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Abstract

The decomposition of the expectation value of the spin squared operator

for a general wave function has been carried out in the framework of the

Hilbert-space analysis. The one and two-center components fulfill all phys-

ical requirements imposed to date. An inherent ambiguity of the Hilbert-

space decomposition of a two-electron quantity is also discussed in detail.

The formalism of effective atomic densities has allowed us to derive in a

simple manner appropriate expressions for the decomposition of 〈Ŝ2〉 in the

framework of Hilbert space analysis that are consistent with Mulliken Pop-

ulation Analysis and related quantities.



1 Introduction

The concept of local spin emerges in a quite natural fashion when describing

the electronic structure of systems with diradical character such as Non-Kekulé

molecules or transition state structures of chemical reactions. Heisenberg Hamil-

tonian models also invoke the concept of local spin in order to assess the nature of

spin-spin interactions between magnetic centers of magnetic systems. Often, the

spin properties of a molecule can be characterized by the spin density. There are,

however, cases where the overall system is a singlet (where there is no spin den-

sity), but for which the existence of some local spin is assumed. In the last years

there has been a growing interest in recovering local spins from the analysis of the

wavefunction of ab initio calculations.1–15 Different schemes have been proposed

in the literature, most of which are rooted on the decomposition of the expectation

value of the spin squared operator into atomic and diatomic contributions, for both

single determinant and correlated wave functions. Because the partitioning of the

single physical quantity 〈Ŝ2〉, which in the case of singlet wavefunctions is zero,

into components is not unique, a number of physical requirements4,9,15 have been

introduced:

(i) one should get no spins whatever for the covalent systems described by a

closed shell RHF wave function using doubly filled orbitals,

(ii) if the wave function is properly dissociating, then the asymptotic values of

the atomic spins obtained for the atoms at large distances should coincide with the

corresponding values of the free atoms,
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(iii) in an open-shell system the overall 〈Ŝ2〉 does not depend on the actual

Ŝz projection of the electronic state (multiplet) considered, so one may request to

have 〈Ŝ2〉 components that do not depend on Ŝz either,

(iv) no two-center terms should appear in the case of single-electron systems

(or ROHF systems with a single unpaired electron).

In a previous paper15 we showed that the following general expression

〈Ŝ2〉 = a
∫

u(~r1)d~r1− (1−2a)
∫∫ [

Γ(~r1,~r2)− 1
2ρ

s(~r1;~r2)ρ
s(~r2;~r1)

]
d~r1d~r2

−1
2

∫∫ [
Γ(~r1,~r2;~r2,~r1)− 1

2ρ
s(~r1;~r1)ρ

s(~r2;~r2)
]

d~r1d~r2 (1)

is the natural starting point to derive atomic and diatomic components of 〈Ŝ2〉,

where a is a parameter that defines a family of different decompositions that all

satisfy requirements (i) to (iii). This equation is written in terms of the density of

effectively unpaired electrons, u(~r), defined by Takatsuka16 as

u(~r) = 2ρ(~r)−
∫

ρ(~r;~r ′)ρ(~r ′;~r)d~r ′, (2)

the spin-density matrix,

ρ
s(~r;~r ′) = ρ

α(~r;~r ′)−ρ
β (~r;~r ′), (3)

and the spin-less cumulant of the second order density matrix, Γ(~r1,~r2;~r ′1,~r
′
2),

which vanishes for single-determinant wave functions and can be defined as the
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sum of the usual (spin-dependent) cumulants as

Γ(~r1,~r2;~r ′1,~r
′
2) = ∑

σ ,σ ′
Γ

σσ ′σσ ′(~r1,~r2;~r ′1,~r
′
2) (4)

where

Γ
σσ ′σσ ′(~r1,~r2;~r ′1,~r

, ′
2 ) = ρ

σσ ′σσ ′
2 (~r1,~r2;~r ′1,~r

′
2)− (5)

ρ
σ (~r1,~r1

′)ρσ ′(~r2,~r ′2)−δσσ ′[ρ
σ (~r1,~r ′2)ρ

σ (~r2,~r ′1)].

In order to find the proper value of parameter a we introduced requirement

(iv), based upon the behaviour of single-electron systems.15 In this limiting case,

the density of distribution of the 〈Ŝ2〉 for a single electron must be 3/4 times

the electron density, 〈Ŝ2〉 = 3
4
∫

ρ(~r)d~r. For single-electron systems, or for re-

stricted open-shell descriptions with a single unpaired electron (in that case ρ(~r)

corresponds to that of the singly occupied molecular orbital) this requirement is

fulfilled if and only if one chooses a = 3/4.15

Consequently, the starting general equation to tackle a proper decomposition

of 〈Ŝ2〉 is the following:

〈Ŝ2〉 =
3
4

∫
u(~r1)d~r1 +

1
2

∫∫ [
Γ(~r1,~r2)− 1

2ρ
s(~r1;~r2)ρ

s(~r2;~r1)
]

d~r1d~r2

−1
2

∫ ∫ [
Γ(~r1,~r2;~r2,~r1)− 1

2ρ
s(~r1;~r1)ρ

s(~r2;~r2)
]

d~r1d~r2. (6)

In Ref. 15 we obtained one and two-center contributions for a general wave

function in the framework of the 3D-space analysis, i.e., for “fuzzy atoms”17 and

3



Bader’s atomic domains.18 In this paper we wish to undertake the decomposi-

tion in the context of the so-called "Hilbert-space analysis".19 The motivation

is twofold: first, aside its conceptual relevance, the Hilbert-space decomposition

does not require atomic numerical integrations, contrary to the 3D-space analysis;

thus it is exact (is free of the numerical errors of that integration). Also, the sig-

nificant reduction in the computational cost of the decomposition may be relevant

for very large systems, especially as compared to 3D-space methods with compli-

cated atomic basins of Bader’s analysis. However, there is an apparent ambiguity

in decomposing two-electron quantities in the framework of Hilbert-space anal-

ysis, which to date has not received due attention. In this paper we also wish to

analyze in more detail this problem, which is particularly relevant in the case of the

decomposition of 〈Ŝ2〉. That ambiguity will be exposed in the next section. Then,

we will briefly describe the formalism of effective atomic densities,20 which will

allow us to derive in a straightforward manner the most appropriate expressions

for the decomposition of 〈Ŝ2〉 in the framework of Hilbert space analysis. Finally,

some numerical results at correlated level will be presented and discussed.

2 Alternative summation schemes in the Hilbert-

space analysis

The decomposition of physical quantities into atomic and diatomic contributions

is rooted on the identification of an atom within the molecule. Since practical

quantum chemistry mostly uses atom-centered basis sets, the atom may be identi-
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fied with its nucleus and the subspace spawned by the set of atomic basis functions

centered on it. The simplest example of application of such Hilbert-space analysis

is Mulliken population analysis,21 perhaps the most familiar method to determine

the number of electrons associated with an atom. Mulliken’s gross population of

atom A is defined as:

NA = ∑
µ∈A

∑
ν

DµνSνµ = ∑
µ∈A

(DS)µµ , (7)

where the notation µ ∈ A indicates that the summation runs over all atomic basis

functions centered on atom A. We recall in this context that matrix DS is the proper

finite basis representation of the first-order density matrix if an overlapping basis

set (S 6= I) is used.22

In a similar manner, the Mayer-Wiberg (closed-shell for simplicity) bond or-

der,23 BAB, between atoms A and B is defined as

BAB = ∑
µ∈A

∑
σ∈B

(DS)µσ (DS)σ µ . (8)

Inspecting the expression on Eq. (7), one can see that the overlap integrals

enter it in a somewhat non-symmetric manner: one of subscript (µ) is serv-

ing for subdividing the quantity into atomic contributions, while another (ν) is

a “dummy” index, for which summation over the whole basis is performed—it

is used to form the matrix-product DS. This difference may be connected with

the fact that for overlapping basis sets matrix DS is twice the projection matrix

performing the projection of any vector d of LCAO coefficients on the subspace

5



of the occupied molecular orbitals as DSd.22 The same distinction appears also in

Eq. (8) of the Mayer-Wiberg bond order. In the case of real orbitals, one could get

exactly the same Mulliken atomic populations also in the form ∑µ∈A(SD)µµ , i.e.,

by using matrix SD which performs the analogous projection of the row-vectors

d† as d†SD. While in the first case the systematization of the terms according to

the individual atoms corresponds to the subscript coming form the “ket” part of

the overlap integral, in the second one it corresponds to the subscript coming from

its “bra” part. It seems logical to stick to one of these possibilities (we prefer the

first one), and use it in all types of analyses. Thus the splitting of the terms in

the expression of the bond order index Eq. (8) corresponds to the subscripts of the

overlap integrals coming from the “kets”.

In principle, if an expression contains products with two overlap matrices, then

a subdivision into atomic and diatomic contributions by taking one subscript from

“bra” and another from “ket” is also possible. In the case of the bond order, that

leads to a modified definition of the bond order index24 as

B ′AB = ∑
µ∈A

∑
ν∈B

(SDS)µνDνµ (9)

As the bond order is a component of the integral of the exchange density, formally

both definitions could be acceptable: they represent different decompositions of

that integral into a sum of one- and two-center contributions. However, there is

a serious argument, favoring the definition of Eq. (8). The modified definition

Eq. (9) gives results that are much less “chemical” than those given by the origi-

6



nal one: it cannot, for instance, recover the integer values for first-row diatomics

(e.g., 3 for N2) if a minimal basis set is used, as does the original definition of Eq.

(8). Another argument again such type of “bra”-“ket” mixing is the high degree

or arbitrariness that would be introduced in the case of e.g. Generalized Popu-

lation Analysis,25 typically used to detect patters of multicenter bonding, where

the expressions may contain three, four or more overlap matrices. Furthermore, it

has been shown26 that one can introduce a particular mapping between the atomic

overlap matrices of the atomic orbitals and the conventional overlap matrix, that

permits to find a one-to-one correspondence between the Hilbert-space and the

more general 3D-space analyses expressions of quantities like bond orders, atomic

valences or energy components. Such a general mapping is not possible for ex-

pressions involving subdivision of the terms according to both “bra” and“ket”

subscripts.

These considerations are of interest in the present context because in the re-

cent paper by Alcoba et al.9 a decomposition of 〈Ŝ2〉 is performed in a manner

that one index of the overlap matrix is assigned according to the term coming

from the “bra” and another coming from the “ket”. (These authors distinguish

between them by using both subscripts and superscripts, which, however, do not

represent covariant and contravariant indices.) Therefore, their decomposition is

consistent only with the use of the alternative bond order formula Eq. (9). It has

recently been discovered that this type of decomposition has also been used by

some of us7 as a results of a programming error: two subscripts have been in-

terchanged by a mistake in the treatments of the cumulants. Coincidentally, with
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the original treatment of the subscripts of the formulas of Ref. 7 one would get

completely unphysical values for the 〈Ŝ2〉. In fact, experience has shown that this

type of “interchanged” subscripts gives results much less sensitive to the choice

of parameter a. (The value a = 1/2 was used in Ref. 9, while the formulae in

Ref. 7 corresponded to a = 3/8.) We will see here that no such problems occur in

general for the case of the preferable value of a = 3/4.

3 Effective atomic density matrices formalism

The formalism of the atomic and diatomic effective densities, first introduced in

Ref. 20, is based on the exact decomposition of one- and two-electron densities

into components that can be considered their one-center and one- and two-center

contributions, respectively. These atomic and diatomic densities are identified

with the contributions of each atom and pairs of atoms to the overall density,

and can be used to derive in a common framework atomic populations, bond or-

ders, atomic valences, molecular energy components, etc. for any kind of atom in

molecule definition. In the simplest case, one can define the effective atomic con-

tributions to the electron density, ρA(~r), simply fulfilling ρ(~r) ≡ ∑
N
A ρA(~r). The

integral over the whole space of this function for atom A quite naturally yields the

electron population associated to the atom

∫
ρA(~r)d~r = NA. (10)
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The actual numerical value depends upon how ρA(~r) is defined. In the framework

of 3D-space analysis, ρA(~r) can be written in general as

ρA(~r) = wA(~r)ρ(~r) (11)

where wA is a non-negative weight function defined for each atom and each point

of the 3D space satisfying ∑A wA(~r ) = 1. The actual definition of atom in the

molecule (“fuzzy” or disjoint) is contained in the atomic weight functions.

In the case of Hilbert-space analysis, the effective atomic density can be most

suitable written in terms of the matrix elements of the LCAO density matrix as

ρA(~r) = ∑
µ∈A

∑
ν

Dµν χ
∗
ν(~r)χµ(~r) (12)

It is trivial to see that the integration of Eqn.(12) yields Mulliken’s gross popula-

tion of atom A, in accord with Eq.(7).

In a similar manner, by combining the appropriate effective atomic contribu-

tions of the first-order density matrix to build effective diatomic exchange densi-

ties:

ρ
AB
x (~r ;~r ′) =

1
2
[
ρA(~r ;~r ′)ρB(~r ′;~r)+ρB(~r ;~r ′)ρA(~r ′;~r)

]
(13)

where

ρA(~r,~r ′) = ∑
µ∈A

∑
ν

Dµν χ
∗
ν(~r)χµ(~r ′) (14)

is the atomic component of the first order spin-less density matrix ρ(~r,~r ′). One

can easily recover upon integration of Eqn. (13) the expression of Eq.(8) for the
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Mayer-Wiberg (closed-shell) bond order

∫∫
ρ

AB
x (~r,~r ′)d~rd~r ′ =

1
2 ∑

µ∈A
∑
ν

DµνSνσ ∑
σ∈B

∑
λ

Dσλ Sλ µ (15)

+
1
2 ∑

µ∈B
∑
ν

DµνSνσ ∑
σ∈A

∑
λ

Dσλ Sλ µ = ∑
µ∈A

∑
σ∈B

(DS)µσ (DS)σ µ = BAB

and so forth.

One advantage of using the formalism of effective atomic densities is that one

can switch from 3D-space to Hilbert-space formulae or vice versa simply by tak-

ing the appropriate form of the effective densities involved in the calculation. In

a recent paper15 we have put forward an improved general formulae for the de-

composition of 〈Ŝ2〉 applicable for both single-determinant and correlated wave

functions . The numerical implementation of the resulting one- and two-center

components was originally carried out in the 3D-physical space. Here we will

make use of the formalism of the atomic and diatomic effective matrices depicted

above to derive in a simple manner the appropriate one and two-center compo-

nents of 〈Ŝ2〉 in the framework of Hilbert-space analysis.

This exercise is of particular interest here because of the formal ambiguity

affecting Hilbert-space decompositions in the selection of the indices put forward

in the previous section. We most definitely recommend to stick to the assignment

of subscripts that will be obtained here, which is consistent with both Mulliken

population analysis and the original bond order definition Eq. (8).
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4 Decomposition of 〈Ŝ2〉

Within the formalism of the effective atomic densities, the respective one- and

two-center contributions to 〈Ŝ2〉 can be formally written from the general expres-

sion of eqn. (6) simply as

〈Ŝ2〉A =
3
4

∫
uA(~r1)d~r1 +

1
2

∫∫ [
ΓAA(~r1,~r2)− 1

2ρ
s
A(~r1;~r2)ρ

s
A(~r2;~r1)

]
d~r1d~r2

−1
2

∫ ∫ [
ΓAA(~r1,~r2;~r2,~r1)− 1

2ρ
s
A(~r1;~r1)ρ

s
A(~r2;~r2)

]
d~r1d~r2. (16)

and

〈Ŝ2〉AB =
1
2

∫∫ [
ΓAB(~r1,~r2)− 1

2ρ
s
A(~r1;~r2)ρ

s
B(~r2;~r1)

]
d~r1d~r2

−1
2

∫ ∫ [
ΓAB(~r1,~r2;~r2,~r1)− 1

2ρ
s
A(~r1;~r1)ρ

s
B(~r2;~r2)

]
d~r1d~r2. (17)

where the atomic (in the case of u(~r) and ρs(~r,~r ′)) and diatomic (in the case of

the cumulants, Γ) densities have been conveniently used, instead of their global

counterparts in eqn. (6).

In order to be consistent with the definitions of Eqn.(12) in the framework of

Hilbert-space analysis, the effective atomic contributions of the density of effec-

tively unpaired electrons and the spin density matrix must be taken as

ρ
s
A(~r;~r ′) = ∑

µ∈A
∑
ν

Ps
µν χ

∗
ν(~r)χµ(~r ′) (18)
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and

uA(~r) = ∑
µ∈A

∑
ν

[
2Dµν − (DSD)µν

]
χ
∗
ν(~r)χµ(~r), (19)

where we have made use of Eq. (2).

The spin-less cumulant, Γ, being a genuine two-electron quantity, consists of

atomic (if A = B) and diatomic (A 6= B) contributions:

ΓAB(~r1,~r2;~r ′1,~r
′

2) = ∑
µ∈A

∑
σ∈B

∑
ν ,λ

Γµσνλ χ
∗
ν(~r1)χ

∗
λ
(~r2)χµ(~r ′1)χσ (~r ′2) (20)

where the Γµσνλ are the corresponding matrix elements of the cumulant in the

atomic orbital basis.

Substituting Eqns.(18)-(20) into (16) and integrating, one obtains, after some

manipulations, the final expression for the atomic components of 〈Ŝ2〉

〈Ŝ2〉A =
3
4 ∑

µ∈A

[
2(DS)µµ − (DSDS)µµ

]
(21)

−1
4 ∑

µ,ν∈A
(PsS)µν(PsS)νµ +

1
4 ∑

µ,ν∈A
(PsS)µµ(PsS)νν

+
1
2 ∑

µ,σ∈A
∑
ν ,λ

(
Γµσνλ −Γµσλν

)
Sλσ Sνµ

Similarly, for the diatomic spin components one gets

〈Ŝ2〉AB = −1
4 ∑

µ∈A
∑

ν∈B
(PsS)µν(PsS)νµ +

1
4 ∑

µ∈A
∑

ν∈B
(PsS)µµ(PsS)νν (22)

+
1
2 ∑

µ∈A
∑

σ∈B
∑
ν ,λ

(
Γµσνλ −Γµσλν

)
Sλσ Sνµ .
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In the single determinant case the cumulants vanish and these formulae reduce to

those derived independently in Ref. 27.

Eqns. (13) and (14) of Alcoba et al.9 are similar to our Eqns. (21) and (22).

In that paper, however, aside from the fact that a = 1/2 was used (and, therefore,

other coeficients differ, too), the authors also chose a different convention in the

treatment of the cumulant part: one index of the overlap matrix is assigned accord-

ing to the term coming from the “bra” and another coming from the “ket”. From

now on we will refer to that different convention as formula with “interchanged”

subscripts.

5 Numerical results

We have written a program that performs the decomposition of 〈Ŝ2〉 described

above in the framework of the Hilbert-space analysis. The first- and second-order

density matrices have been obtained using a modified version of Gaussian-03

program suite28 and an auxiliary program29 that reads and processes CISD and

CASSCF outputs. All calculations have been carried out with the geometrical

structure of the molecules optimized at the current level of theory.

To assess the numerical effect on the use of the different summation

schemes in the Hilbert-space analysis, we have studied the H2 molecule at the

CASSCF(2,4) level for several basis sets. Table 1 gathers the values of 〈Ŝ2〉H for

different values of the parameter a within the continuum of definitions and for the

two summation schemes. The results obtained using eqn. (21) exhibit from signif-
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icant to small basis set dependence, depending upon the choice of the parameter

a. In the case a = 0, the local spin on the H atom obtained with the largest basis

set (cc-pVQZ with cartesian d and f functions) is as large as 0.607, far away from

what one should expect for a diamagnetic H2 at equilibrium distance. Noticeably,

when using the same basis set with pure d and f functions the 〈Ŝ2〉H value de-

creases to 0.389. On the other hand, the results obtained with the “interchanged”

index formula show, in general, less dependence on both basis set and the choice

of the parameter a.

The local spin obtained with the recommended15 value a = 3/4 and the pre-

ferred formulation are close to zero in all cases, in line with the physical expec-

tations. The numbers have virtually no basis set dependence and are also very

similar to those obtained in the framework of 3D-space analysis, reported in Ref.

15. Using the alternative formula with “interchanged” indices the values are some-

what too large, as compared with the “conventional” ones.

The recommended decomposition has also been applied to a series of singlet

molecules and the results are presented in Table 2. The optimized geometries and

the wave functions were obtained at the CISD/6-31G** level of theory (with carte-

sian d functions). Note that for these systems the overall 〈Ŝ2〉 value is zero, but

small local atomic spins can be induced by correlation fluctuations. One should

only expect the presence of significant diatomic contributions in singlet systems if

there would be any antiferromagnetic interaction that could be distinguished from

covalent bonding.

As anticipated, the molecules of the HnX series (HF, H2O, and NH3) show
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small values of local spin. The only systems with atomic spin contributions

larger than 0.1 are homonuclear diatomic Li2 and Be2, with 〈Ŝ2〉Li = 0.156 and

〈Ŝ2〉Be = 0.175, respectively. These values are consistent with those obtained

within the framework of 3D-space analysis.15 On the other hand, in the series

of hydrocarbons the local spin on the C atoms reported here show relevant dif-

ferences. Within the 3D-space formulation the atomic spin contributions where

always below 0.1.15 In the Hilbert-space framework both CH4 (〈Ŝ2〉C = 0.320)

and C2H6 (〈Ŝ2〉C = 0.199) present quite significant local spin on the C atoms. The

most striking finding in Table 2 is the negative local spin on the C atom obtained

for C2H2. Since there is no physical explanation for a negative value of 〈Ŝ2〉C,

we tried to understand this odd behavior. First of all, it is important to note that at

the CASSCF(6,6)/6-31G** level of theory we obtained 〈Ŝ2〉C =−0.144, a similar

value. Also, the local spin obtained at the CISD/6-31G** level with the 3D-space

formulation was 0.083,15 ruling out the CISD wave function as a responsible for

the spurious number. In Table 1 above we have illustrated the basis set effects for

the simplest H2 molecule. Thus, in order to see the effect of the basis set upon the

local spin for the acetylene, we have computed the 〈Ŝ2〉C values at the CISD/6-

31G** optimized geometry using several basis sets. The results are gathered in

Table 3. The 〈Ŝ2〉C is negative for the 6-31G, 6-31G**, 6-311G**, and cc-pVTZ

basis sets, while remains positive for the STO-3G and 6-311G basis sets. For this

peculiar molecule, a non-nuclear attractor is found for the STO-3G and cc-pVTZ

basis sets, having no apparent effect on the local spin and bond indices values.

Moreover, since negative values appear for both small and relatively large basis
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sets with and without polarizations functions it is difficult to draw any general

conclusion from the data. For comparision, the local spin on C atoms using a 3D-

space formulation of ref.15 have been computed and are also included in Table 3

(〈Ŝ2〉3D
C values). In this case, all 〈Ŝ2〉3D

C values are small and positive, and one can

see a systematic lowering of them upon inclusion of polarization functions.

In this context it is worth to note that rather odd numbers have been obtained in

the literature when combining Hilbert-space analysis techniques and genuine two-

electron quantities from correlated wave functions. For instance, Vyboishchikov

et al.30 found unphysically positive correlation contributions for diatomic ener-

gies at the CID level of theory. On the other hand, the bond order indices that in

the correlated case make use of the actual pair density (the so-called delocalization

index, DI,31–35) have also been matter of debate as, for the simplest case of H2

described with Weinbaum’s classical correlated wave function, the DI gives just

0.39.35 An alternative formulation formally constructed from the first-order den-

sity matrix , the so-called Mayer-Wiberg bond order of eqn.(8)23,35 was proposed

as a more suitable quantity to be connected with bond orders. Both definitions

coincide for single-determinant wave functions, thus deviations from both indices

are directly related with correlation effects. In Table 3 we have also included the

DI and Mayer-Wiberg bond indices for the C-C bond in acetylene with different

basis sets. Whereas all BCC values are close to 3, as one would expect for a for-

mal triple bond, the DICC values are very small (below 1.0) and even unphysically

negative in some cases. Moreover, we have performed the DICC calculations in the

framework of the 3D-space, and in all cases the values are positive (yet slightly
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lower than the respective BCC values). One can conclude once again that in some

cases one can get spurious results when decomposing quantities that explicitly

include the second-order density matrix in the framework of the Hilbert-space

analysis.

6 Conclusions
We have carried out the decomposition of the expectation value of the spin op-

erator for a general wave function in the framework of the Hilbert-space analy-

sis that fulfill all the requirements imposed to date. We have shown that there

is and ambiguity affecting Hilbert- space decompositions in the selection of the

indices where the atoms are centered. We definitely recommend to stick to the

assignment of subscripts that is consistent with Mulliken population analysis and

original Mayer-Wiberg bond orders. It has been also pointed out that there are

cases where one can get spurious results when performing Hilbert-space decom-

positions on quantities that contains the second-order density matrix.
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Table 1: CASSCF(2,4) atomic 〈Ŝ2〉A values for the H2 molecule at optimized
geometries for several basis sets and values of the parameter a.

Decomposition scheme a cc-pVDZ cc-pVTZ cc-pVQZ cc-pVTZ cc-pVQZ
(6d) (6d 10f)

Equation (21) 0 0.402 0.277 0.389 0.305 0.607
3/8 0.219 0.156 0.214 0.170 0.325
1/2 0.158 0.116 0.156 0.125 0.231
3/4† 0.036 0.035 0.039 0.035 0.043

“Interchanged” indexes 0 0.134 0.115 0.136 0.117 0.171
3/8 0.097 0.083 0.101 0.084 0.130
1/2 0.085 0.072 0.089 0.073 0.116
3/4 0.060 0.051 0.066 0.052 0.089

† The recommended value
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Table 2: CISD/6-31G** atomic 〈Ŝ2〉A and diatomic 〈Ŝ2〉AB values for a set of
singlet molecules at optimized geometries.

Molecule 〈Ŝ2〉A/〈Ŝ2〉AB Molecule 〈Ŝ2〉A/〈Ŝ2〉AB

H2 H 0.036 C2H6 C 0.199
H-H -0.036 H 0.024

Li2 Li 0.156 C-C -0.122
Li-Li -0.156 C-H -0.069

Be2 Be 0.175 C..H 0.034
Be-Be -0.175 H-H 0.018

HF H 0.006 H..H -0.015
F 0.006 C2H4 C 0.056

H-F -0.006 H 0.024
H2O H 0.013 C-C -0.094

O 0.013 C-H -0.036
O-H -0.007 C..H 0.055
H..H -0.006 H-H -0.002

NH3 N 0.061 H..Hcis -0.026
H 0.019 H..Htrans -0.014

N-H -0.020 C2H2 C -0.139
H..H 0.000 H 0.019

CH4 C 0.320 C-C 0.147
H 0.026 C-H 0.048

C-H -0.080 C..H -0.056
H..H 0.018 H..H -0.006
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Table 3: Atomic 〈Ŝ2〉C components, Mayer bond orders, and delocalization in-
dices of the C-C bond for acetylene molecule computed at CISD level of theory
with different basis sets.

Basis set 〈Ŝ2〉C 〈Ŝ2〉3D
C BCC DICC

sto-3G 0.012 0.159 2.725 0.502
6-31G -0.074 0.114 3.092 -0.141

6-31G** -0.139 0.083 2.918 0.461
6-311G 0.030 0.113 2.868 -0.112

6-311G** -0.143 0.084 2.709 0.214
cc-pvtz -0.146 0.078 2.722 -0.615
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