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Water contamination is a worldwide environmental challenge. 
Consumption of water containing high nitrate, sulphate or Chlorinated 
Aliphatic Hydrocarbons (CAHs) levels as drinking water can 
cause many diseases (i.e. cancer, skin irritation, an increased risk of 
respiratory tract infections and goiter development in children). Both 
the Water Framework Directive (2000/60/EC) and the Groundwater 
Directive (2006/118/EC) consider these pollutants the main threats to 
water quality, requiring urgent and intensive monitoring and strong 
policies.

To remove these pollutants from groundwater, different 
technologies can be used. Currently, the Environmental Protection 
Agency (EPA) considers ion exchange, reverse osmosis and reverse 
electrodialysis to be effective methods for the decrease of their 
concentrations, below their limit in drinking water. These technologies 
have some drawbacks, such as low selectivity towards the target 
pollutant, high energy or chemicals requirements, and the generation 
of waste brine (pollutants are separated from water, not treated), which 
require an additional treatment.

Bio Electro Chemical Systems (BES) could fill this niche. BES use 
microorganisms to catalyse different electrochemical reactions, as well 
as generating electrical power from wastes [1-3], the generation of 
many different chemical products or biofuels [4,5], and the removal of 
organic, and/or inorganic compounds from water flows. Groundwater, 
as the main resource of drinking water, is usually characterized by 
low conductivity (less than 1 mS·cm-1). Low ionic strength influences 
oxidation and reduction processes (in terms of removal efficiencies 
and loads), and the energy and current productions [6]. Cathode over 
potential represents almost 80% of the total energy losses, as cathode 
microbial community consumes energy to catalyse reduction reactions.

Intensive agriculture and livestock production and other non 
point sources have led to nitrate pollution in aquifers around the 
world [7]. Groundwater contaminated with nitrate contains almost no 
organic matter. As a result, using biological denitrification in activated 
heterotrophic sludge systems requires the addition of an external 
carbon source, producing considerable amount of sludge, which 
should be treated before disposal. Autotrophic denitrification is a more 
sustainable solution because carbon is not necessary, and thus, no 
carbon dioxide is released, leading to better bio stability. The cathode 
of BES can perform autotrophic nitrogen oxidised compounds (nitrate, 
nitrite and even nitrous oxide) removals [8-10]. BES are capable to 
treat nitrates at a maximum removal of 226 gNO3

-·m-3·d-1, without 
no nitrous oxide emission (a greenhouse gas), neither affecting other 
parameters of quality [11]. Not only BES removes nitrogen oxidised 
compounds, they also produce electrical power (0.013 kWh·m-3), if an 
organic waste is fed in the anode compartment. 

Sulphate, one of the most abundant anions in the environment, is 
generated and discharged from many industrial processes. Despite its 
relatively low direct environmental risk compared to other pollutants, 
in situ sulphate reduction to sulphide (toxic, corrosive and odorous 
compound) may occur under anaerobic conditions. Therefore, 
drinking water directives fixed a control concentration of 250 mg 
SO4

2-·L-1. Removal of sulphate from liquid is restricted to anaerobic 

bioreactors coupled to oxidation of organic matter. However, sulphate-
rich water, as in the case of nitrate contaminated groundwater, is 
usually deficient in electron donors [12]. BES can provide the electrons 
required for sulphate reduction in a biologically activated cathode, by 
coupling the oxidation of organic substrates in a separated anode, or 
by direct power supply. Despite a minimum power supply is required 
to overcome activation energy, thermodynamic potential losses and 
cathode over potentials, sulphate can be reduced via direct electron 
transfer, when poising the electrode too high (-0.26 V vs. SHE) for 
appreciable hydrogen production [13,14]. Sulphate groundwater-like 
streams can be treated with a minimum energy requirement of 0.7 V, 
while maximum removal of 60 g SO4

2-·m-3·d-1 occurs at 1.4 V applied. 
The reduction of sulphate leads mainly to sulphide production, which 
is entrapped in the ionic form, thanks to high bio cathode pH obtained 
during the process [13].

Chlorinated Aliphatic Hydrocarbons (CAHs), a family of 
compounds that are commonly used as chlorinated organic 
solvents for degreasing in the dry cleaning, electronics, industrial 
manufacturing and machine maintenance industries, are increasingly 
being detected in groundwater. The most prevalent of these CAHs are 
perchlorethylene (PCE), trichloroethylene (TCE), cis-dichloroethene 
(cis-DCE) and trichloroethane (TCA). Aulenta et al. [15] developed 
an electrochemically assisted reductive dechlorinationin, which a 
polarized glassy carbon electrode (i.e. cathode), is used as an electron 
donor for the microbial reductive dechlorination of TCE to harmless 
ethane. Not only TCE could be removed using BES, carbon-based 
electrode polarized at -0.55 V vs. SHE can serve as direct electron donor 
for the microbial reductive dechlorination of chloroethenes (TCE and 
cis-DCE) to harmless non-chlorinated end-products [16]. 

Finally, it is important to highlight that conventional technologies 
for groundwater treatment have high operational costs, and that 
the BES-based technology potentially allows decreasing these costs 
considerably to meet groundwater standards, and the selective and 
sustainable removal of its pollutants. The effluent of BES is biologically 
stable, minimizing the potential health risks and other possible 
problems with the infrastructure of the water supply, such as clogging of 
point-of-use filters, biofouling of distribution pipes and bio corrosion 
[8]. Therefore, it exist a clear niche and demand on the groundwater 
treatment market.
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