
 1

Solid phase crystallization under continuous heating: kinetic and 
microstructure scaling laws  

 
J. Farjas* and P. Roura 

GRMT, Department of Physics, University of Girona, Campus Montilivi, Edif. PII, 

E17071 Girona, Catalonia, Spain 

 

*Corresponding author: jordi.farjas@udg.es 

 

 

Abstract 

 

The kinetics and microstructure of solid phase crystallization under continuous heating 

conditions and random distribution of nuclei are analyzed. An Arrhenius temperature 

dependence is assumed for both nucleation and growth rates. Under these 

circumstances, the system has a scaling law such that the behavior of the scaled system 

is independent of the heating rate. Hence, the kinetics and microstructure obtained at 

different heating rates only differ in time and length scaling factors. Concerning the 

kinetics, it is shown that the extended volume evolves with time according to 

( )[ ] 1'exp += m
ex Ctκα where 't  is the dimensionless time. This scaled solution not only 

represents a significant simplification of the system description, it also provides new 

tools for its analysis. For instance, it has been possible to find an analytical dependence 

of the final average grain size on the kinetic parameters. Concerning the microstructure, 

the existence of a length scaling factor has allowed the grain size distribution to be 

numerically calculated as a function of the kinetic parameters.  

 

PACS: 81.10.Aj, 81.10.Jt, 05.70.Fh. 

 

1. Introduction 

 

Crystallization of amorphous materials and other solid state transformations 

usually involve random nucleation and growth. Under this assumption, the phase 
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transformation is described by the Kolmogorov-Johnson-Mehl-Avrami theory (KJMA) 

[1-6]. The transformed fraction, α , is related with the extended transformed fraction, 

exα , through the so-called KJMA relation: 

[ ])(exp1)( tt exαα −−=      .    (1) 

exα would be the transformed fraction if grains grew through each other and overlapped 

without mutual interference, i.e.: 

∫=
t

exex dutuvuIt
0

),()()(α   ,  (2) 

where I is the nucleation rate per unit volume and vex(u,t) is the extended volume 

transformed at time t by a single nucleus created at time u 

( )mt
uex dzzGtuv ∫= )(),( σ       .    (3) 

In Eq. (3), σ is a shape factor (e.g., σ =4π /3 for spherical grains), G is the growth rate 

and m depends on the growth mechanism [7] (e.g., m=3 for three dimensional, 3D, 

growth). 

 

For the particular case of isothermal transformations, where growth and 

nucleation rates are constant in time, Eqs. (2)-(3) have an analytical solution:  
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Unfortunately, owing to the dependence of G and I on temperature, general exact 

solutions do not exist for non-isothermal conditions. Accordingly, a number of 

published works have developed different theoretical and numerical approaches to 

analyze non-isothermal phase transformations within the framework of KJMA theory 

[8-30]. Recently, a quasi-exact solution of the KJMA theory was obtained under 

continuous heating conditions [31]. 

 

A useful approach to investigate the kinetics and grain morphology consists of 

finding a scaling law such that the system behavior is universal. This method has been 

successfully used for the isothermal case [32]. In this case the time, τ , and length, λ , 

scaling factors are [33]:  
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When time is scaled in Eq. (4), one gets a universal solution (independent of I and G): 

   1)'()'( += m
ex tt κα   ,   (6) 

where,    

1
1

+

+
≡ m

m
σκ    ,   (7) 

and τ/' tt ≡ is the dimensionless time. 

 

In this paper we will show that a similar scaling law applies for transformations 

at a constant heating rate (Sec. 2). For a given ratio between the activation energies of I 

and G, there exists an approximate scaled solution independent of the heating rate. 

Accordingly, the kinetics and microstructure for any heating rate can be obtained from 

this scaled solution simply by multiplying the dimensionless time and length values by 

the corresponding scaling factors. In Sec. 3 we obtain the scaled solution for the 

transformation kinetics, )'(tα , which represents a significant simplification when 

compared to the quasi-exact solution recently published [31]. 

 

Apart from the transformation kinetics it would be very useful to know the 

resulting material’s microstructure because many of the material’s physical properties 

are microstructure-dependent. Surprisingly, work related to the microstructure obtained 

under continuous heating conditions is very scarce. As far as we know, only Crespo et 

al. [34] have addressed this problem for a particular case. In Section 4, and thanks to the 

simplicity of the scaled solution, an analytical expression is obtained for the average 

grain size. Additionally, we numerically analyze the dependence of the grain size 

distribution on the ratio between the nucleation and growth activation energies. Finally, 

in Section 5 the limits of thermally activated nucleation are analyzed. It will be shown 

that when the activation energies of nucleation and growth are significantly different, 

the model of pre-existing nuclei is more adequate. A scaled exact solution for pre-

existing nuclei is also included.  
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2. The scaling law 

 

In most practical situations where continuous nucleation takes place, it is 

possible to assume an Arrhenius temperature dependence for both I and G [9-

12,21,25,35]: 

)/exp(and)/exp( 00 TkEGGTkEII BGBN −=−=  ,  (8) 

where EN and EG are the respective activation energies for nucleation and growth, kB is 

the Boltzmann constant and T is the temperature. Under this assumption, Eqs. (1)-(3) 

have a quasi-exact solution [31]: 
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and β is the constant heating rate; dtdT /≡β . Note that, according to Eqs. (1) and (9), 
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α . Moreover, )(tα  in Eq. (9) is the exact solution of the non-

isothermal KJMA rate equation [31]: 

 [ ] 1/)1()1)·((·)·1( +−−−+= mmLnTkCm
dt
d ααα  ,  (10) 

where TkE BekTk /
0)( −≡ .          

  

The time, Pτ , and length, Pλ , scaling factors we propose here are inspired by 

the isothermal case, Eq. (5). Since I and G depend on time through temperature for 

constant heating, we define the scaling factors using the values of I and G for a 

particular temperature. A logical choice is the well-defined peak temperature, TP, i.e., 

the temperature at which the transformation rate is maximum: 
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where TP, is given by Eq. (A2) (see Appendix A).  

 

Under the approximation that the crystallization takes place in a relatively 

narrow temperature range, 

2
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the dimensionless growth and nucleation rates become (see Appendix A): 
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where Ptt τ/'≡  is the dimensionless time. Note that the dimensionless growth and 

nucleation rates do not depend on the heating rate, they only depend on the geometrical 

factor σ  and the ratio GN EE /  through the constants κ , EEG /  and C, respectively. 

Hence, for a given ratio GN EE /  the transformation kinetics and grain morphology for 

different β  differ only by the time and length scaling factors Pτ  and Pλ , respectively. 

Therefore kinetics and microstructure can be obtained from the scaled system simply by 

multiplying the dimensionless time and length by Pτ  and Pλ , respectively. 

 

 Equation (9) is obtained under the assumptions that the critical nuclei size, the 

transformation rate at the initial temperature, T0, and the incubation time for nucleation 

are negligible. The first assumption relies on the fact that the average grain size is 

usually much larger than the critical nuclei size. Thus, this approximation only affects 

the very early stages of crystallization. Concerning the second assumption, it is based 

on the fact that, in well designed experiments, T0 is low enough to ensure that the 

experimental results do not depend on T0. Finally, the existence of a finite incubation 

time would modify Eq. (9). However, as the incubation time is linked to the 



 6

crystallization kinetics, in many cases an approximate relation equivalent to (A2) is 

expected and the scaling law is still valid. For instance, we have verified the validity of 

the scaling law for the case of crystallization of a-Si where the activation energy of the 

incubation time is similar to that of crystallization [36]. 

 

3. Scaled approximate solution for the transformation kinetics 

 

In this section, we will find a scaled expression for )(tα  (i.e., independent of β ) 

which virtually coincides with the quasi-exact solution. Let us rewrite the non-

isothermal KJMA equation [Eq. (10)] for exα : 

  1)()1( ++= m
m

ex
ex CTkm

dt
d αα   ,  (14) 

and show that, under the approximation of Eq.(12), it is scalable with time. With Eq. 

(12) k(T) becomes: 
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Once k(T) is substituted in Eq. (14), a scaled equation results:  

   1
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m
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Ctex Cem

dt
d ακα κ    ,  (16) 

where Ptt τ/'≡  is the dimensionless time. Integration of Eq. (16) delivers the scaled 

solution for exα : 

( )[ ] 1'exp)'( += m
ex Ctt κα   ,   (17) 

 

after imposing that 1=exα  at the peak temperature [31] (i.e., at t’=0). Finally the scaled 

solution for the transformed fraction is obtained after combining Eqs. (1) and (17): 

 

( )[ ]( )1'expexp1)'( +−−= mCtt κα    . (18) 

 

Alternatively, Eq. (17) can be obtained after integration of Eqs. (2)-(3) once the 

dimensionless rate constants G’ and I’ [Eq. (13)] are substituted there. 
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To verify the validity of the time scaling and the proposed scaled solution for 

)'(tα , we have calculated )(tα  and the transformation rate, dtd /α , from the 

crystallization of amorphous silicon at two extreme heating rates of β =0.005 and 100 

K/min which can be considered the lower and upper limits for most experiments. Then, 

time and transformation rate are scaled for these particular heating rates and compared 

to the scaled solution )'(tα  given by Eq. (18). and its derivative dtd /'α . The results 

are plotted in Fig. 1. The calculation of )(tα  has been done using a numerical method 

which delivers the exact solution of Eqs. (1)-(3) [32]. All calculations described in this 

section have been done for isotropic 3D crystallization (m = 3, πσ 3/4= ) of 

amorphous silicon (I and G, detailed in Table I). 

 

The coincidence for both heating rates and the scaled solution is excellent. The 

discrepancies in the transformed fraction for both heating rates are lower than 3 10-4 

despite the large shift in peak temperatures from 571.6 to 768.7 ºC and the very 

different time-scaling factors of 1.72 105 and 13.0 s for =β  0.005 and 100 K/min, 

respectively. It is worth noting that, although the two time scales differ by more than 

five orders of magnitude, the scaling law is still valid. In fact, the usefulness of the 

approximation made in Eq. (12) is based on the exponential dependence of the growth 

and nucleation rates on temperature, i.e., the Arrhenius dependence. This strong 

dependence on temperature limits the crystallization process to a narrow temperature 

range even when the heating rate is as low as 0.005 K/min. 

 

The accuracy of the scaled solution can be tested for a wide range of GN EE /  

values through the full width at half maximum (FWHM) of the transformation rate 

peak. From the scaled solution, Eq. (18), the calculation of the FWHM, HMtΔ , is 

straightforward and results in (see Appendix B):  

Cm
t

P

HM

κτ )1(
44639.2
+

=
Δ    .  (19) 
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In Fig. 2 we see that this value departs only slightly from the exact one when EN is very 

different from EG, the discrepancy being higher for GN EE << . 

 

Let us highlight the formal simplicity of the scaled solution [Eq. (18)] when 

compared with the quasi-exact solution [Eq. (9)]. This simplicity has been reached 

without any significant loss of accuracy in the range of transformed fractions of 

practical interest (say, 99.001.0 << α ).  

 

In contrast with the isothermal case [Eq. (6)] we see that the scaled solution for 

continuous heating is not universal (independent of G and I) but depends on the 

particular value of the ratio between the activation energies EG and EN (through the 

parameter C). This dependence has important consequences for the microstructure 

development, which will be analyzed in the next section. 

 

4. Grain size morphology 

 

In this section we will verify the length scaling law proposed in Sec. 2 [Eq. (11)] 

and analyze the dependence of the final microstructure on the kinetic parameters.  

 

To characterize the final microstructure we have calculated the grain size 

distribution, where the grain size of an individual grain, i, is defined as: 

3
4
3
π

i
i

vr ≡    ,  (20) 

and iv  is the actual grain volume. The numerical algorithm used for the calculation of 

the grain size distribution is described in [32].  

 

To verify the length scaling law we have calculated the grain size distributions 

from the crystallization of amorphous silicon at two extreme heating rates of β =0.005 

and 100 K/min. Then the grain size distributions are scaled by dividing the grain size by 

the length scaling factor Pλ  [Eq. (11)]. The results are plotted in Fig. 3. The length 
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scaling factors are 1.132 and 0.271 microns for =β 0.005 and 100 K/min, respectively. 

The discrepancies between both distributions are within the numerical accuracy of the 

algorithm. Thus, once scaled, the grain size distributions do not depend on the particular 

heating rate and merge in one single distribution. Indeed, as explained in Sec. 2 the 

scaled grain size distribution only depends on the GN EE /  ratio.  

 

To characterize the grain size distributions from the numerical simulations, we 

have calculated the average grain size, >< r , the mean grain radius, r  and its standard 

deviation, rσ , defined as:  

3

1

31 ∑
=

>≡<
N

i
irN

r , ∑≡
i

irN
r 1  and ( )∑ −≡

i
ir rr

N
21σ   , (21) 

where N is the final number of grains. The average grain size after 3D crystallization as 

a function of GN EE /  is reported in Fig 2. The grain size distribution for a series of 

GN EE /  ratios below or above unity are plotted in Figs. 4(a) and 4(b), respectively, and, 

finally, the values of r  and rσ  are detailed in Fig. 5. 

 

4.1 Analytical solution for the average grain size 

 

 Before looking at the grain size distributions in detail, let us take advantage of 

the scaled solution for α  [Eq. (18)] which allows us to find an analytical expression for 

the average grain size. According to Ref. [32], >< r  can also be calculated from the 

number of grains formed after complete crystallization: 

m
N
Vr

σ
1

>=<   ,   (22) 

where N can be obtained from )(tα : 

   ( )∫
∞

−=
0

)(1)( duuuIVN α     .    (23) 

In Appendix B, the scaled solution has been substituted in Eq. (23) and an analytical 

expression for >< r  has been obtained: 
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where Γ is the gamma function [37]. It has been plotted in Fig. 2 where it can be 

compared with the exact values obtained for the two extreme heating rates of 0.005 and 

100 K/min. It can be concluded that Eq. (24) gives the average grain size with very 

good accuracy unless 1/ <<GN EE , where discrepancy is below 10%.  

 

4.2 Dependence of the grain size distribution on GN EE /  

 

 Let us now focus our attention on the grain-size distributions of Fig. 4. When 

1/ =GN EE , the distribution coincides with the isothermal distribution obtained in ref. 

[32]. This is as expected because G and I have the same temperature dependence and 

their ratio is constant. Consequently, the temperature has an effect on the rate at which 

the transformation proceeds but not on the microstructure. In this particular case, the 

grain size distribution is independent of the thermal history. For GN EE ≠ , the grain-

size distribution departs progressively from the isothermal one, and when the ratio 

GN EE /  is far from unity, the distributions have characteristic shapes which can be 

readily understood. 

 

When 1/ <GN EE , during the first stages of the transformation, nucleation 

dominates over growth. Consequently, the nuclei density is higher when compared to 

the isothermal case. Thus, when GN EE /  diminishes, the average grain is reduced (Fig. 

3). Concerning the bell-shaped grain-size distribution for 1/ <<GN EE  [Fig. 4(a)], it 

can be explained by the fact that most nuclei are formed at a temperature range where 

they are not allowed to grow significantly. This means that they grow together at higher 

temperatures leading to a narrow distribution of grain sizes. In Fig. 5 we see that, 

indeed, the standard deviation diminishes drastically for 1/ <<GN EE . 
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In contrast, when 1/ >GN EE  during the first stages of crystallization, growth 

dominates and the nucleation rate increases progressively as crystallization proceeds. 

Since the time left for growing is lower for the nuclei that appear later, the density of 

small grains will be higher than for larger grains [as shown in Fig. 4(b)]. In fact, from 

Fig. 4(b), one can infer that the slow initial nucleation results in the formation of a small 

quantity of large grains. Moreover, this initial low nucleation rate results in a reduction 

of the transformation rate which is manifested in Fig. 2 as a monotonous increase of 

HMtΔ with GN EE / . In addition, nucleation takes place during a longer time interval and, 

consequently, the grain size distribution contains larger grains as GN EE /  increases (see 

Fig. 5). 

 

Finally, it is worth noting that when GN EE /  increases, the delayed nucleation 

results in an increased number of phantom nuclei [2]. Some authors have claimed that, 

in clear disagreement with Avrami’s assumption, they must be excluded in the 

calculation of exα . For the simulations carried out in this work, the ratio between 

phantom nuclei and ‘real’ grains increases from 0.11 when 1.0/ =GN EE  to 0.98 when 

10/ =GN EE . In all these simulations, the agreement between the transformed fractions 

calculated from the microstructure and from the numerical solution of Avrami’s model 

[Eq. (1)] is excellent.  

 

5. Limits of thermally activated nucleation 

 

From a formal point of view, the analysis given in Sec. 2-4 for continuous 

nucleation can be applied for any arbitrary value of the ratio GN EE / . In the following, 

we will argue that, when this ratio is far from unity, the material will follow the kinetics 

of pre-existing nuclei (described in Appendix C), when nucleation is not thermally 

activated but a constant density of nuclei, n0, already exists before they grow. When 

GN EE << , nucleation takes place early and, eventually, its rate may vanish before the 

onset of particle growth (site saturated nucleation [21,38]). Consequently the nuclei 
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grow as if they were preexistent to the growth stage. On the other hand, when 

GN EE >> , homogeneous nucleation is less viable. In most practical situations, when 

GN EE >> , nucleation is catalyzed by inclusions and the container walls [35,39,40], i.e., 

it is virtually impossible to prevent heterogeneous nucleation. In this case, again, one 

can also apply the model of preexisting nuclei provided that nuclei are randomly 

distributed [41,42]. In the case of heterogeneous nucleation, the latter condition can be 

jeopardized by a particular distribution of the external nucleation sites. However, in 

several practical situations and in the case of heterogeneous nucleation localized at the 

container walls it is possible to assume that nucleation sites are randomly distributed. 

Thus, the problem can be solved by assuming an initial surface density of preexisting 

nuclei [43-45].  

 

A universal scaled solution can also be obtained for the case of pre-existing 

nuclei (see Appendix C). Calculations, like those done for continuous nucleation in Sec. 

2, show that the kinetics is scalable with a similar accuracy ( 410.4 −<Δα  between 

0.005 and 100 K/min).  

 

6. Conclusions 

 

In this paper, we have shown that, when time and length are properly scaled, the 

description of solid state crystallization under annealing at a constant heating rate 

becomes very simple. For a given material, the time dependencies of the transformed 

fraction obtained at different heating rates merge into one single scaled solution. The 

accuracy of this simplified kinetics has been tested against exact numerical solutions of 

the KJMA equations. Within the range of α  values of interest ( 99.001.0 << α ), the 

agreement is excellent. Apart from a geometrical parameter, this scaled solution 

depends only on the particular growth and nucleation rates through one single 

parameter: the ratio of activation energies, GN EE / .  
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In addition to the crystallization kinetics, it has been shown that the grain size 

distribution can be scaled with a characteristic length. Again, for a given GN EE /  ratio, 

the scaled distributions do not depend on the particular heating rate. From the scaled 

kinetic equation, it has been possible to obtain the analytical dependence of the average 

grain size on GN EE / . The grain size obtained after isothermal crystallization coincides 

with that obtained after continuous heating only when 1/ =GN EE . Although small 

deviations are predicted for GN EE << , they are probably not high enough to induce 

important changes in the material’s properties. 

 

The scaled distributions have been calculated for a series of GN EE /  values 

ranging from 0.1 to 10 with a numerical algorithm which simulates the microstructure 

development. It has been shown that, for GN EE << , the distribution of grain sizes is 

quite narrow around the average value whereas, for GN EE >> , the density of grains 

diminishes monotonically as the radius increases. 

 

 For the sake of completeness, the kinetics and grain size distribution have been 

calculated for the case of preexisting nuclei. It has been shown that it is also possible to 

find appropriate time and length scaling factors. 

 

Finally, our analysis relies on the fact that the transformation is thermally 

activated and, consequently, that it takes place in a narrow temperature range. Indeed, 

many real transformations are thermally activated, thus we believe that our approach 

can by applied to a large number of transformations. 
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Appendix A. Dimensional scaling law for the case of continuous nucleation 

 

The time, Pτ , and length, Pλ , scaling factors are defined in Eq. (11) where the 

peak temperature, TP, is given by: 

02
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=
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Substitution of Eqs. (9) and (10) in Eq. (A1) leads to the value of TP as the solution of 

an algebraic equation: 
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The scaled system is universal (independent of β ) provided that the 

dimensionless growth and nucleation rates do not depend on β . Actually, the 

dimensionless growth and nucleation rates are: 
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Unfortunately, the result does depend on β through the relationship between T and t. To 

suppress this dependence we will suppose that the temperature range where the 

crystallization takes place is relatively narrow: 
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Furthermore, selecting a time scale requires selecting a scale factor as well as a time 

origin. This origin must correspond to an equivalent state for any dimensional system 

(any particular value of β ). Here again the natural choice is the time at which the 

transformation rate is maximum: 

tTTtTT PP ββ −=−⇔+=    . (A5) 

Then, substitution of Eqs. (A5) and (A2) into Eq. (A4) gives: 
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Thus, the dimensionless growth and nucleation rates become: 
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where Ptt τ/'≡  is the dimensionless time. 

Appendix B. Analytical calculation of >< r  and HMtΔ  for the scaled system 

 

The total number of grains N is given by Eq. (23). Combining Eqs. (23), (18) 

and (13), one gets: 
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where 'mtes ≡ . Finally, >< r  is obtained from substituting Eq. (B1) into Eq. (22): 
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For the calculation of HMtΔ  we first calculate the transformation rate from Eq. 

(18): 
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and the transformation at the maximum is: 

1

0'

)1(
'

)'( −

=

+= Cem
dt

td
t

κα   ,  (B4) 

consequently,  

'' 12 ttt

P

HM −=
Δ
τ

    , (B5) 

where 

1

0'''

)1(
2
1

'
)'(

2
1

'
)'(

'
)'(

21

−

=

+=== eCm
dt

td
dt

td
dt

td

ttt

κααα  , (B6) 

substituting Eq. (B6) into (B3) one gets 

[ ]( ) 1
1

'exp),(
2

+−
−

≡−=− mx tCxxee κ   .  (B7) 
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Equation (B7) has two solutions: 67835.21 =x  and 231961.02 =x . By substituting 

these solutions and Eq. (B2) one obtains:  

Cmx
x

Cm
t

P

HM

κκτ )1(
44639.2ln

)1(
1

1

2

+
=

+
=

Δ   .  (B8) 

 

 

Appendix C. Universal scaled solution for the case of pre-existing nuclei 

 

When nucleation is completed prior to crystal growth, the kinetics of the 

transformation is simpler because it is exclusively governed by the growth rate: 
m

B

G

B

G
ex Tk

Ep
k

Ek ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

β
α 0'    , (C1) 

where ( ) mmGnk
1

000' σ≡  and n0 is the pre-existing nuclei density. Then, the 

corresponding peak temperature is given by: 

PB

G

Tk
E

G

B

P

e
E

kk
T

−

= 0
2

'β   .  (C2) 

On the other hand, according to the scaling law for the isothermal case [32,46], 

the time and length scaling factors are defined as: 

( ) ( )
m

P
Tk

E
mm

TT

mm
P n

eGnGn PB

G

P

/1

0

/1
00

/1
0

1'and' ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
===

−

=

− λτ  , (C3) 

and the dimensionless growth rate and nucleation density are: 

1''and
'
'' 3

0

11

=≡=≡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

P
TTk

E

P

P IneGG PB

G

λ
λ
τ   . (C4) 

Supposing again that the temperature range where the crystallization takes 

places is relatively narrow, one gets 

[ ]'exp' tG m ⋅= σ   ,   (C5) 

and a much simpler expression results for exα : 

  [ ]( )mm
ex t 'exp ⋅= σα    .  (C6) 
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For pre-existing nuclei, the grain-size distribution f(r) coincides with the 

distribution obtained under isothermal conditions. In [32] it has been shown that, for 

3D, it can be fitted to a Gaussian distribution (the square correlation coefficient is 

0.9998): 

  2

2

2
)(

2
1)( σ

μ

σπ

−
−

=
r

erf    ,  (C7) 

where '6093.0 Pλμ =  and '0892.0 Pλσ = . 

 

For the case of pre-existing nuclei >< r  is obtained directly from Eq. (22): 

m
P

r
σλ
1

'
=

><   .   (C8) 

For the calculation of HMtΔ  we follow the same procedure developed in 

Appendix B for continuous nucleation. First we calculate the transformation rate from 

Eqs. (1) and (C6): 

[ ]( ) [ ]( )mmmmm ttm
dt

td 'exp'expexp)1(
'

)'(
⋅⎥⎦

⎤
⎢⎣
⎡ ⋅−−= σσσα  .  (C9) 

The transformation rate at the maximum is (t’=0): 

1

0''
)'( −

=

= em
dt

td m

t

σα    , (C10) 

and 

1

0''' 2
1

'
)'(

2
1

'
)'(

'
)'(

21

−

=

=== em
dt

td
dt

td
dt

td m

ttt

σααα   , (C11) 

substituting Eq. (C11) into (C9) one gets 

[ ]( )mmx txxee 'exp),(
2

1

⋅≡−=− −
−

σ    .  (C12) 

Equations (C12) and (B7) are identical so they have the same solutions. By 

substituting these solutions one obtains: 

mm
P

HM

mx
x

m
t

σστ
144639.2ln1

' 1

2 ==
Δ   .  (C13) 
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Table I. Experimental parameters of amorphous silicon nucleation and growth rates 

[36].  

Activation energy, EN 5.3 eV 
Nucleation 

Preexponential term, I0 1.7 1044 s-1 m-3 

Activation energy, EG 3.1 eV 
Growth 

Preexponential term, G0 2.1 107 s-1 m 
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Figure 1. Transformed fraction and transformation rate versus time for 3D 

crystallization of amorphous silicon under continuous heating. Heating rates: 0.005 

K/min (squares) and 100 K/min (triangles). Time and transformation rates have been 

scaled according to Eq. (11). The solid line is the solution of the scaled system Eq. (18). 
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Figure 2. Average grain size, >< r , and the FWHM of the transformation rate 

evolution, HMtΔ . The solid and dashed lines have been calculated from the analytical 

solution of the scaled system, Eqs. (24) and (19) respectively. The discrete points are 

the result of a simulation of the crystallization process and can be considered exact 

(squares: 0.005 K/min; triangles: 100 K/min). 
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Figure 3. Final grain radius distribution for 3D crystallization of amorphous silicon 

under continuous heating. Heating rates: 0.005 K/min (black bars) and 100 K/min (grey 

bars). The radius has been scaled according to Eq. (11). 
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Figure 4. Final grain radius distributions for several values of GN EE /  resulting from the 

simulation of the crystallization process at 100 K/min. Owing to the length scaling law, 

these scaled distributions are almost independent of the heating rate. 
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Figure 5. Mean grain radius, r , and its standard deviation, rσ , versus GN EE /  

calculated from the grain size distributions of Fig. 4. 

 

 


