
on various O−O distances. E is the potential energy, x is the pro-
ton coordinate. Distance between two oxygen atoms d is given in
ångströms. See text for details.



1.1. PROTON SPONGES 15

3.3 Å, for the strong one the binding energy is above 14 kcal·mol−1

and the A···B bond distance is less than 2.7 Å. This type of bonds
is characterized by a small barrier (see Figure 1.6c), such that the
proton moves freely between two minima even at 0 K. In this case
the wavefunction still has a single maximum at the central position,
although this point is a transition state rather than a minimum on
the PES79 (see Figure 1.6c). In this situation the proton motion is
delocalized. In some cases, the barrier disappears leading to a flat
potential energy surface (see Figure 1.6a). This phenomenon allows a
bound hydrogen to be very mobile.

(a) (b) (c)

Figure 1.6: Various types of symmetric potentials for proton motion
(see text). The solid lines represent PES profiles, and the red dashed
lines are the ground-state vibrational wavefunctions.

While these three situations are clear qualitatively, quantum-chem-
ical calculations are necessary in order to distinguish between them.
Although the height of the proton transfer barrier is crucial, the vibra-
tional wavefunction obtained by solving the vibrational Schrödinger
equation in a given PES is needed to get more insight into the proton
dynamics.

All discussed above concerns a one-dimensional picture of the hy-
drogen transfer, while the hydrogen motion in a polyatomic molecule
is obviously coupled with that of other atoms or vibrational modes.
According to the nuclear dynamics, two fundamental types of coupling
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between proton transfer reaction coordinate and the other motions ex-
ists.80

The first type is promoting modes which modulate the potential
along the reaction coordinate leading to a reduction of the barrier.
This situation is depicted in Figure 1.5 where the barrier for trans-
fer of proton between two oxygen atoms reduces with reducing the
O−O distance.73 A similar situation occurs for the hydrogen transfer
along the ammonia chain in 7-hydroxyquinoline·(NH3)3 complex, i.e.
the distance OH···NH3 shortens promoting tunneling of hydrogen from
OH group.81 The second type is reorganization modes which change
the molecular structure, e.g. a rearrangement of single and double
bonds as observed in tropolone molecule during the hydrogen transfer
between two oxygen atoms.82 When tunneling splitting is affected by
these two fundamental types of coupling it calls mode-specific tunnel-
ing splitting.73

1.2 Organometallic complexes
Transition metal-silyl chemistry originates in 1956 with synthesis of
iron complex CpFe(CO)2SiMe3 by Wilkinson and co-workers83 (see
Figure 1.7).

Fe

SiMe3 CO
CO

Figure 1.7: First transition metal complex with silicon ligand.

Transition metal silyl complexes play an important role as interme-
diates in various silylation reactions84–86 and even in industrial applica-
tions.87–89 Various functionalized silyl complexes are valuable reagents
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for the synthesis of new silicon-based materials.84,90–92 By now, silyl
complexes [LnM−SiR3] are known for nearly all transition metals90,93

(see Figure 1.8).
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Cadmium

80 200.59

Hg
Mercury

Observed in matrix studies
No known examples
Only complexes containing β-H-Si interactions have been reported

Figure 1.8: Transition metals that give isolable silyl-metal com-
pounds.

One of the most widely used approaches for the synthesis of tran-
sition metal-silyl complexes is oxidative addition of silanes.90 An ox-
idative addition of a hydrosilane to a metal center can yield a classical
complex with two-center two-electron M−Si and M−H bonds (Figures
1.9a, 1.10a). However, if silane coordination occurs without oxidative
addition, the Si−H bond remains intact, leading to a non-classical η2-
silane σ-complex with a three-center two-electron bond (Figures 1.9b,
1.10e).94,95 σ-Complexes play a role as intermediates in oxidation ad-
dition reactions.

The variety of possible structures in transition metal complexes
with silicon ligands are depicted in Figure 1.10. In an intermediate
situation, when the oxidation addition is incomplete, the Si−H bond
is only partly broken. In σ-complexes (see Figure 1.10a) and those
with α-agostic interactions (see Figure 1.10b) the Si−H distance is
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LnM + HSiR3 LnM
H
SiR3

(a)

LnM + HSiR3 LnM
H

SiR3
(b)

Figure 1.9: Classical (a) and non-classical (b) interactions in com-
plexes containing silicon ligands.

elongated compared to free silane. Further examples of organometallic
complexes include interligand hypervalent interactions95 (see Figure
1.10c), which usually require the presence of a halogen substituent at
silicon and have much larger Si−H distance. In addition to the above-
mentioned bonding patterns, silyl complexes may exhibit additional
interactions (see Figure 1.10d) leading to a further increase of the Si−H
distance. Finally, the longest Si−H distance is observed in pure silyl-
hydride complexes (see Figure 1.10e) where there are no interactions at
all between silicon and hydrogen. The strength of interactions depends
on the degree of oxidative addition.

LnM
HSiR3

LnM
H
SiR3

(a)
σ-complex

LnM
SiR3

H

(b)
α-agostic

LnM
SiR2

X

H

(c)
IHI

LnM
SiR3

H

(d)
additional Si···H

interactions

LnM
H
SiR3

(e)
silyl-hydride

Figure 1.10: Variety of structures in transition metal complexes with
silicon ligands: from non-classical to classical.

Theoretical interpretation of Si−H interactions is based on a kind
of the Dewar–Chatt–Duncanson model (see Figure 1.11). These in-
teractions involve the donation of the silane Si−H σ-orbital to the
metal center. In this situation two electrons from a Si−H bond are
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distributed among three centers Si, H, and TM. This type of inter-
actions are referred to as three-center two-electron interactions. The
Si−H bond has a much better electron donor ability than H−H and
C−H bonds.96 On the other hand, due to a lower dissociation energy of
the Si−H bond,90 the σ∗(Si−H) orbital has stronger acceptor proper-
ties, thus favoring the M→σ∗(Si−H) back-donation. These two effects
– the σ(Si−H)→M donation and the M→σ∗(Si−H) back-donation –
weaken the Si−H bond and eventually give rise to a wide range of
structures discussed above, from non-classical to classical silyl-hydride
complexes.97

LnM
H

SiR3

σ(Si−H) → M donation

LnM
H

SiR3

M → σ∗(Si−H) back-donation

Figure 1.11: After Lin [97]. Dewar–Chatt–Duncanson model for
interactions metal-η2-silane.

Complexes with non-classical interactions were studied both exper-
imentally and theoretically. The experimental methods employed in-
clude the X-ray diffraction,94,95,98–103 NMR,98–103 IR98–100,102,103 and, in
few cases, the neutron diffraction.104–110 Major differences between σ-
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complexes, agostic, and IHI interactions were reviewed by Nikonov.98,111

A Si−H distance in the range of 1.7–1.8 Å clearly indicates σ-coordina-
tion,112,113 while longer Si−H separations are harder to interpret. Nev-
ertheless, for distances up to 2.1 Å there is almost always at least some
degree of an Si···H interaction.113,114 According to some authors, the
interaction can be present for Si···H separations as large as 2.4 Å.97,113

A very valuable tool for assessing non-classical interactions is pro-
vided by the NMR, the spin-spin coupling constants 1J(Si-H) being
of particular importance. In a free silane, J(Si-H) is about 150–200
Hz,90,115 while for classical silyl-hydride complexes it is vanishing or
very small (below 20 Hz). In the presence of non-classical interactions
|J(Si−H)| is in the range of 20–140 Hz, more typically from 40 to 80
Hz .116–119

It is commonly accepted that |J(Si−H)| > 20 Hz corresponds to
a direct Si−H interaction,90,115 though this criterion is quite arbitrary
and the strength of the interaction was shown to not always correlate
with |J(Si−H)|.120 A more unequivocal indication of a direct Si···H
interaction is given by the sign of J(Si−H). Due to a negative gy-
romagnetic ratio of the 29Si nucleus, J(Si−H) is negative if the di-
rect Si···H interaction prevails, while through-bond interactions, such
as Si−M−H, provide a positive contribution to the total J(Si−H).
While in most cases only the absolute value |J(Si−H)| is easily avail-
able experimentally, the sign is harder to get, but the sign of computed
J(Si−H) serves as a valuable indicator of the direct Si−H interac-
tion.103,121–123

Useful data are also supplied by IR spectra. When a non-classical
interactions are present, broadening and red shift occur in the Si−H
stretching vibrational frequency compared to values of 2100–2200 cm−1

typical of a free silane. For σ-complexes, the Si−H vibrations, often
coupled with M−H stretching, are observed in the region 1600–1945
cm−1.
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1.2.1 σ-Complexes
σ-Complexes in principle can exist in isolated form, but only few exam-
ples were obtained and separated as individual compounds.124–128 The
very first known example of a σ-complex, Re2(Ph2SiH2)(CO)8 (see Fig-
ure 1.12), was obtained in 1969 by Hoyano et al.129 Although the po-
sitions of hydrogen atoms were not determined by X-ray spectroscopy,
they were placed in the sixth coordination site of each rhenium atom.
An evidence for placing them in such coordination sites is provided
by the NMR spectrum of an analogous complex Re2(Me2SiH2)(CO)8.
Spectroscopic data show that two hydrides are magnetically equiva-
lent. Most probably they are in the symmetrically equivalent positions
in the Re−Si−Re plane. If these hydrides are in the Re−Si−Re plane
with an Re−H distance of 1.68 Å the Si−H contact is 1.57 Å which is
typical of σ-complexes. The Re−Si distances are 2.51 Å and 2.53 Å,
respectively. The orbital interaction diagram for silane σ-complexes is
shown in Figure 1.11.

Si

ReCO

CO
CO

CO
Re

CO

CO
CO

CO

PhPh

H H

Figure 1.12: The σ-complex Re2(Ph2SiH2)(CO)8. Hydrogen atoms,
which are not observed, are shown in the positions suggested by spec-
troscopic evidence.

Apart from rhenium, σ-complexes are known for Mn,124 Mo,125,126

and Ru127,128 (see Figure 1.13). In the case of the Mn complex124

shown in Figure 1.13(a) a bonding interaction between silicon and hy-
dride atoms was shown by X-ray diffraction. Whereas the Mn−Si and
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Mn−H distances show regular values of 2.42 Å and 1.55 Å respectively,
the Si−H distance is elongated up to 1.76 Å compared to a normal
one (1.48 Å). The conclusion about the presence of Si−H interaction
is given not only by the X-ray, but also is reflected by NMR. The
large value of 64.7 Hz for J(Si−H) coupling constant could point out
to non-classical interactions.

Among molybdenum complexes the X-ray diffraction analysis was
performed for Mo1-2125 and Mo4-1126 complexes (see Figure 1.13(b))
and confirmed the η2-coordination of the Si−H bond to the metal
center. In Mo1-2 the molybdenum-bound Si−H bond is elongated
(1.77(6) Å) compared to the other two Si−H distances (1.41(6) Å and
1.42(6) Å). NMR also supports the η2-silane coordination. In this
case the J(Si−H) coupling constant is 39 Hz. The Mo−H distance is
1.70(5) Å, the Mo−Si is 2.501 Å. In the case of the Mo4-1 complex
four hydrogen atoms on silicon were not located due to a positional dis-
order between η2-SiH4 and CO ligands. However, the geometry of the
MoP4CSi fragment is similar to that in the Mo1-2 complex discussed
above where the hydrogen positions are known. Thus, together with a
J(Si−H) coupling constant of 50 Hz this confirms the η2-coordination
of the silane molecule in Mo4-1. The Mo−Si distance is 2.556 Å. For
the other complexes (see Figure 1.13(b)) only NMR data are available.
Nevertheless J(Si−H) coupling constants within the range 41–61 Hz
indicate that these complexes possess non-classical interactions.125,126

Ruthenium complexes shown in Figure 1.13(c) are the first mononu-
clear complexes containing two M−(η2−SiH) bonds. The X-ray data
are available for the complexes Ru2, Ru3, and Ru5.128 As expected
for complexes with η2-coordination, both Si−H distances are elon-
gated: 1.84(2) Å and 1.84(2) Å for Ru2, 1.73(3) Å and 1.78(4) Å
for Ru3, 1.77(4) Å and 1.81(3) Å for Ru5. It is important to remark
that in the case of Ru2, and Ru3 there is no large difference in Ru−H
distances for the hydrogens bound to silicon and for those bound to
the ruthenium atom only. However, for Ru5 complex one can ob-
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Mn

SiPh3

H

CO
CO

(a)

Mo

PR2

PR2

PR2

PR2

CO

H

SiHR′2

(b)

Ru

HSiMe2

X

SiMe2 H H

H

PCy3

PCy3

(c)

Figure 1.13: σ-Complexes isolated as individual compounds. (b)
PR2 = PEt2 (Mo1); P(CH2Ph)2 (Mo2); PPh2 (Mo3); P(iBu)2
(Mo4); SiHR2

′ = SiH3 (1); SiH2Ph (2); SiH2(n−C6H13) (3); SiHPh2
(4); (c) X = O (Ru1); C6H4 (Ru2); (CH2)2 (Ru3); (CH2)3 (Ru4);
OSiMe2O (Ru5).

serve a significant difference in the Ru−H distances. If the hydrogen
bound to the silicon Ru−H distances are 1.62(4) Å and 1.58(4) Å, if
hydrogen is not bound they are 1.55(4) Å and 1.51(3) Å. For all five
ruthenium complexes discussed here the J(Si−H) coupling constants
are within the range from 22 to 82 Hz, which is in agreement with
non-classical nature of these complexes.127,128 The NMR spectra for
them are temperature-dependent and show the exchange between the
η2−Si−H and Ru−H hydrides.

1.2.2 Interligand hypervalent interactions
The first interligand hypervalent interactions were proposed for the
complex Cp2Nb(SiMe2Cl)2H in 1995 by Nikonov et al.94 (see Figure
1.14) based on the experimental data. For this complex not only X-
ray95 but also neutron diffraction data105 were obtained. According
to the neutron diffraction the Nb−Si distance is 2.612 Å lying in the
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middle of the typical region for this bond type (2.541–2.685 Å).93

The same distance measured by X-ray is 2.597 Å and is in a good
agreement with the previous data. Both distances are substantially
shorter than Nb−Si bond in Cp2Nb(SiMe2Ph)2H95 (2.654 Å) which
does not have IHI. The Si−Cl distances obtained by these two methods
are also in a good agreement (2.166 Å and 2.163 for neutron diffraction
and X-ray correspondingly) and are longer than those for R3SiCl.95

Since X-ray cannot define properly the positions of hydrogens in the
vicinity of heavy atoms, there is a difference between Nb−H distances
determined by neutron diffraction and X-ray. The Nb−H distance
determined by neutron diffraction is larger than that determined by
X-ray – 1.816 Å and 1.747 Å respectively, – but both of them are longer
than Nb−H in Cp2Nb(SiMe2Ph)2H (1.672 Å). Despite the difference in
Nb−H distances, the Si−H one changes only slightly: 2.076 Å (neutron
diffraction) vs 2.056 Å (X-ray).

As we have seen, the IHI have several main structural features:
The metal-silicon bonds are shorter than normal; the silicon-halogen
bonds are longer than in correspondent halosilanes; M−H bond are
longer than usual, Si−H contacts are present, in bis(silyl)complexes
the Si−M−Si angle is smaller than that in bis(silyl)complexes without
IHI.95

Nb H
SiMe2Cl

SiMe2Cl

Figure 1.14: The first complex with IHI.

The above mentioned features can be explained by an orbital in-
teraction diagram for the IHI (see Figure 1.15). One needs a halogen
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to be in a trans-position to the hydrogen for the IHI to occur. Such
configuration provides an overlap between the bonding σ(M−H) or-
bital and the antibonding σ∗(Si−halogen) orbital. The population of
σ(M−H) decreases while the population of σ∗(Si−halogen) increases.
As a result, elongation of both M−H and Si−halogen bonds takes
place. Simultaneously, the interaction between Si and H increases
leading to shortening of the Si−H distance. In the bis(silyl) com-
plexes the hydrogen interacts with both silyl groups and the orbital
diagram becomes more complicated, since the M−H bonding orbital
interacts with a symmetrical combinations of the Si−halogen bond-
ing and antibonding orbitals. This interaction is supported by mixing
with appropriate metal orbitals (see Figure 1.15). Thus, the interac-
tions which occur are 3c-4e in the case of silyl complexes and 5c-6e in
the case of bis(silyl) complexes. It is important to note that one has
to distinguish this type of interactions from those in σ-complexes. A
description of IHI in terms of σ-complexes can be misleading. In σ-
complexes a stronger Si−H interaction corresponds to a longer M−Si
distance, whereas the opposite is true for the IHI.95
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Ψ4

Ψ3

Ψ2

Ψ1

Nb H

Si1
Cl1

Si2
Cl2

Si1
Cl1

Si2
Cl2

Figure 1.15: Orbital interaction diagram for IHI in
Cp2Nb(SiMe2Cl)2H. After Nikonov et al. [95].
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More examples of IHI complexes with available experimental X-
ray data include Cp2Nb(SiMe2Br)2H and Cp2Nb(SiMe2I)2H95,130 (see
Figure 1.16(a) ). They were the first reported examples of complexes
with iodosilyl and bromosilyl ligands that had been characterized by
X-ray. The Nb−Si distances for these complexes are 2.604 Å and
2.595 Å respectively, short as in Cp2Nb(SiMe2Cl)2H described above.
The Si−Br and Si−I distances are longer than those in R3SiBr or
R3SiI130 – 2.349 Å and 2.590 Å correspondingly. The Nb−H distances
in the Br and I derivatives are longer than in Cp2Nb(SiMe2Ph)2H
and are 1.780 Å and 1.881 Å correspondingly. Si···H contacts are
2.053 Å and 2.070 Å respectively and, as expected, are shorter than
in Cp2Nb(SiMe2Ph)2H.

An interesting case is Cp2Nb(SiMe2OMe)2H130 (shown in Figure
1.16(a)). Two Nb−Si distances (2.624 Å and 2.628 Å) are close to
those in a complex without IHI (Cp2Nb(SiMe2Ph)2H), although the
Nb−H distance is larger (1.885 Å) in Cp2Nb(SiMe2OMe)2H. The
Si−O bonds are elongated (1.696 Å and 1.691 Å) in comparison with
those in iron and iridium complexes.131,132 There could be various
origins of this elongation, e.g. due to a stronger electron donation
ability of the Cp2Nb fragment, due to a weak O−Si···H interactions
or both. Thus, this complex can be considered as an intermediate
case between non-classical halogen-substituted complexes and classical
alkyl-substituted ones.130

Another interesting case is the complex Cp2Nb(SiCl3)2H133 (see
Figure 1.16(b) ). Although this complex has three chlorine substituents
at each silicon, the IHI are significantly reduced as suggested by 1H
NMR data and by X-ray. Remarkably, there is no significant differ-
ence between Si−Cl distances, i.e. they do not depend on whether
the chlorine atoms lie in the trans-position to the hydrogen or not.
These Si−Cl bonds are elongated and lie in the range 2.084–2.099 Å.
According to the X-ray data, the Nb−Si bonds are very short (2.560 Å
and 2.578 Å). The angle Si−Nb−Si is close to those observed in classi-
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cal bis(silyl)systems and the Si···H contacts are 0.1 Å longer (2.143 Å
and 2.113 Å) than those typical of complexes with IHI. All these facts
suggest that IHI are significantly reduced in this complex. The insuffi-
ciency of Si···H interactions could be due to the low electron density of
the Nb−H bond having its origin in a number of electron-withdrawing
chlorine atoms at silicon. For the same reason the Nb−Si bonds are
extremely short (Bent’s rule134) as if the normal IHI were present.

Nb H
SiMe2R

SiMe2R

(a)

Nb H
SiCl3

SiCl3

(b)

Ti H
SiRR′Cl

PMe3

(c)

Figure 1.16: Niobium and titanium complexes with IHI. (a) SiMe2R
= SiMe2Br (Nb1); SiMe2I (Nb2); SiMe2OMe (Nb3); (c) SiRR′Cl =
SiMePhCl (Ti1); SiPh2Cl (Ti2); SiMeCl2 (Ti3); SiCl3 (Ti4).

The IHI are present not only in niobium complexes but also were
found, for instance, in titanium complexes such as titanocene silyl
hydride complexes Cp2Ti(PMe3)(H)(SiRR′Cl)103 (see Figure 1.16(c)).
They were prepared and studied by NMR, IR, and X-ray diffrac-
tion. All structural and spectroscopic data confirmed the presence
of IHI. The DFT calculations and structural data revealed that IHI
weaken with increasing number of chlorine substituents. In contrast
to Cp2Nb(SiCl3)2H where Si−Cl distances are almost equal, for the
titanium complexes the Si−Cl bonds are longer in the case of chlo-
rine atoms that lie trans to the hydride. The longest Si−Cl bonds
are 2.223 Å, 2.192 Å, and 2.161 Å for complexes Ti1, Ti3, and Ti4
correspondingly. The other Si−Cl distances are significantly shorter.
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The Si−H contacts in Ti3 and Ti4 complexes (1.749 Å and 1.75(3)
Å respectively) point out the presence of interactions between hydride
and silicon atoms. The Ti−H bonds are elongated and are 1.733 Å
and 1.72(2) Å for these complexes. The direct Si···H interactions can
be seen from the sign of J(Si−H) coupling constant which is negative
for these two complexes (−22 Hz and −34 Hz respectively).

Ru

PPr3
i

Cl

H

SiMe2Cl

Figure 1.17: The first complex with simultaneous Si−H and
RuCl···SiCl IHI.

Cp*(iPr3P)Ru(Cl)(η2- HSiClMe2)122 (see Figure 1.17) is an unusual
example of a complex which is both a silane σ-complex and has simul-
taneous RuCl···SiCl IHI as it was shown by NMR and X-ray. The
presence of Si−H σ-interaction was established by the 1H NMR spec-
trum. The J(Si−H) coupling constant is 33.5 Hz pointing out to a
σ-interaction. The X-ray structure of the complex showed a short
Ru−Si bond of 2.398 Å, which is shorter than that in a classical com-
plex Cp*(Pyl3P)RuH2(SiPhMe2)135 (2.421 Å). The Si···H contact is
short as well (2.05(3) Å). The Si−Cl distance is elongated (2.155 Å)
compared to R3SiCl,130 which is typical of IHI. The most remarkable
feature of this complex is that the IHI occur between Cl instead of H
and Si−Cl. A short Si···Cl contact of 3.014 Å between silyl and chlo-
ride ligand from Ru−Cl bond was revealed. Here two Cl atoms are
in trans-position to each other. This geometric configuration favors a
donation from a lone pair of the chlorine bound to ruthenium to the
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σ∗(Si−Cl) antibonding orbital, leading to the interligand hypervalent
interaction.

1.2.3 Complexes with additional Si···H interactions
Bis(hydrido)-silyl complexes

Among hydrido-silyl complexes special interest is drawn by the bis(hy-
drido)-silyl complexes LnM(H)2(SiR3) due to their unusual bonding
nature and fluxional behavior. The M(η3- H2SiR3) motif was firstly
suggested for rhenium complex Re(PPh3)2H6(SiPh3)136 in 1990 by Luo
et al. Although the positions of two hydride atoms were not defined
by X-ray crystallography, close contacts between silicon and two hy-
drides were suggested (1.76 Å and 1.92 Å), which imply an H···Si···H
interaction.

The first experimental evidence where silyl group interacts with
two hydride ligands simultaneously and has a structure with H···Si···H
bonding were obtained by Gutsulyak et al.137 in 2008 and is shown
in Figure 1.18. Two of these complexes, Fe5 and Fe6, were studied
by NMR spectroscopy and X-ray analysis. The experimental J(Si−H)
coupling constants are around 19.2 Hz and 18.9 Hz, respectively. In
the case of complex Fe6, using only NMR data, it is impossible to
conclude whether there is a fast exchange between two forms of a
silane-hydride complex or it is a static structure with double Si···H
interactions without any hydride exchange. According to the X-ray
structures for complexes Fe5 and Fe6 there are double Si···H inter-
actions. This conclusion is based on the following data. The Fe−Si
distance in Fe5 is short (2.194 Å), while in Fe6 is remarkably short
(2.168 Å), compared to that in classical complexes and is very close to
the value for the double Fe−−Si bond. The Fe−H distances are 1.37(2)
Å and 1.43(2) Å in Fe5 complex. In complex Fe6 the Fe−H distance
is 1.35(3) Å. The Si−H distances for both complexes are longer than
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those in a free silane, and are within the range 1.88(3) – 1.91(2) Å.
DFT calculations on model complexes Cp(Me3P)Fe(H)2(SiMe3-nCln)
support the idea of two simultaneous Si···H interactions as well. Cal-
culated Fe−Si and Si−H distances for Cp(Me3P)Fe(H)2(SiMeCl2) and
Cp(Me3P)Fe(H)2(SiCl3) complexes are in good agreement with corre-
sponding experimental results. The calculated Fe−H distances are
about 0.2 Å longer than experimental values due to the well-known
problem of locating H atoms by X-ray. Si−H Mayer bond orders of
0.17 are also indicative of interactions between silicon and hydrogen.

Fe

PMePr2
i SiR3H

H

Figure 1.18: The first complexes with simultaneous H···Si···H in-
teractions. SiR3 = SiMe2Ph (Fe1); SiHMePh (Fe2); SiH2Ph (Fe3);
SiMe2Cl (Fe4); SiMeCl2 (Fe5); SiCl3 (Fe6).

The effect described above was discovered later in the tungsten
complex W1138 as well (see Figure 1.19). The 1H NMR shows that
this complex has fluxional behavior in which two hydrides rapidly
exchange their positions. The measured J(Si−H) coupling constant
is 15.9 Hz, which is lower than the limit of 20 Hz which is used
to distinguish between classical and non-classical complexes. How-
ever, according to the recent studies, there are more complexes with
double H···Si···H interactions where measured J(Si−H) smaller then
20 Hz. One example is Cp(iPr2MeP)Fe(H)2(SiCl3) with J(Si−H) of
18.9 Hz137 and another is Cp*(CO)2W(H)2(SiPh2Cl) with J(Si−H)
equals to 18.3 Hz.139 They are suggested to have double Si···H inter-
actions based on the X-ray structures. Since, according to Nikonov
et al.,112,137 the observed J(Si−H) is a sum of negative 1J(Si−H) and
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positive 2J(Si−H), if the observed J(Si−H) is small it would be mis-
leading and insufficient to take into account only this constant to cat-
egorize complex to one of the two types (see page 20). Although
X-ray could not determine the position of two hydride atoms, W−Si
distance is in a good agreement with the calculated one in model com-
plex Cp(CO)2W(H)2SiH(OMe)(C(SiH3)3) (2.620 Å vs 2.606 Å). The
calculated W−H distances in model complex are 1.750 Å and 1.757
Å, and the Wiberg bond indices are 0.501 and 0.474 still considerably
large. The Si−H distances are about 25% longer than the normal
covalent Si−H bond (1.913 Å and 1.860 Å respectively). The bond
indices for them are 0.241 and 0.281 which is about 35% of the Si−H
bond index in SiH4. All these data along with MO analyses support
the idea about two weak Si···H bond interactions.

W

CO
CO

H

H
SiH(OMe)C(SiMe3)3

Figure 1.19: The structure of tungsten complex
Cp*(CO)2W(H)2SiH(OMe)(C(SiMe3)3) (W1).

Ruthenium complexes TpRu(PPh3)(H)2(SiR3)140 (see Figure 1.20)
were also shown to have weak Si····H interactions. Based on NMR and
DFT studies, these complexes were originally formulated as σ-silane-
hydride complexes with fast equilibrium between two forms.141 How-
ever, according to X-ray study it is more appropriate to describe these
complexes as static structures with almost symmetrical H····Si····H
bonding. J(Si−H) experimental values are 28.4 Hz, 25.0 Hz, and 19.2
Hz for Ru1, Ru2, and Ru3, correspondingly, indicating the presence
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of non-classical interactions. It must be noted that each of two hy-
dride atoms were located and refined in each structure. The common
feature of these complexes is almost symmetrical interaction of silicon
with two hydride atoms. In the series of complexes Ru1–Ru2–Ru3
the Si−H1 and Si−H2 distances are 2.016 Å vs 1.928 Å, 1.903 Å vs
1.955 Å, and 1.94(2) Å vs 1.965 Å respectively. As one can see, all
of them are elongated. The Ru−H bond lengths (1.491–1.568 Å) are
within the normal range typical of classical ruthenium complexes.

Ru

Tp

PPh3 SiR3H

H

Figure 1.20: The structure of ruthenium complexes. SiR3 = SiPh3
(Ru1); SiPh2Me (Ru2); SiPhMe2 (Ru3).

It is worth noting that some indication of an H···Si···H motif in
a ruthenium complex had been presented as early as in 1999.100 The
distances between silicon and two hydride atoms are almost symmetri-
cal in the complex Ru(H)2(H2)(HSiPh3)(PCy3)2 as X-ray study shows.
Their values 1.72(3) Å and 1.83(3) Å allow further Si···H interactions.
However, the complex was formulated as that rather containing σ-
silane moiety than H···Si···H motif.

Hydrido-bis(silyl) complexes

The interactions similar to those in H···Si···H systems occur in hydrido-
bis(silyl) complexes. As an example, some iron complexes can be con-
sistent with this description (see Figure 1.21). According to the X-ray
data, for Fe7142 the Si−H distance was found to be 2.06(7) Å, which
is indicative of a Si−H contact. It was shown that Si−Fe−Si bond
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angle is small (113.9(1)◦). Another hydrido-bis(silyl) iron complex is
Fe8.121,143 The X-ray data are available for it as well although the po-
sition of a hydride was not determined. In this complex the Si−Fe−Si
bond angle of 115.3(1)◦ is very close to that in Fe7. There is no large
difference in Fe−Si bond distances – 2.252 Å vs 2.249 Å for Fe7 and
Fe8 complexes respectively. This suggests that similar Si−H contact
may exist in the latter. Taking these short Si−H distances into ac-
count one can conclude the presence of weak Si···H interactions and
so the presence of entire R3Si···H···SiR3 ligand. Complex Fe8 exhibits
J(Si−H), determined from Si satellites,144 of 20 Hz.

Fe

CO HSiR3

SiR3

Figure 1.21: Iron complexes with suggested simultaneous Si···H···Si
interactions. SiR3 = SiF2Me (Fe7); SiCl3 (Fe8).

Complexes with Si···H···Si pattern can exhibit fluxional behav-
ior as well. Two examples of such complexes with fluxionality are
[Cp*Rh(PMe3)(SiR3)(HSiR3)]BAr4

117 (see Figure 1.22) where R = Me
or Et and Ar = 3,5-C6H3(CF3)2. For both complexes hydride reso-
nance shows 29Si satellites in 1H NMR spectra and the J(Si−H) cou-
pling constants are 28.5 Hz and 27.8 Hz, respectively, which supports
the assignment of these complexes as silyl-η2-silane complexes. A sin-
gle resonance for the SiMe3 groups in 1H NMR spectra is in agreement
with its fluxional nature.
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Rh+

PMe3
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H SiR3
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PMe3
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H

SiR3

Figure 1.22: Hydrogen fluxionality in a rhodium hydrido-bis(silyl)
complexes. SiR3 = SiMe3 (Rh1); SiEt3 (Rh2).

1.2.4 Potential energy surface in organometallic
complexes with two silyl and one hydride
ligands

When an Si−H interaction is possible, two silicons can compete for
it, giving rise to a silyl-silane complex, in which case interconversion
between two forms can take place (Figure 1.23b) and the PES for
hydrogen transfer has two minima. In this case the vibrational wave-
function can have either one or two maxima (Figure 1.6b). If the
barrier is low enough to ensure an interconversion rapid on the NMR
timescale, the situation is referred to as hydrogen fluxionality. The
rhodium complexes [Cp*Rh(PMe3)(SiR3)(HSiR3)]BAr4

117 (R = Me
or Et, Ar = 3,5-C6H3(CF3)2) are examples of such fluxionality. For
both complexes hydride resonance shows 29Si satellites in 1H NMR
spectra and the J(Si−H) coupling constants are 28.5 Hz and 27.8 Hz
respectively, which supports the assignment of these complexes as η1-
silyl-η2-silane complexes. The observation in 1H NMR spectra of a sin-
gle resonance for the SiMe3 groups is in agreement with this fluxional
nature of the complex. On the other hand, the hydrogen can interact
with both silicon atoms simultaneously but be located closer to one of
them (Figure 1.23c), with the entire R3Si···H···SiR′3 moiety behaving
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as a single ligand.114,121,122 The PES is of double-well character as well,
with a small barrier (Figure 1.6c). In this case the vibrational wave-
function has a single maximum above transition state. In the extreme
case, the barrier may vanish at all, giving rise to a single-well PES
and a vibrational wavefunction with a single maximum (Figure 1.6a).
The experimentally found structure of certain iron complexes such as
CpFe(CO)(SiF2Me)2(H)142 and CpFe(CO)(SiCl3)2(H)143 is consistent
with this description. A more recent computational study121 by Vy-
boishchikov and Nikonov also supports the symmetric configuration
of CpFe(CO)(SiR3)2(H) complexes with weak Si···H···Si interactions.

LnM
SiR3
H

SiR′3
(a)

LnM
SiR3

H
SiR′3

LnM

SiR3

H
SiR′3

(b)

LnM
SiR′3

H
SiR3

(c)

Figure 1.23: Bonding patterns in transition metal complexes with
two silyl and one hydride ligands. a) Pure bis(silyl)-hydride complex.
c) Dynamic equilibrium in a silyl-silane complex. b) Complex with
simultaneous Si···H···Si interactions.

In general, it is not always easy to distinguish between the fluc-
tional behavior and the simultaneous triple Si···H···Si interactions.
Therefore, a static description of such complexes may be inadequate
and quantum-chemical calculations are necessary to shed light on the
situation.

1.3 Organocobalt(V) complexes
Organometallic complexes of transition metals in high oxidation states
are of interest since they could play role as intermediates in vari-
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ous cross-coupling, alkane oxidation, and alkene hydrosilylation re-
actions.145–148 A high oxidation state can be more readily achieved
for 4d and 5d transition metal complexes.108,149,150 Quite a few rho-
dium(V)116,151–153 and iridium(V)154–157 complexes were reported, while
organocobalt complexes in high oxidation states were unknown until
Bower and Tennent obtained the first cobalt(IV) complex.158 Sev-
eral cobalt(IV) complexes were obtained since.159–164 Later, Byrne
and Theopold reported the isolation of a cobalt(V) complex.159,160

For 3d transition metals, high oxidation states were considered to
play a role as intermediates in olefin hydrosilylation and cyclomet-
allation reactions,165–167 but isolated examples are still rare.168–170

The principal difficulty is that only a small variety of organic lig-
ands can bind to a strongly electron-withdrawing metal center in a
high oxidation state. The compatibility depends mainly on the lig-
and ability to alleviate a large positive charge of the metal.162 Alkyl
ligands are known to be among the strongest σ-donors and can stabi-
lize a high oxidation state of a metal, e.g. in Co(1−norbornyl)4,159,160

[Co(1−norbornyl)4]BF4,159,160 Cp*IrMe4.155,171 Hydride and silyl com-
plexes in high oxidation states are also known. Examples among 4d
and 5d transition metal complexes are (C6Me6)Ru(H)2(SiMe3)2,172

Cp*Ir(H)2(SiR3)2,156 Cp*Rh(H)2(SiR3)2,153 Cp*Ir(H)3(SiR3)173 as well
as Cp*Ir(H)4.154 Although 3d transition metals are less inclined to
form complexes in high oxidation states, some examples such as iron
hydride-silyl complex (η6−PhMe)Fe(H)2(SiHCl2)2

174 and those of co-
balt Cp*Co(H)2(SiPh2H)2

168 were reported.
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Figure 1.24: Rare examples of organocobalt(V) complexes.



Chapter 2

Methods

Since advent of modern quantum chemistry till now there has been
a giant leap in theoretical methods. At present, electron structure
theory can treat not only small molecules with a very high accuracy,
but also large molecules with an adequate accuracy. The motion of
nuclei is also of importance. This fact led to development of various
methods of solving vibrational problem.

Various of the electronic structure theory methods, such as DFT,
MP2, and CCSD, were used in this thesis. Since these methods have
been developed by other workers and essentially are employed by us
as they are, they will not be discussed in details.

In this thesis we deal with vibrational methods and are more in-
terested in systems that characterized by anharmonic vibrational mo-
tion. Thus, in this Chapter we give an overview of existing methods
for solving the vibrational problem. The methods developed by us will
be given in the Results and Discussion section (Chapter 4).

This chapter overviews, firstly, ways of representation of one- and
N -dimensional PES which is important for solving the vibrational
problem. Then, an overview of key vibrational methods is given. Sub-
sequently, the Numerov method, which also used to solve Schrödinger

39
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equation, is given. Finally, a widely used one-dimensional distributed
Gaussians method, is explained.

2.1 Potential energy surface representa-
tion

Usually, the PES is obtained point by point by a series of quantum-
chemical calculations. Nevertheless, in many cases it is possible to
approximate it by a simple analytical formula.

2.1.1 Model potential for one-dimensional hydro-
gen transfer

The simplest description for hydrogen transfer is a one-dimensional
model of a potential, and the simplest polynomial for symmetric dou-
ble-well potential is given by a square-quadratic expression:175

V (1)(X) = −1
2aX

2 + 1
4cX

4. (2.1)

This equation contains only a large-amplitude (A−H) hydrogen bond
coordinate X. Two minima are determined by the constants a and
c as Xmin = ±

√
a
c

and the barrier height is ∆E = a2

4c . There is
a saddle point, i.e. a transition state at X = 0. If one needs to
model the small-amplitude (A···B) vibration along the mass-weighted
normal coordinate Q, a harmonic oscillator PES is used with Ω being
the frequency of oscillator:

V (1)(Q) = 1
2Ω2Q2. (2.2)
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2.1.2 Model potential for two-dimensional hydro-
gen transfer

Of course, a better description is possible if a coupling between large-
amplitude and small-amplitude vibrations is taken into account. If
this is considered, the hydrogen motion dynamics is described by the
following Hamiltonian:175

Ĥ = P 2
X

2 +
P 2
Q

2 + V (X,Q), (2.3)

where the PES is represented as follows:

V (X,Q) = V (1)(X) + V (1)(Q) + V (2)(X,Q). (2.4)

Here the V (2)(X,Q) term represents the coupling between. The large-
amplitude coordinate X is symmetric but the small amplitude coor-
dinate Q can be either symmetric or anti-symmetric. Consequently, if
there is a minimum at (X0, Q0) there must be an equivalent minimum
at either (−X0, Q0) or at (−X0,−Q0).

Usually one can distinguish among three cases: symmetric mode
coupling, asymmetric mode coupling, and squeezed coupling. It de-
pends on the expression for the coupling term V (2)(X,Q).

The Symmetric mode coupling 175,176 is characterized by the cou-
pling term of the form:

V (2)(X,Q) = λX2Q. (2.5)

In this equation λ is the coupling constant and Q is an even function
of X. The symmetric mode coupling potential VSMC can be written
as:

VSMC = −1
2aX

2 + 1
4 c̃X

4 + 1
2Ω2

(
Q+ λ

Ω2X
2
)2

, (2.6)
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where

c̃ = c− 2λ is a new constant, (2.7)

Q(0) = − λ

Ω2X
2 is oscillator displacement. (2.8)

The saddle point has coordinates (0, 0) and the two minima are at
(±
√

a
c̃
,− λa

c̃Ω2 ), then the barrier height is ∆E = a2

4c̃ . As one can see, the
symmetric mode coupling Hamiltonian depends on four parameters
a, c, Ω, λ. The set of these parameters can be reduced without lost
of generality. To do this, dimensionless positions (x̃, q̃) have to be
introduced:175,176

X = xmx̃, (2.9)
Q = xmq̃, (2.10)

where xm is the minimum position of x, i.e. ±
√

a
c̃
. The new symmetric

mode coupling Hamiltonian H̃SMC can be obtained by dividing the old
one by 2a2

c̃
:

H̃SMC = −g
2

2

(
∂2

∂x̃2 + ∂2

∂q̃2

)
+ 1

8 (x̃+ 1)2 (x̃− 1)2+

+ ω2

2

(
q̃ + γ

ω2 (x̃2 − 1)
)2
, (2.11)

Now our new parameters are as follows:

g = ~c̃
a
√

2a
= ~Ωx

8∆E , (2.12)

ω = Ω√
2a

= Ω
Ωx

, (2.13)

γ = λ

2
√
ac̃
, (2.14)
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where Ωx is the harmonic frequency corresponding to the minima of
the original symmetric mode coupling Hamiltonian. As one can see,
now the new Hamiltonian depends on three parameters.

In the case of the asymmetric mode coupling 175,176 the coupling
term V (2)(X,Q) is represented by an odd function with respect to the
X coordinate:

V (2)(X,Q) = λXQ. (2.15)
The saddle point in has coordinates (0, 0) and the two minima are at(
±
√

a
c

+ λ2

cΩ2 ,−λXmin
Ω2

)
.

The case of squeezed coupling 175,176 can be expressed by the follow-
ing equation for the coupling term:

V (2)(X,Q) = λX2Q2. (2.16)

The coordinates of the saddle point and of the two minima are (0, 0)
and (±

√
a
c
, 0), respectively. In this case the PES can be expressed as

an oscillator where the frequency depends on X:

VSQZ = −1
2aX

2 + 1
4cX

4 + 1
2ω

2(X)Q2, (2.17)

ω(X) =
√

Ω2 + 2λX2. (2.18)

If the λ > 0 the mode is weakened upon approaching the saddle point.
This type of coupling occurs in out-of-plane modes.177

Other model potentials capable of describing coupling were pro-
posed in literature.178–180

2.1.3 Model potential for N-dimensional hydrogen
transfer

The computational effort to calculate the full PES increases rapidly
with increasing number of degree of freedoms. Since any function can
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be divided into uncorrelated and correlated parts, to reduce the PES
it is possible to expand it with respect of such correlations175,181 up to
some level (n-mode coupling representation of the PES):

V (Q) =
N∑
i=1

V (1)(Qi) +
N∑
i<j

V (2)(Qi, Qj)+

+
N∑

i<j<k

V (3)(Qi, Qj, Qk) + . . . , (2.19)

where N = 3Nat − 6 is the number of degrees of freedom, Nat is the
number of atoms in a system, Qi are vibrational normal modes, V (n)

are n-mode correlation potentials which describe n-mode coupling,
Q = (Q1, ..., QN) is the vector of normal coordinates.

The above expression (see Equation 2.19) can be rewritten as Tay-
lor expansion about the equilibrium structure:

V (Q) = V0 + 1
2!

N∑
i=1

hiQ
2
i + 1

3!

N∑
i,j,k

tijkQiQjQk+

+ 1
4!

N∑
i,j,k,l

uijklQiQjQkQl + . . . . (2.20)

Here V0, hi, tij, uijk are potential energy at minimum, its second, third,
and fourth derivatives respectively in terms of normal coordinates.
The explicit expressions for the third and the fourth terms are:

N∑
i,j,k

tijkQiQjQk =
N∑
i=1

tiiiQ
3
i +

N∑
i 6=j

tiijQ
2
iQj +

N∑
i<j<k

tijkQiQjQk, (2.21)

N∑
i,j,k,l

uijklQiQjQkQl =
N∑
i=1

uiiiiQ
4
i +

N∑
i 6=j

uiiijQ
3
iQj +

N∑
i 6=j<k

uiijkQ
2
iQjQk+

+
N∑

i<j<k<l

uijklQiQjQkQl +
N∑
i<j

uiijjQ
2
iQ

2
j . (2.22)
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These terms now can be regrouped into such with one mode, two dif-
ferent modes, three different modes, etc. Upon regrouping one obtains:

V 1MR = V0 +
N∑
i=1

( 1
2!hiQ

2
i + 1

3!tiiiQ
3
i + 1

4!uiiiiQ
4
i

)
, (2.23)

V 2MR =
N∑
i 6=j

( 1
3!tiijQ

2
iQj + 1

4!uiiijQ
3
iQj

)
+ 1

4!

N∑
i<j

uiijjQ
2
iQ

2
j , (2.24)

V 3MR = 1
3!

N∑
i<j<k

tijkQiQjQk + 1
4!

N∑
i 6=j<k

uiijkQ
2
iQjQk, (2.25)

V 4MR = 1
4!

N∑
i<j<k<l

uijklQiQjQkQl. (2.26)

Here V 1MR, V 2MR, V 3MR, and V 4MR are one-, two-, tree-, and four-
mode representations of potential. If we consider our potential as
Taylor polynomial of degree not higher than four (neglecting of higher-
order terms), the representation of the PES will be as follows:

V (Q) ≈ V (Q1, ..., Q4) = V 1MR + V 2MR + V 3MR + V 4MR. (2.27)

This representation of the PES is called quartic force field. Its three-
mode representation, i.e. without V 4MR term, referred to as 3MR-
QFF is very promising.182–185

Another possibility is to use modified Shepard interpolation.186–188

The following equation defines a configuration Q of an Nat-atom mol-
ecule in a normal coordinate representation:

X = Xeq +
N∑
i=1

QiLi, (2.28)

where X and Xeq are 3Nat mass-weighted Cartesian coordinates for
current and equilibrium configurations respectively, and Li is the ith
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normal mode vector. The potential energy V MSI , in the terms of
modified Shepard interpolation, can be expressed as:186,189,190

V MSI(Q) =
NR∑
m=1

Wm(Q)Vm(Q). (2.29)

HereNR is a number of reference points, Wm(Q) is a normalized weight
function for the mth reference point, and Vm(Q) is a Taylor expansion
of the potential about this point:

V (m)(Q) = V
(m)

0 +
N∑
i=1

g
(m)
i (Qi −Q(m)

i )+

+ 1
2

N∑
i,j

h
(m)
ij (Qi −Q(m)

i )(Qj −Q(m)
j ) + . . . . (2.30)

The weight function has the form:

Wm(Q) = wm(Q)∑NR
k=1wk(Q)

, (2.31)

wm(Q) =
{

N∑
i=1

(Qi −Q(m)
i )2

}−p
, (2.32)

where Q
(m)
i are coordinates of the mth reference point, and p is a

parameter. It was shown that if the Taylor series Vm(Q) extends to
the nth order then the derivatives of V MSI(Q) at reference point are
interpolated correctly if p > n.186 According to the Equation 2.32,
the closer reference point to the current configuration is, the larger
weight is assigned to that reference point. Distant points contribute
negligibly. If this reference point is placed at a minimum, the first-
order energy derivatives g(1)

i are zero, and the second-order energy
derivatives become h(1)

ij = h
(1)
ij δij. Thus, only diagonal terms remain.

In this case the MSI-PES coincides with QFF.
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2.2 Vibrational SCF
The vibrational Hamiltonian for an N -mode non-rotating molecule in
terms of normal coordinates is:191

Ĥ = −1
2

N∑
i=1

∂2

∂Q2
i

+ V̂ (Q). (2.33)

In the VSCF theory the full vibrational wavefunction Ψp(Q) is rep-
resented as a product of one-mode wavefunctions modals φ(i)

pi
(Qi).192

Contrary to the electronic structure theory the antisymmetrization is
unnecessary because the vibrational modes are distinguishable unlike
the electrons:193

Ψp(Q) =
N∏
i=1

φ(i)
pi

(Qi), (2.34)

where p = (p1, ..., pf ) specify vibrational state of a molecule. The
modals can be obtained by solving the following VSCF equation:[

−1
2
∂2

∂Q2
i

+ V̄i

]
φ(i)
pi

= ε(i)
pi
φ(i)
pi
. (2.35)

V̄i is an effective mean-field potential in which ith mode vibrates:

V̄i = 〈
N∏
j 6=i

φ(j)
pj

∣∣∣V̂ ∣∣∣ N∏
j 6=i

φ(j)
pj
〉. (2.36)

It can be obtained by integrating the PES over all modals except ith
one. This pose a condition that Equation 2.35 has to be solved until
self-consistency is achieved.

As an example let us consider a two-mode system to simplify
the derivation. Within the VSCF method, the minimum of the en-
ergy functional 〈Ψl,m

∣∣∣Ĥ∣∣∣Ψl,m〉 is searched in the space of all possible
Hartree products of single-coordinate functions:193,194

Ψl,m(Q1, Q2) = ϕl(Q1)φm(Q2), (2.37)
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where Q1, Q2 are the normal coordinates, and ϕl(Q1), φm(Q2) are the
modal functions. Then, the Hamiltonian is:

Ĥ = h1 + h2 + Vc(Q1, Q2), (2.38)

hi is a single-mode Hamiltonian:

hi = Ti + Vi(Qi) = −1
2
∂2

∂Q2
i

+ Vi(Qi). (2.39)

The full potential is:

V (Q1, Q2) = V1(Q1) + V2(Q2) + Vc(Q1, Q2), (2.40)

and Vc(Q1, Q2) explicitly involves the coupling between modes. Modals
satisfy equations from the variational procedure are as follows:

[h1 + 〈φm(Q2) |Vc(Q1, Q2)|φm(Q2)〉 2 − εl]ϕl(Q1) = 0, (2.41)
[h2 + 〈ϕl(Q1) |Vc(Q1, Q2)|ϕl(Q1)〉1 − εm]φm(Q2) = 0. (2.42)

In 〈φm(Q2) |Vc(Q1, Q2)|φm(Q2)〉2 the integration is done over one co-
ordinate Q2. Thus, determining so-called effective potentials:

Vm(Q1) = V1(Q1) + 〈φm(Q2) |Vc(Q1, Q2)|φm(Q2)〉 , (2.43)
Vl(Q2) = V2(Q2) + 〈ϕl(Q1) |Vc(Q1, Q2)|ϕl(Q1)〉 , (2.44)

and rewriting equations 2.43 and 2.44 in terms of these potentials one
obtains next equations:

[T1 + Vm(Q1)− εl]ϕl(Q1) = 0, (2.45)
[T2 + Vl(Q2)− εm]φm(Q2) = 0. (2.46)

Thus, Equations 2.45 and 2.46 are one-dimensional eigenvalue equa-
tions with corresponding energy eigenvalues εl, and εm. Nevertheless,
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the effective potential for any of them is affected by the modal eigen-
function of the other eigenvalue equation. Hence, these equations are
coupled and have to be solved using an iterative procedure.

To evaluate the effective potentials in Equations 2.45 and 2.46,
a zero-order set of modal wavefunctions ϕ0

l (Q1) and φ0
m(Q2) is used.

The eigenvalue equations are solved, as a result new modal eigenfunc-
tions and eigenvalues are obtained. These eigenfunctions are used to
calculate new effective potentials. The latter are used to obtain new
modal eigenfunctions and eigenvalues. Since this process is iterative,
the iterations will continue until modal wavefunctions used to obtain
the effective potentials are the same as the ones calculated by solv-
ing the eigenvalue equations using those potentials. In practice the
zeroth-order modal wavefunctions ϕ0

l (Q1) and φ0
m(Q2) are the eigen-

functions of Hamiltonians hi or the normal-mode-harmonic-oscillator
wavefunctions. Expanding the modals in a convenient basis:

ϕ0
l (Q1) =

∑
j

χj(Q1)cjl, (2.47)

where χj are the normal mode eigenfunctions. To obtain the expan-
sion coefficients one has to solve coupled equations which are similar
to the Roothaan-Hall equations in the electronic structure theory.195

The total VSCF energy for the Ψl,m(Q1, Q2) state is expressed by the
following equation:
El,m =

〈
ϕl(Q1)φm(Q2)

∣∣∣Ĥ∣∣∣ϕl(Q1)φm(Q2)
〉

=
= εl + εm − 〈ϕl(Q1)φm(Q2) |Vc(Q1, Q2)|ϕl(Q1)φm(Q2)〉 . (2.48)

For the N -dimensional case the total vibrational energy can be found
by eigenvalues summation for each of single mode equations with sub-
sequently subtracting terms that enter more than once into summa-
tion:196

E =
N∑
i=1

εi − (N − 1)
〈

N∏
i=1

ϕi(Qi) |Vc(Q)|
N∏
i=1

ϕi(Qi)
〉
, (2.49)
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where N is the number of normal coordinates.
The VSCF method is applied to polyatomic systems to determine

accurate IR transition energies.197,198 It is useful for studying large sys-
tems such as proteins199 or monosaccharides,200 also useful to study
weakly bound highly anharmonic systems where coupling between
modes plays an important role, such as XeHe2,201 I2He,201 Ar3,202

Ar13.203

Although VSCF gives a substantial improvement over the har-
monic description and brings calculated frequencies into much closer
agreement with experiment, further improvement can be reached by
introducing correlation effects among modes that are not present in
VSCF.

2.3 Vibrational MP2
For treating the correlations among modes, vibrational MP theory has
been suggested.191,196,204

As mentioned, the total VSCF energy is calculated according to
the Equation 2.49. The perturbation can be defined as:

∆V = Ĥ − Ĥ0, (2.50)

or more explicit as a full Hamiltonian Ĥ minus the sum of the single
mode SCF Hamiltonians hSCFi (Qi)197,198,203 (see Equation 2.39):

∆V (Q) = Ĥ −
N∑
i=1

hSCFi (Qi) =

= V (Q)−
N∑
i=1

V̄i(Qi). (2.51)

Using Rayleigh-Schrödinger expressions for the first-, the second-, and
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the third-order perturbation energy corrections one can obtain:196

E
(1)
k = 〈Ψk |∆V |Ψk〉 , (2.52)

E
(2)
k =

∑
n6=k

|〈Ψk |∆V |Ψn〉|2

E
(0)
k − E

(0)
n

, (2.53)

E
(3)
k =

∑
n6=k

 ∑
m6=n 6=k

〈Ψk |∆V |Ψn〉 〈Ψn |∆V |Ψm〉 〈Ψm |∆V |Ψk〉
(E(0)

k − E
(0)
n )(E(0)

k − E
(0)
m )

−
− E(1)

k

∑
n6=k

|〈Ψk |∆V |Ψn〉|2

(E(0)
k − E

(0)
n )2

, (2.54)

where Ψk, Ψn, and Ψm are entire product wavefunction, as defined
by Equation 2.34, of the reference state and the excited states n, m.
Corresponding energies E(0)

k , E(0)
n , and E(0)

m are the sums of the single
mode energies in the reference state and the excited virtual states.

Like in the electronic structure theory, the zeroth-order energy is
defined as:

E
(0)
k =

〈
Ψk

∣∣∣Ĥ0

∣∣∣Ψk

〉
. (2.55)

The sum of the zeroth- and first-order energies gives the VSCF energy:

E
(0)
k + E

(1)
k =

〈
Ψk

∣∣∣Ĥ0 + ∆V
∣∣∣Ψk

〉
= EV SCF

k . (2.56)

Thus, the real correction to the VSCF energy happens starting from
the second order:192

EV SCF
k + E

(2)
k = EVMP2

k . (2.57)

In some applications of VMP2 only coupling between pair of modes
was included in a potential197,198,203,205 while neglecting interactions
with direct three- or higher-mode coupling. With this approximation
one needs only one-dimensional integrals to calculate effective mean-
field potential (see Equation 2.36) and only two-dimensional integrals
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for VSCF (see Equation 2.49) and correlation-corrected (see Equation
2.53) energies. This approximation, nevertheless, works with very
good accuracy even in the case of highly anharmonic clusters such as
(H2O)n,205 Cl–(H2O)n,198 H2O−CH3OH.198

For low-lying non-degenerate vibrational states the perturbation
theory exhibits rapid and effective convergence. The second-order
method is highly accurate for low-lying vibrational states, but less
so for highly-excited states.196,204

2.4 Vibrational Coupled Clusters
Vibrational CC191,206 is an example of another method where corre-
lation between vibrational modes are treated. The inherent feature
of coupled clusters methods is the exponential wavefunction ansatz
which in the case of VCC is:

|V CC〉 = exp(T̂ ) |Ψp〉 , (2.58)

where T̂ is the cluster operator, Ψp is the reference VSCF Hartree
product for the state of interest, and p = (p1, ..., pN) is a vector that
specifies the excitation level of each mode.

Within the second-quantization formalism207 Ψp can be repre-
sented as follows:

|Ψp〉 =
N∏
i=1

ai†pi |vac〉 , (2.59)

where the creation operator ai†pi creates an excitation in mode i. |vac〉
is the vacuum state.

The cluster operator T̂ contains the sum over excitations and in
general can be represented as follows:

T̂ =
∑
µ

tµτµ, (2.60)



2.4. VIBRATIONAL COUPLED CLUSTERS 53

were tµ are the cluster amplitudes, τµ are the excitation operators, cor-
responding to the µth excitation. It can be rewritten in more detailed
way as follows:206

T̂ = T̂1 + T̂2 + T̂ 3 + · · · =
N∑
i=1

∑
µi

tµiτµi , (2.61)

where T̂1 contains all one-mode excitations, T̂2 contains all two-mode
excitations and so on, i being the level of excitation. The cluster
operator is usually truncated in order to limit the number of possible
excitations.208

To obtain the VCC energy one has to insert Equation 2.58 into the
time-independent Schrödinger equation and project it with reference
state:

EV CC =
〈
Ψp

∣∣∣exp(−T̂ )H exp(T̂ )
∣∣∣Ψp

〉
=

=
〈
Ψp

∣∣∣H exp(T̂ )
∣∣∣Ψp

〉
. (2.62)

However, the most important task is to calculate the error vector eµ
which can be obtained in similar way by projecting with excited states
instead of reference |µ〉 = τµ|Ψp〉:

eµ =
〈
µ
∣∣∣exp(−T̂ )H exp(T̂ )

∣∣∣Ψp
〉

= 0. (2.63)

This set of equations has to be solved iteratively for amplitudes to be
obtained. Iterations are based on the evaluation of the error vector.
A new trial vector is generated until old one is less than a certain
error norm threshold, and the difference in energy compared to the
result of the previous iterations is less than a certain energy difference
threshold.

The VCC method is very similar to the coupled-clusters method in
the electronic structure theory.209,210 However, there are some differ-
ences due to Hamiltonian operator and due to distinguishable modes
in contrast to indistinguishable electrons.
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The energy expression obtained above corresponds to the so-called
state-specific VCC. In this approach, equations for both ground and
excited states must be solved. These states are calculated indepen-
dently, whilst the so-called response VCC208,211 needs only a ground
state to be calculated and excited states are obtained from a linear
set of eigenvalue equations which is a simpler procedure. Using this
method gives the potential of providing molecular properties in ground
and excited states. Some calculations on small molecules show that
the results of response VCC are almost identical or better to those of
state-specific VCC, but, contrarily to the latter, there is no need to
solve nonlinear equations for excited states.208 The VCC is a powerful
method to obtain accurate vibrational spectra.212–214

2.5 Numerov method
The Numerov method is a way to solve the second-order differential
equations in which the first-order term is absent:

d2y

dx2 = S(x) +Q(x)y(x), (2.64)

where S(x) and Q(x) are continuous functions on a given domain.
For the Numerov method to be applied, the differential equations

must satisfy two conditions, i.e. they must not contain first derivatives
and the equations must be linear with respect to y(x).215

The time-independent one-dimensional Schrödinger equation is as
the second-order ordinary differential equation:

d2ψ(x)
dx2 = 2m

~2 (V (x)− E)ψ(x). (2.65)

If one is requested to solve this Schrödinger equation, the solution has
to be done with the following conditions:216
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1. ψ(x)→ 0 as x→ ±∞,

2.
∫ ∞
−∞
|ψ(x)|2 dx = 1,

3. ψ(x) and ψ′(x) are continuous if V is continuous, where ψ′(x) is
the first derivative of a wavefunction ψ(x).

The first condition is a boundary condition, i. e. it specifies bounds
x ∈ (−∞,∞) while the second one is normalization condition. Thus,
the Equation 2.65 will be solved as a boundary value problem. Firstly
we need to discretize the interval with equally spaced points and step
size h. Also, the Equation 2.65 can be rewritten in a more convenient
form:

d2ψ(x)
dx2 + k2(x)ψ(x) = 0, (2.66)

where
k2(x) = 2m

~2 (E − V (x))ψ(x). (2.67)

A Taylor series for ψ(x+ h) is:

ψ(x+ h) = ψ(x) + h
dψ(x)

dx + h2

2!
d2ψ(x)

dx2 + h3

3!
d3ψ(x)

dx3 +

+ h4

4!
d4ψ(x)

dx4 + h5

5!
d5ψ(x)

dx5 +O(h6). (2.68)

Similarly

ψ(x− h) = ψ(x)− hdψ(x)
dx + h2

2!
d2ψ(x)

dx2 − h3

3!
d3ψ(x)

dx3 +

+ h4

4!
d4ψ(x)

dx4 − h5

5!
d5ψ(x)

dx5 +O(h6). (2.69)

After summing of these two equations the odd powers of h disappear:

ψ(x+h)+ψ(x−h) = 2ψ(x)+h2 d2ψ(x)
dx2 + h4

12
d4ψ(x)

dx4 +O(h6). (2.70)
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Thus, the second derivative which occurs in Schrödinger equation 2.66
can be expressed as:

d2ψ(x)
dx2 = ψ(x+ h) + ψ(x− h)− 2ψ(x)

h2 − h
2

12
d4ψ(x)

dx4 +O(h4). (2.71)

To evaluate d4ψ(x)
dx4 term one can use again Equation 2.66:

d4ψ(x)
dx4 = − d2

dx2k
2(x)ψ(x). (2.72)

If one substitutes the second and the forth derivatives in Equation
2.71 for Equations 2.66 and 2.72 respectively, the expression can be
rewritten as:

ψ(x+ h) + ψ(x− h)− 2ψ(x) + h2k2(x)ψ(x)+

+ h4

12
d2

dx2k
2(x)ψ(x) +O(h6) = 0. (2.73)

Using central difference formula, the d2

dx2k
2(x)ψ(x) term can be eval-

uated the following way:

d2

dx2k
2(x)ψ(x) = 1

h2

(
k2(x+ h)ψ(x+ h)+

+ k2(x− h)ψ(x− h)− 2k2(x)ψ(x)
)
. (2.74)

After substituting the above equation into Equation 2.73 and rear-
ranging the terms, the ψ(x+ h) is expressed as:

ψ(x+ h) =
2(1− 5

12h
2k2(x))ψ(x)

1 + 1
12h

2k2(x+ h) −

−
(1 + 1

12h
2k2(x− h))ψ(x− h)

1 + 1
12h

2k2(x+ h) +O(h6). (2.75)
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The final equation for one step can be written setting x = x0+nh = xn
and kn = k(xn):

ψn+1 =
2(1− 5

12h
2k2
n)ψn − (1 + 1

12h
2k2
n−1)ψn−1

1 + 1
12h

2k2
n+1

(2.76)

It can be seen that it is a recurrence relation connecting ψn, ψn+1 and
ψn−1. To generate entire solution two initial values of ψn at successive
points have to be known. They can be obtained using boundary con-
ditions along with the asymptotic nature of the function if the latter
is known.

The method is especially useful to solve ro-vibrational problem,
e.g. for diatomic molecules when a spherical symmetry exists. In this
case the three-dimensional Schrödinger equation, can be separated
to a radial and angular parts. The former is subsequently solved as
described above for the one-dimensional case.

Apart from one-dimensional case a generalization to two-dimen-
sional case also exists.217 The efficiency of this method was proven by
applying it to the so-called non-spherically symmetric problems.218,219

The Numerov method was employed to study the transitions of
bound states into resonances,220 finding vibrational states of such
molecules as water,221 CS,222 OF, OCl, OBr, OI,223 etc.

As one can see this method is not variational opposite to the pre-
viously described vibrational methods and following method which
deals with distributed Gaussian functions. The Numerov method is a
way to solve directly a second-order differential equation. Other non-
variational methods which are used to solve Schrödinger equation are
the simple finite difference matrices method224 and the trigonometric
splines method.225
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2.6 Distributed Gaussian functions meth-
od

The method of equally spaced real distributed Gaussians for one di-
mension as a basis in variational calculations of vibrational states
was considered by Chesick226 and Shore.224 The generalization of this
method to complex distributed Gaussians was done by Davis and
Heller.227 Another generalization to unequally spaced Gaussians was
done by Hamilton and Light.228 Their generalization provides more
flexibility to basis set parameters and shows that sometimes general-
ization to complex Gaussians is unnecessary.

The Gaussian basis functions in one-dimensional case are expressed
by the following equation:1

φi(x) = exp
(
−Ai(x− xi)2

)
, (2.77)

where xi is the center of ith Gaussian and Ai is an exponential param-
eter. The latter can be a constant or can depend on interior points as
follows:

Ai = 4c2

(xi+1 − xi−1)2 . (2.78)

c is a “free” parameter typically in the range 0.5–1.1.
If the Hamiltonian has the form:

Ĥ(x) = −1
2

d2

dx2 + V (x), (2.79)

and if the potential V (x) is represented as the polynomial ∑M
n=0 x

n,
the eigenvalues and eigenfunctions can be obtained as follows:

1In the original paper of Hamilton and Light, normalized distributed Gaussians
were employed. Here we give our own derivation using unnormalized Gaussians.
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◦ Evaluate Hamiltonian Ĥ and overlap matrix S in this basis:

Vij =
∫
φiV (x)φj dx =

M∑
n=0

∫
φix

nφj dx, (2.80)

V
(0)
ij = Sij =

∫
φiφj dx =

√
π

2ζ exp
(
−ζ (xi − xj)2

2

)
, (2.81)

V
(1)
ij =

∫
φixφj dx = xi + xj

2 Sij, (2.82)

V
(n+2)
ij =

∫
φix

n+2φj dx = n+ 1
4ζ V

(n)
ij + xi + xj

2 V
(n+1)
ij , (2.83)

Hij = Tij + Vij, (2.84)

Tij = −1
2

∫
φi

d2

dx2φj dx =

= ζ

(
1
2 −

ζ

2(xi − xj)2
)
Sij. (2.85)

Here Sij, Hij, Tij, Vij are overlap, Hamiltonian, kinetic- and
potential-energy matrix elements respectively. Ai is a constant,
Ai = ζ

◦ Solve the generalized eigenvalue problem:

HC = SCE. (2.86)

It was shown that even for highly anharmonic potentials this ba-
sis is flexible and efficient. There are several advantages of using real
Gaussians, among them a reduction of basis set parameters and ef-
ficient evaluation of matrix elements. The latter can be very easy
even for multidimensional systems. Also, the remarkable utilities are
simplicity of choice of basis parameters, accuracy of results for given
basis set sizes, stability of results with respect to variation of basis set
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parameters and flexibility of basis to produce excellent results for arbi-
trary potentials.228 This method has a wide field of applications.229–232

As an alternative to the distributed Gaussians one can use har-
monic oscillator basis,233 cubic-spline basis234 or sine basis.235



Chapter 3

Objectives

The main objective of this thesis is to deeply understand the pro-
ton dynamics in proton sponge cations as well as hydride dynam-
ics in organometallic complexes with Si···H interactions by solving
three-dimensional vibrational Schrödinger equation. Although many
workers provided one- and two-dimensional solution of the vibrational
Schrödinger equation for proton sponges and similar systems, there
have been no studies giving a three-dimensional solution. Nor were
there works on the dynamics of organometallic complexes with Si···H
interactions.

Since it is of importance to reproduce well N−H and Si−H dis-
tances in our systems, a careful choice of a method is required. Thus,
our first goal is to find a density functional with adequate performance
for N−H as well as for Si−H distances. To solve the three-dimensional
vibrational Schrödinger equation for such systems, the corresponding
model Hamiltonian must be derived. Subsequently, working formu-
lae for the Hamiltonian matrix elements must be deduced and im-
plemented into a computer program. Jacobi coordinates is a good
choice to use for constructing kinetic and potential energy matrix el-
ements. Thus, the second goal is to derive Jacobi coordinates for our
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three-dimensional case.
To be able to solve the vibrational problem we need the potential

energy surface. To have an analytic representation of it, we performed
fitting using the linear least-squares method. Hence, our third aim
is to derive formulae for three-dimensional linear least-squares fitting,
to build the three-dimensional PES and to perform a linear squares
fitting.

Distributed Gaussians will be used as a basis, since it allows an
efficient evaluation of matrix elements. Subsequently, analytical for-
mulae for kinetic and potential energy matrix elements of Hamiltonian
have to be derived in this basis. This is the fourth goal of the thesis.
Firstly, we solve the one-dimensional vibrational Schrödinger equation.
Then, one-dimensional eigenfunctions, which are the solution of the
one-dimensional problem, are used as a basis for the three-dimensional
problem. Those solutions are employed to analyze the vibrational fre-
quencies, wavefunctions and to characterize the hydrogen motion in
proton sponge cations and organometallic complexes. We also want
to analyze an influence of vibrations on J(Si−H) spin-spin coupling
constants.

Another principal objective is to shed light on whether the Si···H
interactions are present in bis(silyl)bis(hydride) Co(V) and Ir(V) com-
plexes. Since Co(V) organometallic complexes are quite rare (only a
few of them were obtained and isolated experimentally), it would be
interesting to get insight into such complexes. Our first aim is to
find a density functional with appropriate performance for Si−H dis-
tances, since it is also important to reproduce well Si−H distances
in bis(silyl)bis(hydride) complexes. The second aim is to analyze the
presence of Si···H interactions based on calculated Wiberg bond indices
and J(Si−H) spin-spin coupling constants.



Chapter 4

Results and discussion

This Chapter deals with all necessary derivations for our method and
with results obtained by it. The derivations are represented in the
first four Sections. The one-dimensional Hamiltonian matrix elements
are derived in Section 4.2, and that for three dimensions are given
in Section 4.3. The derivation of the working equations for three-
dimensional case of linear least-squares method is given in Section
4.4. The further three parts summarize the most important results
obtained in this thesis. More details can be found in Appendices
A, B, and C. The computational details are given in corresponding
Appendices as well.

4.1 Jacobi coordinates for triatomic sys-
tem

As the proton transfer in proton sponge cations is usually coupled to
the N−N motion, a single proton transfer coordinate is not sufficient to
adequately describe the system. Therefore, the N−N coordinate must
be also taken into account. Further improvement can be achieved
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by including the proton coordinate perpendicular to the N−N vector.
One can expect that these three coordinates reasonably describe the
hydrogen motion in proton sponge cations.

Similarly, the hydride transfer in organometallic complexes can be
coupled to the Si−Si motion, and a single hydrogen transfer coordinate
is not sufficient. Thus, the Si−Si and the M−H coordinates must be
also taken into account. These three coordinates, as in the case with
proton sponges, are expected to be a reasonable description of the
hydrogen motion in organometallic complexes.

The choice of the coordinates for constructing the PES was dictated
by the following considerations. The X and Y coordinates describe
the deviation of the proton from the midpoint of the N−N vector. In
particular, the X coordinate indicates the shift along the N−N vector,
while the Y coordinate is perpendicular to the N−N vector. The N···N
distance is adopted as Z coordinate. The advantages of this choice of
the coordinate system become clear if we consider a fictitious triatomic
system that consists of three particles 1, 2, and 3 with masses M , m,
and M , correspondingly (see Figure 4.1). The kinetic energy operator

1 3

2 X

Y

Z

Figure 4.1: Three atomic coordinate system used to build Jacobi
coordinates (see text for details).
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for this system can be written in Cartesian coordinates as follows:

T̂ = − 1
2M∇

2
1 −

1
2m∇

2
2 −

1
2M∇

2
3 = − 1

2M
∂2

∂x2
1
− 1

2M
∂2

∂y2
1
− 1

2M
∂2

∂z2
1
−

− 1
2m

∂2

∂x2
2
− 1

2m
∂2

∂y2
2
− 1

2m
∂2

∂z2
2
− 1

2M
∂2

∂x2
3
− 1

2M
∂2

∂y2
3
− 1

2M
∂2

∂z2
3
.

(4.1)

The Jacobi coordinates for this system will contain the center-of-mass
coordinates:

Rcm = Mr1 +mr2 +Mr3

2M +m
, (4.2)

as well as the following coordinates (in vector notations):

R1 = r2 −
1
2 (r1 + r3) , (4.3)

R2 = r3 − r1. (4.4)

If the particles 1 and 2 are only allowed to move along the x axis,
and the particle 3 only along the x and y axes, the following three
coordinates can be used:

X = x2 −
1
2 (x1 + x3) , (4.5)

Y = y2 − y0 where y0 = 1
2 (y1 + y3) is a constant, (4.6)

Z = x3 − x1. (4.7)

If particles 1 and 3 are nitrogen atoms and particle 2 is a hydro-
gen atom, then the set of Jacobi coordinates for this system can be
rewritten, excluding the coordinates of the center of mass, as follows:

X = xH −
1
2(xN1 + xN2), (4.8)
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Y = yH −
1
2(yN1 + yN2) = yH − y0, (4.9)

Z = xN1 − xN2 . (4.10)

The kinetic energy operator in the Jacobi coordinates is expressed as
follows:

T̂ = − 1
2µ1

∂2

∂X2 −
1

2µ2

∂2

∂Y 2 −
1

2µ3

∂2

∂Z2 , (4.11)

where the reduced masses µ1, µ2, µ3 are:

µ1 = µ2 = 2Mm

2M +m
, (4.12)

µ3 = M/2. (4.13)

We take advantage of the fact that the proton sponge cations in ques-
tion are symmetric and both nitrogen atoms can be assigned the same
masses. As a consequence, the kinetic energy operator is diagonal; oth-
erwise, the equations (4.8)–(4.10) would not have given Jacobi coor-
dinates, and the kinetic energy expression would have contained cross
terms (mixed derivatives). For our calculations, we used the values
of the reduced masses obtained from harmonic analysis. The coor-
dinate system used for the bis(silyl)hydride complexes is completely
analogous.

4.2 One-dimensional Hamiltonian matrix
elements

If we approximate the potential as a polynomial:

V (x) =
M∑
m=0

Amx
m, (4.14)
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where Am are coefficients, then the n-th order term of the ij-th po-
tential matrix element in a basis of distributed Gaussian functions is
as follows:

〈i|xn|j〉 = In(xi, xj, ζ) =
∞∫
−∞

xne−ζ(x−xi)
2
e−ζ(x−xj)

2
dx =

= e−ζ
(xi−xj)2

2

∞∫
−∞

xne
−2ζ
(
x−

xi+xj
2

)2

dx, (4.15)

where ζ is a constant, xi and xj are centers of ith and jth Gaussians,
respectively. Similarly:

In+1(xi, xj, ζ) = e−ζ
(xi−xj)2

2

∞∫
−∞

xn+1e
−2ζ
(
x−

xi+xj
2

)2

dx,

In+2(xi, xj, ζ) = e−ζ
(xi−xj)2

2

∞∫
−∞

xn+2e
−2ζ
(
x−

xi+xj
2

)2

dx. (4.16)

The value of integral In is:

In = e−ζ
(xi−xj)2

2

∞∫
−∞

xne
−2ζ
(
x−

xi+xj
2

)2

dx =

= e−ζ
(xi−xj)2

2

n+ 1

∞∫
−∞

e
−2ζ
(
x−

xi+xj
2

)2

d
(
xn+1

)
=

(4.17)
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= 4ζe−ζ
(xi−xj)2

2

n+ 1

∞∫
−∞

xn+1
(
x− xi + xj

2

)
e
−2ζ
(
x−

xi+xj
2

)2

dx =

= 4ζe−ζ
(xi−xj)2

2

n+ 1

∞∫
−∞

xn+2e
−2ζ
(
x−

xi+xj
2

)2

dx−

− 2 (xi + xj) ζe−ζ
(xi−xj)2

2

n+ 1

∞∫
−∞

xn+1e
−2ζ
(
x−

xi+xj
2

)2

dx =

= 4ζ
n+ 1In+2 −

2 (xi + xj) ζ
n+ 1 In+1. (4.18)

The integral In+2 is expressed from Equation 4.18 as follows:

In+2 = n+ 1
4ζ In + xi + xj

2 In+1. (4.19)

Thus, (n + 2)th order term of the ij-th potential matrix element is
calculated from In and In+1 by a recurrence relation. To generate the
solution two initial values have to be known. These initial values are:

I0 =
√
π

2ζ e
−ζ

(xi−xj)2

2 , (4.20)

I1 = 1
2

√
π

2ζ (xi + xj) e−ζ
(xi−xj)2

2 = xi + xj
2 I0. (4.21)

Obviously the zeroth order term I0 is identical to the ij-th overlap
matrix element.
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Kinetic energy matrix elements are calculated as follows:

T (xi, xj, ζ) =
∞∫
−∞

e−ζ(x−xi)
2
(
−1

2d
2/dx2

)
e−ζ(x−xj)

2
dx =

= −1
2

∞∫
−∞

e−ζ(x−xi)
2 (
e−ζ(x−xj)

2)′′
dx =

= −ζ
∞∫
−∞

e−ζ(x−xi)
2 (2ζ(x− xj)2 − 1

)
e−ζ(x−xj)

2
dx =

= ζ

(
1
2 −

ζ

2 (xi − xj)2
)
I0. (4.22)

Thus, kinetic energy matrix elements are calculated through the over-
lap matrix elements.

4.3 Three-dimensional Hamiltonian ma-
trix elements

Let χµ(x), κλ(y), θρ(z) be one-dimensional Gaussian basis functions
centered at xµ on the X axis, at yλ on the Y axis, and at zρ on the Z
axis, respectively:1

χµ(x) = e−ζ(x−xµ)2
, (4.23)

κλ(y) = e−ζ(y−yλ)2
, (4.24)

θρ(z) = e−ζ(z−zρ)2
. (4.25)

1The derivation for three-dimensional case is based on two-dimensional equa-
tions derived by Dr. S. F. Vyboishchikov.
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In our case the three-dimensional Hamiltonian can be written as fol-
lows:

Ĥ = T̂x + T̂y + T̂z + V (x, y, z) = − 1
2µ1

∂2

∂x2 −
1

2µ2

∂2

∂y2−

− 1
2µ3

∂2

∂z2 +
I∑
i=0

J∑
j=0

K∑
k=0

Aijkx
iyjzk. (4.26)

Here the first three terms correspond to the one-dimensional kinetic
energy operators and µi are the corresponding reduced masses. We
partition this Hamiltonian as follows:

Ĥ = T̂x + T̂y + T̂z +
I∑
i=0

J∑
j=0

K∑
k=0

Aijkx
iyjzk = T̂x + T̂y + T̂z +

I∑
i=0

Ai00x
i+

+
J∑
j=1

A0j0y
j +

K∑
k=1

A00kz
k +

J∑
j=1

I∑
i=1

Aij0x
iyj +

K∑
k=1

J∑
j=1

A0jky
jzk+

+
K∑
k=1

I∑
i=1

Ai0kx
izk +

K∑
k=1

J∑
j=1

I∑
i=1

Aijkx
iyjzk =

(
T̂x +

I∑
i=0

Ai00x
i

)
+

+
T̂y +

J∑
j=1

A0j0y
j

+
(
T̂z +

K∑
k=1

A00kz
k

)
+

J∑
j=1

I∑
i=1

Aij0x
iyj+

+
K∑
k=1

J∑
j=1

A0jky
jzk +

K∑
k=1

I∑
i=1

Ai0kx
izk +

K∑
k=1

J∑
j=1

I∑
i=1

Aijkx
iyjzk = Ĥx+

+ Ĥy + Ĥz + Vxy(x, y) + Vyz(y, z) + Vxz(x, z) + Vxyz(x, y, z).
(4.27)

Thus, the three-dimensional Hamiltonian is a sum of the one-dimen-
sional Hamiltonians plus coupling terms Vxy(x, y), Vyz(y, z), Vxz(x, z),
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and Vxyz(x, y, z):

Ĥx =
(
T̂x +

I∑
i=0

Ai00x
i

)
, (4.28)

Ĥy =
T̂y +

J∑
j=1

A0j0y
j

 , (4.29)

Ĥz =
(
T̂z +

K∑
k=1

A00kz
k

)
, (4.30)

Vxy(x, y) =
J∑
j=1

I∑
i=1

Aij0x
iyj, (4.31)

Vyz(y, z) =
K∑
k=1

J∑
j=1

A0jky
jzk, (4.32)

Vxz(x, z) =
K∑
k=1

I∑
i=1

Ai0kx
izk, (4.33)

Vxyz(x, y, z) =
K∑
k=1

J∑
j=1

I∑
i=1

Aijkx
iyjzk. (4.34)

Now we determine the one-dimensional eigenfunctions of the op-
erators Ĥx, Ĥy and Ĥz in the basis {χµ(x)}, {κλ(y)} and {θρ(z)}
correspondingly.

The eigenfunctions of Ĥx are as follows:

Fi(x) =
∑
µ

Ciµχµ(x). (4.35)

The corresponding energy eigenvalues are Ex
i .
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Similarly for eigenfunctions of Ĥy and Ĥz:

Gj(y) =
∑
λ

Kjλκλ(y), (4.36)

Qu(z) =
∑
ρ

Puρθρ(z). (4.37)

The corresponding energy eigenvalues are Ey
j and Ez

u.
We construct the basis set for the three-dimensional problem from

all possible products of the lowest one-dimensional eigenfunctions Fi(x),
Gj(y) and Qu(z):

Fi(x)Gj(y)Qu(z) =
µmax∑
µ

λmax∑
λ

ρmax∑
ρ

CiµKjλPuρe
−ζ((x−xµ)2+(y−yλ)2+(z−zρ)2).

(4.38)
The matrix elements between the new three-dimensional basis func-
tions are evaluated as follows:
Overlap matrix will be unit matrix:

〈Fi(x)Gj(y)Qu(z)|Fk(x)Gl(y)Qs(z)〉 =
= 〈Fi(x)|Fk(x)〉 〈Gj(y)|Gl(y)〉 〈Qu(z)|Qs(z)〉 = δikδjlδus, (4.39)

due to the orthogonality of one-dimensional eigenfunctions:

〈Fi(x)|Fk(x)〉 = δik, (4.40)
〈Gj(y)|Gl(y)〉 = δjl, (4.41)
〈Qu(z)|Qs(z)〉 = δus. (4.42)

Hamiltonian matrix elements
〈
Fi(x)Gj(y)Qu(z)

∣∣∣Ĥ∣∣∣Fk(x)Gl(y)Qs(z)
〉
:〈

Fi(x)
∣∣∣Ĥx

∣∣∣Fk(x)
〉
〈Gj(y)|Gl(y)〉 〈Qu(z)|Qs(z)〉 = δjlδusE

x
i δik, (4.43)

〈Fi(x)|Fk(x)〉
〈
Gj(y)

∣∣∣Ĥy

∣∣∣Gl(y)
〉
〈Qu(z)|Qs(z)〉 = δikδusE

y
j δjl, (4.44)

〈Fi(x)|Fk(x)〉 〈Gj(y)|Gl(y)〉
〈
Qu(z)

∣∣∣Ĥz

∣∣∣Qs(z)
〉

= δikδjlE
z
uδus. (4.45)
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The coupling terms are evaluated as follows:

〈Fi(x)Gj(y) |Vxy(x, y)|Fk(x)Gl(y)〉 〈Qu(z)|Qs(z)〉 =

= δus
P∑
p=1

N∑
n=1

Anp0 〈Fi(x) |xn|Fk(x)〉 〈Gj(y) |yp|Gl(y)〉 (4.46)

〈Gj(y)Qu(z) |Vyz(y, z)|Gl(y)Qs(z)〉 〈Fi(x)|Fk(x)〉 =

= δik
R∑
r=1

P∑
p=1

A0pr 〈Gj(y) |yp|Gl(y)〉 〈Qu(z) |zr|Qs(z)〉 (4.47)

〈Fi(x)Qu(z) |Vxz(x, z)|Fk(x)Qs(z)〉 〈Gj(y)|Gl(y)〉 =

= δjl
R∑
r=1

N∑
n=1

An0r 〈Fi(x) |xn|Fk(x)〉 〈Qu(z) |zr|Qs(z)〉 (4.48)

〈Fi(x)Gj(y)Qu(z) |Vxyz(x, y, z)|Fk(x)Gl(y)Qs(z)〉 =

=
R∑
r=1

P∑
p=1

N∑
n=1

Anpr 〈Fi(x) |xn|Fk(x)〉 〈Gj(y) |yp|Gl(y)〉 〈Qu(z) |zr|Qs(z)〉

(4.49)

〈Fi(x) |xn|Fk(x)〉, 〈Gj(y) |yp|Gl(y)〉 and 〈Qu(z) |zr|Qs(z)〉 are the po-
tential energy matrix elements – must be obtained previously by means
of matrix transformations:

〈Fi(x) |xn|Fk(x)〉 =
(
CX(n)C+

)
ik
, (4.50)

〈Gj(y) |yp|Gl(y)〉 =
(
KY(p)K+

)
jl
, (4.51)

〈Qu(z) |zr|Qs(z)〉 =
(
PZ(r)P+

)
us
, (4.52)

where C, K, P are the matrices of coefficients, and X(n), Y(p), Z(r)

are the matrices that contain terms of one-dimensional potentials for
x, y, and z at different powers n.

Within the method we used, first, three one-dimensional equations
were separately solved with respect to each of the coordinates X, Y , Z.
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Subsequently, all possible products of the lowest 12 one-dimensional
eigenfunctions (i.e., a total of 123 = 1728 three-dimensional func-
tions) were used as a basis for the three-dimensional problem. All
matrix elements were evaluated using analytical formulae given above.
Consequently, a full Hamiltonian diagonalization using the standard
Householder method was performed. Test calculations indicate that
this approach yields a converged (i.e., nearly exact, within the given
potential) solution of the three-dimensional Schrödinger equation.

4.4 Three-dimensional linear least-squares
method

Although the potential energy surface is generated point by point, a
representation by an analytical formula is preferential when used to
solve the vibrational Schrödinger equation. The simplest and efficient
way to do this is to use a polynomial function.

Usually, the higher order of polynomial is, the more exactly it
describes the behavior of a real potential energy surface. Polynomial
function through its cross-terms takes into account a coupling between
various modes which is important for polyatomic molecules. It can be
differentiated very easy and this plays significant role for fitting using
for example linear least-squares method.

In spite of a large amount of a literature dedicated to the linear
least-squares method, no explicit working formulae were found in the
literature that would describe polynomial least-square fitting in several
dimensions. Below we present our own derivation.

Let there be N energy points on a three-dimensional potential
energy surface En(Xn, Yn, Zn), 1 6 n 6 N . Our potential energy
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surface is represented as polynomial:

V (X, Y, Z) =
I∑
i=0

J∑
j=0

K∑
k=0

AijkX
iY jZk, (4.53)

where Aijk are coefficients to be fitted.
The least squares method is based on the idea that the best-fit

function is the one minimizing the (possibly weighted) sum of the
squared deviations from a given set of data. Thus, the sum of weighted
squared deviations is:

S(Aijk) =
N∑
n=1

ωn (V (Xn, Yn, Zn)− En)2 , (4.54)

or

S(Aijk) =
N∑
n=1

ωn

 I∑
i=0

J∑
j=0

K∑
k=0

AijkX
i
nY

j
nZ

k
n − En

2

, (4.55)

where ωn is the weighting factor of the n-th point. Then, the mini-
mization of S(Aijk;Xn, Yn, Zn) with respect to the coefficients Aijk:

∀ i, j, k ∂S

∂Aijk
= 0. (4.56)

Evaluation of these derivatives yields:

∂S

∂Aabc
= 2

M∑
n=1

ωn (V (Xn, Yn, Zn)− En) ∂V (Xn, Yn, Zn)
∂Aabc

. (4.57)

Using equation 4.53 and keeping in mind that the differentiation with
respect to Aabc leaves only term where i = a, j = b, k = c, we express
the derivative on the right-hand side of equation 4.57 as follows:

∂V (Xn, Yn, Zn)
∂Aabc

= ∂

∂Aabc

I∑
i=0

J∑
j=0

K∑
k=0

AijkX
i
nY

j
nZ

k
n = Xa

nY
b
nZ

c
n. (4.58)
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Inserting the equation 4.58 into the equation 4.57, we obtain:

∂S

∂Aabc
= 2

M∑
n=1

ωn

 I∑
i=0

J∑
j=0

K∑
k=0

AijkX
i
nY

j
nZ

k
n − En

Xa
nY

b
nZ

c
n, (4.59)

and after simplification:

2
M∑
n=1

ωn

 I∑
i=0

J∑
j=0

K∑
k=0

AijkX
i+a
n Y j+b

n Zk+c
n − EnXa

nY
b
nZ

c
n

 = 0, (4.60)

or
N∑
n=1

ωn
I∑
i=0

J∑
j=0

K∑
k=0

AijkX
i+a
n Y j+b

n Zk+c
n =

N∑
n=1

ωnEnX
a
nY

b
nZ

c
n. (4.61)

Finally, the coefficients Aijk were found by solving the resulting sys-
tem of (I + 1)(J + 1)(K + 1) linear equations by the standard Gauss
elimination method.

4.5 Hydrogen motion in proton sponge
cations: A theoretical study

Our main purpose is to analyze the vibrational motion of proton in
proton sponge cations by numerically solving the three-dimensional
vibrational Schrödinger equation. To distinguish between three dif-
ferent vibrational patterns possible in proton sponges (see page 12),
eight different proton sponge cations were analyzed (see Figure 4.2).
These cations, with the exception of PS7, exhibit crystallographically
symmetric NHN arrangement according to X-ray data of their salts.
Four of them, PS1, PS4, PS6, and PS7, which represent variety
of proton transfer barriers, were chosen for solving three-dimensional
vibrational Schrödinger equation. The wavefunction will give us in-
formation about anharmonicity of the proton motion as well as about
the coupling between the coordinates.



4.5. HYDROGEN MOTION IN PS CATIONS 77
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Figure 4.2: Proton sponges analyzed for possible vibrational pat-
terns. (a) PS1; (b) PS2; (c) PS3 (X=Se); PS4 (X=S); PS5
(X=CH2); (d) PS6; (e) PS7; (f) PS8.
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4.5.1 Three-dimensional vibrational frequencies

As a result of solving the three-dimensional vibrational Schrödinger
equation anharmonic frequencies were obtained. The results are given
in the penultimate column of Table 4.1. For a single-well potential
of cation PS1, the anharmonic ν(Hx) is more than two times higher
than the harmonic value. This result is valuable for us as it allows
for a direct comparison with an experiment. Our result of 661 cm−1

is in fair agreement with the experimental value of 610 cm−1,27 thus
demonstrating that the approximations we made are reasonable. The
calculated isotopic frequency ratio for PS1, ν(Hx)/ν(Dx) = 1.54, also
agrees well with an experimental value of 1.60.27 Values larger than√

2 are typical of strong short hydrogen bonds with a barrier-free po-
tential.236,237

For cation PS4, which has a double-well potential with an ex-
tremely low barrier, the anharmonic ν(Hx) frequency is very close to
that for PS1, although the corresponding harmonic frequencies differ
dramatically. This is easily explicable by the fact that the width of the
PES is rather similar for both systems. A tiny “bump” on the PES
of PS4 does not affect significantly the global proton motion, while
the local potential curvature at the minimum is altered substantially.
In the same manner, one can explain why the anharmonic frequency
for PS6 is almost an order of magnitude lower than the harmonic
one. In this case, the barrier is already significant, which increases the
potential curvature at the minima and thus the harmonic frequency,
whereas the anharmonic proton motion is still substantially delocal-
ized (vide infra) and determined by the global potential width. Cation
PS7 has the highest barrier among these four cations studied. The
harmonic frequency is slightly lower than the anharmonic one.

For the proton motion perpendicular to the N−N vector (ν(Hy)
values in Table 4.1), the deviation of harmonic values from the anhar-
monic ones is less pronounced than for the ν(Hx) frequencies, but is
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up to 400 cm−1 for PS6-PS7. Finally, for the nitrogen motion (the
ν(NN) rows in Table 4.1) the harmonic frequencies also deviate from
the anharmonic ones, but exhibit the trend (PS7>PS6>PS4>PS1).

Comparison of the results obtained using the scaled PES for PS6
with the corresponding unscaled 2 one PS6pbe (see Figure 4.4) show
that ν(Hx) frequency is quite close to that obtained for PS6, while
ν(Hy) and ν(NN) are significantly affected by the scaling. This is a
clear indication of a large coupling between the H and N−N vibrations.

Table 4.1 also includes the uncoupled frequency values (1D). They
were obtained by solving the one-dimensional Schrödinger equation in
the uncoupled part of the three-dimensional potential, which is a pre-
liminary part of our computational algorithm. The comparison of the
coupled (3D) and uncoupled (1D) values demonstrates a substantial
difference between them in all cases. Particularly pronounced is the
deviation in the case of ν(Hx) for PS7, where the uncoupled value is
dramatically underestimated. This emphasizes the coupling between
X and Z coordinates and the importance of the three-dimensional
treatment for the systems under study.

4.5.2 Three-dimensional vibrational wavefunctions
The other result of solving the three-dimensional vibrational Schrödin-
ger equation is the three-dimensional vibrational wavefunctions which
provide the information regarding the hydrogen motion in the proton
sponges. Since it is impractical to plot a three-dimensional wavefunc-
tion, two-dimensional probability densities ρ(X,Z), defined by Equa-

2Test of various density functionals revealed that PBE reproduces well the PES
obtained by MP2. However, it still yields some errors in the barrier height. To
cope with this, we multiplied the fitted PES for PS6 and PS7 by a factor equal
to the ratio of the MP2 barrier to the PBE barrier, R = ∆E(MP2)/∆E(PBE).
The PBE surfaces modified in this way have barriers equal to those obtained at
the MP2 level.
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Table 4.1: Fundamental frequencies (in cm−1) obtained by har-
monic analysis, by solving the three-dimensional vibrational Schrödin-
ger equation (3D), and by solving the one-dimensional Schrödinger
equation for the one-dimensional part of the potential without tak-
ing into account the coupling (1D). ν(Hx), ν(Hy) are the vibrational
frequencies of hydrogen; ν(NN) is the frequency of nitrogen-nitrogen
vibrations. ∆E is the proton transfer barrier (in kcal·mol−1). ∠NHN
is the NHN angle in the equilibrium geometry(in ◦).

Cation Vibration Harm. Anharm. freq. ∆E ∠NHNfreq. 1D 3D

PS1

ν(Hx) 289 887 661
0 164.2ν(Hy) 1763 1555 1435

ν(NN) 719 983 885

PS4

ν(Hx) 1020 1277 880
0.09 175.9ν(Hy) 1719 2061 1957

ν(NN) 698 1365 1171

PS6

ν(Hx) 2540 789 308
2.38 149.0ν(Hy) 1831 2047 2268

ν(NN) 887 999 1356

PS6pbe

ν(Hx) 2540 745 337
1.59 149.0ν(Hy) 1831 1637 1869

ν(NN) 887 817 591

PS7

ν(Hx) 2612 575 1391, 2886*
3.37 139.5ν(Hy) 1857 2061 2248

ν(NN) 946 1323 1654

*Two values due to tunneling splitting; see text.
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tion 4.62, were plotted (see Figure 4.3) along with the PES contour
plots. The ρ(X,Z) value shows a probability to find the hydrogen at
the coordinate (X;Z) and any coordinate Y . The minimum energy
path on the PES and the maximum wavefunction path are also shown.

ρ(X,Z) =
∫
ρ(X, Y, Z) dY =

∫
|Ψ(X, Y, Z)|2 dY. (4.62)

Cation PS1 with a single-well PES has a single maximum of the
probability density as well. The wavefunction maximum is located
only 0.011 Å away from the PES minimum. The hydrogen is largely
delocalized between both nitrogen atoms, and the wavefunction spatial
extent (see Equation 4.63) along the X coordinate is ±0.124 Å.

X̄ =
√
〈Ψ(X, Y, Z)|X2|Ψ(X, Y, Z)〉. (4.63)

For cation PS4, the PES has two shallow minima connected by a
slightly curved minimum energy path, but the wavefunction still has a
single maximum, located 0.014 Å from the transition state. Therefore,
the likelihood of finding the proton is maximal at the symmetric con-
figuration; the proton motion is completely delocalized and, actually,
the proton does not “feel” the barrier. The spatial extent X̄ is ±0.196
Å. Interestingly, the density maximum occurs at a positive value of the
Z coordinate. Hence, in the most probable symmetric configuration
the N−N distance is larger than in the transition state. The average
N···H distance in the most probable configuration of 1.303 Å is signif-
icantly longer than the equilibrium N−H distance in the minimum of
1.190 Å.

For cation PS6, the PES has two minima separated by a non-
negligible barrier. In this system, the wavefunction has two relatively
weakly pronounced maxima. The probability density minimum value
between two maxima is 90% of the value at the maximum, which points
out to a large tunneling in this system. The wavefunction maxima are
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distant from the respective PES minima by 0.183 Å, lying closer to
the transition state than to the minima. The hydrogen motion is still
delocalized in this case. A spatial extent X̄ of ±0.199 Å manifests a
higher degree of delocalization than in cations PS1 and PS4, which
is due to the fact that the potential in PS6 is much broader than in
PS1 or PS4. The average N···H separation, i.e., the observable N−H
bond length, is 1.177 Å, which is markedly larger the equilibrium
N−H distance of 1.082 Å in the energy minimum. The maximum
wavefunction path also lies away from the minimum energy path, being
shorter and straighter than the latter. This manifest a smaller coupling
between the X and Z coordinates in the wavefunction than the PES
shape might suggest. Essentially, the proton transfer occurs largely by
means of tunneling, and contracting the N···N distance is not needed
for an efficient transfer.

The wavefunction for the unscaled system PS6pbe has two very
weakly pronounced maxima, which are 0.263 Å away from the PES
minima. The |Ψ|2 value on the maximum wavefunction path of 99%
of the value at the maximum. The maximum wavefunction path is
very short and straight, signifying that the tunneling is the principal
mechanism of the hydrogen transfer. We conclude that PS6pbe is
an intermediate case between proton sponges with a single-maximum
wavefunction and those in which the wavefunction has two maxima.

For cation PS7, which has the largest barrier among these four
cations, the wavefunction has two well separated maxima at a dis-
tance of 0.154 Å from the PES minima. The average N−H distance
(1.137 Å) is larger than the equilibrium bond length (1.084 Å). The
maximum wavefunction path between two wavefunction maxima does
not coincide with the minimum energy path either, but there is a
closer resemblance between both curves. Importantly, the maximum
wavefunction path is significantly bent, manifesting a large coupling
between the H motion (X coordinate) and N···N contraction (Z coordi-
nate). This corresponds to the classical mechanism of proton transfer,
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which involves contraction of the N···N distance to facilitate the trans-
fer. Nevertheless, the tunneling is considerable. The minimum value
of probability density on the maximum wavefunction path is 47% of
the value at the maximum indicating that the hydrogen is largely lo-
calized in the areas of the maxima.
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Figure 4.3: The PES and probability density contour plots for proton
sponge cations PS1, PS4, PS6 and PS7 in the coordinates X − Z.
The coordinates are shifted with respect to the symmetric configura-
tion: X = X0 −Xe, Z = Z0 − Ze, where (Xe;Ze) is symmetric equi-
librium configuration; (X0;Z0) is current values of coordinates. The
levels of ground-state probability density, with values from 0.1ρmax to
0.9ρmax, are given by black dotted lines. Yellow dots show the minima
of the PES. Dark blue line is the MEP, and the light blue curve is the
MWP between two maxima of the probability density.
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Figure 4.4: The PES and probability density contour plots for proton
sponge cation PS6pbe in the coordinates X − Z. Notations are the
same as in Figure 4.3
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4.6 Dynamic behavior of hydrogen in
transition metal bis(silyl)hydride
complexes

In this Section our goal is to analyze the vibrational motion of hy-
dride in organometallic complexes with Si···H interactions by numer-
ically solving the three-dimensional vibrational Schrödinger equation
as well. The model complexes for our study (see Figures 4.5 and
4.6) were chosen in anticipation that the hydrogen transfer barriers in
them could be quite different and, hence, they might exhibit diverse
dynamic behavior (see page 35). In some cases, halogen substituents
were placed on silyl in order to cause an IHI effect that could affect
the PES. To solve three-dimensional vibrational Schrödinger equation
Tp1, Tp2, Tp3, and Cp9 were chosen since they represent a various
hydride transfer barriers.

Moreover, since the vibrational motion of the hydride may affect
the observed (i.e., averaged) Si−H spin-spin coupling constants, it is
worth examining whether the effect of these vibrations on J(Si−H) is
important.

Rh
SiMe2X SiMe2X

H

SiMe3

(a)

Rh+

SiMe2X SiMe2X
H

PMe3

(b)

Rh+

SiMe3 SiMe3
H

Y

(c)

Figure 4.5: Cp bis(silyl)hydride complexes analyzed for possible vi-
brational patterns. (a) Cp1 (X=H); Cp2 (X=Cl); Cp3 (X=Br); Cp4
(X=I); (b) Cp5 (X=H); Cp6 (X= Cl); Cp7 (X=Br); Cp8 (X=I); (c)
Cp9 (Y=SiF3); Cp10 (Y=SiH3).
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Figure 4.6: Tp bis(silyl)hydride complexes analyzed for possible vi-
brational patterns. (a) Tp1; (b) Tp2; (c) Tp3.

4.6.1 Three-dimensional vibrational frequencies
The anharmonic frequencies are given in the penultimate column of
Table 4.2. In the case of complex Tp1 (double-well potential with a
low barrier), the anharmonic ν(Hx) frequency is more than 2.5 times
lower than the harmonic one. Complex Tp2 (double-well potential and
a large barrier) shows tunneling splitting of 34 cm−1, which originates
from the double-well nature of the potential. For this reason, for
complex Tp2 two anharmonic frequency values are given in Table 4.2,
both of which are lower than the harmonic frequency. Complex Tp3
exhibits a significantly different harmonic and anharmonic frequencies.
In this case the barrier is substantial, and the potential curvature at
the minima is increased, as is the harmonic frequency. At the same
time, the anharmonic hydrogen motion is still delocalized (vide infra)
and determined by the global potential width. For complex Cp9,
harmonic and anharmonic frequencies are very similar.

The frequencies for vibrations along the Y axis, which corresponds
to the Rh−H stretching, can be compared with experimental IR spec-
tra. The Rh−H stretching vibrations (ν(Hy) in Table 4.2), the anhar-
monic frequencies are close to the harmonic ones, and are within the re-
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gion typical of experimental frequencies (1951–2090 cm−1),85,153,238–241

except for Tp2 where ν(Hy) is a bit lower. This gives us certainty that
approximations incorporated in our computational models are reason-
able. For the Si−Si vibrations, ν(Si−Si) in Table 4.2, the anharmonic
frequencies significantly deviate from the harmonic ones. The differ-
ence is most pronounced for complex Cp9, 65 cm−1 (harmonic) vs 350
cm−1 (anharmonic) and caused by coupling of hydrogen transfer with
internal rotation of the Cp and SiMe3 groups.

The frequencies obtained by solving the one-dimensional Schrödin-
ger equation (1D) without taking into account the coupling between
the X, Y , and Z coordinates are referred to in Table 4.2 as uncoupled
frequencies. In the case of Tp1, Tp3, and Cp9, the coupled (3D) and
uncoupled (1D) results are quite close, indicating the lack of coupling
between hydrogen transfer and Si−Si vibrations. Hence, no coupling
is present either. For Tp2, however, the difference between 1D and
3D parts is quite large, manifesting the coupling between X and Z co-
ordinates. In mechanistic terms, the lack of coupling corresponds to a
direct hydrogen transfer without assistance of the Si−Si motion, while
when the coupling is present, the hydrogen transfer mainly occurs by
way of Si−Si contraction.

4.6.2 Three-dimensional vibrational wavefunctions
Contour plots of the three-dimensional PES and those of the two-
dimensional probability density in coordinates X, Z (see Equation
4.62) are presented in Figure 4.7. The minimum energy path on the
PES as well as the maximum wavefunction path are shown.

For complex Tp1, having a double-well potential with an extremely
low barrier (∆E = 0.03 kcal·mol−1), the ground-state vibrational
wavefunction has a single maximum corresponding to a symmetric
structure, shifted by 0.156 Å away from the PES minimum. Conse-
quently, the hydrogen is delocalized between two silicon atoms and the
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Table 4.2: Fundamental frequencies (in cm−1) obtained by har-
monic analysis, by solving the three-dimensional vibrational Schrödin-
ger equation (3D), and by solving the one-dimensional Schrödinger
equation for the one-dimensional part of the potential without tak-
ing into account the coupling (1D). ν(Hx) and ν(Hy) are hydrogen
vibrational frequencies; ν(Si − Si) is the frequency of silicon-silicon
vibrations. ∆E is the hydride transfer barrier (in kcal·mol−1).

Complex Vibration Harmonic Anharmonic frequency ∆Efrequency 1D 3D
Tp1 ν(Hx) 789 358 288

0.03ν(Hy) 2122 2032 1964
ν(Si− Si) 341 315 310

Tp2 ν(Hx) 1244 95 473, 749*
1.13ν(Hy) 1968 2032 1792

ν(Si− Si) 137 337 287

Tp3 ν(Hx) 914 153 118
0.25ν(Hy) 2122 2102 2029

ν(Si− Si) 416 240 232

Cp9 ν(Hx) 571 666 537
0.64ν(Hy) 2149 2136 2081

ν(Si− Si) 65 333 350

*Two values due to tunneling splitting; see text.
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highest likelihood of finding it is in the symmetric configuration. The
tiny barrier does not affect the hydrogen motion. The spatial extent
(see Equation 4.63) along X coordinate, which is the average deviation
of the hydrogen from the symmetric point, is ±0.185 Å.

For complex Tp2, with a double-well potential and a relatively
large barrier (∆E = 1.13 kcal·mol−1), the vibrational wavefunction
has two well separated maxima, which are shifted from the PES min-
ima by some 0.05 Å. The maximum wavefunction path does not ex-
actly coincide with the minimum energy path, the former being less
bent. Therefore, the coupling between the H motion (X coordinate)
and Si−Si motion (Z coordinate) is significant, but tunneling is also
considerable in this system. It can be seen from the minimum value
of probability density on the maximum wavefunction path, which is
24% of the value at the maximum. This indicates that the hydrogen
is well localized in the areas of the potential minima.

For complex Tp3 (a double-well potential and a low barrier of 0.25
kcal·mol−1), the vibrational wavefunction has two weakly pronounced
maxima separated by 0.133 Å from the respective PES minima, ly-
ing rather close to the TS. The maximum wavefunction path in this
case is a virtually straight line that lies very close to the minimum
energy path which is also scarcely bent. This shows that in this case
no Si−Si motion is necessary to effect the hydrogen transfer. The
minimum value of the probability density on the maximum wavefunc-
tion path is 98% of its value at the maximum. Thus, the predominant
transfer mechanism is the tunneling. The hydrogen motion is delocal-
ized and the spatial extent X̄ = ±0.214 Å is larger than that of Tp1,
showing larger degree of delocalizaiton. We conclude that Tp3 is an
intermediate case between one- and two-maxima wavefunctions.

For complex Cp9 (a double-well potential and an intermediate
barrier of 0.64 kcal·mol−1) the vibrational wavefunction has a single
maximum corresponding to a symmetric structure, similarly to com-
plex Tp1. This maximum is located 0.283 Å from the PES minimum.
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Despite a far larger barrier compared to complex Tp1, the hydrogen is
delocalized, with a peak of probability density in the symmetric con-
figuration. This can be accounted for by proximity of the two minima
on the PES which are separated just by 0.28 Å. It can be rationalized
in terms of the tunneling, which is known to depend exponentially on
barrier width, as illustrated by a relatively small wavefunction spatial
extent of ±0.116 Å.
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Figure 4.7: The PES and probability density contour plots for com-
plexes Tp1–Tp3 and Cp9 in the coordinates X − Z. Notations are
the same as in Figure 4.3.
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4.6.3 J(Si−H) coupling constants
To estimate the influence of hydride vibrations on the J(Si−H) spin-
spin coupling constant rigorously, the following integral has to be com-
puted:

〈J〉 =
∫∫∫

|Ψ(X, Y, Z)|2 J(X, Y, Z)dXdY dZ, (4.64)

where 〈J〉 is the average spin-spin coupling constant, J(X, Y, Z) is the
spin-spin coupling constant corresponding to a particular geometrical
configuration (X, Y, Z), and Ψ(X, Y, Z) is the ground-state vibrational
wavefunction. At a finite temperature, excited-state wavefunctions
would be needed as well. Since the integration itself would involve a
prior calculation of J(Si−H) at very many molecular configurations,
it is replaced by a finite summation over a limited number N of con-
figurations (see Equation 4.65).

〈J〉 =

N∑
m=1
|Ψ(Xm, Ym, Zm)|2 J(Xm, Ym, Zm)

N∑
m=1
|Ψ(Xm, Ym, Zm)|2

. (4.65)

Owing to this approximation, our results should be regarded as semi-
quantitative. The results and their comparison with “static” J(Si1−H)
and J(Si2−H) values in the minima are represented in Table 4.3. Two
versions of averaged J are given: the first one corresponds to the lo-
cal vibration around a minimum (〈J(Si1−H)〉 and 〈J(Si2−H)〉), the
second, denoted 〈J〉, to the delocalized motion or fluctional behavior.
The latter one is essentially an arithmetic mean of the former.

For complexes Tp1, and Cp9, both J(Si1–H) and J(Si2–H) are
negative, thus corroborating the existence of the double Si···H···Si in-
teraction. The same is true even for complex Tp3, where the Si2···H
separation is more than 2.3 Å and the Mayer bond order is nearly
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vanishing. However, for complex Tp2, J(Si2–H) is slightly positive,
meaning that the lack of the direct interaction, for the Si···H separa-
tion of 2.41 Å is very large in this case.

For complexes Tp1, Tp2, and Cp9, there is no large difference
between spin-spin coupling constant Jmin in the minimum and corre-
sponding averaged values 〈J(Si1−H)〉 and 〈J(Si2−H)〉. However, for
complex Tp3 taking the vibrations into account results to a nearly
double value of J(Si2–H). This is accounted for by the fact that the
vibrational wavefunction is quite large both near the minima and near
the transition state. This increases the probability of finding the hy-
dride at Si2···H distances smaller than the equilibrium one, leading to
a higher 〈J(Si2−H)〉.
〈J〉 turns out to be quite close to the arithmetic mean of the lo-

cal spin-spin coupling constants J(Si1–H) and J(Si2–H) in minima.
This provides a justification of the common procedure of computing
coupling constants for fluctional molecules as weighted average of the
values calculated in PES minima.

Table 4.3: Averaged spin-spin coupling constants 〈J〉 (in Hertz) ob-
tained taking into account vibrational motion, and static spin-spin
coupling constants in the corresponding minima Jmin.

Jmin Javeraged
J(Si1−H) J(Si2−H) 〈J(Si1−H)〉 〈J(Si2−H)〉 〈J〉

Tp1 −55.01 −13.11 −54.29 −16.42 −35.32
Tp2 −73.64 +2.09 −76.18 +0.89 −37.66
Tp3 −136.28 −15.47 −123.93 −29.44 −76.67
Cp9 −17.87 −8.32 −19.35 −8.66 −13.96
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4.7 Si· · ·H interligand interactions in co-
balt(V) and iridium(V) bis(silyl)bis-
(hydride) complexes

The principal question we address in this part is whether any kind
of Si···H interactions exists in Cp*M(H)2(SiR3)2 complexes of cobalt
and iridium. No experimental evidence for Si···H interactions was re-
ported168 for the cobalt complex Cp*Co(H)2(SiPh2H)2. In the analo-
gous rhodium Cp*Rh(H)2(SiEt3)2

151 and iridium Cp*Ir(H)2(SiEt3)2
156

complexes weak Si−H coupling was detected, although it was through-
bond Si−M−H coupling rather than a direct Si···H interaction. The
2J(Si−H) spin-spin coupling constant for the rhodium complex is 7.8
Hz. However, significant Si···H interactions are present in the related
rhodium complex CpRh(H)2(SiMe3)2

114 as it showed by quantum-
chemical calculations. Similarly, Cp(CO)Fe(H)(SiR3)2 complexes, that
used to be considered as classical, were eventually shown to have
Si···H···Si interactions.121

In order to understand in depth the bonding situation in the bis(si-
lyl)bis(hydride) complexes, we have performed quantum-chemical cal-
culations of Cp*M(H)2(SiR3)2 complexes (M = Co or Ir) with var-
ious substituents R, including σ-donating (R = Me), π-donating σ-
accepting (R = halogen) and σ-accepting (R = CF3) ones (see Figure
4.8).

Apparently, the interatomic distances alone are not sufficient to
detect or characterize a presence of a residual Si···H interactions, and,
as indicators of a possible Si···H interactions, Wiberg bond indices242

and NMR spin-spin coupling constants J(Si−H) were calculated.
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Co
SiR3 SiR3
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Figure 4.8: Cobalt and iridium candidates for Si−H interactions. (a)
SiR3 = SiPh2H (Co1); SiMe3 (Co2); SiH3 (Co3); SiF3 (Co4); SiCl3
(Co5); SiBr3 (Co6); Si(CF3)3 (Co7); (b) SiR3 = SiEt3 (Ir1); SiMe3
(Ir2); SiH3 (Ir3); SiF3 (Ir4); SiCl3 (Ir5); SiBr3 (Ir6); Si(CF3)3 (Ir7).

4.7.1 Wiberg bond indices and spin-spin coupling
constants

Generally, calculated spin-spin coupling constants reflect the same
bonding picture as the WBI, although some deviations do exist (see
Table 4.4). In Co2 and Co5 both J(Si1−H2) and J(Si2−H2) are posi-
tive, suggesting no significant bonding. For complex Co1, J(Si−H) for
Si1−H1, Si2−H1, and Si2−H2 exhibit negative values, confirming di-
rect Si···H interactions, but Si1−H2 (the longest of the four) is slightly
positive. Complex Co4, which has SiF3 ligands, exhibit rather high
negative J(Si−H), indicative of substantial direct Si···H interactions,
although the corresponding WBI are relatively low. This remarkable
increase in J(Si−H) can be accounted for by an increase in the s char-
acter of the residual Si−H bond due to Bent’s rule. In the case of
Co6 and Co7 strongly negative J(Si1−H1) and J(Si1−H2) spin-spin
coupling constants undoubtedly manifest the corresponding residual
interactions, while large positive J(Si2−H1) and J(Si2−H2) clearly
show the absent of another two interactions.
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Table 4.4: Si−H WBI and J(Si−H) spin-spin coupling constants (in
Hz) for complexes Co1–Co7. Si−H distances are given in ångströms.

Complex Distance WBI J(Si−H)

Co1 Si1−H1 2.210 0.109 -2.1
Si1−H2 2.246 0.101 6.8
Si2−H1 2.080 0.136 -5.0
Si2−H2 2.106 0.134 -13.4

Co2 Si1−H1 2.110 0.126 -3.1
Si1−H2 2.229 0.102 4.6
Si2−H1 2.110 0.126 -3.1
Si2−H2 2.229 0.102 4.6

Co3 Si1−H1 2.100 0.123 -3.5
Si1−H2 2.128 0.115 -1.5
Si2−H1 2.100 0.123 -3.5
Si2−H2 2.128 0.115 -1.5

Co4 Si1−H1 2.067 0.102 -30.8
Si1−H2 2.126 0.091 -24.3
Si2−H1 2.067 0.102 -30.8
Si2−H2 2.126 0.091 -24.3

Co5 Si1−H1 2.077 0.119 -9.5
Si1−H2 2.229 0.094 1.5
Si2−H1 2.077 0.119 -9.5
Si2−H2 2.229 0.094 1.5

Co6 Si1−H1 1.921 0.177 -42.2
Si1−H2 1.923 0.176 -42.2
Si2−H1 2.385 0.062 32.6
Si2−H2 2.378 0.063 33.0

Co7 Si1−H1 1.893 0.211 -46.0
Si1−H2 1.904 0.210 -45.0
Si2−H1 2.466 0.059 22.0
Si2−H2 2.495 0.059 21.5
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In the case of iridium complexes, the WBI is significantly lower that
for their cobalt counterparts, (0.09-0.12 for Si1,2−H1 distances, 0.10-
0.08 for Si1,2−H2 distances (see Table 4.5). Albeit quite low, the WBI
clearly correlates with Si−H distances within every given complex.
The calculated spin-spin coupling constants (Table 4.5) for complexes
Ir1–Ir3 and Ir7 are small and positive. Altogether, these data demon-
strate nonexistence of direct Si···H interactions in the above complexes.
In contrast, J(Si−H) in complexes Ir5 and Ir6 are slightly negative
pointing out a remaining very weak Si···H interaction. Complex Ir4,
having SiF3 ligands, exhibits, similarly to Co4, substantially negative
J(Si−H), in spite of low WBI and quite large interatomic separation,
which suggest a presence of some Si···H interactions.
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Table 4.5: Si−H WBI and J(Si−H) spin-spin coupling constants (in
Hz) for complexes Ir1–Ir7. Si−H distances are given in ångströms.

Complex Distance WBI J(Si−H)

Ir1 Si1−H1 2.297 0.115 1.4
Si1−H2 2.384 0.100 3.0
Si2−H1 2.297 0.115 1.4
Si2−H2 2.384 0.100 3.0

Ir2 Si1−H1 2.282 0.112 1.6
Si1−H2 2.375 0.096 3.6
Si2−H1 2.282 0.112 1.6
Si2−H2 2.375 0.096 3.6

Ir3 Si1−H1 2.285 0.111 2.3
Si1−H2 2.304 0.104 3.1
Si2−H1 2.285 0.111 2.3
Si2−H2 2.304 0.104 3.1

Ir4 Si1−H1 2.258 0.089 -15.5
Si1−H2 2.305 0.080 -11.3
Si2−H1 2.258 0.089 -15.5
Si2−H2 2.305 0.080 -11.3

Ir5 Si1−H1 2.265 0.107 -5.2
Si1−H2 2.393 0.089 -0.5
Si2−H1 2.265 0.107 -5.2
Si2−H2 2.393 0.089 -0.5

Ir6 Si1−H1 2.263 0.110 -0.7
Si1−H2 2.430 0.088 3.3
Si2−H1 2.263 0.110 -0.7
Si2−H2 2.430 0.088 3.3

Ir7 Si1−H1 2.344 0.103 0.5
Si1−H2 2.425 0.093 2.5
Si2−H1 2.323 0.109 0.0
Si2−H2 2.413 0.095 1.5
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Chapter 5

Conclusions

Here the results obtained in previous chapters are summarized:

First: The first part of this work presents a study of intramolecular
hydrogen bonds in proton sponge cations PS1–PS8. Three dif-
ferent situations were found at MP2 level: systems with a single-
well potential (cations PS1–PS2), systems with a double-well
potential and low barrier (cations PS3–PS5), and systems with
double-well potential and high barrier (cations PS6–PS8). In
general, short N···N distances and long N−H distances corre-
spond to single-well or low-barrier potential.
A number of density functionals were tested and the results
were compared with those obtained by MP2, which is considered
as a reference method. These tests demonstrate that B3LYP,
MPWB1K, and MPW1B95 functionals tend to underestimate
the strength of the hydrogen bonds, consequently giving shorter
N-H bonds and strongly overestimating the hydrogen transfer
barrier. Moreover, in some cases these functionals incorrectly
yield two-well potential. On the contrary, the PBEPBE func-
tional both performs quite well for geometries and reasonably

101
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reproduces the MP2 potential energy surface. Nevertheless, the
PBEPBE somewhat underestimates the barrier.
For the further study of the proton dynamic behavior we se-
lected one example with a single-well potential (cation PS1),
one with a small barrier (cation PS4), and two with higher bar-
riers (cations PS6 and PS7). For these four cations the three-
dimensional potential energy surfaces were constructed. The
vibrational Schrödinger equation was solved in these potentials
as well as for the model system PS6pbe. The PES is highly
anharmonic in all these cases and the harmonic analysis yields
incorrect frequencies.
The analysis of the ground-state wavefunction in these systems
allows to classify the proton sponge cations according to the
character of the hydrogen motion in them. Cations with a
single-well potential (PS1) or a very low barrier (PS4) exhibit
a single-maximum vibrational wave-function. In contrast, the
wavefunction for a system with a higher barrier, such as cation
PS7 ( ∆Ee = 3.4 kcal·mol−1) has two distinct maxima, mani-
festing localized proton motion. The borderline between proton
sponges with a single-maximum wavefunction and those with a
double maximum lies at ∆Ee barrier about 1.5 kcal·mol−1, as
illustrated by cation PS6pbe, whose wavefunction has two very
weakly pronounced maxima. Of course, this borderline is ten-
tative, as the character of the wavefunction also depends upon
the shape of the PES, in particular, upon the coupling with the
N···N coordinate. To summarize, the proton motion in cations
PS1–PS5 should be deemed delocalized, in cation PS7–PS8
localized, and in cation PS6 partly localized.
The maximum-wavefunction path is rather straight and deviates
strongly from the minimum-energy path for the cations with
delocalized proton behavior, but is substantially curved for the
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cations with localized proton, indicating strong coupling between
the H and N···N coordinates.

Second: This work demonstrates that rhodium bis(silyl)hydride com-
plexes tend to form an asymmetric arrangement of silyl and hy-
dride ligands with two different Si···H distances. Nevertheless,
in many cases the hydride ligand simultaneously interacts with
both silyls. The hydride can be transfered from one silyl to the
other, with energy barriers varying from 0 to 4 kcal·mol−1.
Various density functionals and the MP2 method yield sub-
stantially different geometries of the bis(silyl)hydride complexes.
Hence, care must be exercised when choosing a method for pro-
duction calculations. In some cases the M06L and M062X func-
tionals underestimate the Si−H distances, while TPSSh some-
times tends to overestimate them. MP2, B3LYP, and BP86 over-
estimate them in nearly all cases, whereas B3LYP in some cases
incorrectly yields an end-on η1-silyl coordination. By compar-
ison with the single-point CCSD results we conclude that the
TPSSh and M06L functionals usually perform better than the
other methods.
For the complexes under study, the hydrogen transfer barrier
varies between 0 and 3.4 kcal·mol−1. The Cp complexes typi-
cally have higher barriers than the Tp complexes. Among the
complexes with a relatively low barrier (0–1.5 kcal·mol−1), some-
what smaller values are found for complexes with a shorter Si···Si
distance. However, for the entire set of Cp and Tp complexes,
the hydrogen transfer barrier does not obviously correlate with
geometry parameters.
To study the hydrogen dynamics in the Si···H···Si fragment, four
complexes with relatively low hydrogen transfer barriers were
selected. The three-dimensional PES were constructed and the
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vibrational Schrödinger equation was solved in the resulting po-
tentials. The PES turns out to be highly anharmonic for all
these complexes, as demonstrated by much lower anharmonic
vibrational frequencies compared to those computed within the
harmonic approximation.

Based on the analysis of the ground-state vibrational wavefunc-
tions in these systems, a classification of the complexes accord-
ing to the character of the hydrogen motion can be proposed. A
single-maximum vibrational wavefunction, corresponding to hy-
drogen delocalization between both silyls, is found in complexes
with a single-well potential or with a very low barrier such as
Tp1 (∆E = 0.03 kcal·mol−1). The delocalized hydride behavior
can occur also in the case of a significant barrier, if both minima
and the transition states a located on the PES in a close proxim-
ity to each other, as is the case for the complex Cp9 (∆E = 0.64
kcal·mol−1).

On the contrary, in the systems with a relatively high barrier,
such as Tp2 (∆E = 1.13 kcal·mol−1), the hydride behaves as
a classical particle, as manifested by a wavefunction with two
well separated maxima localized near the PES minima. The
hydrogen transfer is coupled with Si−Si motion in this case.

An intermediate situation between localized and delocalized hy-
dride behavior is also possible, when the vibrational wavefunc-
tion has two weakly pronounced maxima. In this case there is
virtually no coupling between the H and Si−Si motion, with
tunneling accounting for a large part of the hydrogen transfer.
The maximum-wavefunction path is a straight line showing that
the hydrogen transfer is independent from the Si−Si distance
contraction. The example is the complex Tp3 (∆E = 0.25
kcal·mol−1).
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In the complexes Tp1, Tp3, and Cp9 both spin-spin coupling
constants J(Si1–H) and J(Si2–H) are negative, which is indica-
tive of direct simultaneous Si···H···Si interactions. Conversely,
J(Si2–H) for complex Tp2 is slightly positive indicating the ab-
sence of a Si2···H interaction. The vibrationally averaged spin-
spin coupling constants are quite close to the arithmetic mean
of J(Si1–H) and J(Si2–H), which justifies the widely used pro-
cedure of calculating 〈J〉 by averaging the corresponding values
in the minima.

Third: This work demonstrates that Cp*Co(H)2(SiR3)2 complexes
tend to form a ligand arrangement with two equivalent relatively
short Si−H distances (Si1−H1 and Si2−H1), and two other equi-
valent longer Si−H distances (Si1−H2 and Si2−H2). In other
words, both silyls are located substantially closer to one and the
same hydride.
Based on molecular structures as well as Wiberg bond indices
and J(Si−H) spin-spin coupling constants, at least two residual
Si···H interaction in Co1, Co2, Co5, Co6, Co7 and all four
Si···H interactions in Co3 and Co4 have been detected. The
Si···H interaction in the SiBr3-containing complex Co6 is quite
strong and is of IHI nature, while Co7 may be considered as com-
plex with one silyl and one “silicate” ligand [H···Si(CF3)3···H]–.
The analogous iridium complexes Cp*Ir(H)2(SiR3)2, on the con-
trary, are classical iridium(V) bis(silyl)bis(hydride) complexes
with only rudimentary Si···H interactions, if any. The SiF3-
containing complex Ir4 is an exception with noticeable (though
still weak) Si···H inter-actions.
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Abstract 

This work presents a study of intramolecular NHN hydrogen bonds in cations of the following proton 
sponges: 2,7-bis(trimethylsilyl)-1,8-bis(dimethylamino)naphthalene (1), 1,6-
diazabicyclo[4.4.4.]tetradecane (2), 1,9-bis(dimethylamino)dibenzoselenophene (3), 1,9-
bis(dimethylamino)dibenzothiophene (4), 4,5-bis(dimethylamino)fluorene (5), quino[7,8-h]quinoline 
(6) 1,2-bis(dimethylamino)benzene (7), and 1,12-bis(dimethylamino)benzo[c]phenantrene (8). Three 
different patterns were found for proton motion: systems with a single-well potential (cations 1–2), 
systems with a double-well potential and low proton transfer barrier, ΔEe (cations 3–5), and those 
with a double-well potential and a high barrier (cations 6–8). Tests of several density functionals 
indicate that the PBEPBE functional reproduces the potential-energy surface (PES) obtained at the 
MP2 level well, whereas the B3LYP, MPWB1K, and MPW1B95 functionals overestimate the barrier. 
Three-dimensional PESs were constructed and the vibrational Schrödinger equation was solved for 
selected cases of cation 1 (with a single-well potential), cation 4 (with a ΔEe value of 0.1 kcal mol−1 
at the MP2 level), and cations 6 (ΔEe=2.4 kcal mol−1) and 7 (ΔEe=3.4 kcal mol−1). The PES is highly 
anharmonic in all of these cases. The analysis of the three-dimensional ground-state vibrational 
wave function shows that the proton is delocalized in cations 1 and 4, but is rather localized around 
the energy minima for cation 7. Cation 6 is an intermediate case, with two weakly pronounced 
maxima and substantial tunneling. This allows for classification of proton sponge cations into those 
with localized and those with delocalized proton behavior, with the borderline between them at ΔEe 
values of about 1.5 kcal mol−1. 

The excited vibrational states of proton sponge cations with a low barrier can be described within 
the framework of a simple particle-in-a-box model. Each cation can be assigned an effective box 
width. 
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Abstract 

A series of rhodium complexes CpRh(SiMe2X)2(SiMe3)(H) (X = Me, Cl, Br, I), Cp1–Cp4, 
CpRh(SiMe2X)2(PMe3)(H)+ (X = Me, Cl, Br, I), Cp5–Cp8, CpRh(SiMe3)2(SiF3)(H), Cp9, 
CpRh(SiMe3)2(SiH3)(H), Cp10, TpRh(SiH3)2(SiMe3)(H), Tp1, TpRh(SiH3)2(PMe3)(H)+, Tp2, and 
TpRh(SiF3)2(PMe3)(H)+, Tp3, were studied computationally to understand the hydrogen behavior in 
the Si···H···Si moiety. The hydride ligand interacts with at least one of the silyls, and in many cases 
with both, but is located asymmetrically with regard to them, giving rise to a double-well potential 
energy surface (PES) for hydrogen motion. The hydrogen transfer barriers ΔE vary from 0.03 to 3 
kcal·mol–1. For selected complexes Tp1, Tp2, Tp3, and Cp9 the three-dimensional PESs were 
constructed and the vibrational Schrödinger equation was solved. The PES is highly anharmonic in all 
four cases. The hydrogen is delocalized between two silicons in complexes Tp1, Tp3, and Cp9, but 
localized around the energy minima in complex Tp2. Complex Tp3 is an intermediate case with a 
substantial tunneling. The delocalized behavior is pertinent to systems with ΔE < 0.25 kcal·mol–1. For 
complexes Tp1, Tp2, Tp3, and Cp9 the J(Si–H) spin–spin coupling constants were calculated taking 
into account the vibrational motion of hydride. For Tp1, Tp3, and Cp9 both J(Si1–H) and J(Si2–H) are 
negative due to simultaneous Si1···H···Si2 interactions, while for Tp2J(Si2–H) is positive, indicating a 
single Si···H interaction only. Negative J(Si–H) values were obtained even for Si···H distances as large 
as 2.3 Å (complex Tp3). A possible effect of vibrations on the J(Si–H) values is also discussed. 
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Abstract 

A series of bis(silyl)bis(hydride) cobalt complexes [Cp*Co(H)2(SiR3)2] 
(Cp*=pentamethylcyclopentadienyl; SiR3=SiPh2H, SiMe3, SiH3, SiF3, SiCl3, SiBr3, Si(CF3)3; Co1–Co7) 
as well as the analogous iridium complexes [Cp*Ir(H)2(SiR3)2] (SiR3=SiEt3, SiMe3, SiH3, SiF3, SiCl3, 
SiBr3, Si(CF3)3; Ir1–Ir7) were studied to detect possible residual Si⋅⋅⋅H interactions. Tests of several 
density functionals by comparison with coupled-cluster results indicate that the TPSSh functional 
performs better than B3LYP, BP86, M06, M06L, and PBEPBE. Based on molecular structures, as well 
as Wiberg bond indices and J(Si,H) spin–spin coupling constants as indicators of a possible Si⋅⋅⋅H 
interaction, at least two residual Si⋅⋅⋅H interactions in Co2, Co5, and all four possible Si⋅⋅⋅H 
interactions in Co3 and Co4 have been detected. Co6 and Co7 exhibit stronger Si⋅⋅⋅H bonding than 
the other complexes studied. On the contrary, the iridium complexes Ir1–Ir3 and Ir5–Ir7 are classical 
iridium(V) bis(silyl)bis(hydride) complexes with only rudimentary Si⋅⋅⋅H interactions, if any. 
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